18,889 research outputs found

    Applications of flexible querying to graph data

    Get PDF
    Graph data models provide flexibility and extensibility that makes them well-suited to modelling data that may be irregular, complex, and evolving in structure and content. However, a consequence of this is that users may not be familiar with the full structure of the data, which itself may be changing over time, making it hard for users to formulate queries that precisely match the data graph and meet their information seeking requirements. There is a need therefore for flexible querying systems over graph data that can automatically make changes to the user's query so as to find additional or different answers, and so help the user to retrieve information of relevance to them. This chapter describes recent work in this area, looking at a variety of graph query languages, applications, flexible querying techniques and implementations

    Expression and Efficient Processing of Fuzzy Queries in a Graph Database Context

    Get PDF
    International audienceGraph databases have aroused a large interest in the last years thanks to their large scope of potential applications (e.g. social networks, biomedical networks, data stemming from the web). In a similar way as what has already been proposed in relational databases, defining a language allowing a flexible querying of graph databases may greatly improve usability of data. This paper focuses on the notion of fuzzy graph database and describes a fuzzy query language that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. This language, called FUDGE, can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. The FUDGE language is implemented in a system, called SUGAR, that we present in this article. We also discuss implementation issues of the FUDGE language in SUGAR

    Semantic query languages for knowledge-based web services in a construction context

    Get PDF
    Since the early 2000s, different frameworks were set up to enable web-based collaboration in building projects. Unfortunately, none of these initiatives was granted a long life. Recently, however, the use of web technologies in the building industry has been gaining momentum again, considered some promising technologies for reaching a more interoperable BIM practice. Specifically, this relates to (1) Linked Data and Semantic Web technologies, and (2) cloud-based applications. In order to combine these into a network of interlinked applications and datastores, an agreed-upon mechanism for automatic communication and data retrieval needs to be used. Apart from the W3C standard SPARQL, often considered too high a threshold for developers to implement, there are some recent GraphQL-based solutions that simplify the querying process and its implementation into web services. In this paper, we review two recent open source technologies based on GraphQL, that enable to query Linked Data on the web: GraphQL-LD and HyperGraphQL

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim

    Expression and Efficient Processing of Fuzzy Queries in a Graph Database Context

    Get PDF
    International audienceGraph databases have aroused a large interest in the last years thanks to their large scope of potential applications (e.g. social networks, biomedical networks, data stemming from the web). In a similar way as what has already been proposed in relational databases, defining a language allowing a flexible querying of graph databases may greatly improve usability of data. This paper focuses on the notion of fuzzy graph database and describes a fuzzy query language that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. This language, called FUDGE, can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. The FUDGE language is implemented in a system, called SUGAR, that we present in this article. We also discuss implementation issues of the FUDGE language in SUGAR

    DataHub: Collaborative Data Science & Dataset Version Management at Scale

    Get PDF
    Relational databases have limited support for data collaboration, where teams collaboratively curate and analyze large datasets. Inspired by software version control systems like git, we propose (a) a dataset version control system, giving users the ability to create, branch, merge, difference and search large, divergent collections of datasets, and (b) a platform, DataHub, that gives users the ability to perform collaborative data analysis building on this version control system. We outline the challenges in providing dataset version control at scale.Comment: 7 page

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF
    • …
    corecore