175 research outputs found

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens

    BUDOWA TOMOGRAFU ULTRADŹWIĘKOWEGO DO ANALIZY PROCESÓW TECHNOLOGICZNYCH W ZAKRESIE FAL ODBITYCH I TRANSMISYJNYCH

    Get PDF
    This article presents the ultrasonic structure for the analysis of technological processes in the field of reflective and transmission waves. Ultrasound tomography enables the analysis of processes occurring in the examined object without interfering with its interior through appropriate acquisition and analysis of data. The design goal is to verify the repeatability of measurement results by eliminating laboratory equipment. The ultrasonic tomograph has been designed in a modular way and consists of a motherboard connected to an analog signal conditioning board, a liquid crystal display with an integrated graphics processor and a high voltage pulser with a 64 channel multiplexer. The solution was designed for tomographic measurements of technological process properties.W niniejszym artykule przedstawiono konstrukcję tomografu ultradźwiękowego do analizy procesów technologicznych w zakresie fal odbitych i transmisyjnych. Tomografia ultradźwiękowa umożliwia analizowanie procesów zachodzących w badanym obiekcie bez ingerencji w jego wnętrze poprzez odpowiednią akwizycję i analizę danych. Celem konstrukcyjnym jest weryfikacja powtarzalności wyników badań pomiarowych poprzez wyeliminowanie sprzętu laboratoryjnego. Tomograf ultradźwiękowy został zaprojektowany w sposób modułowy i składa się z płyty głównej połączonej z płytą kondycjonowania sygnału analogowego,  wyświetlacza ciekłokrystalicznego ze zintegrowanym procesorem graficznym oraz impulsatora wysokiego napięcia wraz z 64 kanałowym multiplekserem. Urządzenie zostało zaprojektowane do tomograficznych pomiarów właściwości procesów technologicznych

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Proceedings of the 10th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components

    Get PDF
    This conference, the tenth in a series on NDE in relation to structural integrity for nuclear and pressurized components, was held from 1st October to 3 October 2013, in Cannes, France. The scientific programme was co-produced by the European Commission’s Joint Research Centre, Institute for Energy and Transport (EC-JRC/IET). The Conference has been coordinated by the Confédération Française pour les Essais Non Destructifs (COFREND). The first conference, under the sole responsibility of EC-JRC was held in Amsterdam, 20-22 October 1998. The second conference was locally organized by the EPRI NDE Center in New Orleans, 24-26 May 2000, the third one by Tecnatom in Seville, 14-16 November 2001, the fourth one by the British Institute of Non-Destructive Testing in London, 6-8 December 2004, the fifth by EPRI in San Diego, 10-12 May 2006, the sixth by Marovisz in Budapest, 8-10 October 2007, the seventh by the University of Tokyo and JAPEIC in Yokohama, the eight by DGZfP, 29 September to 1st October 2010, the ninth by Epri NDE Center, 22-24 May 2012 in Seattle. The theme of this conference series is to provide the link between the information originated by NDE and the use made of this information in assessing structural integrity. In this context, there is often a need to determine NDE performance against structural integrity requirements through a process of qualification or performance demonstration. There is also a need to develop NDE to address shortcomings revealed by such performance demonstration or otherwise. Finally, the links between NDE and structural integrity require strengthening in many areas so that NDE is focussed on the components at greatest risk and provides the precise information required for assessment of integrity. These were the issues addressed by the papers selected for the conference.JRC.F.5-Nuclear Reactor Safety Assessmen

    Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings

    Get PDF
    The complexity of historical urban centres progressively needs a strategic improvement in methods and the scale of knowledge concerning the vulnerability aspect of seismic risk. A geographical multi-scale point of view is increasingly preferred in the scientific literature and in Italian regulation policies, that considers systemic behaviors of damage and vulnerability assessment from an urban perspective according to the scale of the data, rather than single building damage analysis. In this sense, a geospatial data sciences approach can contribute towards generating, integrating, and making virtuous relations between urban databases and emergency-related data, in order to constitute a multi-scale 3D database supporting strategies for conservation and risk assessment scenarios. The proposed approach developed a vulnerability-oriented GIS/HBIM integration in an urban 3D geodatabase, based on multi-scale data derived from urban cartography and emergency mapping 3D data. Integrated geometric and semantic information related to historical masonry buildings (specifically the churches) and structural data about architectural elements and damage were integrated in the approach. This contribution aimed to answer the research question supporting levels of knowledge required by directives and vulnerability assessment studies, both about the generative workflow phase, the role of HBIM models in GIS environments and toward user-oriented webGIS solutions for sharing and public use fruition, exploiting the database for expert operators involved in heritage preservation

    The International Linear Collider Technical Design Report - Volume 4: Detectors

    Full text link
    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.Comment: See also http://www.linearcollider.org/ILC/TDR . The full list of signatories is inside the Repor

    A steady state tip control strategy for long reach robots

    Get PDF
    The work presented in this thesis describes the development of a novel strategy for the steady state tip position control of a single link flexible robot arm. Control is based upon a master/slave relationship. Arm trajectory is defined by through 'master' positioning head which moves a laser through a programmed path. Tip position is detected by an optical system which produces an error signal proportional to the displacement of the tip from the demand laser spot position. The error signal and its derivative form inputs to the arm 'slave' controller so enabling direct tip control with simultaneous correction for arm bending. Trajectory definition is not model-based as it is defined optically through movement of the positioning head alone. A critical investigation of vacuum tube and solid state sensing methods is undertaken leading to the development of a photodiode quadrant detector beam tracking system. The effect of varying the incident light parameters on the beam tracker performance are examined from which the optimum illumination characteristics are determined. Operational testing of the system on a dual-axis prototype robot using the purpose-built beam tracker has shown that successful steady state tip control can be achieved through a PD based slave controller. Errors of less than 0.05 mm and settling times of 0.2 s are obtained. These results compare favourably with those for the model-based tip position correction strategies where tracking errors of ± 0.6 mm are recorded

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+e- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years
    corecore