7 research outputs found

    Application of sliding-mode control to the design of a buck-based sinusoidal generator

    Get PDF
    This paper is devoted to the design of a sliding-mode control scheme for a buck-based inverter, with programmable amplitude, frequency, and DC offset, with no external sinusoidal reference required. A general procedure for obtaining an autonomous (time independent) switching surface from a time-dependent one is presented. For this surface, the system exhibits a zeroth-order dynamics in sliding motion. On the other hand, from the sliding-domain analysis, a set of design restrictions is established in terms of the inverter output filter Bode diagram and the output signal parameters (amplitude, frequency and DC offset), facilitating the subsequent design procedure. The control scheme is robust with respect to both power-stage parameter variations and external disturbances and can be implemented by means of conventional electronic circuitry. Simulations and experimental results for both reactive and nonlinear loads are presented.Peer ReviewedPostprint (published version

    Application of Sliding Mode Control to the design of a Buck-based sinusoidal Generator

    Get PDF
    This paper is devoted to the design of a sliding-mode control scheme for a buck-based inverter, with programmable amplitude, frequency, and dc offset, with no external sinusoidal reference required. A general procedure for obtaining an autonomous (time independent) switching surface from a time-dependent one is presented. For this surface, the system exhibits a zeroth-order dynamics in sliding motion. On the other hand, from the sliding-domain analysis, a set of design restrictions is established in terms of the inverter output filter Bode diagram and the output signal parameters (amplitude, frequency and dc offset), facilitating the subsequent design procedure. The control scheme is robust with respect to both power-stage parameter variations and external disturbances and can be implemented by means of conventional electronic circuitry. Simulations and experimental results for both reactive and nonlinear loads are presented.Peer Reviewe

    Active Output Filter with a Novel Control Strategy and a Structure for Passive Filter Reduction of DC-DC Converter

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 2. ์กฐ๋ณดํ˜•.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กœ์šด ์ œ์–ด ์ „๋žต๊ณผ ๊ตฌ์กฐ์˜ ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด์˜ DC-DC ์ปจ๋ฒ„ํ„ฐ๊ฐ€ ๊ฐ€์ง€๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๊ธฐ์กด DC-DC ์ปจ๋ฒ„ํ„ฐ์—์„œ ์ˆ˜๋™ ํ•„ํ„ฐ๋Š” ์ถœ๋ ฅ ์ „์•• ๊ทœ์ œ๋ฅผ ๋งŒ์กฑํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์†Œ๊ฐ’ ์ด์ƒ์œผ๋กœ ์„ค๊ณ„๋œ๋‹ค. ์Šค์œ„์นญ ์ฃผํŒŒ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ๊ทธ ์ตœ์†Œ๊ฐ’์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ์œผ๋‚˜ ์Šค์œ„์นญ ์ฃผํŒŒ์ˆ˜์— ๋น„๋ก€ํ•ด ์ฆ๊ฐ€ํ•˜๋Š” ์Šค์œ„์นญ ์†์‹ค๋กœ ์ธํ•ด ์ œํ•œ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ปจ๋ฒ„ํ„ฐ์˜ ์ถœ๋ ฅ๋‹จ์— ๋ณ‘๋ ฌ๋กœ ์—ฐ๊ฒฐ๋œ ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ํ†ตํ•ด ์ƒ์‹œ์ ์œผ๋กœ ๋ฉ”์ธ ์ปจ๋ฒ„ํ„ฐ์˜ ์Šค์œ„์นญ ๋ฆฌํ”Œ ์ „๋ฅ˜๋ฅผ ์ƒ์‡„ํ•˜๊ณ  ๋ถ€ํ•˜ ๋ณ€๋™ ์‹œ์—๋Š” ๋ฉ”์ธ ์ปจ๋ฒ„ํ„ฐ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ์‘๋‹ต์„ ํ•˜๋„๋ก ํ•˜์—ฌ ๋ฉ”์ธ ์ปจ๋ฒ„ํ„ฐ์˜ ์ˆ˜๋™ ํ•„ํ„ฐ์˜ ์—ญํ• ์„ ๋Œ€์‹ ํ•˜๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋Š” ์ €์••-์ €์ „๋ ฅ์œผ๋กœ ๊ตฌ๋™ํ•˜๋ฏ€๋กœ ๋ฉ”์ธ ์ปจ๋ฒ„ํ„ฐ์™€ ๋‹ฌ๋ฆฌ ํฐ ์ „๋ ฅ ์†์‹ค ์—†์ด ๊ณ ์† ์Šค์œ„์นญ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋Š” ๋†’์€ ์ œ์–ด ๋Œ€์—ญํญ ํ™•๋ณด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด์˜ ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ๋†’์€ ์ œ์–ด ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜์˜€์œผ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กœ์šด ์ œ์–ด ์ „๋žต์„ ํ†ตํ•ด ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ, ์ „๋ฅ˜ ์„ผ์„œ๋‚˜ ๋ณต์žกํ•œ ์ œ์–ด ๋ฐฉ์‹ ์—†์ด ์ผ๋ฐ˜์ ์ธ ์ „์•• ์ œ์–ด๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ๊ฐ€๊ฒฉ๋„ ์ €๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ์˜ ์ œ์–ด ๋Œ€์—ญํญ์ด ์ถฉ๋ถ„ํžˆ ๋†’์ง€ ์•Š์•„๋„ ์Šค์œ„์นญ ๋ฆฌํ”Œ ์ƒ์‡„๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ์‹œ๋น„์œจ ํ”ผ๋“œํฌ์›Œ๋“œ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ ํšŒ๋กœ ์„ค๊ณ„์˜ ์šฉ์ดํ•จ๊ณผ ๊ฐ€๊ฒฉ ์ €๊ฐ์„ ์œ„ํ•œ ํ•ด๋ฒ•๋„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์Šค์œ„์นญ ์ „์•• ๋ฆฌํ”Œ ์ €๊ฐ๊ณผ ๋ถ€ํ•˜ ๋ณ€๋™ ์‹œ ์ „์•• ๋ณ€๋™ ํญ ์ €๊ฐ์„ ๋ชจ๋‘ ๊ตฌํ˜„ํ•˜์—ฌ ๊ธฐ์กด์˜ ์ˆ˜๋™ ํ•„ํ„ฐ์˜ ์—ญํ• ์„ ์‹ค์งˆ์ ์œผ๋กœ ๋Œ€์ฒดํ•œ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์„ ๋‹ค์ค‘ ์ถœ๋ ฅ ์ปจ๋ฒ„ํ„ฐ๋กœ ํ™•์žฅํ•˜์—ฌ ๊ธฐ์กด์˜ ๋‹ค๊ถŒ์„  ๋ณ€์••๊ธฐ๋ฅผ ์ด์šฉํ•œ ๋‹ค์ค‘ ์ถœ๋ ฅ ์ปจ๋ฒ„ํ„ฐ๊ฐ€ ๊ฐ€์ง€๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๋‹ค๊ถŒ์„  ๋ณ€์••๊ธฐ๋ฅผ ์ด์šฉํ•œ ๋‹ค์ค‘ ์ถœ๋ ฅ ์ปจ๋ฒ„ํ„ฐ๋Š” ๊ฐ€๊ฒฉ, ๋ถ€ํ”ผ ๋“ฑ์—์„œ ์ด์ ์ด ์žˆ์œผ๋‚˜ ๊ฐ๊ฐ์˜ ์ถœ๋ ฅ ์ „์••์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•˜์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค์€ ํšจ์œจ๊ณผ ๊ฐ€๊ฒฉ ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ตœ๊ทผ ํ™•์‚ฐ๋˜๋Š” ๋””์ง€ํ„ธ ๊ธฐ๊ธฐ์šฉ ์ „๋ ฅ ๋ณ€ํ™˜ ์ปจ๋ฒ„ํ„ฐ์— ์š”๊ตฌ๋˜๋Š” ๊ณ ์„ฑ๋Šฅ ์ „์•• ์ œ์–ด, ๊ณ ํšจ์œจ, ์†Œํ˜•ํ™”, ๊ฐ€๊ฒฉ ์ €๊ฐ์ด๋ผ๋Š” ๋ชฉํ‘œ์— ๋ถ€ํ•ฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ์ด์—, ์ œ์•ˆํ•˜๋Š” ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ค๊ถŒ์„  ๋ณ€์••๊ธฐ์˜ ๊ต์ฐจ ์ œ์–ด๋กœ ์ธํ•œ ์˜ค์ฐจ ์„ฑ๋ถ„๋งŒ์„ ๋ณด์ •ํ•˜์—ฌ ์ž‘์€ ์†์‹ค๋กœ ๊ฐ๊ฐ์˜ ์ถœ๋ ฅ์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•œ๋‹ค. ๋˜ํ•œ, ์˜ค์ฐจ ๋ณด์ •์„ ์œ„ํ•œ ๋‹จ์ž ๊ฐ„ ์ „๋ฅ˜๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ถœ๋ ฅ ์ „์••์˜ ๊ธฐ์ค€์น˜ ๋ณ€๊ฒฝ์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์˜ ํšจ์œจ์„ ๋” ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด ์†Œ์‹ ํ˜ธ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์•ˆ์ •์ ์ด๊ณ  ๋น ๋ฅธ ์ „์•• ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ์‹์„ ์ด์šฉํ•œ ๋‹ค์ค‘ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์—์„œ ๋ณต์žกํ•ด์ง€๋Š” ์ œ์–ด๊ธฐ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์Šคํ…œ์„ ๊ทผ์‚ฌํ™”ํ•˜๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๊ณ  ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ์„ค๊ณ„ ๋ฐ ํ™•์žฅ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋ฒ”์œ„ 20 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 23 ์ œ 2 ์žฅ ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ DC-DC ์ปจ๋ฒ„ํ„ฐ 25 2.1 ๊ธฐ์กด์˜ ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ 25 2.2 ์ œ์•ˆํ•˜๋Š” ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ 29 2.2.1 ๊ตฌ์กฐ ๋ฐ ๋™์ž‘ ์›๋ฆฌ 29 2.2.2 ์‹œ๋น„์œจ ํ”ผ๋“œํฌ์›Œ๋“œ 34 2.3 ์ œ์•ˆํ•˜๋Š” ๋‹ค์ค‘ ์ถœ๋ ฅ ์ปจ๋ฒ„ํ„ฐ 40 2.3.1 ๊ต์ฐจ ์ œ์–ด๋กœ ์ธํ•œ ์ „์•• ์˜ค์ฐจ ๋ณด์ •์„ ์œ„ํ•œ ๋‹จ์ž ๊ฐ„ ์ „๋ฅ˜ ์ œ์–ด 40 2.3.2 ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ๋‹จ์ž ๊ฐ„ ์ „๋ฅ˜ ์ œ์–ด 42 ์ œ 3 ์žฅ ์ปจ๋ฒ„ํ„ฐ ์„ค๊ณ„ ๋ฐ ํšจ์œจ ๋ถ„์„ 46 3.1 ์ปจ๋ฒ„ํ„ฐ ์„ค๊ณ„ 46 3.1.1 ํ† ํด๋กœ์ง€ ์„ ์ • 49 3.1.2 ๋Šฅ๋™ ์†Œ์ž ์„ ์ • 52 3.1.3 ์ˆ˜๋™ ํ•„ํ„ฐ ์„ค๊ณ„ 53 3.1.4 ์ˆ˜๋™ ์†Œ์ž ์„ ์ • 65 3.1.5 ์ˆ˜๋™ ์†Œ์ž์˜ ๋ถ€ํ”ผ 71 3.2 ๋‹จ์ž ๊ฐ„ ์ „๋ฅ˜๋ฅผ ๊ณ ๋ คํ•œ ์„ค๊ณ„ 73 3.2.1 ๋‹จ์ž ๊ฐ„ ์ „๋ฅ˜ ๋ถ„์„ 73 3.2.2 ๊ธฐ์ค€ ์ „์•• ์กฐ์ • ๊ธฐ๋ฒ• 76 3.3 ํšจ์œจ ๋ถ„์„ 78 ์ œ 4 ์žฅ ์†Œ์‹ ํ˜ธ ๋ถ„์„ ๋ฐ ์ œ์–ด๊ธฐ ์„ค๊ณ„ 84 4.1 ์‹œ์Šคํ…œ ๊ทผ์‚ฌํ™”๋ฅผ ํ†ตํ•œ ์†Œ์‹ ํ˜ธ ๋ชจ๋ธ 84 4.1.1 ๋‹จ์ผ ์ถœ๋ ฅ 85 4.1.2 ๋‹ค์ค‘ ์ถœ๋ ฅ 93 4.2 ์ œ์–ด๊ธฐ ์„ค๊ณ„ ๋ฐ ๊ทผ์‚ฌํ™” ๋ถ„์„์˜ ๊ฒ€์ฆ 96 4.2.1 ๋‹จ์ผ ์ถœ๋ ฅ 97 4.2.2 ์ด์ค‘ ์ถœ๋ ฅ 103 ์ œ 5 ์žฅ ์‹คํ—˜ ๊ฒฐ๊ณผ 110 5.1 ์ •์ƒ ์ƒํƒœ ์ธก์ • ๊ฒฐ๊ณผ 110 5.2 ๋ถ€ํ•˜ ๋ณ€๋™ ์ธก์ • ๊ฒฐ๊ณผ 114 5.3 ํšจ์œจ ์ธก์ • ๊ฒฐ๊ณผ 117 5.3.1 ๋‹จ์ผ ์ถœ๋ ฅ 117 5.3.2 ์ด์ค‘ ์ถœ๋ ฅ 119 ์ œ 6 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 124 6.1 ๊ฒฐ๋ก  124 6.1.1 ์ƒˆ๋กœ์šด ์ œ์–ด ์ „๋žต 125 6.1.2 ์‹œ๋น„์œจ ํ”ผ๋“œํฌ์›Œ๋“œ 125 6.1.3 ๋‹ค๊ถŒ์„  ๋ณ€์••๊ธฐ์˜ ๊ต์ฐจ ์ œ์–ด ์˜ค์ฐจ ๋ณด์ • 126 6.1.4 ๋Šฅ๋™ ์ถœ๋ ฅ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ต์ฐจ ์ œ์–ด ์˜ค์ฐจ ๋ณด์ • 126 6.1.5 ์„ค๊ณ„ ๊ฐ€์ด๋“œ ์ œ์‹œ 127 6.1.6 ์•ˆ์ •์„ฑ ๋ถ„์„ 127 6.2 ํ–ฅํ›„ ๊ณผ์ œ 129 6.2.1 Hold-Up ์บํŒจ์‹œํ„ฐ์˜ ๋Œ€์ฒด 129 6.2.2 ์ ์šฉ ํ† ํด๋กœ์ง€ ํ™•์žฅ 132 6.2.3 ๊ฒฝ๋ถ€ํ•˜ ํšจ์œจ ํ–ฅ์ƒ 133 ์ฐธ๊ณ ๋ฌธํ—Œ 134 ๋ถ€ ๋ก 150 Abstract 175Docto

    Application of Sliding Mode Control to the design of a Buck-based sinusoidal Generator

    No full text
    This paper is devoted to the design of a sliding-mode control scheme for a buck-based inverter, with programmable amplitude, frequency, and dc offset, with no external sinusoidal reference required. A general procedure for obtaining an autonomous (time independent) switching surface from a time-dependent one is presented. For this surface, the system exhibits a zeroth-order dynamics in sliding motion. On the other hand, from the sliding-domain analysis, a set of design restrictions is established in terms of the inverter output filter Bode diagram and the output signal parameters (amplitude, frequency and dc offset), facilitating the subsequent design procedure. The control scheme is robust with respect to both power-stage parameter variations and external disturbances and can be implemented by means of conventional electronic circuitry. Simulations and experimental results for both reactive and nonlinear loads are presented.Peer Reviewe

    Application of Sliding Mode Control to the design of a Buck-based sinusoidal Generator

    No full text
    This paper is devoted to the design of a sliding-mode control scheme for a buck-based inverter, with programmable amplitude, frequency, and dc offset, with no external sinusoidal reference required. A general procedure for obtaining an autonomous (time independent) switching surface from a time-dependent one is presented. For this surface, the system exhibits a zeroth-order dynamics in sliding motion. On the other hand, from the sliding-domain analysis, a set of design restrictions is established in terms of the inverter output filter Bode diagram and the output signal parameters (amplitude, frequency and dc offset), facilitating the subsequent design procedure. The control scheme is robust with respect to both power-stage parameter variations and external disturbances and can be implemented by means of conventional electronic circuitry. Simulations and experimental results for both reactive and nonlinear loads are presented.Peer Reviewe

    Modelling and Control of DC-DC Switching Converters: A Tutorial Perspective

    Get PDF
    [ES] En este trabajo se presenta de forma tutorial los conceptos bรกsicos de modelado y control de convertidores conmutados continua-continua. Tras definir la Electrรณnica de Potencia y su dominio de utilizaciรณn, se presenta la conversiรณn continua-continua (cc-cc) como nรบcleo bรกsico de aquella y se clasifican los convertidores conmutados cc-cc como sistemas de estructura variable. Se introduce posteriormente la nociรณn de regulador conmutado y se describe el funcionamiento de un modulador de anchura de pulsos para derivar un modelo de tiempo continuo a partir de un anรกlisis de la dinรกmica promediada del convertidor. A partir del modelo de tiempo continuo del convertidor, se obtiene el modelo dinรกmico del regulador conmutado y se describen controladores lineales de un solo lazo y controladores en cascada. El control no lineal de convertidores se aborda a partir de la inducciรณn de regรญmenes deslizantes en las estructuras de potencia. Se establece a continuaciรณn la equivalencia de estos sistemas con los que utilizan modulador de anchura de pulsos, y se describen algunas de sus aplicaciones. Finalmente se ofrece una perspectiva de las tรฉcnicas de estudio de la dinรกmica no lineal en convertidores mediante un enfoque generalizado a partir de un modelo de tiempo discreto que permite analizar las bifurcaciones resultantes y controlar el caos.[EN] Basic concepts of modelling and control of DC-to-DC switching converters are presented in a tutorial approach. After defining Power Electronics and its application domain , DC-DC switching conversion is presented as the basic core of the domain, and power converters are classified as variable structure systems. The notion of switching regulator is subsequently introduced and the operation of a pulse width modulator is described to eventually derive a continuous-time model from the averaged converter dynamics . Using the converter continuous-time model, a dynamic model of the switching regulator is obtained and both one-loop and casacaded linear controllers are described. Non-linear control of switching converters is studied through the induction of sliding regimes in power converters . Equivalences between sliding systems and those employing a pulse width modulator are established and some applications are described. Finally, a compilation of techniques for the non-linear dynamics analysis in switching converters is introduced by means of a generalized description based on a discrete-time model that predicts the resulting bifurcations and allows to control the chaos.Martinez Salamero, L.; Cid Pastor, A.; El Aroudi, A.; Giral, R.; Calvente, J. (2009). Modelado y Control de Convertidores Conmutados Continua-Continua: Una perspectiva Tutorial. Revista Iberoamericana de Automรกtica e Informรกtica industrial. 6(4):5-20. https://doi.org/10.1016/S1697-7912(09)70104-9OJS52064Alarcoฬn, E., Romero, A., Poveda, A., Porta, S., & Martฤฑฬnez-Salamero, L. (2002). Current-mode analogue integrated circuit for sliding-mode control of switching power converters. Electronics Letters, 38(3), 104. doi:10.1049/el:20020081Banerjee, S., Ranjan, P., & Grebogi, C. (2000). Bifurcations in two-dimensional piecewise smooth maps-theory and applications in switching circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(5), 633-643. doi:10.1109/81.847870Biel, D., Fossas, E., Guinjoan, F., Alarcon, E., & Poveda, A. (2001). Application of sliding-mode control to the design of a buck-based sinusoidal generator. IEEE Transactions on Industrial Electronics, 48(3), 563-571. doi:10.1109/41.925583Biel, D., Guinjoan, F., Fossas, E., & Chavarria, J. (2004). Sliding-Mode Control Design of a Boostโ€“Buck Switching Converter for AC Signal Generation. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(8), 1539-1551. doi:10.1109/tcsi.2004.832803Calvente, J., Martinez-Salamero, I., Garces, P., & Romero, A. (2003). Zero dynamics-based design of damping networks for switching converters. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1292-1303. doi:10.1109/taes.2003.1261129Capel, A., Clique, M., & Fossard, A. J. (1981). Current Control Modulators: General Theory on Specific Designs. IEEE Transactions on Industrial Electronics and Control Instrumentation, IECI-28(4), 292-307. doi:10.1109/tieci.1981.351054Chan, W. C. Y., & Tse, C. K. (1997). Study of bifurcations in current-programmed DC/DC boost converters: from quasiperiodicity to period-doubling. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(12), 1129-1142. doi:10.1109/81.645154Cid-Pastor, A. Energy processing by means of power gyrators (2005). Tesis doctoral, Universidad Politรฉcnica de Cataluรฑa (http://www.tdx.cesca.es).Cid-Pastor, A., Martinez-Salamero, L., Alonso, C., Estibals, B., Alzieu, J., Schweitz, G., & Shmilovitz, D. (2005). Analysis and design of power gyrators in sliding-mode operation. IEE Proceedings - Electric Power Applications, 152(4), 821. doi:10.1049/ip-epa:20045108Cid-Pastor, A., Schweitz, G., Martinez-Salamero, L., Alonso, C., Calvente, J., & Singer, S. (2006). Synthesis of power gyrators operating at constant switching frequency. IEE Proceedings - Electric Power Applications, 153(6), 842. doi:10.1049/ip-epa:20050529Deane, J. H. B. (1992). Chaos in a current-mode controlled boost DC-DC converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(8), 680-683. doi:10.1109/81.168922Deane, J. H. B., & Hamill, D. C. (1990). Instability, subharmonics, and chaos in power electronic systems. IEEE Transactions on Power Electronics, 5(3), 260-268. doi:10.1109/63.56516Di Bernardo, M., Garefalo, F., Glielmo, L., & Vasca, F. (1998). Switchings, bifurcations, and chaos in DC/DC converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(2), 133-141. doi:10.1109/81.661675El Aroudi, A., Benadero, L., Toribio, E., & Olivar, G. (1999). Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC-DC boost converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(11), 1374-1382. doi:10.1109/81.802837EL AROUDI, A., BENADERO, L., TORIBIO, E., & MACHICHE, S. (2000). QUASIPERIODICITY AND CHAOS IN THE DCโ€“DC BUCKโ€“BOOST CONVERTER. International Journal of Bifurcation and Chaos, 10(02), 359-371. doi:10.1142/s0218127400000232El Aroudi, A., & Leyva, R. (2001). Quasi-periodic route to chaos in a PWM voltage-controlled DC-DC boost converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(8), 967-978. doi:10.1109/81.940187An experimental comparison of several nonlinear controllers for power converters. (1999). IEEE Control Systems, 19(1), 66-82. doi:10.1109/37.745771Fang, C.-C., & Abed, E. H. (2002). Nonlinear Dynamics, 27(3), 295-309. doi:10.1023/a:1014402431119Filippov, A. F. (1964). Differential equations with discontinuous right-hand side. American Mathematical Society Translations: Series 2, 199-231. doi:10.1090/trans2/042/13Fossas, E., & Olivar, G. (1996). Study of chaos in the buck converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(1), 13-25. doi:10.1109/81.481457Garcia de Vicuna, L., Poveda, A., Martinez, L., Guinjoan, F., & Majo, J. (1992). Computer-aided discrete-time large-signal analysis of switching regulators. IEEE Transactions on Power Electronics, 7(1), 75-82. doi:10.1109/63.124579Maixe, J., Leyva, R., Martinez-Salamero, L., & Giral, R. (2000). Sliding-mode control of interleaved boost converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(9), 1330-1339. doi:10.1109/81.883328Guinjoan, F., Calvente, J., Poveda, A., & Martinez, L. (1997). Large-signal modeling and simulation of switching DC-DC converters. IEEE Transactions on Power Electronics, 12(3), 485-494. doi:10.1109/63.575676Hamill, D. C., & Jeffries, D. J. (1988). Subharmonics and chaos in a controlled switched-mode power converter. IEEE Transactions on Circuits and Systems, 35(8), 1059-1061. doi:10.1109/31.1858Kossov, O. (1968). Comparative analysis of chopper voltage regulators with LC filter. IEEE Transactions on Magnetics, 4(4), 712-715. doi:10.1109/tmag.1968.1066380Leyva, R., Alonso, C., Queinnec, I., Cid-Pastor, A., Lagrange, D., & Martinez-Salamero, L. (2006). MPPT of photovoltaic systems using extremum - seeking control. IEEE Transactions on Aerospace and Electronic Systems, 42(1), 249-258. doi:10.1109/taes.2006.1603420Leyva, R., Queinnec, I., Martinez-Salamero, L., Alonso, C., Cid-Pastor, A., & Tarbouriech, S. (2006). Passivity-based integral control of a boost converter for large-signal stability. IEE Proceedings - Control Theory and Applications, 153(2), 139-146. doi:10.1049/ip-cta:20045223Luo, S. (2005). A review of distributed power systems part I: DC distributed power system. IEEE Aerospace and Electronic Systems Magazine, 20(8), 5-16. doi:10.1109/maes.2005.1499272Martinez-Salamero, L., Calvente, J., Giral, R., Poveda, A., & Fossas, E. (1998). Analysis of a bidirectional coupled-inductor Cuk converter operating in sliding mode. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(4), 355-363. doi:10.1109/81.669058Martinez-Salamero, L., Valderrama-Blavi, H., Giral, R., Alonso, C., Estibals, B., & Cid-Pastor, A. (2005). Self-oscillating DC-to-DC switching converters with transformer characteristics. IEEE Transactions on Aerospace and Electronic Systems, 41(2), 710-716. doi:10.1109/taes.2005.1468760Naim, R., Weiss, G., & Ben-Yaakov, S. (1997). H/sup /spl infin// control applied to boost power converters. IEEE Transactions on Power Electronics, 12(4), 677-683. doi:10.1109/63.602563Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64(11), 1196-1199. doi:10.1103/physrevlett.64.1196Pyragas, K. (2001). Control of Chaos via an Unstable Delayed Feedback Controller. Physical Review Letters, 86(11), 2265-2268. doi:10.1103/physrevlett.86.2265PSIM, Software by Powersim Inc. disponible en www.powersimtech.comSira-Ramirez, H. (1987). Sliding motions in bilinear switched networks. IEEE Transactions on Circuits and Systems, 34(8), 919-933. doi:10.1109/tcs.1987.1086242Tan, S.-C., Lai, Y. M., & Tse, C. K. (2005). Implementation of Pulse-width-Modulation Based Sliding Mode Controller for Boost Converters. IEEE Power Electronics Letters, 3(4), 130-135. doi:10.1109/lpel.2005.863269Siew-Chong Tan, Lai, Y. M., & Tse, C. K. (2006). A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1816-1827. doi:10.1109/tcsi.2006.879052Tse, C. K. (1994). Flip bifurcation and chaos in three-state boost switching regulators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(1), 16-23. doi:10.1109/81.260215Tymerski, R., & Vorperian, V. (1988). Generation and classification of PWM DC-to-DC converters. IEEE Transactions on Aerospace and Electronic Systems, 24(6), 743-754. doi:10.1109/7.18641Utkin, V. I. (1993). Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1), 23-36. doi:10.1109/41.184818Vidal-Idiarte, E., Martinez-Salamero, L., Valderrama-Blavi, H., Guinjoan, F., & Maixe, J. (2003). Analysis and design of hโˆž control of nonminimum phase-switching converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(10), 1316-1323. doi:10.1109/tcsi.2003.816337Vidal-Idiarte, E., Martinez-Salamero, L., Guinjoan, F., Calvente, J., & Gomariz, S. (2004). Sliding and fuzzy control of a boost converter using an 8-bit microcontroller. IEE Proceedings - Electric Power Applications, 151(1), 5. doi:10.1049/ip-epa:20040086Vidal-Idiarte, E., Martinez-Salamero, L., Calvente, J., & Romero, A. (2006). AnHinftyH_infty Control Strategy for Switching Converters in Sliding-Mode Current Control. IEEE Transactions on Power Electronics, 21(2), 553-556. doi:10.1109/tpel.2005.869727Wester, G. W., & Middlebrook, R. D. (1973). Low-Frequency Characterization of Switched dc-dc Converters. IEEE Transactions on Aerospace and Electronic Systems, AES-9(3), 376-385. doi:10.1109/taes.1973.309723Guohui Yuan, Banerjee, S., Ott, E., & Yorke, J. A. (1998). Border-collision bifurcations in the buck converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(7), 707-716. doi:10.1109/81.70383
    corecore