35 research outputs found

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Prediction of Status Particulate Matter 2.5 Using State Markov Chain Stochastic Process and HYBRID VAR-NN-PSO

    Get PDF

    A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    Get PDF
    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality

    A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions

    Get PDF
    Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables

    Forecasting in Mathematics

    Get PDF
    Mathematical probability and statistics are an attractive, thriving, and respectable part of mathematics. Some mathematicians and philosophers of science say they are the gateway to mathematics’ deepest mysteries. Moreover, mathematical statistics denotes an accumulation of mathematical discussions connected with efforts to most efficiently collect and use numerical data subject to random or deterministic variations. Currently, the concept of probability and mathematical statistics has become one of the fundamental notions of modern science and the philosophy of nature. This book is an illustration of the use of mathematics to solve specific problems in engineering, statistics, and science in general

    Development of Deep Learning Hybrid Models for Hydrological Predictions

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality - a review

    Get PDF
    The built environment sector is responsible for almost one-third of the world's final energy consumption. Hence, seeking plausible solutions to minimise building energy demands and mitigate adverse environmental impacts is necessary. Artificial intelligence (AI) techniques such as machine and deep learning have been increasingly and successfully applied to develop solutions for the built environment. This review provided a critical summary of the existing literature on the machine and deep learning methods for the built environment over the past decade, with special reference to holistic approaches. Different AI-based techniques employed to resolve interconnected problems related to heating, ventilation and air conditioning (HVAC) systems and enhance building performances were reviewed, including energy forecasting and management, indoor air quality and occupancy comfort/satisfaction prediction, occupancy detection and recognition, and fault detection and diagnosis. The present study explored existing AI-based techniques focusing on the framework, methodology, and performance. The literature highlighted that selecting the most suitable machine learning and deep learning model for solving a problem could be challenging. The recent explosive growth experienced by the research area has led to hundreds of machine learning algorithms being applied to building performance-related studies. The literature showed that existing research studies considered a wide range of scope/scales (from an HVAC component to urban areas) and time scales (minute to year). This makes it difficult to find an optimal algorithm for a specific task or case. The studies also employed a wide range of evaluation metrics, adding to the challenge. Further developments and more specific guidelines are required for the built environment field to encourage best practices in evaluating and selecting models. The literature also showed that while machine and deep learning had been successfully applied in building energy efficiency research, most of the studies are still at the experimental or testing stage, and there are limited studies which implemented machine and deep learning strategies in actual buildings and conducted the post-occupancy evaluation
    corecore