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ABSTRACT

CONTROL OF POWER ELECTRONIC INTERFACES
IN DISTRIBUTED GENERATION

Mohammad Mohebbi

October 23, 2017

Renewable energy has gained popularity as an alternative resource for electric power
generation. As such, Distributed Generation (DG) is expected to open new horizons to
electric power generation. Most renewable energy sources cannot be connected to the load
directly. Integration of the renewable energy sources with the load has brought new
challenges in terms of the system’s stability, voltage regulation and power quality issues.
For example, the output power, voltage and frequency of an example wind turbine depend
on the wind speed, which fluctuate over time and cannot be forecasted accurately. At the
same time, the nonlinearity of residential electrical load is steadily increasing with the
growing use of devices with rectifiers at their front end. This nonlinearity of the load
deviates both current and voltage waveforms in the distribution feeder from their sinusoidal
shape, hence increasing the Total Harmonics Distortions (THD) and polluting the grid.
Advances in Power Electronic Interfaces (PEI) have increased the viability of DG systems

and enhanced controllability and power transfer capability. Power electronic converter as



an interface between energy sources and the grid/load has a higher degree of controllability
compared to electrical machine used as the generator. This controllability can be used to
not only overcome the aforementioned shortfalls of integration of renewable energy with
the grid/load but also to reduce THD and improve the power quality. As a consequence,
design of a sophisticated controller that can take advantage of this controllability provided
by PElIs to facilitate the integration of DG with the load and generate high quality power
has become of great interest. In this study a set of nonlinear controllers and observers are
proposed for the control of PEIs with different DG technologies. Lyapunov stability
analysis, simulation and experimental results are used to validate the effectiveness of the
proposed control solution in terms of tracking objective and meeting the THD requirements

of IEEE 519 and EN 50160 standards for US and European power systems, respectively.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

As Distributed Generation (DG) systems [1]-[2][3] [4], Vehicle to Grid (V2G) [5],
Battery Energy Storage System (BESS) [6] and Uninterruptable Power Supplies (UPS) [7]-
[8][9][10] are more widely adopted, pulse width modulated (PWM) power converters have
become more broadly utilized for voltage conversion. Among a wide variety of structures
proposed for the PWM power converters, those composed of a switching circuit followed
by an output LC filter have gain more popularity for the DC:DC power converters and
DC:AC standalone voltage source inverters (VSI) [1]- [10]. Fig. 1.1 demonstrate a general
class of PWM converters consisting of a PWM switching circuit followed by an output LC
filter. This class of PWM covertures includes a wide variety of both dc-dc and dc-ac
converters such as buck, synchronous buck, forward, push-pull, full and half-bridge
converters and inverters with output LC filter. All the converters/ inverters in this class
can be considered as derivatives of the basic buck converter. Because of the same dynamic
model for all the converter/inverter in this class, any controller developed for each is

applicable for others as well.

As shown in Fig 1.2, a power inverters have two operation modes: stand-alone and
grid-tie. In stand-alone mode, the local load is supplied by the inverter. Therefore,

generation of a high-quality output voltage with low distortion and excellent voltage
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Fig. 1.1 Buck-type converter.

regulation as well as disturbance rejection are the essential requirements of the associated
control system. Good transient response and insensitivity to the load and system parameter
variations are other metrics in the performance evaluation of inverters, which also
necessitates the use of high performance controllers. In grid-tie mode, the inverter is
controlled as a current source. The grid-tie inverters, known as grid-feeding power
converters, can participate in the control of the grid voltage amplitude and frequency by
adjusting, in a higher level control layer, the references of their active and reactive power.
In a lower level control layer, the local controller is responsible to keep the active and

reactive power generated by the inverter as close as possible to their reference values.

Fuel Cell

Input Power Load System
/ N /—\
Utility
Wind Power
Grid-tie
Power >5
Photovoltaic .
Conversion stand-alone
e/

Local Load

Fig. 1.2 General structure for DG

Many control techniques such as proportional-resonant (PR) [11], [12], multiloop

feedback control [13]-[14] [15] dead-beat control [16] and repetitive control [17]-



[18][19][20][21][22][23][24] have been proposed to control a single phase VSI in
standalone mode. Although a single output voltage measurement is sufficient for the
control of the inverter, to the best knowledge of the authors, the majority of the existing
control approaches require an inductor current measurement. Using two measurements
gives these controllers improved system stability and dynamic performance through both
output voltage and inductor current regulation. For example, a simple multiloop control
technique utilizes two traditional Proportional, Integral, and Derivative (PID) controllers
to regulate both output voltage and inductor current in the voltage and current control loops,
respectively. Finite loop gain of the PID controller at the fundamental frequency and its
sensitivity to the load variations have motivated combining other techniques such as frame
transformation [25]-[26][27] and Load Current Feedback (LCF) [14], [28], [29] to the
multiloop control scheme. These combinations alleviate shortfalls of the multiloop control
scheme at the cost of more computational complexity resulting from signal transformations

between frames and an extra current sensor for an output current measurement.

Repetitive control is known for its capability to overcome periodic disturbances,
whose frequencies are less than half of the sampling frequency [17]- [24]. However, slow
dynamics and poor tracking performance especially to nonperiodic disturbances are the
main practical limitations of this technique. A multi-resonant harmonic compensator which
eliminates low-order load current harmonics and periodic disturbances with specific
frequencies has been applied to inverter control as shown in [30]-[31][32][33] [34]. Lack
of a systematic method of stabilization is a general problem for both repetitive and resonant
regulator control schemes [35]. In [36] a Fuzzy control strategy was used to control the

inverter system, with a genetic algorithm used in conjunction to optimize the fuzzy



controller. The scheme presented in [36] has an acceptable dynamic response and output

voltage waveform at the cost of a complex algorithm.

Nonlinear control techniques such as backstepping controller and sliding mode control
have been shown to demonstrate good tracking performance. Discrete-time sliding mode
control technique has been used in multi-loop feedback systems due to its overshoot-free
tracking capability [37]. However, the dependency of these controllers to the knowledge
of the system parameters limits their practical application. In [38] the performance of two
nonlinear controllers, namely backstepping and sliding mode controllers, are compared
with a conventional PID controller. The results show the backstepping controller
outperforming the other two controllers. The sliding mode controller always generates a
very harsh command compared to backstepping [38]. The control laws of the proposed
backstepping and sliding mode controllers in [38] depend on the numerical derivative of

the output current which increase the level of the noise in the system.

In the majority of the control schemes presented for the control of power converters
with output LC filter, at least two sensors are used to measure the output voltage and the
inductor current. In practice this inductor current measurement has a significant amount of
ripple and measurement noise resulting from the switching scheme. This noise and ripple
are then propagated into the control algorithm adding noise and disturbance to the system.
Some control schemes use capacitor current measurement instead of the inductor current
measurement [8], [14], [39]- [40] [41] where the same problem remains. Also some works
use an output current sensor in addition to the other two sensors [14], [26], [39] to reduce
the effect of the high frequency noise and ripple resulting from switching, utilization of a

low-pass filter (LPF) is suggested. Addition of LPF introduces phase delays, which can



have an adverse effect on the control schemes, which can limit any performance

improvement.

In this dissertation, nonlinear control techniques such as backstepping controller and
filter-based controller are utilized for the control of power converters in different
applications of DG systems. To overcome the shortfalls of the backstepping controller such
as dependency of the control law to the inductor current measurement and numerical
derivative of the noisy current measurement, as seen in [38], a combination of the
backstepping controller with other control techniques such as inductor current observer,
output current observer, nonlinear sliding technique and periodic learning is proposed.
Also, filter-based control techniques are developed as effective control schemes which
require only single output voltage measurement in their control law. The proposed filter-
based control schemes not only eliminate the need for costly current sensors to measure
the inductor and/or output currents, but also they are robust against system parameter
discrepancy and system disturbances. For each developed control scheme, a Lyapunov
stability analysis is presented which proves that the voltage tracking objective is achieved
by the controller with all signals remaining bounded. Simulation and/or experimental

results further validate the proposed approaches.

The rest of the dissertation is organized as follows. In Chapter 2, a backstepping
controller is utilized to control a two-stage PEI in the V2G application. The proposed
controller in this chapter is combined with sliding technique to compensate for the
uncertainty presented by the derivative of the output current presence in the model. An
energy efficient two-stage DC to AC PEI is presented in Chapter 3. A typical DC:AC

conversion system consists of two stages, a DC:DC converter to generate the necessary bus



voltage followed by an inverter which generates the desired AC output. A modification of
this system is proposed for the purpose of reducing switching losses. The proposed two-
stage system consists of a buck converter which produces a mixed (DC+AC) signal which
is fed to an H-Bridge inverter. This mixed signal is designed such that it reduces the
switching loss across the inverter switches while still providing the necessary voltage for
the inverter input. Backstepping controllers are designed to achieve output voltage tracking
objectives for both stages. In Chapter 4, a nonlinear backstepping controller combined
with a periodic disturbance learning observer is proposed for the control of a single-phase
H-Bridge inverter under both linear and nonlinear loads. The proposed learning scheme
takes into account the periodic nature of the system and observes the periodic disturbance
and unmeasurable uncertainties of the system. Chapter 5 details an extension of the
proposed control techniques for the control of a 3-phase 4-wire diode clamped inverter
with an output LC filter under different loads including balanced, unbalanced, linear and
nonlinear loads. Also, the seamless transition of inverter from standalone to grid-tie is
investigated while the inverter is under the control of the proposed controller. Furthermore,
a load-current observer is combined with the proposed backstepping controller to enhance

the behavior of the controller.

As an effort to remove the inductor current measurement from the control law, an
inductor current observer is developed and combined with a backstepping controller in
Chapter 6. The elimination of the sensor along with the removal of current ripple and noise
from the control algorithm provides an advantage over existing arts in this area. To further
improve the performance of the control law and make it robust against system parameters

discrepancies and compensate for system disturbances, in Chapter 7, 8 and 9 filter-based



control approach is investigated. This control technique inherently benefits from an internal
observer so that its control law is only relying on the system output and it doesn’t need
extra measurement for the other system states. The basic form of the proposed filter-based
controller is presented in Chapter 7. The control law of the proposed filter-based controller
relies only on the output voltage measurement which eliminate the need for costly current
sensors to measure the inductor and/or output currents. Also, a disturbance observer is
combined to the developed control scheme which makes it more suitable for practical
purposes and compensates for an unknown disturbance in the model. Various system
uncertainty including dead-time in modulation scheme, voltage drop across switching
devices and input voltage deviations are compensated with this unknown disturbance
observer. To reduce the control sensitivity to the system parameters and compensate for
parameter variation, two extension of the filter-based control scheme are presented in
Chapter 8 and 9. In the earlier scheme, presented in Chapter 8, the control law is developed
for unknown system parameters whereas in the later scheme, presented in Chapter 9, the
nominal values of the system parameters are utilized and the control scheme compensates
for parameter discrepancies. Finally, conclusions and suggested future work are given in

Chapter 10.



CHAPTER 2

VEHICLE TO GRID UTILIZING A BACKSTEPPING

CONTROLLER FOR BIDIRECTIONAL FULL-BRIDGE

CONVERTER

With environmental and climate change issues, increasing oil prices, concerns about
energy security, decreasing fossil energy reserves, and environmental related legislation,
plug-in electric and hybrid vehicles (PEVs) sales are increasing. Meanwhile with "vehicle
to grid" (V2G) technology, electric vehicles can work as distributed resources and power
can be sent back to the utility. This fact places V2G as an emerging technology with the
potential to revolutionize the electric power industry [42]. V2G technology utilizes the
energy stored in a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV)
for connection to the grid. This technology can be used in conjunction with a Smart Grid
or as a supplemental/backup power source for a household [5]. One such application is the
use of a V2@ interface to power a household entirely from the vehicle’s battery. This
system would replace the need for a large backup generator and add the convenience of a
more portable system located in the user’s vehicle. The main objective of this system is to

produce a sufficient, sustained power source.

A V2G system typically consists of a two-stage power electronic interface (PEI). The

first PEI stage is a DC:DC converter which steps up/down the voltage of the EV’s battery



pack to the bus voltage necessary for the second PEI stage, the inverter. The inverter
converts this DC bus voltage to an AC voltage compatible with that of the grid. This work
focuses on the design and control scheme of the DC:DC converter stage of the V2G system
[43]. A robust design for this PEI necessitates the ability to adapt to a varying input voltage
and an unknown load while still maintaining the desired output voltage. As such, a
backstepping controller is ideal because of its adaptive nature. Development of such a
controller is presented herein as designed for a full-bridge DC:DC converter. The second
PEI stage of the design is implemented via two parallel ANPC inverters with 180° phase

difference providing a fixed magnitude, fixed frequency split-phase AC voltage.

2.1 V2G system Design

The proposed two-stage V2G system is shown in Fig. 2.1. As shown the first PEI stage
is designed to convert the 240 [V] DC voltage of the battery pack to the 340 [V] DC bus
voltage necessary for inversion. The second PEI stage consists of two five-level ANPC
inverters which convert the 340 [V] bus voltage to a 240 [V}.,,s], 60 [Hz] split-phase AC
voltage. In the subsequent section, the bidirectional full-bridge converter and the related

controller are designed to meet the requirements set by the second stage inverters.

240 Vrms L-L
240 [V] DC 340 [V] DC 120 Vrms L-N
» - »

o Full Bridge - >
EV/PHEV Battery |« > Converter < P ANPESLInverter [

N 15 KW

House Connection

Control Signal

Measurement Signals

Controller

Fig. 2.1 System Block Diagram for Generating 240 [V,,,.] Split-Phase AC Voltage from 240V

DC Input.



2.1.1 Five-Level ANPC Inverter

Two parallel five-level ANPC (ANPCSL) converters with 180° phase difference,
shown in Fig. 2.2, are capable of generating a five-level 120 [V,.,,s] line-to-neutral output

voltage and nine level 240[V,.,,s] line-to-line split-phase AC voltage which fulfills the

harmonic limits of the IEEE519 standard when a simple LC filter is applied.

©
B
G

DCin+

2

W
=
&
w
v
[
w
43
N

A
A
>_|I—

+ Youtl
C1 =

@
4
)
I
i
%)
@
N

i

.
[
H
._
1l
—
—
el

AT%e

%
o
o
4
5

.
A
j

@
4]
&
0
R
&

@

K

‘ 4%2-
Aq
)-I}f

gl
AR
o

g
5

DCin-

A

Fig. 2.2 Two parallel five-level simplified ANPC with 180° phase difference.

In order to reduce the cost and size of the inverter, a simplified ANPCS5L topology was
chosen which requires only one floating capacitor. The voltage of this floating capacitor is
controlled based on redundant switching states [44]. The modified switching scheme
proposed in [45] is used to prevent unwanted high frequency switching which causes high
switching loss and failure to the circuit. In the reverse path when the battery is charged by

utility power, all the inverter switches are off. In this case the body diodes of the switches

make two parallel full-bridge rectifiers.
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2.1.2 Bidirectional Full-Bridge Converter

The proposed inverter design requires a larger DC voltage than what the vehicle’s
battery can provide. As such, an interface is needed to increase the voltage level from the
supply allowing 9 [kW] power output at the 120 [V,.,,,s] and 6 [kKW] power output at the 240
[Vi-ms] to be maintained. This stage needs to provide the 340 [V] required by the inverter
stage, referred to as the DC Link bus, using the 240 [V] input from the EV/PHEV’s battery
with a minimal amount of variance to prevent generation of additional harmonics in the
inverter output. An output voltage ripple maximum of 1% was selected for the design. To
have ground isolation and voltage boosting a bidirectional full-bridge converter topology,
shown in Fig. 2.3, was selected for this design. Proper switching of this bidirectional
converter ensures that the converter always operates in continuous conduction mode even
when the inductor current is negative. This bidirectional power flow is necessary to allow
for the proper exchange of reactive power between the complex load of the inverter and
the DC link. Since the converter feeds the inverter stage with complex load whose voltage
and current are not necessary in phase, therefore for keeping the dc-link voltage at the
desired value we need to provide the discharge path for the dc-link capacitors to
compensate the effect of negative reactance power on the dc-link capacitors. This path can
be provided with the proper switching of the converter switches. Logical functions given
in (2.1) show the gate signal generation for the converter switches. This switching scheme
keeps the converter in the continuous conduction mode even when the inductor current is

negative.

11
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Fig. 2.3 Bidirectional Full-Bridge Converter.
Q1 = (D > Tril)
Q4 =~Q1
Q3 = (D >Tri2)
2.1)
Q2 =~Q3
Q5=Q6=HC1
Q7=08=~HC1

Where Tril and Tri2 are the two triangular waveforms which act as carrier references
for PWM modulation. HC1 is a Boolean variable which is True in the first half of the

switching cycle and false in the second and D is the duty ratio of the converter.

2.1.3 Dynamic Model of Bidirectional Full-Bridge Converter

Utilizing the state averaging method [46], [47], the dynamic model of the full-bridge

converter with switching scheme represented by (2.1) can be written as:

12



. N

Li, = =R, I, =V, + zvmﬁ2 (D +d,) (2.2)
1

CVoue =1, — 1. (2.3)

Where Vj,(t) € R is the average input voltage supplied by the battery, I;(t) € R is

the average current through the inductor L and Ry, is its series resistance. V,,:(t) € R and

. N, . .
I,(t) € R are output voltage and current, respectively. N—z is the transformer turns ratio.
1

The term d, represents an assumed constant disturbance within the switching.

2.2 Backstepping Controller

There are two uncertainties which the bidirectional full-bridge converter system
must be capable of adapting for. First, it is assumed that the battery voltage will change as
the system discharges. Secondly, it is assumed that the load may also vary as the consumers
vary their power consumption. In an effort to meet the input voltage requirements set by
the ANPC inverter stage, a novel backstepping control scheme is developed for the
bidirectional full-bridge converter stage. This controller works to maintain a fixed DC link
voltage in the presence of a varying battery state of charge (SOC) and variable load. Recent
works such as [5], [48] have shown that increased performance is achieved if the control
scheme also compensates for an unknown disturbance within the PWM scheme, therefore

this development includes the additional adaptive term to compensate for this disturbance.

2.2.1 Control Objectives

A control input D(t) € R for the bidirectional full-bridge converter, with the dynamic

model given in (2.2) and (2.3), is developed such that the output voltage of the

13



converter,V,,(t) € R, tracks a desired output voltage, V4(t) € R, in the presence of an

unknown complex load and a constant disturbance in the system.

2.2.2 Assumptions

There are several assumptions that must be made for this controller design:

The bidirectional converter switching scheme is according to (1). Therefore the

converter is always in the continuous conduction mode.

e The signals V;,,(t), V,,:(t), I,(t) ,and I;(t) are measurable.

e The parameters R}, L, and C are known constants.

e The desired output voltage trajectory signal, V;(t), and its first and second
derivative are bounded, V,, V,, V; € L.

e The output current and its derivative are bounded, I, (t), I,(t) € L.

2.2.3 Controller Design

In order to meet the desired voltage, tracking error signal e(t) € R and auxiliary error

signal n(t) € R are defined as:

e=Vyg—Vour (2.4)

n=1I3—1 (2.5)

Where [4(t) € R is an auxiliary control signal which will be designed subsequently.

To account for the unknown disturbance, an error signal d, € R is developed as follows:
d~0 = do - dAo (26)

where d, € R is the estimated disturbance which will be defined subsequently.

14



Taking the time derivative of (2.4) and (2.5) and substituting for V,,,; and I; from (2.2)
and (2.3), and multiplying by C and L respectively, the open loop system error can be

rewritten as:

Cée=CVyi—Izs+n+1I, 2.7)

. ; N
L?] = le + RlIl + Vout - ZVlnN_i(D + do) (28)

From the subsequent stability analysis, the auxiliary controller, I4(t), and the duty

ratio of the PWM control signal , D(t), are defined as in follows:

I; 2 Coy+ ke +1, (2.9)
o1 N, -
D= N, Wi +e+kn+kssgn(n) — Vi”ﬁldo] (2.10)
VinN_
1
where
Wy = LCVy + ky LV + 200 4 RyTy + Vi @2.11)

where kq, k,, ks € RT are controller gains. The parameter update law for the

unknown disturbance is defined as follows:

A NZ

d, & _k""VinN_l (2.12)

where k, € R™ is a positive gain. Substituting (2.7) and (2.8) for I;(t) and D(t) from

(2.9) and (2.10) give us the following closed loop system error equations:

15



Cé = —kje+1 (2.13)
Ly = Li, — e — kyn — kssgn(n) — Vi 2 d,. (2.14)

mn N4

2.2.4 Stability Analysis

Theorem 1: Using the closed loop error system equations found in (2.13) and (2.14),

the error signals defined in (2.4) and (2.5) are regulated as follows:
e(t),n(t) > 0ast > o (2.15)
when the following gain condition is met
ks > LI,. (2.16)

Proof: A non-negative scalar function, S(t) € R is defined in (2.16).

1 1 1 ~
S:§C€2+5Lﬂ2+§k‘;1d% (217)

Taking the derivative of (2.17) with respect to time and substituting for the closed loop
error signals from (2.13) and (2.14), the expression in (2.18) is obtained for time derivative

of S(t) where (2.12) is also utilized.

S = —kye? — k,n? — ks|n| +nLi,. (2.18)

The expression in (2.18) can be upper bounded as follows:

S < —kie? — kyn? — (ks — Li,)Inl. (2.19)

16



Assuming that the control gain k5 is selected as stated in (2.16), then (2.19) can be

further simplified as:

S < —kie? — kyn? (2.20)

From (2.17) and (2.20) it is clear that e(t),n(t),d, € L, and that e(t),n(t) € L,.
From (2.4) and by considering that V;(t) € L, therefore V,,;(t) € L. Then, from (2.9)
and assuming I,,(t), V,(t) € L, , it is clear that I;(t) € L, hence from (2.5) we can see
that I;(t) € L, .From (2.13) and e(t),n(t) € L, it is clear that é(t) € L. From (2.6)
and because d,(t), dy(t) € Lo, it is clear that dy(t) € Lo,. From (2.11), it can be shown
that W, (t) € L, because 1,4(t), v4(t), I;(t), Vou: (t) € L. Additionally, from (2.10) it is
clear that D(t) € L. Therefore we have proved that all signals in the closed loop are
bounded. Now we will prove that the error signals, e(t) and n(t), converge to zero as t =
0. From (2.13) and e(t), n(t), € L, itis clearé(t) € Lo,. From (2.14), and assuming I, (t)
€ L it is clear that 7(t) € L,. Since e(t),n(t) € LN L, and é(t),n(t) € Lo,

according to the Barbalat’s Lemma [49] it is clear that e(t),n(t) = 0 ast — oo.

2.3 Simulation Results

To validate the system design and evaluate the performance of the developed
controller numerical simulation using PLECS software is completed. The simulation

parameters are presented in Table 2.
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Table 2.1 V2G System Parameters

Parameter Value Unit Parameter Value Unit
V 240 v C3=C4 200 uF
— .05ramp(t)
Vy 340 A% K1 4 -
Fsw conv 50 KHz K2 2
(Converter
Switching
frequency)
Fsw v 20 KHz K3 .01 -
(Inverter
Switching
frequency)
L 100 uH K4 1
C 1 mF Z, (Loadl 3.9+ij1.88 Q
impedance)
Cl1=C2 2 mF Z, (Load2 13 +j6.4 Q
impedance)

To facilitate the simulation, the converter was operated with a fixed duty cycle for t <
0.04 [sec]. After this the duty cycle generated by the controller was applied to the
converter. At t = 0.08 [sec.]the simulated load changes from Z; = 3.9 +j1.88 [Q]
to Z, = 13 +j6.4 [Q1]. To simulate changes in the battery SOC, the input voltage to the
converter stage V;,reduces linearly with a slope of 0.05[V/S] from its initial value, 240[V].
Fig. 2.4 shows the tracking performance of the converter. Signals e(t) and duty cycle, D(t),
are seen in Fig. 2.5 and 2.6 respectively. From these figures it is clear that the converter
and its developed controller work well within the desired parameters in closed loop control,
achieving an output voltage 340 [V] with a very low ripples. Comparing the inductor
current with its desired value /;in Fig. 2.7, it can be seen that the converter is always in the
continuous conduction mode and that control is maintained even when the inductor current
is negative. Fig. 2.8 shows that the estimated disturbance in duty ratio converges to a

constant value.
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Fig. 2.4 Output voltage,V, . (t), and the desired voltage, V4(t), of Bidirectional Full-Bridge

Converter.
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Fig. 2.5 Voltage tracking error, e(t) of Bidirectional Full-Bridge Converter.
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Fig. 2.7 Bidirectional Full-Bridge Converter Inductor Current.

The level-shifted four-carrier PWM scheme with unity modulation index and 20 kHz
carrier frequency (fir;) is selected for system level simulation of the ANPC inverter. The
line-to-neutral and line-to-line output voltage of the inverter are shown in Fig. 2.9 and 2.10
respectively. The normalized Fourier coefficients of the line-to-line output voltage are
illustrated in Fig. 2.11. As can be seen in Fig. 2.11, the individual voltage distortion for

f < 2f; = 40 kHz is less than 0.03% which is well within the harmonic limits set by [IEEE
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519. Implementation of a simple LC filter at the output fulfills total voltage distortion limits

of IEEE 519 and also removes high frequency harmonics around f = 2f;.
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CO0QO0O0000 R
wmohrNoONrODONDD®
1

Disturbance Estimate

'
[y
o

-2.0-= i ;
0.0 0.06 0.08 0.10 0.12
Time[S]

Fig. 2.8 Bidirectional Full-Bridge Converter Estimated Disturbance.
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Fig. 2.9 ANPC Inverter Line to Neutral Output Voltaege.
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2.4 Summary

A typical DC:AC conversion system consists of two stages, a DC:DC converter to
generate the necessary bus voltage followed by an inverter which generates the desired AC
output. A modification of this system is proposed for the purpose of reducing switching

losses. The proposed two-stage system consists of a buck converter which produces a
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mixed (DC+AC) signal which is fed to a traditional inverter. This mixed signal is designed
such that it reduces the switching loss across the inverter switches while still providing the
necessary voltage for the inverter input. Backstepping controllers are designed to achieve
output voltage tracking objectives for both stages. Lyapunov stability analysis and
simulation results validate these controller designs. Efficiency and THD comparisons are
made between the typical and modified systems. The results show that all the system
components of this design work as expected from analytical results. The individual voltage
distortion was kept low and due to its location at higher harmonics can be easily filtered
out to fulfill total voltage distortion limits of IEEE 519. The novel backstepping controller
is capable of controlling the DC to DC converter stage in presence of varying battery SOC,
uncertain complex load and switching disturbance. The split phase output voltage has the
desired frequency and magnitudes to replace household backup generator, validating the
system’s use for V2H applications. The reverse path provides battery charging circuit to
store energy in the vehicle battery. The system’s design is straightforward, relying on

isolated power electronic designs and is appropriately controllable.
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CHAPTER 3

ENERGY EFFICIENT DC TO AC POWER CONVERSION

A typical DC:AC conversion system consists of a DC:DC converter to step-up/down
the DC voltage level that is then fed to a voltage source inverter (VSI). The purpose of the
converter is to provide a fixed DC bus voltage to the subsequent stage. The VSI then

converts the regulated and fixed DC voltage to the appropriate AC voltage output.

An alternate approach is proposed in which the converter stage provides a mixed
(DC+AC) signal to the VSI stage. This mixed signal is designed such that it reduces the
switching loss across the VSI switches while still providing the necessary voltage for the
inverter input. A bidirectional Buck converter was chosen to provide this mixed signal from

the DC input voltage for the proposed design.

Many solutions have been developed to reduce switching losses in converter and
inverter switches, most commonly by the use of snubbers or resonant techniques [50]. The
aim of these methods are to ensure that the voltage and/or current across the switch are
zero at the time of switching. This is usually achieved by adding additional inductors and/or
capacitors to a classical H-bridge hard-switching solution as well as more complicated
switching schemes seen in [51], [52]. In this study two different methods are utilized
simultaneously to reduce the power loss in the converter and inverter stages, respectively.

In general, it is required that the desired output voltage of a VSI be less than or equal to its
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input voltage. An exception to this requirement is over-modulation whereby it is possible
for a VSI to exceed this limit at the cost of a significant increase in THD. Because this
works against the end objective over-modulation is not considered in this work. For a VSI
using a fixed DC input voltage, this requirement means that the bus voltage must be greater
than or equal to the maximum output voltage magnitude. This bus voltage determines the
switch blocking voltage and therefore to a large degree the switching losses [53]. By
replacing this fixed DC input with a time-varying voltage that still meets the voltage
requirement mentioned, but is less than or equal to the DC voltage at all points in the cycle,

losses can be greatly reduced.

The proposed method for reducing switching loss in the converter stage is to utilize a
lower switching frequency. In the VSI stage it is necessary to operate at a high switching
frequency to both fulfill THD requirements and improve system dynamics, however this is
not the case for the converter stage. So long as the output voltage of the converter meets
the voltage requirement mentioned above, any non-idealities in the output voltage of the

converter can be compensated for by the controller of the inverter.

In the past decade, much attention has been paid to the closed-loop regulation of
switch-mode converters and inverters to achieve good dynamic response under different
types of loads. Methods such as linear control [54] , passivity-based control [55],
Lyapunov-based control [56], optimal multi-loop linear resonant control [47], sliding-
mode control [46], [53], [21] etc. have all been utilized for this problem. In this chapter
two backstepping controllers are utilized for voltage tracking of the converter and inverter
stages [57]. The buck converter controller ensures that the output voltage tracking

objective is met given knowledge of input voltage and circuit parameters as well as
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measurements for output voltage, output current, and inductor current. The controller also
incorporates an adaptive estimator which compensates for a fixed, unknown disturbance in
the system. The VSI controller also ensures output voltage tracking and disturbance
estimation. This controller depends on knowledge of the circuit parameters, as well as

measurements for input voltage, output voltage, inductor current, and output current.

3.1 System Design

A series of power electronic interfaces (PEI) are chosen to provide the 120 [V,.;,5], 60
[Hz] single phase AC voltage from the DC supply as seen in Fig. 3.1. A bidirectional buck
converter steps down the DC supply as determined by its controller to generate the desired
mixed signal voltage to be fed to the VSI. In the next stage, the VSI generates the required
AC voltage from the mixed input voltage with an acceptable THD to meet IEEE 519

harmonic distortions limitations.

. . H-Bridge Inverter
DC Suopl 240V DC Bidirectional Buck Mixed »  With EC output | — 120V rms
bRy Valtage Converter Voltage " Filter 2 AC Voltage
E E
Control Signal g Control Signal g
= ¥ ¥ v ¥ = v y r v
Controller Controller

Fig. 3.1 System block diagram for generating 120 [V .,,s] AC voltage from 240V DC input.
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3.1.1 Bidirectional Buck Converter

The Buck Converter is a commonly used switched mode power supply designed for
step-down voltage operation. These power supplies often use control systems to improve
performance and stability. For this work, an adaptive control design is utilized. Adaptive

control allows the system to compensate for an unknown disturbance.

The subsequent controller design is based upon a circuit model which assumes
operation in the continuous conduction mode (CCM). However, due to the nature of the
mixed signal voltage trajectory it is probable that inductor current may reach zero which
would otherwise force the circuit into discontinuous conduction mode (DCM), thereby
invalidating the assumed system model. For this purpose a bidirectional buck converter
topology is proposed to keep the converter in CCM allowing inductor current to become
negative. The circuit diagram for this bidirectional buck converter is shown in Fig. 3.2.
Although switching commands to IGBT D1 and IGBT D2 are logical complements, in
practical implementation we should consider a dead time between these two signals to

prevent shoot-through conditions.

IGBTD1

= S

- ' — e -
Vinl+ RI1 bl+
[:23 IGBTD2 c1==

q Logical

Operator
(G, (G
vinl- Vol-

Fig 3.2 Bidirectional Buck converter.

Though a linear controller such as a type3 controller [58] is capable of achieving
voltage tracking for a buck converter it was determined that such a controller is not stable

with a bidirectional buck converter, especially given a mixed signal trajectory. Therefore
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a nonlinear backstepping controller is proposed for this design. Typically the control of
bidirectional buck converters focus only on unidirectional power flow and the control is
separated into two modes of operation, sinking and sourcing. However, in this application
within one cycle of the system operation we may have energy flow in both directions. In
this work a single backstepping controller will be designed which is capable of controlling

the converter under both modes of operation.

The dynamic model of a bidirectional buck converter system as seen in Fig. 3.2 is

described by the following instantaneous circuit equations:

C1Vo1 = 111 — o1 (3.1
diyy .

Li—= = ~Rulin = Vo1 + Vinagq (3.2)
where L; € R is the inductance, C; € R is the capacitance, v;,1(t) € R is the input supply
voltage, i (t) € R is the inductor current, v, (t) € R, is the output voltage, q(t) € (0,1)
is the switched control signal, and i,1(t) € R is the output current that feeds H-Bridge
inverter. This model is valid for both positive and negative values of inductor current.
State averaging methods [47], [46] can be utilized to convert the instantaneous model
defined in (3.1), (3.2), to an average dynamic model of the system when a pulse width
modulation (PWM) scheme is utilized for g(t) [58]. The average model over a PWM

switching period can be written as follows:

CiVor =1 — 11 (3.3)

Llil = —Rplin — Vo1 + Via D1 (3.4)
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where Vi () ER is the average supply voltage, I;,(t) €
R is the average inductor current, I, (t) € R is the average output current, V,,(t) € R
is the average output voltage, and D, (t) € R is the duty ratio of the control signal g(t). A
semi-constant unknown disturbance, d, , is considered as PWM disturbance that needs to

be accounted for by the control scheme. With this, we write (3.4) as follows:

Lilyy = =Ryl — Voy + Ving (Dy + doy). (3.5)

3.1.2 Trajectory Signal Design for Bidirectional Buck converter

In this section a desired voltage trajectory V;;(t) of the output voltage V,,(t)of the
bidirectional buck converter will be designed such that it minimizes the switching losses
in the VSI stage. The inverter generates an AC voltage from the input voltage. As discussed
previously, the inverter is capable of generating any instantaneous output voltage so long
as the input voltage to the inverter is higher than the absolute value of the desired output.
This fact motivates us to provide a varying input to the inverter instead of a fixed DC
voltage to reduce the switching loss in the high switching frequency stage of the system.
Fig. 3.3 shows the required AC voltage of the inverter and a possible input voltage to the
inverter of the form |200 sin(2760t)|. The maximum value of this input is chosen such

that the output voltage is generated with an effective amplitude modulation index of

120v2 . . . . 200 .
20\;_ = .85 in the inverter stage and maximum duty ratio of 220 = .83 in the converter

stage.
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Fig. 3.3 Possible inverter input and output signals.

The subsequent control development will require Vyq(t), V1 (t), V41 (t) € Lo,. For
this design a trajectory signal composed of the first two harmonics of the desired input plus
a constant was chosen. This constant value gives the inverter controller more flexibility in

its output amplitude. The resulting voltage trajectory for the buck converter is as follows
V41 (t) = 125.81 4+ 20 + 83.89sin(2mw120t) = 145.81 + 83.89 sin(2m120t).

Where 125.81 and 83.89sin(2m120t)are the first and second harmonics of the desired
signal and 20 is the constant value added to the trajectory signal. More harmonics can be
added to the trajectory signal but the performance improvement in terms of switching loss
reduction in the inverter is insignificant. Fig. 3.4 shows the designed V,;; along with the

absolute value of the output voltage of the inverter.
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Fig. 3.4 Trajectory signal and absolute value of output AC signal.

3.1.3 H-Bridge Inverter

A VSI as seen in Fig. 3.5, is used to convert the mixed voltage output of the buck
converter into an AC output voltage with the addition of a simple LC filter. A unipolar
PWM switching scheme was selected for this design. The proposed topology is capable of
the bidirectional energy flow necessary to effectively drive a complex load. In order to

design the controller for an H-Bridge inverter an analytical control model must be created.

RI2 2
= —(—C -
vt 12 Yoz
— 1GBTDL | IGBTD3
.
. I £ —
V)w =C2
() vn :
= 1GBTD4 — KES IGBTD2
D
Vin2- -
_|—> D alf———
See{vin o q
1 :
, q
Controller Switching Circuit

Fig. 3.5 H-Bridge inverter.
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Following the assumption that a unipolar switching scheme for PWM is utilized, g4 and
g3 are logical complement to q1 and g2 respectively and the inverter operates in 3 different

states where ql, g2, q3 and g4 are logical IGBT gate signals.
Statel: For ql=I and q2=1 the input voltage to the LC filter is Vj;,.
State2: For q1= q2=0 the input to the LC filter is —V;;»
State3: For q1=1, q2=0 or q1=0, q2=1 the input voltage to the output filter is 0.

Applying the state averaging method, and considering a constant PWM disturbance, d,,,

the average model for an H-Bridge inverter can be written as follows:

CoVoy =11y — I (3.6)

inlz = —Rppli; = Voo + Vinz(Dz + doz)- (3.7)

Where Vj,,(t) € R is the average supply voltage, I;,(t) € R is the average inductor
current, V,,(t) € R is the average output voltage, and D, (t) € (—1,1) is the duty ratio. A
positive duty ratio means the inverter switches between state 1 and 3 and a negative duty

cycle means the inverter switches between state 2 and 3.

We want to develop a control input, D,(t) that enables the inverter stage output
voltage, V,,(t), to track a desired output voltage, V4, (t),in the presence of an unknown

load and a constant disturbance in the system. In this application v, (t) is a sinusoidal

waveform with 60Hz frequency and 120+/2 amplitude.
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3.2 Control Design

Comparing equations (3.3-3.5) which models dynamics of bidirectional buck converter
with equations (3.6-3.7) which models dynamics of H-Bridge converter, we can see both
systems are modeled with the same equations except that the range of duty ratio is (0,1) for
buck converter and (-1,1) for H-Bridge inverter. Therefore we can design the same
controller for both converters. Henceforth the subscript x € {1,2}is used to denote whether
the parameters belong to the converter (x = 1) or the inverter (x = 2). To generalized the
controller development we consider a constant duty ratio disturbance, d,,, in our

equations. To facilitate the control development, the following assumptions are made.
Assumption 1: I, (t), I, (t), Vo (t), Vipy (t) are measurable.
Assumption 2: Cy, L,, R}, are known system parameters.

Assumption 3: V. (t), Vax (£), Vax () € Lo, where Vg, (t) is the desired output voltage

trajectory.

Assumption 4: The duty cycle disturbance is slowly time varying in the sense that

de(t) ~0 .
Assumption 5: The output current is continuous, lo,(t) € L.
Our control objective is to design D, (t) such that V,,(t) = Vy,(t) as t — co.

3.2.1 Error System Development

To meet the defined control objective, tracking errors signals e,(t), n,(t) € R are

defined as follows:
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€x = de - Vox (3~8)

Ny = Idx - le (3~9)

where Ig4(t) € R is a subsequently designed auxiliary control signal. Taking the time
derivative of equation (3.8) and (3.9), and utilizing the average system dynamics from (3.6)

and (3.7), the open loop error systems can be written as follows:

Crex = Cdex — gy + My + Loy (3.10)

Lyt = indx + Rixlye + Vox — Vinx (Dx + doy). (3.11)

Since the duty ratio disturbance d,, is unknown, we define the disturbance error dy(t) €

R as follows:
d~OX 2 dox — C20){ (3.12)
where d,,(t) € R is the disturbance estimate.

3.2.2 Control Input Design

The control inputs found in (3.10) and (3.11) are developed based on the subsequent

stability analysis. The auxiliary control input I, (t) found in (3.10) is designed as follows:
Tax 2 CVax + kaxex + Iox (3.13)

where ki, € R* is a control gain. The control law defined in (3.13) is substituted into

(3.10) and the following closed loop error system for e, (t) can be written

Cry = —kixe, + My (3.14)
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As seen in (3.11), the time derivative of I, is required. Taking derivative of (3.13) and

substituting in (3.11) we have:

Lxﬁx = Wlx(') + ijox - VinxDx - Vindex - Vindex (3-15)
where
' 7 y FixLylix kixLxlox
Wix = LyCiVayx + KixLyxVax — - Cy 2 Cy + Ryl + Vo (3.16)

The duty ratio of the PWM control signal for the power converter p,(t) is defined as

follows:

1

D, &
* Vinx

[Wlx + ey + koxllx + kaxsgn(m,) — Vinanx] (3.17)

where k,y, ks € RY are the control gains.

The parameter update law for the unknown disturbance is defined as follows
dox 2 —KaNcVin (3.18)
Substituting (3.17) into (3.15) provides the following closed loop error system for n(t)
Ly = Lylox — €5 — koM — kgyxsgn(ny) — Vi (3.19)

3.2.3 Stability Analysis

Theorem 1: Using the closed loop error system equations found in (3.14) and (3.19),

the error signals defined in (3.8) and (3.9) are regulated as follows
ex(t),nx(t) > 0ast — co.

Proof: A non-negative scalar function, S, (t) € R is shown in (3.20).
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1 1 1, 15
Sy =5c.x +5Lang + S ko dg, (3.20)

Taking the derivative of (3.20) with respect to time and substituting the closed loop error
signals from (3.14) and (3.19), the expression in (3.21) is obtained where (3.18) is also

utilized.

Sy = —KkixeZ — KoxnF — Kzl + NyeLyloy. (3.21)
The expression in (3.21) can be upper bounded as follows:

Sy < —Kyxef = koxt = (Kax = Lulox) nxl- (3.22)

Assuming that the control gain k; is selected as stated in (3.23), then (3.22) can be further

simplified as (3.24).

Kay > Lyl (3.23)

Sx < _klxei - k2xnazc (3-24)

From (3.20) and (3.24) it is clear that e, (t),7,(t), dox € Lo Lo, and that e, (t),n,(t) €
Lo N L,. From (3.8) and by definition that Vg, (t) € L, therefore V4 (t) € L. Then,
from (3.13) assuming I, (t), V4, (t) € L, , it is clear that I, (t) € Lo, hence from (3.9)
we can see that I, (t) € L, .From (3.14) and e, (t),n,(t) € L, it is clear that é,(t) €
L. From (3.12) and because doy(t), dox(t) € Lo it is clear that doy(t) € Lo,. From
(3.16), it can be shown that W;,(t) € L, because Vgy(t), Vax(t), [1x(t), Vox (t) € Lo.
Additionally, from (3.17) it is clear that D,(t) € L. From these bounding statements it is

clear that all signals in the closed loop are bounded. From (3.14) and e, (t),n,(t), € L, it
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is clear é,(t) € L. From (3.16), and assuming I,, (t) € L it is clear that 1, (t) € Lo,.
Since e, (t),n,(t) € L, N L, and é,(t), N, (t) € L, Barbalat’s Lemma [49] is utilized to

prove that e, (t),n,(t) » 0 ast — oo,

3.3 Simulation Results

To validate the system design, and control development a numerical simulation is
performed. The PLECS toolbox is used with Matlab/Simulink to model the instantaneous

circuit dynamics of each interface including the control schemes.

3.3.1 Bidirectional Buck converter

The parameters for the converter and its control scheme are summarized in Table 3.1.

Table 3.1 Bidirectional Buck Converter Simulation Parameters

Parameter Value Units

Ly 500 pH
Cy 470 uF

Fsw1 5 kHz

Vin1 240 Vv

ki1 0.05 -

ka1 0.5 -

k31 1 -

k41 0.1 -
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Tracking performance is seen in Fig. 3.6. Signals e, (t) and duty cycle, b, (t), are seen
in Fig. 3.7 and 3.8 respectively. From these figures it is clear that the control objective is
met. From Fig. 3.9 it is clear that the inductor passes the current in both source to the sink

direction and vice versa within one cycle of operation.
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Fig. 3. 6 Converter output voltage and the desired voltage.

— e(t

Voltage Error [V]
w
<

L

-10- ; i : ‘
0.00 002 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

Fig. 3.7 Converter voltage tracking error.
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Fig. 3.8 Converter control duty cycle.
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Fig. 3.9 Converter inductor current.

3.3.2 H-Bridge Inverter

The inverter’s operation begins at t=0 [s] with Z;,,4 = 10 + j4.8 [Q] load
impedance. In section IV we assumed that the output current is continuous, I,,(t) €
L,.This particularly means that the load impedance is constant and time-invariant. When

this is not the case, the controllers still perform acceptably. In order to simulate the changes
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in the load impedance, a parallel 16() resistor is switched into the circuit at t=0.1[s]. The

effect of this change in the load impedance is illustrated in both inverter and converter stage

results.

Table 3.2 H-Bridge Inverter Simulation Parameters

Parameter Value Units
L, 104 pH
c, 690 pF

Fowo 100 kHz
Vina 1 -
ks 0.1 -
ko 0.1 -
ks, 10

ki 0.1 -

Fig. 3.11, 3.12, 3.13 and 3.14 illustrate the tracking performance, signals e, (t), D, (t)

and i;,(t) of the inverter respectively. These figures show that, despite the changing load

impedance the controller behavior is satisfactory. The simulation waveforms show that the

designed circuit operates well within the desired parameters in closed loop control.
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Fig. 3.10 Inverter output voltage and the desired voltage .
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.0 i i |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

Fig. 3.12 Inverter control duty cycle.
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Fig. 3.13 Inverter inductor current.

3.3.3 Switching Loss

To evaluate the performance of the system in terms of switching loss reduction the
thermal model and parameters of a commercially available IGBT, Infineon IKW25N120T2,
is used in the simulation. Table 3.3 compare the switching loss of the system described in
section I, referred to as the two-stage PEI, with a system that only utilizes an H-Bridge
inverter to generate an AC output voltage from a fixed 240 V input DC voltage, referred to
as the one-stage PEI. As it can be seen in table 3.3 the switching loss of the proposed two-
stage PEI is almost half of that of the one-stage PEI. As it can be seen in The envelop in
the two-stage PEI has a softer shape and semi-sinusoidal form than that of the one-stage

PEI . This effect results in a distortion at the output voltage of the two-stage PEI.

3.3.4 Harmonic Distortions

Table 3.4 gives the individual voltage distortion for first five harmonics for both

the one-stage and two-stage PEI systems. As it can be seen the individual voltage distortion
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is less than 0.1% which meets the harmonic limits of the IEEE 519 (< 3%) . The total
harmonics distortion of output voltage is 0.3 % and 0.149 % for the one-stage and two-

stage PEI systems respectively which fulfills total voltage distortion limits of IEEE 519

(THD<5%).
Table 3.3 Switching Power Loss Comparison
Switching Power Loss
PEI One-Stage PEI Two-Stage PEI
Bidirectional Buck - 20W
H-Bridge 400W 150W
Total 400W 170W
Table 3.4 Harmonic Distortions Comparison
Distortion
fn(H2)
n One-Stage PEI Two-Stage PEI
2 120 0.006 % 0.025 %
3 180 0.15 % 0.025 %
4 240 0.009 % 0.008 %
5 300 0.2% 0.053 %
6 360 0.002 % 0.019 %
THD 0.3 % 0.149 %
3.4 Summary

A two-stage PEI along with two voltage tracking controllers were proposed and
developed for energy efficient DC to AC power conversion. The system performance was

evaluated in terms of stability, system dynamics, switching loss and THD and validated
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via simulation. Using a simple output filter the output voltage THD was limited within
0.2% which fulfills IEEE 519. Utilizing the mixed input voltage to the inverter generated
by bidirectional buck converter, the total switching loss of the proposed two-stage PEI is
almost half that of the one-stage PEI. Moreover, the robust voltage and current control
performance can be guaranteed even under varied load impedance and output power

variations.
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CHAPTER 4

LEARNING BACKSTEPPING CONTROLLER

The pulse width modulated (PWM) voltage-source inverters (VSIs) have been more
broadly utilized for DC to AC voltage conversion as emerging technologies such as
inverter-based Distributed Generation (DG), Vehicle to Grid (V2G), Battery Energy
Storage System (BESS) and Uninterruptable Power Supplies (UPS) are more widely

adopted.

On the hand, the nonlinearity of residential electrical load is steadily increasing with
the growing use of devices such as computers, fax machines, printers, refrigerators, TVs
and electronic lighting ballasts, with rectifier at their front end. This nonlinearity of the
load deviates both current and voltage waveform in the distribution feeder from its
sinusoidal waveform. As such designing an inverter system with a nonlinear controller that
can take into account this nonlinearity in the load current and generate a sinusoidal output
voltage has become of great interest in applications where a high quality voltage is needed.
Another metric in the performance evaluation of inverters is a fast transient response during
load change which also necessitates the use of high performance controllers. Several
control schemes have been proposed for the control of an inverter with an output LC to

reduce the aberrance of inverter source’s output voltage waveform including adaptive bank
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resonant filters [59], deadbeat control [60], [16] and multiloop feedback control [15] [14].
In [61], Internal Model Theory was adopted, and a traditional PI control scheme combined
with repetitive controller was applied to manage the inverter system. But the model was
not applicable for nonlinear loads. In [36] a Fuzzy control strategy was used to control the
inverter system, with a genetic algorithm used in conjunction to optimize the fuzzy
controller. In [19] a combination of repetitive control and state-feedback-with-integral
control was proposed to control the output voltage waveform of the inverter. The schemes
presented in [36] and [19] have an acceptable dynamic response and output voltage
waveform even with nonlinear load at the cost of a complex algorithm. In [38] the
performance of a backstepping controller in control of a single phase inverter with resistive
load is compared with that of sliding mode and conventional PID controller. The results
reveal that the backstepping controller outperforms the other two controllers in terms of
both transient response and steady state error. Also it is shown that the sliding mode
controller generates a very harsh command compared to backstepping. In previous chapter
a backstepping controller was proposed for the control of H-Bridge inverter with a very
good tracking performance demonstrated. The work presented in previous chapter uses a
Backstepping controller combined with a sliding technique to compensate the
unmeasurable uncertainties arose from the derivative of the output current. It was also

assumed that the system experience a constant disturbance.

In this chapter a backstepping controller combined with a periodic learning scheme is
proposed for the control of an H-Bridge inverter with output LC filter in the presence of a
nonlinear load [62]. The proposed learning scheme take into account the periodic nature of

the system and observes the periodic disturbance and unmeasurable uncertainties of the
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system. A Lyapunov stability analysis is presented which proves that the sinusoidal voltage
tracking objective is achieved by the controller with all signals remaining bounded.

Simulation results further validate this approach.

4.1 System Model

An H-Bridge inverter with a LC output filter is used for DC to AC power conversion.
The inverter is sourcing four different type of loads, including linear and nonlinear loads,
as seen in Fig. 4.1. Applying the state averaging method, and unipolar PWM switching

scheme the average model for the H-Bridge inverter can be written as follows [47]:
cv, =1, —1, 4.1)
LI, =V, (D +d) —RI, -V, (4.2)

where L, C, R are the inductance, capacitance and series resistance of the inductance,
respectively. Vi, (t) € R is the input supply voltage, D(t) €[-1 1] is the PWM duty ratio
and d is the periodic PWM disturbance resulted from imperfect PWM switching timing.
V,(t) ER, I,(t) € Rand I;(t) € R are the output voltage, output current and the inductor
current, respectively. To facilitate the control development, the following assumptions are

made.
Assumption 1: L, C, R, V;,, are known, constant system parameters.

Assumption 2: The output voltage V, (t) , inductor current I; (t), and output current

I, (t) are measurable.
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Fig. 5.1 H-Bridge inverter with output LC filter and load.
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Assumption 3: The load current has the following properties: I,,,(t)eéL , so that

LI, (®)| < B

Assumption 4: The desired voltage and its first and second derivatives with respect to

time are bounded, V,(t), V;(t), V;(t) € Lo,.

Assumption 5: The periodic disturbance d is bounded, |d| < 5.

4.2 Control System Development

The objective of the control scheme is to design D(t) such that V,(t) - V;(t) ast —
oo, where V,;(t) is the sinusoidal output voltage trajectory defined by desired amplitude,

frequency, and phase.

4.2.1 Error System Development

In order to meet the desired voltage, tracking error signal e(t) € R and auxiliary error

signal n(t) € R are defined as:
e2V; -V, (4.3)
nal,—1I, (4.4)

where [4(t) € R is an auxiliary control signal which will be designed subsequently.

Taking derivative of both sides of equations (4.3) and (4.4), pre-multiplying by L and C,
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respectively, and then utilizing equations (4.1) and (4.2) gives the following open loop

error system:
Ce=CVy—1Iy+n+1, (4.5)
Ly =Liy—Vyu,D—Vi,d +RI, +V, (4.6)

4.2.2 Control Input Design

The control inputs will be designed based on the mathematical form of (4.5) and (4.6)
along with the subsequently presented stability analysis. The auxiliary control signal I;(t)

is designed as follows
I; 2CVi+Kie+1, 4.7)

where K; € R* is a positive control gain. Examining the form of (4.6) we see that reduction
of the error equation to a desirable closed loop form requires compensation of the term

1,(t). From (4.7), we see that [,(t) includes the term I, (t).

Ly =LIl, = VD —V,d+ W, (4.8)

where :
.. ) LK,
W, éLCVd+LK1Vd—T(IL—IO)+RIL+I/;,. 4.9

While a numerical derivative of the output current, I,(t), is possible to calculate,
taking the derivative of a noisy current measurement is not a practical solution. Therefore
our approach will consider this term as a periodic disturbance. Thus a new term d is

introduced which contains all of the lumped system disturbances.
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d, 2 LI, —V,d (4.10)

Motivated by the subsequent stability analysis the duty ratio control signal, D(t), is

defined as :
1 .
D& —[W,+e+ Kyn+di] 4.11)
Vin

where K, € R* is a positive control gain and d; is an observation of the system

disturbances, d;, which is developed in the following subsection.

4.2.3 Periodic Learning Design

Considering the fact that in an AC system the PWM disturbance, output current and
consequently its derivative with respect to time are periodic, a periodic learning method is
developed to estimate the system disturbances defined in (4.10). To characterize the

performance of the learning scheme the following error signal is defined.
d, 2d, —d, (4.12)
Motivated by subsequent stability analysis the following update law is defined for
periodic learning of d;.

dy(t) 2 Satg (dy(t = T)) + Ky (t) (4.13)

where f > B, + B, is a system constant, and Satg(.) is a saturation function with

upper and lower limits equal to f and - 8, respectively. K; € R™ is a positive control gain
and T is the period of the AC system. Substituting (4.13) into (4.12) and considering the

fact that d (t) is periodic and bounded, d; < B, the learning error can be given by:
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di(t) = dy(6) — dy(£) = dy(t = T) — d; ()
) (4.14)
= Satg(d,(t — T)) — Satg (dl(t — T)) —K3n

Substituting (4.7), (4.10), (4.11) and (4.12) into the open loop error systems from (4.5)

and (4.8) results in the following closed loop error systems.
Cé=—-Ke+n (4.15)
Ly =—e—K,p+d, (4.16)

4.2.4 Stability Analysis

Theorem 1: Using the closed loop error system equations found in (4.15) and (4.16),

the error signals defined in (4.3) and (4.4) are regulated as follows
e(t),n(t) > 0ast - oo.

Proof: A non-negative Lyapunov function S(t) € R is defined by equation (4.17).

1 1 1 (T NURST:
S =Ce? +Lnt + T ft 3 [Satﬁ(dl(r)) — Saty (dl(r))] dr (4.17)

Taking the derivative of (4.17) with respect to time and substituting the closed loop
error signals from (4.15) and (4.16) and applying Leibniz rule, the expression in (4.18) is

obtained.

. s 1 . 2
S =—K.e?— Kn? +nd, + K, [Satﬁ(dl(t)) — Satg (dl(t))]
(4.18)

e [Satg(dy(t — T)) — Saty (&(t - T))]Z-

Substituting (4.14) into (4.18) the following equation for S(t) can be obtained.
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. 1 ..
S = —K1€2 - Kznz — 2_K3 [dl + K3T]]2
(4.19)
- 1 5 2
tndy + 55 [Satﬁ(dl(t)) — Satg (dl(t))]

Substituting for d, (t) from(4.12), after some mathematical simplifications (4.19) can be

rewritten as:

$ = —Kye? — (K, + %)772 + L (Satﬁ(dl(t)) — Satg (a1(t))>2

2K;
(4.20)
R 2
~(w©®-4ao)|
The last term of (4.20) can be upper bounded as follows:
N 2 . 2
(Satﬁ(dl(t)) — Saty (dl(t))) — (i - di(®) =<0 4.21)
Using (4.21) S(t) can be upper bounded as:
) K3
S< _Klez — (Kz + 7)7]2 (423)

From the structure of (4.23) it can be proved that all signals are bounded and
e(t),n(t) - 0ast — oo. From (4.17) and (4.23) it is clear that e(t), n(t) € Lo, N L, [63].
From (4.3) and the fact that V,;(t) € L, therefore V,(t) € L. From (4.7) along with
Assumption 3 and 4 it is clear that I;(t) € L. From (4.15) and e(t),n(t) € L, itis clear

that é(t) € Lo,. From the definition of Satg(.) function and 1(t) € Lo, using (4.13) we

can deduce that d, (t) € L. Since I;(t),n(t) € Lo, from (4.4) it is obvious that I, (t) €

Lo,. Now from (4.9) and (4.11) along with V,(t), V;(t), V, (t),I,(t),1,(t), e(t),n(t),
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2,(t) € L, it is clear that D(t) € L,. From (4.12) and d,(t) € L, along with
Assumption 5 it is clear that d, € L.,. From (4.16) we can see that 77(t) € L. Hence it is
clear that all signals in the closed loop are bounded. Since e(t),n(t) € L, N L, and
e(t),n(t) € L, Barbalat’s Lemma [49] can be utilized to prove that e(t),n(t) —

0 ast — oo. Thus completing the proof of the theorem.

4.3 Simulation Results

To validate the periodic learning observer and control design a numerical simulation
was performed under various load scenarios. The Matlab-Simulink computer simulation
software with PLECS Blockset was used to model the circuit dynamics of the inverter and
the control schemes. Table 4.1 summarizes all the parameters used for the inverter circuit
and the control scheme simulation. This table also includes the parameters of four different

loads denoted as Loadl, ..., Load4 used in the simulation. The desired voltage trajectory

was selected to be V; = 220v/2sin(2r50t). The inverter’s operation begins at t = 0[s]
while sourcing a complex load, Load1, and a nonlinear load, Load 2. The nonlinear load is
a rectifier with output capacitor and a resistive load. In order to simulate changes in the
system load , a complex load, Load 3, and a nonlinear load, Load 4, are switched into the

circuit at t=0.092[s] and 0.132][s], respectively.

The output voltage and current of the inverter are demonstrated in Fig. 2. As it can be
seen in this figure the proposed controller generates an almost pure sinusoidal output

voltage in the presence of a nonlinear output current waveform. Fig. 3 shows the controller
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Table 4.1 System Parameters for H-Bridge Inverter and Learning Backstepping Controller

Parameter Value Units Parameter Value Units
L 500 pH Vin 360 A%
&‘3 C 330 uF ky 10 -
(0]
E R 0.3 Q k, 50 -
50 Hz ks 50 -
/A 220 V(rms) B 20 -
g P 3 kW 8 P, 2 kW
— —
Q. 1.45 kVar T Qs 1 kVar
< [a+]
o @]
— — 4
P, 800 W i P, 500 W

tracking performance in terms of the output voltage tracking error, e(t), and inductor
current tracking error, n(t). Fig. 4 shows the generated duty ratio control signal, D(t). The
actual and desired inductor current are shown in Fig. 5 and the estimated system

disturbance is demonstrated in Fig 6.

! I
0.05 01 0.1s 0z 025

! .
0.05 0.1 015 nz2 025
Time [g]

Fig. 4.2 Inverter desired voltage, output voltage and output current.
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Fig. 4.3 Controller tracking errors.
005 01 015 02 0.5
Time [g]

Fig. 4.4 Inverter control duty cycle.
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Fig. 4.5 Actual and desired current of the inductor.

. \
0 0.05 01 015 0z 0.25
Time [z

Fig. 4. 6 Estimation of system disturbances.

In Assumption 3, it is assumed that the output current is continuous, i.e. that |fo (t)| €
L. However, in the case of momentary violation of this assumption during step changes
in the load the controllers still perform acceptably. The system behavior for the load
changes can be seen at t=0.092[s] and 0.132[s]. Sudden change of system load resulting

from the addition of an inductive complex load at t=0.092[s] does not degrade the system
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performance in terms of tracking errors depicted in Fig 3. That is because this load change
does not violate the aforementioned assumptions. However the addition of a nonlinear
rectifier load with output capacitor initial voltage equal to zero at t=0.112[s] results in a
discontinuity in output current and consequently violates Assumption 3. Although this
violation causes a deviation in the error signals from zero, the fast dynamic response of the
controller compensates for this deviation and the controller error signals converge to zero
very quickly. These load changes introduce deviations to the estimated disturbance at the
corresponding times and these deviations repeats at the subsequent cycles because of the
periodic nature of the learning scheme. The amplitude of deviations diminish in subsequent
cycles as the learning algorithm re-convergences. From these figures it is clear that the
closed loop controlled inverter works well within the desired parameters, achieving a pure

sinusoidal output voltage.

4.4 Summary

A backstepping control scheme along with a periodic learning observer were
developed for an H-Bridge inverter with output LC filter sourcing both linear and nonlinear
loads. The system performance was evaluated in terms of tracking performance and
stability. These schemes have been validated by both stability analysis and simulation
results and all these analysis and simulations have demonstrated the effectiveness of the

proposed control solution.

57



CHAPTER 5

BACKSTEPPING CONTROLLER FOR 3-PHASE

INVERTER WITH SEAMLESS TRANSITION TO GRID-TIE

Three-phase inverters with output LC filters are commonly employed for generation
of sinusoidal output voltage with low harmonic distortion, suitable for distributed
generation systems. However, the waveform quality of the output voltage in stand-alone
mode is poor under the nonlinear load using conventional controllers. This issue has
become more pressing as the nonlinearity of the load current in power systems continues
to increase due to the growing number of electronic devices with rectifiers at the front end
of their power supply present in the grid. As such, designing a nonlinear controller that can
account for the nonlinearities of the load current to generate a high quality output voltage

has become of great interest.

In the two previous chapters, two controllers utilizing backstepping technique were
developed for a single phase inverter in abc-frame. The difficulty with developing a
backstepping controller for a 3-phase inverter in abc- frame is the need for synthesis of
desired AC trajectories and their first and second order derivatives. This problem becomes
more difficult especially when there is a need for amplitude, phase and frequency

adjustment in transition from standalone to grid-tie mode.

58



In this chapter a backstepping controller developed in dq0-frame is proposed for the
control of a 3-phase 4-wire diode clamped inverter with output LC filter under different
loads including balanced, unbalanced, linear and nonlinear loads [64]. In addition, an
observer is developed for load-current estimation, enhancing the behavior of the proposed
controller especially for the cases that there is a need to remove the costly output current
sensor. Also, the seamless transition of the inverter from standalone to grid-tie is
investigated while the inverter is under the control of the proposed controller. Lyapunov
stability analysis and simulation results validate the effectiveness of the proposed control
solution in terms of tracking objective and in meeting the THD requirements of IEEE 519

and EN 50160 standards for US and European power systems, respectively.

5.1 System Model

In this work we consider a 3-level 3-leg (3L3L) diode clamped inverter with split dc
bus connected to a three phase load, as seen in Fig. 5.1. This topology can be used to feed
both balanced/unbalanced A or Y type load with or without a neutral conductor. Although
the controller can be developed in any frame, the rotating dgO-frame is selected for the

following reasons.

First, as we will see in the proceeding controller development, the backstepping
controller requires the synthesis of a desired voltage trajectory, and its first and second time
derivatives. In the dqO-frame this trajectory can be represented by a constant value making
it and its derivatives much easier to synthesize than the AC signals required in abc-frame

or aff-frame.
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Fig. 5.1 3L3L four-wire diode clamped inverter with output LC filter.

Second, transition from two operational modes: standalone to grid-tied, can be

accomplished much easier in the dq0-frame.

Applying the state averaging method and using the well-known Park’s

Transformation, the equivalent dqO circuits of the system model are shown in Fig. 5.2

Ug

Ug
where [uq] are the dq0 transformation of the control input (duty ratio) |Us | in abc-frame.
Ug Uc

(Do

Fig. 5.2 Equivalent dq0 circuits of the 3L3L diode clamped inverter with output LC filter.

From the system model in dqO-frame shown in Fig. 5.2, the system equations can be written

as follows:
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CfVod = Ifd + Q)CfVoq - Iod (51)

Leleg = (ug + ui)Vac — Relpqg + wLlrg — Vg (5.2)
CVog = Irq — 0CiVoq — g (5.3)

Lelrq = (ug + uf)Vae — Relpg — wlylq — Vog (5.4)
CfVoO = Iro — Ioo (5.5)

Lelro = (uo + ug)Vae — Relro — Voo (5.6)

where Ls, Cs, Ry are the inductance, capacitance and series resistance of the inductance of
Ug

the filter, respectively. V. € R is the split DC-link voltage and |ug | are the transformation
Up

of the PWM disturbance resulting from imperfect PWM switching timing. The system

frequency, w in [rad/s], is related to the reference angle for the Park’s Transformation as

follows:

9=gwm+%. (5.7)

5.2 Control System Development

Ug Voa Vra
The objective of the control scheme is to design |Uq |such that | Vog |—| Vrq |—as t—o
Uo Voo Vro

Vrd

where | V4 [is the reference voltage trajectory. If this control objective is met then the
VrO
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Ug

inverse Park’s Transformation can be used to convert the control signals |Uq | from dq0-
Uy

frame to abc-frame, to generate the desired 3 phase voltage trajectory. This requires

synchronization of the frequency and phase of the reference angle, 8, to match the desired

frequency and phase.

Because of the coupling of the signals in the d and q axis, the controller for these two
axes are developed together. Development of the controller in the zero axis can be inferred

from the developed controller for the other two axes by simply substituting w = 0.
To facilitate the control development, the following assumptions are made.
Assumption 1: L¢, Cf, Ry, V4 are known, constant system parameters.
Assumption 2: The output voltage, output current and inductor current are measurable.
Assumption 3: The load current has the following properties:
Loa(©), Ioa (), Ioq (1), and Ioq (t) € L.
Uy

Assumption 4: The disturbance |ug| are bounded and slowly time-varying in
Up

Ug 0
comparison to the switching dynamics in the sense that |ig | ~ [O]
g 0
Assumption 5: The reference voltage trajectory and its first and second derivatives with
respect to time in dg0-frame are bounded, V,4(t), Vyq(t), V,q(t), Vg (0), qu (), V'rq (t) €

L.
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If the reference frame is intended to be synchronized with the reference AC voltage

trajectory with amplitude of Vy,qy then Vi.q = Vy,eqx and 1, = 0. Consequently, we have:
Vrd(t) = I'/.'rd(t) = qu () = f/;'q (t) =0.

5.2.1 Error System Development
In order to meet the desired voltage, tracking error signals e, (t), e,(t) € R are defined

as:

€4 — Vrd - Vod (58)

[l>

eq 2 Vig — Vog. (5.9)

To proceed with the control development, we will define auxiliary error signals

na(t),nq(t) € R as:
Na = Irq — Ira (5.10)
N 2 Ly — Irg (5.11)

where I, I, € Rare auxiliary control signals which will be designed subsequently.
Taking the derivative of (5.8) and substituting the values of V,, and Irq from (5.1) and

(5.10) the following open loop error equation is obtained:
Crég = CiVyg — Irg + Mg — wCiVyq + Log. (5.12)
Moreover , taking the derivative of (5.10) and substituting for ffd from (5.2) we get:

Letg = Lelrg — (ug + ug)Vae — wlyslsq (5.13)
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+Relrq + Voq.
In the same manner, working with equations (5.9) and (5.11) we get:
Créq = CVrg = Irg + g + WCrVoq + Iog (5.14)

Ltig = Lelq — (ug + uf)Vae + wLsleq
(5.15)
+Rrlpq + Vog

5.2.2 Control Design

The control inputs will be designed based on the mathematical form of (5.12)-(5.15)
along with the subsequently presented stability analysis. The auxiliary control signals I.4

found in (5.12) is designed as follows:
Lra 2 CiVig — 0CVpg + Ipg + Kig€q (5.16)

where K;4; € R*is a positive control gain. The control law defined in (5.16) is substituted

into (5.12) so the following closed loop error system for e, (t) is obtained.
Cfe'd = —Klded + ng (517)

Taking time derivative of (5.16) and substituting into (5.13) after some mathematical

simplifications results in:

Lefig = Fa + Lelog — uaVae — (g + 1g)Vqc (5.18)

where F,;(t) is an expression equal to:
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F; = LfoV‘rd + LledV‘rd - (l)LfIfq + Rflfd + Voa

LiKig
Cr

[lra + @CiVog — loa] (5.19)
—Lrw(lrg — wCrVoq — lpq)
and 1 is the estimated disturbance with the following estimation error and update law:
Ty 2 uy — U (5.20)
g £ —KsaNaVac (5.21)

where K,4 € R*is a positive gain. From (5.18) and motivated by the subsequent stability
analysis the duty ratio control signal, u,, is defined as :
A 1 A/
Ug 2 ——[Fyg + eq + Kzala + Kzasgn(ma)] — g

Vac (5.22)

where sgn(.) is the sign function of the error 1, ,and K4, K54 € R*are positive control

gains. Substituting (5.22) into (5.18) provides the following closed loop error system for

Na(t)

Ling = Lfiod —eq — Kygg — Kzasgn(ng) — tigVye.
(5.23)

Following the same procedure, we get the following equations for the g axis. The auxiliary

control signals I,.4 found in (5.14) is designed as follows:

Irq £ Cerq + waVOd + qu + Klqeq (524)
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where K, € R*is a positive control gain. Substituting the control law defined in (5.24)

into (5.14), we obtain the following closed loop error system for e,.
Creq = —Kiqeq + 14 (5.25)

Substituting the time derivative of (5.24) into (5.15), after some mathematical

simplifications results in:
Lifg = Fy + Llog — ugVae — (A4 + 1 )Vac (5.26)
where F; (t) is defined by:

Fy 2 LeCpVg + LeK1gVig + @Lelpq + Relg + Vg

LKy

lIrq = @CVoa = o] (5.27)
+Lrw(Irg + wCrVpg — Iog).

The estimation error, ﬁ(’l, and update law for the estimated disturbance, 1’1,’1, is defined as:

iy 2 ug — 1 (5.28)

tly 2 —KyqnqVac (5.29)

where K,, € R*is a positive gain. The structure of (5.26) along with the subsequent

stability analysis motivate the duty ratio control signal, u,, to be defined as :
u

1
q= Ve [Fq +eq + Kygng + K3qsgn(nq)] — 1, (5.30)

where K,,, K3, € R*are positive control gains. Eventually the closed loop error system for

1418 obtained as follows.
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Letlg = Lloqg — eq — Kaqllq — Kagsgn(ng) — tigVac (5.31)

5.2.3 Stability Analysis

Theorem 1: Using the closed loop error system equations found in (5.17), (5.23), (5.25)

and (5.31), respectivley the error signals defined in (5.8)-(5.11) are regulated as follows:
eq(t), eq(t),nq(t),ng(t) > 0ast —» oo

Proof: A non-negative Lyapunov function S(t) € R is defined as follows.

A 1 2 1 2 1 2 1 2
S 2 ECfed + ECfeq + ELfr]d + ELfT]q
(5.32)
P I P
2K4a ¢ 2Ky 7

Taking the derivative of (5.32) with respect to time and substituting the closed loop error
signals from (5.17), (5.23), (5.25) and (5.31) after some mathematical simplifications, the

expression (5.33) is obtained where (5.21) and (5.29) are also utilized.

S = _K1de§ - K1qe§ - K2d77c21 - KZqUS

+77dede - K3d|77d|+77qujoq - K3q|77q| (5-33)

The expression in (5.34) can be upper bounded as follows:

§ < —Kiqed — Kiqed — Kzang — Koqn
(5.34)
+|77d|(Lf|10d| - K3d) + |nq|(l‘f|]0q| - K3q)
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Assuming that the control gains are selected as stated in (5.35) and (5.36), then (5.34) can

be further simplified as (5.37).

Ksq = Lg|loa| (5.35)
Ksq = Ly|log] (5.36)
S < _K1d95 - K1q€§ - Km’lé - KZqT]é (5.37)

~l ~7

From (5.32) and (5.37) it is clear that ey, e4,1g,Mg € Lo N Ly and iy, Uiy € L. From
(5.8), (5.9) and the fact that V.4, V;.q € L, therefore Vg, V,q € Loo. From (5.16), (5.24)
along with Assumption 3 and 5 it is clear that I,.4, [,y € Lo, so from (5.10), (5.11) we can
deduce that ¢4, Irq € L. From (5.17), (5.25) and eq,e4,M4,Mq € Lo it 1s clear that
€q,€q € L. Since iiy, 1l € L, and considering Assumption 4, from (5.20), (5.28) we can
deduce that iy, iy € L. From (5.22), (5.30) we can see that all the signals contributed in
the definition of uy, u, are bounded, therefore ug, u,; € Lo,. Considering Assumption 3
and 5, from (5.23), (5.31) we can deduce that 4, 1, € L. Hence it is clear that all signals
in the closed loop are bounded. Since ey, e4,M4,Mq € Loo N L, and €y, €4,Mg, Mg € Lo
Barbalat’s Lemma [13] can be utilized to prove that

eq(t),eq(t),nq(t),ny(t) — 0 ast — co. Thus completing the proof of the theorem.

5.2.4 Variable Gain Control
As it can be seen in (5.22) and (5.30), a sliding technique comprising the sign of errors
multiplied with a constant gain, K335gn(n4) and K345 gn(nq), are used to compensate for

the uncertainty presented by derivative of the output current appeared in (5.23) and (5.31).

While the stability of the system necessitates a large value for the gains, (5.22) and (5.30)
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show a large value of K34 and K3, generates a very harsh command. To alleviate this issue,

a variable gain controller is proposed as follows:

kax  If lex(D)] > e

5.38
aksy  If lex(®)] < enn (5-38)

K3x:{

where x € {d, q, 0} can be any axis in dq0-frame, ks, is a positive gain and a < 1is a
reduction factor. As can be inferred from (5.38), at the transient time or at the moment that
the system experiences a sudden change in the system load which increases the system
error above a predefined threshold, e;;, a higher gain, k3, is used to keep the system stable.
Meanwhile in the steady state operation of the system this gain is reduced by factor of a to

alleviate the generation of the hard command.

5.3 Output Current Observer

To eliminate the need for a costly current sensor to measure the output current, an
observer is developed in this subsection. In the observer developed in this section the
derivative of the observed current is calculated as part of update law, which can be used to
compensate for the numerical derivative of the output current in the associate control
development. This fact can resolve the problem of hard command arose from sliding

control presented in previous section.

A simple observation of the load current can be calculated from (5.1), and (5.3)
through inductor current and output voltage measurement. However, the required
numerical derivative would make such an observation very sensitive to noise. In a PWM-

VSI the switching and sampling frequency are typically orders of magnitude higher than
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the fundamental frequency. Therefore, in comparison with the sampling and switching
frequencies, the current is changing very slowly, so that it can be approximated as a

constant [ 14].
Lilyg =0 (5.39)
Lifog =0 (5.40)
The following observer errors can be used to evaluate the observer performance.
Ioa = Ioa = Ioa (5.41)

Iog = Iog — Ioq (5.42)

With the assumptions presented in (5.39) and (5.40) we have:
Ioa(®) =~y (5.43)
Iog(®) = ~I,g (5.44)

Following the same procedure as previous section and substituting I,qand I,4from (5.41)

and (5.42) respectively, an open loop error system is developed as follows
Cfe.d = CfVTd - IT'd + Na — (L)Cfvoq + iOd + iod- (545)

Lfnd = Lfird - (ud + u&)VdC - (ULfIfq
(5.46)
+Rf1fd + Vod-

Créy = CVpg — Lg + Mg + WCVoq + Iog + Ing (5.47)
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LfT]q = ijrq — (uq + u&)VdC + a)LfIfd

(5.48)

In the same manner, the auxiliary control signals, I; and I.;, and the duty ratio control

signal, ug and u,, are designed as follows:
ITd 2 CfVTd — waVOq + iOd + Klded

Lq 2 CeVyg + 0CiVoq + Iog + Kige,

Ug 2 —[Fq + eq + Kygngl — iy

1
Uy & o |F, + eq + Koqng| — 04
dc

where Fy(t) and F, (t) are expressions equal to:

Fd £ LfoVT'd + LledVT'd - (ULfIfq + Rflfd + VOd

_LrKia

C [Ifd + waVOq - iod]
f

_wa(lfq - waVOd - foq)+ Lffod

Fq £ Lfo rq + Llequq + waIfd + Rflfq + ‘/Oq

_ LiKyg
Cr

[Ifq — wCfVoq — foq]

+Lfa)(lfd + waVoq - fod) + LffOQ'

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

Substituting (5.49)-(5.52) in open loop errors, (5.45)-(5.48), results in the following close

loop error system.
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Cfe.d = —Kjzeq + Ng + iod (555)

. _ LrKialoa
Lytla = —eq = Kaala = UaVae + === (5.56)
Créqg = —Kigeq + g + Iog (5.57)
. . LeKygl
Ling = —eq — Kaqg — UgVac + fc—;oq (5.58)

Motivated by subsequent stability analysis the update law for the unknown load current is

defined as:
A LfK
foa £ Ksa(ea + =72 na) (5.59)
2 LK
foq = Ksq (eq + L nq>. (5.60)
Cr
And consequently:
o t Lled ~
Iog = fto Ksq(eq(7) + ¢ Na(7)) dttloq(to) (5.61)
o t Lled ~
loqg = fto Ksq(eq(7) + cr Nq (7)) dt+loq(to) (5.62)

where K5 and K4 are positive gains.

5.3.1 Stability Analysis

Theorem 2: Using the closed loop error system equations found in (5.55)-(5.58) the

error signals defined in (5.8)-(5.11) are regulated as follows:

72



ed(t)’eq(t)’nd(t),nq(t) —>0ast > o

Proof: A non-negative Lyapunov function S(t) € R is defined as follows.

A 1 2 1 2 1 2 1 2
S £ ECfed + ECfeq + ELfnd + ELfT]q
1
FREEEPIE I B (5.63)
2K g 2K,

1 . 1 .
+EK5 12, + EKs 12,

Taking the derivative of (5.63) with respect to time and substituting the closed loop error
signals from (5.55)-(5.58) after some mathematical simplifications, the expression (5.64)

is obtained where (5.21), (5.29), (5.59) and (5.60) are also utilized.
S = —K1de§ - K1qe§ - KZdTIcZi - K2q77§ (5.64)

From the structure of (5.63) and (5.64) in the same maner as presented in previous section,

it can be proved that all signals are bounded and

€q (t), eq (t), nd(t)i 77q (t) - 0ast — oo.

5.4 Transition from Standalone to Grid-Tie

For a seamless transition from standalone to grid-tie, the magnitude of the inverter
output voltage should match that of the grid voltage and the inverter need to be
synchronized with the grid as well. Since the voltage amplitude, Vy¢qk, in abc-frame is
equal to the voltage on d-axis of the dq0-frame, so the inverter voltage amplitude can

simply be adjusted by setting Vyq = Vpeqx. A proper change of V,4is through a
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differentiable function which does not violate Assumption 5. Although the step change of
V,qviolates Assumption 5, the effect of this momentary violation will be diminished after

the step time depending on the transient response of the controller.

For the synchronization, the frequency and phase of the inverter output voltage should
match those of the grid. To this end, the reference angle for the Park’s transformation and
inverse Park’s transformation, 6, should be synchronized with the recovered phase of a
PLL locked on the grid voltage. Fig. 5.3 shows the block diagram of a circuit that can be
used for reference angle generation. In this figure f,. is the reference frequency. For the
frequency adjustment f,.can be selected to match the grid frequency measured by the PLL.
For the phase adjustment, a rectangular signal with area of integration equal to the phase
difference between the grid voltage and the inverter voltage can be applied to the phase
adjustment input of the circuit. For example, if the grid voltage leads the inverter voltage
Ag [rad/s], then a rectangular signal with amplitude of A and duration of At[s] which are
related to Ag with the following equation can be used to adjust the inverter phase during

At second. Fig. 5.4 shows the overall system block diagram.

AAt = Ag (5.65)

W4
® )
e [oat N
- sz
ﬂ—l_ Phase adjustment
at > 2

Fig. 5.3 Reference angle generator.
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Fig. 5.4 Overall system block diagram.

To validate the control design a numerical simulation was performed. The PLECS

75

toolbox is used with Matlab/Simulink to model the instantaneous circuit dynamics of the
inverter and the control schemes. The parameters used for the inverter circuit and the
control scheme are summarized in Table 5.1. The performance of the proposed control

scheme is evaluated under various scenarios including, unbalanced load, nonlinear load




and transition from standalone to grid-tie. The simulation results are presented for a 3-wire
delta connected load. With inherent neutral point of the 3L3L inverter as shown in Fig. 5.1,

the feasibility to control a 4-wire wye connected load is obvious.

Table 5.1 System Parameters for 3-Phase Inverter

Parameter Value Units Gain Value
L¢ 300 pH Kiq 10
Ce 330 uF K4 10
§ R 0.4 Q k3q 1000
R
E Ffou 60 KHz Koy 1
fr 60 Hz Ksq 100
Vpe = 2 *Vy, 2*270 VvV Kiq 10
v, 120 V (rms) Kaq 1
; P, 12 kW ksq 1000
g
0, 6 kVar Kuq 1
g P, 2 kW Ksq 100
s
Crest Factor 2:1
a 0.03
€th 3 Vv

5.5.1 Unbalanced Load

The inverter is initially feeding a balanced delta type inductive load, Load1. This load
becomes unbalanced by decreasing the load impedance connected to the phase a and b by
half at t= 0.08[s]. Fig. 5.5 shows the inverter performance under balanced and unbalanced
load in both abc and dq0 frames. As it can be seen in this figure the imbalance between
the load current of different phases manifests as mixed (AC+DC) signals in the dqO0-frame

representation of the output current. The controller tracking performance is demonstrated
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in Fig. 5.6 in terms of output voltage and inductor current tracking errors. The signals in
this figure are zoomed to show both transient and steady state error. From these figures it
is clear that the closed loop controlled inverter works well within the desired parameters

under both balanced and unbalanced load, achieving a pure sinusoidal output voltage.
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a
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Fig. 5.6 Tracking error under balanced/unbalanced load.
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5.5.2 Nonlinear Load

The nonlinear load, Load2, is a rectifier with output capacitor and a resistive load. To
evaluate the system performance under nonlinear load, Load2 is switched into the circuit

at t=0.08[s] while the system was initially feeding Load]1.

The inverter performance under nonlinear load in both abc and dq0 frames is shown
in Fig. 5.7. This figure shows that the nonlinearity of the load current results in adding
nonlinear waveform to the dc signal representing the output current in dq0-frame. Fig. 5.8
demonstrates the tracking performance in terms of output voltage and inductor current
tracking errors. In Assumption 3, it is assumed that the output current is
continuous, I, (t), [pq(t) € Ly . However, in the case of momentary violation of this
assumption during step changes in the load the controllers still perform acceptably. The
system behavior for the load changes can be seen at t=0.08[s]. Addition of a nonlinear
rectifier load with output capacitor initial voltage equal to zero results in a discontinuity in
output current and consequently violates Assumption 3 and gain conditions (5.35) and
(5.36). Although this violation causes a deviation in the error signals, the fast dynamic
response of the controller compensates for this deviation and the controller error signals
converge very quickly. From these figures it is clear that the closed loop controlled inverter
works well within the desired parameters under nonlinear load, achieving a pure sinusoidal
output voltage. Table 5.2 gives the individual voltage distortion for the first five harmonics
of the inverter output voltage. As it can be seen, the individual voltage distortion is less
than 0.03% which meets the harmonic limits of the IEEE 519 (< 3%) and EN 50160(<
0.5%). The total harmonic distortion of output voltage is 0.17 % which fulfills total voltage

distortion limits of IEEE 519 (THD < 5%) and EN 50160 (THD < 8 %).
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Fig. 5.7 Inverter performance under nonlinear load.
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Fig. 5.8 Tracking error under nonlinear load.

Table 5.2 Harmonic Distortions

Distortion

Unbalanced Nonlinear
Load Load
0.03% 0.02%

42x1073% 3.4x1073%
0.03% 0.03%

3.2x1073% 0.02%

THD 0.17% 0.17%

[ SRV I S
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5.5.3 Transition from Standalone to Grid-tie

For a seamless transition from standalone to grid-tie, the amplitude, frequency and
phase of the inverter should be changed to match those of the grid. Although all of these
changes can be accomplished simultaneously, in the simulation each of them is performed
in a specific time to evaluate the performance of the controller in response to each change.
Fig. 5.9 shows the line-to-line voltage of grid and inverter in transition from standalone to

grid-tie. At t=0.05 [s], the desired amplitude of the inverter phase voltage, V,.;, changes

from 120+/2 to 115v2. As it was pointed out in previous section, this step change of
V,qviolates Assumption 5. Although this violation causes a deviation in the error signals,
as shown in Fig. 5.11 the fast dynamic response of the controller compensates for this

deviation and the controller error signals converge very quickly.

At t=0.06 [s], the reference frequency of the inverter changes from 60 [Hz] to 60.5
[Hz] with a ramp function with the slope of 100 [Hz/s] to match the grid frequency
measured by a PLL. At t=0.07[s] the grid and inverter output voltage are 180° out of phase.
The phase adjustment is made by applying a rectangular waveform from t=0.7 [s] to t=0.9

[s] with At = 0.02[s] and A = m/0.02 [rad/s] to the Phase adjustment input of circuit
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Fig. 5.9 Line-to-line voltage of inverter and grid in transition from standalone to grid-tie.
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Fig. 5.10 Inverter performance in transition from standalone to grid-tie.
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Fig. 5.11 Tracking error in transition from standalone to grid-tie.

demonstrated in Fig. 5.3. As it can be seen in Fig. 5.11, these frequency and phase
adjustments do not affect the controller performance in terms of tracking error. At t=0.1[s]
a circuit breaker/recloser connects the inverter to the grid. As it can be inferred from Fig.
5.10 and 5.11 this transition is seamless without any discontinuities in the output voltage

and current.

5.5.4 Output Current Observer

Fig. 5.12 and 5.14 show the performance of the inverter with backstepping controller
and output current observer under unbalanced and nonlinear loads, respectively. The
controller tracking performance is demonstrated in Fig. 5.13 and 5.15 in terms of output
voltage and inductor current tracking errors. Again, in the case of sudden load change, see
Fig. 5.14 and 5.15, a deviation in the error signals arises which will be compensated with

fast dynamic response of the controller.

82



Comparing the duty ratio control command signals for the backstepping controller
combined with a load-current observer depicted in Fig. 5.12 and 5.14, with those of the
backstepping controller combined with sliding technique, depicted in Fig. 5.5 and 5.7, it
can be seen that the former has a less harsh control command at the cost of greater steady

state errors (Compare Fig. 5.6 and 5.8 with Fig. 5.13 and 5.15, respectively).
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Fig. 5.12 Inverter performance with load-current observer under balanced/unbalanced load.
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Fig. 5.13 Tracking error with load-current observer under balanced/unbalanced load.
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Fig. 5.14 Inverter performance with load-current observer under nonlinear load.
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Fig. 5.15 Tracking error with load-current observer under nonlinear load.

5.6 Summary

In this chapter a backstepping control scheme was developed for a 3-phase 4-wire
diode clamped inverter with output LC filter sourcing a variety of load including balanced,
unbalanced, linear and nonlinear loads. The proposed controller is developed in dq0-frame
with a feasible dc trajectory for the output signal. Also development of the controller in
this frame results in a scheme for seamless transition from standalone to grid-tie mode. The
system behavior was enhanced with using variable gain technique and combining the
proposed controller with a load-current observer. The system performance is evaluated in
terms of tracking performance, stability, system dynamics, and THD and validated via
simulation and analysis. All these analysis and simulations have demonstrated the

effectiveness of the proposed control solution. Using a simple LC output filter the output
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voltage THD was limited within 0.17% which fulfills IEEE 519 and EN 50160 for US and

European power systems, respectively.
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CHAPTER 6

A BACKSTEPPING CONTROLLER COMBINED WITH

INDUCTOR CURRENT AND OUTPUT CURRENT

OBSERVERS

In this chapter, a backstepping controller combined with two novel current observers is
proposed for the control of a single-phase H-Bridge inverter [65]. As it was mentioned
earlier in the Introduction section this control law is applicable for any converter/inverter
in the class of buck-type converters. The control laws of the proposed backstepping and
sliding mode controllers in [38] depend on the numerical derivative of the output current
which increase the level of the noise in the system. In [57] and Chapter 3 a backstepping
controller is proposed for the control of H-Bridge inverter with a nonlinear load with a very
good tracking performance demonstrated. In the control schemes presented in [38] and
[57], two sensors are used to measure output voltage and current in addition to another
current sensor for the inductor current. In practice this inductor current measurement has
a significant amount of ripple resulting from PWM switching. This ripple is then

propagated into the control algorithm adding disturbance to the system.

In this chapter a backstepping controller combined with two novel nonlinear observers
are presented to eliminate the need for costly current sensors to measure the inductor

current and the output current. Furthermore, because this observed inductor current is based
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off of the cycle average model of the VSI the aforementioned ripple is not present in the
signal. Also, in the proceeding output current observer development an observation for the
derivative of output current is achieved which eliminates the need for a noise-sensitive
numerical derivative such as that utilized in [38]. The elimination of the sensors along with
the elimination of current ripple and noise provides an advantage over previous methods.
A Lyapunov stability analysis is presented which proves that the voltage tracking objective
is achieved by the controller with all signals remaining bounded. Simulation results further
validate this approach by demonstrating sinusoidal output voltage tracking even under a

highly distorting nonlinear load.

6.1 System Model

An H-Bridge inverter with a simple LC output filter as seen in Fig. 6. 1 is used for DC
to AC power conversion. Applying the state averaging method, and unipolar PWM
switching scheme the average model for an H-Bridge inverter can be written as follows

[47]:
LI, =V,D—RI, -V, (6.2)
cv,=1,-1, (6.2)

where L,C,R are the inductance, capacitance and series resistance of the inductance,
respectively. V;,is the input supply voltage, D(t) is the PWM duty ratio and I, (t) is the
inductor current. V,(t), and I,(t) are the output voltage and output current, respectively.
The objective of the control scheme is to design D (t) such that V,(t) - V;(t) as t - oo,

where V;(t) is the sinusoidal output voltage trajectory defined by desired amplitude,
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frequency and phase. To facilitate the control development, the following assumptions are

made.
Assumption 1: L, C, R, V;,, are known, constant system parameters.
Assumption 2: The output voltage, V, (t), is measurable.
Assumption 3: The load current is bounded, i.e. [, €L, .

Assumption 4: The desired voltage trajectory and its first and second time derivatives

are bounded, i.e. V;(t), V(t), V4 (t) € L.

Fig. 6.1 H-Bridge inverter with output LC filter.

6.2 Control System Development

The designed control solution should be able to meet the previously defined control
objective in the absence of inductor and output current measurements. To facilitate the
controller and observers development and characterize their performance, the tracking

errors signals e(t), fj(t) and observation error signals , 1, I, are defined as follows:

e2V,—V, (6.3)
Aal,—1 (6.4)
~L = AL - IL (65)
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I, =1,—1, (6.6)

where 14(t) is an auxiliary control trajectory for the observed inductor current which will
be defined in the proceeding controller development , I, (t) and 1,(t) are the observed

inductor and output current, respectively.

In a switched-mode converter some level of ripple is always present in the inductance
current, I}, (t) as a result of switching. Due to this ripple, the measurement of inductor
current is always noisy and introduces a high level of disturbance to the control system,
which is typically designed based on a cycle average model. In this work an observer for
I (t) denoted as I.(t) is developed to replace the measured inductor current in the

subsequent closed loop controller development.
Taking the derivative of both sides of (6.5) and utilizing (6.1) gives the following:
LI, = LI, = V,,D +RI, + V,. (6.7)

The subsequent stability analysis and structure of (6.7) motivate the design of the inductor

current observer as follows
A 1 N K. L
27 Vl-nD—RIL—VO—%ﬁ—e] (6.8)

where Kjis a positive control gain. Substituting TL from (6.8) into (6.7) results in the

following equation for the observer error system.

2 - K. L
LI, & —R], — %n —e. (6.9)
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Substituting the system dynamics equations from (6.1) and (6.2) into the time derivative of
(6.3) and (6.4) the following equations can be obtained for the open loop error system

where (6.4), (6.5) and (6.8) are also utilized:

Ce=CVy—Iy+hH+1, +1, (6.10)
PO 5 KL
L) = Llg = VinD + RI, + Vo +—1 + . (6.11)

The mathematical form of (6.10) and subsequently presented stability analysis motivates

the following inductor current trajectory:
Iy =CVy+ke+1, (6.12)

Examining the form of (6.11) we see that reduction of the error equation to a desirable
closed loop form requires compensation of the term 14(t). Taking the time derivative of
(6.12), we will see that I4(t) includes the term I,(t). While a numerical derivative of the
output current I,(t) is possible to calculate, taking the derivative of a noisy current
measurement is not a practical solution. An alternative method is to replace this
measurement and numerical derivative with an output current observer which includes a
derivative update law. In a PWM-VSI the switching and sampling frequency are typically
orders of magnitude higher than the fundamental frequency. Therefore, in comparison with
the sampling and switching frequencies, the current is changing very slowly, so that it can

be approximated as a constant [66]. With this assumption from (6.6) we have:
I, =—1I,). (6.13)

Substituting for [, (t)from (6.6), we can rewrite (6.10) and modify (6.12) as:
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Ce=CVy—Iy+n+1, +1,+1, (6.14)
Iy 2 CVy + ke + 1, (6.15)

Motivated by the subsequent stability analysis the duty ratio control signal, D(t), is defined

as .
1 KL
D =—[w+2€+(K2+—)r] (6.16)
Vin C

where sgn(.) is the signum function, K, is a positive control gains, and

) . KL, . . (6.17)
WéLCVd+LK1Vd—TIL+RIL+I/0+LIO

Substituting (6.15)-(6.17) into the open loop error systems defined in (6.11) and (6.14)

results in the following closed loop error system equations

o (6.18)
Ce = _Kle+ﬁ+IL+IO

. KiL. KL. X (6.19)
LU:TIL+TIO_K277—@-

The form of (6.18) and (6.19) and the subsequent stability analysis motivate the

following update law for the output current observer

LK, . (6.20)
n

I, 2 Ks(e +-

where K3 is a positive control gain.
6.2.1 Stability Analysis

Theorem 1: Using the closed loop error system equations found in (6.18), (6.19) and
the observer error equation found in (6.9), the error signals defined in (6.3)-(6.5) are

regulated as
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e(t),7(t), I, (t) - 0 as t - .
Proof: A non-negative scalar function S(t) is defined in (6.21).

1 1 .1 6.21
Cez+zLﬁ2+§L1L2+§K3‘11§ (621)

Taking the derivative of (6.21) with respect to time and substituting the error signals from

N[ =

S 2

(6.9), (6.13), (6.18) and (6.19), after some mathematical simplifications, the expression in

(6.22) is obtained where (6.20) is also utilized.

. . 6.22
§ = —K,e? — K,f? — RI? (6.22)

From (6.21) and (6.22) it is clear that e(t),7(t), [, (t) € L, N Ly, and [, € L. From (6.3)
and the fact that V,;(t) € L, therefore V,(t) € L. From (6.6) along with Assumption 3
we can see that [, € L. From (6.15) along with Assumption 4 it is clear that I;(t) € L.
From (6.4) and (6.5) we can see that [} (t), I (t) € L. From (6.20) it is clear that fo (t) e
L. Now from (6.16) and (6.17) we can see that all the signals contributed in the definition
of D(t) are bounded, therefore D(t) € L. From (6.9), (6.18) and (6.19) along with the
previously stated bounding statements it is clear that fL (1), e(t),7(t) € Ly, respectively.
Hence it is clear that all signals in the closed loop are bounded. Since e(t),7(t),,(t) €
L, N L, and é(t),ﬁ(t), I L(t) € L, Barbalat’s Lemma [49] can be utilized to prove that

e(t),7(t),I,(t) > 0 ast — oo. Thus completing the proof of the theorem.

6.3 Simulation Result

To validate the effectiveness of the proposed observers and control design a numerical
simulation was performed. The PLECS toolbox is used with Matlab/Simulink to model the
instantaneous circuit dynamics of the inverter and the control schemes. The parameters

used for the inverter circuit and the control scheme are summarized in Table 6.1.
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Table 6.1 System Parameters

System Parameters Value System Parameters Value

Output AC voltage 120 Vrms Loadlactive pawer, P; 2 kW

AC voltage frequency, f 60 Hz Load]1 reactive pawer, Q; 1 kVar

Supply DC voltage, V;,, 360 V Load?2 active pawer, P, 1 kW
Filter inductance, L 10 mH Load2 crest factor 2.5
Inductor Resistance, R 0.1Q Backstepping gain, K; 10
Filter capacitance, C 50 uF Backstepping gain, K, 50
Switching Frequency, f,, 10 KHz Load-current observer 0.5

gain, K;

In the first study, the transient and steady state performance of the proposed control
schemes under linear resistive-inductive load, Loadl, is investigated. Fig. 6.2 shows the
output voltage and the output current of the inverter. Tracking errors, e(t) and 7j(t), are
depicted in Fig. 6.3. As can be seen in these figures excellent reference tracking is achieved

with steady-state peak error less than 0.1%.

[v]

0 L 1 L 1
0 0.02 0.04 0.06 0.0s8 0.1 012

40

L (£)[4]

L . L
0.02 0.04 0.06 0.08 0.1 0.12
Time [g]

Fig. 6.2 Transient and steady-state results under linear load, Load1.
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Fig. 6.3 Transient and steady-state errors under under linear load, Load]1.

A second study evaluates the transient and steady state performance of the proposed
control scheme under a worst case operation scenario where a highly distorting load is
used. The nonlinear load, Load2, is a rectifier with output capacitor and a resistive load.
The results under nonlinear rectifier load are illustrated in Fig. 6.4 and 6.5. Despite highly
distorted load current, output voltage regulation is achieved with steady-state peak error
less than 3%. The total harmonic distortion of the output voltage for both linear and
nonlinear loads is less than 0.8 % which fulfills total voltage distortion limits of IEEE 519
(THD < 5%) and EN 50160 (THD < 8 %) for US and European power systems,

respectively.
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Fig. 6.4 Transient and steady-state results under nonlinear load, Load2.
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Fig. 6.5 Transient and steady-state errors under nonlinear load, Load2.

In a final study, the transient response for a load step change from no load to the
nominal, 2 [kW], resistive load is considered. Due to the excellent transient performance
of the proposed control scheme, as can be seen in Fig. 6.6 and 6.7, the output voltage
recovers in less than 4 [ms] with very little variations in the output voltage compared to the

reference during the transition.
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Fig. 6.6 Transient results in response to no load to nominal resitive load step change.
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Fig. 6.7 Transient errors in response to no load to nominal resistive load step change.

6.4 Summary

A backstepping control scheme combined with an inductor current observer and a
load-current observer were developed for an H-Bridge inverter with output LC filter
sourcing linear and nonlinear loads. The proposed inductor current and load current

observers eliminate the need for expensive and problematic current sensors. The system
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performance was evaluated in terms of tracking performance, stability, system dynamics,
and THD and validated via simulation. Using a simple LC output filter the output voltage
THD was limited within 0.8% which fulfills IEEE 519 and EN 50160 for US and European

power systems, respectively.
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CHAPTER 7

FILTER-BASED CONTROL OF POWER ELECTRONICS

INTERFACES

In this chapter, a filter-based control scheme is developed for buck-type converters.
This approach relies only on a single output voltage measurement to reduce the system cost
as well as measurement noise and disturbance injected by output current and/or inductor
current measurements [67]. Although a single output voltage measurement is sufficient for
the control of the power converter, to the best knowledge of the authors, the majority of
the existing control approaches also require an inductor current measurement. Using two
measurements gives these controllers improved system stability and dynamic performance
through both output voltage and inductor current regulation. For example, a simple
multiloop control technique utilizes two traditional Proportional, Integral, and Derivative
(PID) controllers to regulate both output voltage and inductor current in the voltage and
current control loops, respectively. In the majority of the control schemes presented for the
control of power converters, at least two sensors are used to measure the output voltage
and the inductor current. In practice this inductor current measurement has a significant
amount of ripple and measurement noise resulting from the switching scheme. This noise
and ripple are then propagated into the control algorithm adding noise and disturbance to

the system. In this chapter a filter-based controller with only single output voltage
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measurement is presented to eliminate the need for costly current sensors to measure the
inductor and/or output currents. The elimination of the sensor along with the removal of
current ripple and noise from the control algorithm provides an advantage over previous
methods. The high frequency noise resulting from PWM switching is inherently filtered
out of the output voltage measurement by the LC filter of the converter. Also, our model
compensates for an unknown disturbance in the model. Various system uncertainty
including dead-time in modulation scheme, voltage drop across switching devices and
input voltage deviations are compensated with this unknown disturbance observer. A
Lyapunov stability analysis proves that the sinusoidal voltage tracking objective is
achieved by the controller with all signals remaining bounded. Experimental results further

validate this approach.

7.1 System Model

Fig. 7.1 demonstrate a general class of PWM converters consisting of a PWM
switching circuit followed by an output LC filter. This class of PWM covertures includes
a wide variety of both dc-dc and dc-ac converters such as buck, forward, push-pull, full
and half-bridge converters and inverters with output LC filter. All the converters/ inverters
in this class can be considered as derivatives of the basic buck converter. Because of the
same dynamic model for all the converter/inverter in this class, any controller developed
for each is applicable for others as well. Applying the state averaging method, and PWM
switching scheme the average model for a buck-type converter can be written as follows

[47]:

. (7.3)
LIL = Vm(D + dO) - RIL - ‘/O
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(7.2)

cv, =1, —1,
] I ,R. n qu
7m PWM — Load
|

Fig. 7.1 Buck-type converter.

where L,C,R are the inductance, capacitance and series resistance of the inductance,
respectively. V;, is the input supply voltage, D(t) is the PWM duty ratio, d, is a semi-
constant unknown disturbance and I; (t) is the inductor current. V,(t), and I,(t) are the
output voltage and output current, respectively. In this model, the load can be a passive
load or a court source load. The objective of the control scheme is to design D (t) such that
V,(t) = V4(t) as t = oo, where V;(t) is the desired output voltage trajectory. Taking
derivative of (7.2) and substituting for I, (t) from (7.1) the following second order equation

is obtained to represent the system dynamics of the buck converter.

.. ) (7.3)
mV, +aV, +V, =V;,D + u,

. (7.4)
Uy & Vind, — RI, — LI,

Where m £ LC, a 2 RC, and the lumped disturbance u, is defined as in (7.4).

7.2 Filter-Based Control Development

To facilitate the control development, the following assumptions are made.

Assumption 1: L, C, R, V};, are known, constant system parameters.
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Assumption 2: The output voltage V, (t) is measurable.

Assumption 3: The load current and its first derivative and disturbance are bounded,

I,,1,(t),d,€eL, and are slowly time varying in the sense that 1y (t) =~ 0.

Assumption 4: The desired voltage trajectory and its first and second time derivatives

are bounded, i.e. V;(t), V;(t), V4 (t) € L.

To facilitate the controller development and characterize its performance, the

tracking error signal e(t) and filtered error signals, r¢(t), ef(t) are defined as follows:

(7.5)
e = Vd — VO
(7.6)
p=—Kire+ (K; + a)(ae - rf) —e—ef
(7.7)

rr2p+ (K, +a)e
where K;,K,,a are positive gains, p(t) is an auxiliary variable defined for filter

implementation and ef(t) is defined with the following differential equation.

. (7.8)
€ =17 —aer
To further the control development the following error signal is also defined:
. (7.9)
nze+ae—1y
Taking derivative of (7.7) and using (7.6) and (7.9) results in:
(7.10)

Tr=—Kirp+ (K +a)n—e—e
Taking derivative of (7.9) and utilizing (7.9), (7.10) and the second derivative of (7.5) after

some mathematical simplifications results in:
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L (7.11)
n=Vqs—V,+ Ki + a)ry —K,n — a’e +e+ef.

Multiplying both sides of (7.11) by m and substituting for mV, from (7.3), we get (7.12)
after utilizing (7.5) and (7.9):
mn = mV; + m(K; + a)ry — mK,n —ma?e +m(e + ¢f) + alVy (7.12)
+ aae
—ary —an +V, = Vi, D —u,
From (7.12) and motivated by the subsequent stability analysis the duty ratio control signal

1s defined as:

1 .. )
D& o [mVy+mE +ayry - ma’e + m(e+es) +aVy + aae (7.13)
m

—ary + Vg + (K + @)1y — ]
where 1l is the estimated disturbance with the following estimation error:

(7.14)

Finally, the closed loop error system is obtained by substituting (7.13) in (7.12) as follows.

_ (7.15)
mn = —mKyn —an —e— (K, + a)ry — i,
From Assumption 3 and (7.14) we have:
. . (7.16)
iy, = —1,.
Motivated by the subsequent stability analysis the update law for i, is defined as:
(7.17)

ﬁo £ —K3n

where Kj is a positive constant gain. As can be inferred from (7.9), n(t) is not a measurable
signal. By taking the integral of (7.17) and substituting for n(t) from (7.9) the update law

for 11, (t) becomes realizable as:
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fly(t) = —K; [fot (ae(r) B rf(r)) gt 4 e(t) e(o)]' (7.18)

7.2.1 Stability Analysis

Theorem 1: Using the closed loop error system equation found in (7.15) the error

signals defined in (7.5), (7.7), (7.8) and (7.9) are regulated as follows:

e(t), ef(t),1r(t),n(t) = 0 as t - oo,
Proof: A non-negative Lyapunov function S(t) € R is defined in (7.19).

1, 1, 1, 1 . 1 (7.19)
Ee +§€f +ET'f +§m77 +2—K3u0

Taking the derivative of (7.19) with respect to time and substituting €5 (t), é(t), 7 (t)

S 2

and mn(t) from (7.8), (7.9), (7.10) and (7.15), respectively, after some mathematical

simplifications the expression in (7.20) is obtained where (7.16) and (7.17) are also utilized.

. (7.20)
S = —ae® — aef — Ky1f — K,mn? — an?

From (7.19) and (7.20) it is clear that e(t), es(t), 7¢(t),n(t) € L, N Ly, and fiy € L,
. From (7.5) and the fact that V,;(t) € L, therefore V,(t) € L,,. From (7.4) and (7.14)
along with Assumption 3 it is clear that i, € L,. Now From (7.13) along with
V), V,(6),V,(t) € L, we can see that all the signals contributed in the definition of
D(t) are bounded, therefore D(t) € L. From (7.8)-(7.10) along with the previously
stated bounding statements it is clear that é(t), €¢(t),7¢(t) € Lo. With é(t) € L, (7.5)
can be used to deduce V, (t) € Lo,. From (7.3) it can be inferred that V,(t) € L.,. Hence it
is clear that all signals in the closed loop are bounded. From (7.11) it is clear that 7(t) €

Lo, Since e(t), ef (t), 16 (), n(t) € Lo N Ly and é(t), €(t),7¢(1),7(t) € Ly, Barbalat’s
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Lemma [49] can be utilized to prove that e(t), ef(t), 7¢(t),n(t) > 0 ast — co. Thus

completing the proof of the theorem.

7.3 Experimental Results

7.3.1 Buck Converter

To verify the performance of the proposed controller and observers in real-time
application, a prototype of closed loop buck dc-dc converter is used as shown in Fig. 7.2.
The NI CompactRIO and the commercial software LabVIEW are used for implementation
of the controller algorithm. The control algorithm is first developed using LabVIEW
software on the personal computer and then downloaded to the onboard FPGA of the
CompactRIO. The real-time experimental results were sent back to the personal computer
through real time controller of CompactRIO for monitoring and data logging. Table 7.1

summarizes the system parameters used for experimental test.

Fig. 7.2 Experimental setup of the buck converter.
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Table 7.1 Buck Converter System Parameters

Parameter Value Units
L 104 uH
C 680 pF
R 0.1 Q
V; 40 v
Load Resistance (R;yqq) 5 Q
K; 7 -
K, 1
K 10 -
a 3 -
Switching Frequency (fs,) 10 KHz

Fig. 7.3 shows the tracking performance of the converter. This figure demonstrates
both steady-state and transient response of the system in response to a step change in
desired output voltage. Error signal, (t), and duty cycle, D(t), are seen in Fig. 7.4 and 7.5
respectively. From this figures, it is clear that the converter and its developed controller
work well within the desired parameters in closed loop control, achieving an excellent

voltage regulation. Fig.6 shows the estimated system disturbance.

6.2

5.8 ‘

V]

5.6 ‘
5.4

5.2

4.8
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Timne [s]

Fig. 7.3 Output voltage, V,(t) , and the desired voltage, V;(t), of the buck converter.
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Fig. 7.4 Voltage tracking error, (t) of the buck converter.

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time [s]

Fig. 7.5 The duty ratio control signal, D(t) of the buck converter.

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time [s]

Fig. 7.6 The estimated system disturbance, 2i,(t) of the buck converter.

107



7.3.2 H-Bridge-Inverter

The test rig used for investigating the performance of the proposed controller and
observers is shown in Fig. 7.7 for an H-bridge inverter. Again, in this setup the NI
CompactRIO and the commercial software LabVIEW are used for implementation of the
controller algorithm. The control algorithm requires only one voltage sensor to measure
the output voltage, V,(t). For the purposes of data logging and visualization a current
sensor is also utilized for the output current measurement. Table 7.2 summarizes the system
parameters used for experimental test. The steady state performance of the proposed
control scheme under linear resistive-inductive load is shown in Fig.7. This figure shows
the desired, V,;(t), and actual output voltage, tracking error, e(t), and the output current as
well as the control signal, D(t), for the H-Bridge inverter. As can be seen in this figures,
the excellent reference tracking with the steady-state peak error less than 0.7% is achieved

for the proposed control scheme.

Fig. 7.7 Experimental setup of the H-Bridge inverter.
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Table 7.2 System Parameters

Parameter Value Units
L 10 mH
C 100 uF
i R 0.1 Q
§ V, (peak-to-peak) 200 v
g
= V; 350 \Y%
f 60 Hz
Switching Frequency (f,,) 5 KHz
é § - Lloadl 32 mH
Z 329
é = 4 Ripaa1 37.5 Q
§ Cloadz 220 HF
£ g
g 3 Rioadz 250 Q
P4
= K; 20 -
s
< K, 4 -
=
E Ky r-
=
S a 2.5 -
200 T T T T T T T
— W%
= o NN N ey
200 . . ‘ ‘ . . .
0 0.0 0.0z 0.03 0.04 0.05 0.08 0.07 0.08
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Fig. 7.7 Steady-state results under RL load for the H-bridge inverter.
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In Fig. 7.9, the performance of the proposed control scheme is evaluated under a worst-
case operation scenario where a highly distorting load is used consisting of a full wave
rectifier bridge feeding a 250 [Q] resistor in parallel with a 220 [uF] capacitor. Despite
highly distorted load current, the output voltage regulation with the steady-state peak error

less than 1% is achieved for the H-bridge inverter.

The transient response to a -50% step change in amplitude of reference voltage, V;(t),
under nominal 37.5 [Q] resistive load is demonstrated in Fig. 7.10. As it can be seen in this
figure, to represent the worst case operation, the reference command is changed when the
output voltage is at its peak value. Due to the excellent transient performance of the

proposed control scheme, the output voltage recovers in less than half of a cycle.
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Fig. 7.7 Steady-state results under highly distorting nonlinear load for the H-bridge inverter.
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Fig. 7.7 Transient results in response to -50% step change in amplitude of the reference voltage

under resistive load for the H-bridge onverter.

7.4 Summary

In this chapter a filter-based control scheme relying on only a single output voltage
measurement is proposed to regulate the output voltage of a buck-type converter. The
performance of the control scheme is confirmed through experimental results in terms of
steady-state tracking error, stability as well as transient response. In addition to the lower
cost resulting from removing current measurement sensors, the effectiveness of this
scheme is demonstrated in terms of excellent voltage tracking, good transient response and

insensitivity to the load variation.
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CHAPTER 8

FILTER-BASED CONTROLLER WITH UNKNOWN

SYSTEM PARAMETERS

This chapter presents a filter-based control scheme for an H-Bridge inverter with
output LC filter [68]. This approach relies only on a single output voltage measurement to
reduce the system cost as well as measurement noise and disturbance injected by output
current and/or inductor current measurements. To reduce the controller sensitivity to the
system parameters, the proposed controller is developed for unknown system parameters.
As it was mentioned in the Introduction section, due to the same system dynamics, this
controller scheme is applicable for any converter/inverter in the class of buck-type

converters.

In the majority of the control schemes presented for the control of VSI with output LC
filter, at least two sensors are used to measure the output voltage and the inductor current.
In practice this inductor current measurement has a significant amount of ripple and
measurement noise resulting from the switching scheme. This noise and ripple are then
propagated into the control algorithm adding noise and disturbance to the system. Some
control schemes use capacitor current measurement instead of the inductor current
measurement [14], [39], [40], [41] where the same problem remains. Also some works use

an output current sensor in addition to the other two sensors [14], [26], [57], [39] to reduce
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the effect of the high frequency noise and ripple resulting from switching, utilization of a
low-pass filter (LPF) is suggested. Addition of LPF introduces phase delays, which can
have an adverse effect on the control schemes, which can limit any performance

improvement.

In [69] and [70] a filter-based discontinuous tracking controller for a general class of
nonlinear, multi-input/multi-output (MIMO) mechanical systems with no disturbances is
presented. In the present work a modified filter-based control scheme is proposed which
utilizes the known system structure of a second order linear system and compensates for
unknown disturbances. This scheme removes the need for parameter knowledge by
utilizing a robust algorithm comprising a nonlinear sliding term which compensates for

parameter uncertainties.

In this chapter a filter-based controller with only single output voltage measurement
is presented to eliminate the need for costly current sensors to measure the inductor and/or
output currents. The elimination of the sensor along with the removal of current ripple and
noise from the control algorithm provides an advantage over previous methods. The high
frequency noise resulting from PWM switching is inherently filtered out of the output
voltage measurement by the LC filter of the inverter. Also, to reduce the control sensitivity
to the system parameters and compensate for parameter variation, the control scheme is
developed for unknown system parameters. A Lyapunov stability analysis proves that the
sinusoidal voltage tracking objective is achieved by the controller with all signals

remaining bounded. Experimental results further validate this approach.
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8.1 System Model

An H-Bridge inverter with an output LC filter as seen in Fig. 8.1 is used for DC to AC
power conversion. Applying the state averaging method and unipolar PWM switching

scheme, the average model for an H-Bridge inverter can be written as follows [47]:

, (8.1)
LI, = Vin(D + do) — RI, =V,

. (8.2)
cv,=1,—1,

where L,C,R are the inductance, capacitance and series resistance of the inductance,
respectively. V;, is the input supply voltage, D(t) is the PWM duty ratio, d,, is a constant
unknown disturbance and I;(t) is the inductor current. V,(t), and I,(t) are the output
voltage and output current, respectively. The objective of the control scheme is to design
D(t) such that V,(t) = V,(t) as t = oo, where V;(t) is the desired sinusoidal output
voltage trajectory defined by amplitude, frequency and phase. Taking derivative of (8.2)
and substituting for I, (t) from (8.1) the following second order equation is obtained to

represent the system dynamics of the inverter.

I matiin s

Fig8.1 H-Bridge inverter with output LC filter.

.. ) (8.3)
mV, +aV, +V, = V;;,D + u,

Where m £ LC, a £ RC, and the lumped disturbance u,, is defined as follows:
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. (8.4)
Uy £ Vind, — RI, — LI,

8.2 Filter-Based Control for Unknown System Parameters

For the control development, a general case in which the inverter parameters including
L, C, R are unknown is considered. This is a practical approach as parameter values change
over the life of operation. Also parameter tolerance can be a performance issue. To

facilitate the control development, the following set of assumptions are made.

Assumption 1: L, C, R, are unknown and time varying, but limited in a specific range such

that:
_ (8.5)
m<m(t)<m
(8.6)
a<a(t)<a
Assumption 2: The rate of change of m with time is limited such that:
(8.7)

m(t) < M.

Assumption 3: The output voltage V,(t) is measurable.
Assumption 4: The input voltage V;,, is known and constant.

Assumption 5: The load current and disturbance have the following properties:

1,,1,(t),d,eLc.

Assumption 6: V,;(t), V,(t), V4 (t), V(1) € L.
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To facilitate the controller development and characterize its performance, the tracking

error signal e(t) and filtered error signals, 75 (t), ef(t) are defined as follows:

(8.8)
e & Vd — ‘/O
(8.9)
p2—Kr+ K, +a)(ae—17)—e—ef
(8.10)

rr2p+ (K +a)e
where K;,K,,a are positive gains, p(t) is an auxiliary variable defined for filter

implementation and ef(t) is defined with the following differential equation.

. (8.11)
e =15 — aey
To further the control development the following error signal is also defined:
. (8.12)
ntétae—ry
Taking derivative of (8.10) and using (8.9) and (8.12) results in:
(8.13)

Tr=—Kirp+ (K +a)n—e—e
Taking derivative of (8.12) and utilizing (8.12), (8.13) and the second derivative of (8.8)

after some mathematical simplifications results in:

L (8.14)
n=Vyg—V,+ Ky + @)ry — K;n — a’e + e + ey

Multiplying both sides of (8.14) by m and substituting for mV, from (8.3), we get (8.15)

after utilizing (8.8) and (8.12):

mi) = mVy + m(K; + a)ry — mKpn — ma’e + m(e + ef) + aVy + ace (8.15)
—arg—an+V, — VD —u,

116



From (8.15) and motivated by the subsequent stability analysis the duty ratio control signal

1s defined as:

1 (8.16)
D=2 Vo [Va + (Ky + @)1y — 1lg + K3sgn(e — ef)]
in
where Kj is a positive constant gain, sgn(.) is the standard signum function and i, is the

estimated disturbance with the following estimation error:
(8.17)

Finally, the closed loop error system is obtained by substituting (8.16) in (8.15) as follows.

- i LIV (8.18)
mn=Nd+N—mK2n—an—§mn—uo—e—(K2+a)rf :

— Kssgn(e — ey)
with N; 2 mV, + aV, and N defined as:

_ 1 (8.19)
N = m(K; + @)1y — ma’e + m(e + ef) + aae — ary + Emn

where %mn is added to and subtracted from the right hand side of (8.19) and (8.18),

respectively.

As the load is unknown and the load current is not measured we cannot directly
account for the corresponding terms in u,. However, we can make some simplifying
assumptions to develop an appropriate observer based on the control implementation. In a
PWM-VSI the switching and sampling frequency are typically orders of magnitude higher
than the fundamental frequency. Therefore, in comparison with the sampling and switching
frequencies, the output current and its derivative are changing very slowly, so that it can

be approximated as a constant [66]. Using this fact, u, can be approximated as:
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(8.20)

Uy = —1,.

Motivated by the subsequent stability analysis the update law for i,is defined as:

A (8.21)
uO é _K4T]

where K, is a positive constant gain. As can be inferred from (8.12), 1 is not a measurable
signal. But by taking the integral of (8.21) and substituting for n from (8.12) the update

law for i, becomes realizable as:

t 8.22)
2, (t) = —K, [ f (ae(r) - rf(r)) dr + e(t) — e(O)l (
0

8.2.1 Stability Analysis

Before stating the main theorem, the following lemma is presented to be invoked later.

Lemma 1: Let the auxiliary function L(t) be defined as follows:

(8.23)
L(t) = n(Ng — K3sgn(e — ef))
If K5 is selected to meet the following gain condition:
1,. (8.24)
K3 > (INgl +E|Nd|)
then
t (8.25)
f L(t)dt < ¢
0
where the positive constant { is defined as:
(8.26)

¢ £ [e(0)Ng(0)] + K3|e(0)].

Proof: See Appendix A of [70].
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Theorem 2: Using the closed loop error system equation found in (8.18) the error

signals defined in (8.8), (8.10), (8.11) and (8.12) are regulated as follows:
e(t),er(t),1r(t),n(t) > 0 ast — oo,
Proof: A non-negative Lyapunov function S(t) € R is defined as

1 1 1 1 1 t (8.27)
2 2 ~2
Eez +§ef +§T'f +§mn2 +2—K4u0 +<-J(;L(T)d‘[

Taking the derivative of (8.27) with respect to time and substituting €5 (t), é(t), 7 (t)

S

and mn(t) from (8.11), (8.12), (8.13) and (8.18), respectively, after some mathematical
simplifications the expression in (8.28) is obtained where (8.20), (8.21) and (8.23) are also
utilized.

S = —ae? — aef — Kirf — K;mn? — an? (8.28)

+Nn
To proceed we first need to find an upper bound for |1V |

_ 1—
IN| < [m(K, + @) + a]|ry| + m|ef| + [Ma? + m + aa]le| + > Mln] (8.29)
= b1|Tf| + bzlefl + b3|e|+b4|n|

where b, 2 [M(K, + @) + @], b, 2 M, bs 2 [Ma? +m + aa] and b, = %M. Assuming
K, = %(Ku + K, + K3 + Kyy)where Kyq, Ko, Ky3,K,, are all positive and using

(8.29), S(t) can be upper bounded as:

S < —ae? —aef — Kirf — an? + [b|nl|ry| — K2am?] + [b2Inl|ef| — Ka2n?] (8.30)
+[bs[nllel — Kzan®] + (by — Kaa)n*.

The three bracketed terms in (8.30), each represents nonlinear damping pairs that can be

upper bounded as (8.31)-(8.33) [71].
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b2r? (8.31)

b1|77||7'f| - K21772 <

K21

b2e.2 (8.32)
b2|77||€f| —K22772 < hil

KZZ

b2e2 (8.33)
bsInlle] — Kpgn? < —

K23

Assuming the gain conditions (8.34)-(8.37) are meet, S(t) can be upper bounded as (8.38).

b? (8.34)
K, > E
K, > b_% (8.35)
a
K, > b_§ (8.36)
a
(8.37)
Kyy > by
S < —Barf — Baef — Bze? — Bun* — an? (8:39)
Where B; £ K; — If—i, Br 2 a— If—i, Bz 2 a— If—i and [, £ Ky, — b, are positive

constants.

From (8.27) and (8.38) it is clear that e(t), es (t), ¢ (£),n(t) € L, N L, and Tl € Lo,
. From (8.8) and the fact that V,;(t) € L, therefore V,(t) € L. From (8.4) and (8.17)
along with Assumption 5 it is clear that @i, € L.,. Now from (8.16) along with V;(t) € L,
we can see that all the signals contributed in the definition of D (t) are bounded, therefore
D(t) € L. From (8.11)-(8.13) along with the previously stated bounding statements it is
clear that é(t), €¢(t),7¢(t) € L. With é(t) € L, (8.8) can be used to deduce V,(t) €
L. From (8.3) it can be inferred that V,(t) € L. Hence it is clear that all signals in the
closed loop are bounded. From (8.14) it is clear that 7n(t) € L,. Since

e(t), e (t),1:(t),n(t) € Lo N Ly and é(t), €(t), 76 (1),71(t) € Ly, Barbalat’s Lemma
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[49] can be utilized to prove that e(t),es(t),7:(t),n(t) = 0 ast — oo. Thus

completing the proof of the theorem.

8.3 Experimental Results

The test rig used for verifying the performance of the proposed controller and
observers is shown in Fig. 7.7. The NI CompactRIO, cRIO-9022, with cRIO-9113 chassis
and the commercial software LabVIEW are used for implementation of the controller
algorithm. The control algorithm is first developed using LabVIEW software on a personal
computer and then downloaded to the onboard Virtex-5 LX50 FPGA of the cRIO-9113.
The real-time experimental results were sent back to the personal computer through real
time controller cRIO-9022 for monitoring and data logging. The dc link is fed by a single
phase voltage doubler rectifier. Fig 8.2 shows a block diagram of the experimental set up.
The control algorithm requires only one voltage sensor to measure the output voltage,
V,(t). For the purposes of data logging and visualization a current sensor is also utilized
for the output current measurement. Table 8.1 summarizes the system parameters used for

experimental test.

Computer
LabVIEW

Virtex-5 LX50 FPGA

Measurements

11

Fig. 8.2 Experimental setup block diagram.
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Table 8.1 System Parameters

Parameter Value Units
L 10 mH
C 100 uF
i R 0.1 Q
§ V, (peak-to-peak) 200 v
g
= V; 350 \Y%
f 60 Hz
Switching Frequency (f,,) 5 KHz
é S - Lloadl 32 mH
% O 3
3 == Rioaat 375 Q
§ Cloadz 220 “'F
£ %
é — Ripaaz 250 Q
K, 20 -
6% K, 0.5 -
5 K, 100 -
I
‘g K, 15 -
@)
a 0.5 -

In the first study, the steady state performance of the proposed control scheme under
linear resistive-inductive load is investigated. Fig. 8.3 shows the desired, V;(t), and actual
output voltage, V, (t), the tracking error, e(t), and the output current as well as the control
signal, D(t). As can be seen in this figure, the excellent reference tracking with the steady-

state peak error less than 1.45%, is achieved for the proposed control scheme.
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Fig. 8.3 Steady-state results under RL load.

A second study evaluates the performance of the proposed control scheme under a
worst case operation scenario where a highly distorting load is used consisting of a full
wave rectifier bridge feeding a 250 [€Q] resistor in parallel with a 220 [uF] capacitor. The
results under nonlinear rectifier load are illustrated in Fig. 8.4. Despite highly distorted
load current, the output voltage regulation with the steady-state peak error less than 2.15%,

is achieved for the proposed control scheme.

A third study evaluated performance under no load operation of the inverter. Table 8.2
summarizes the results in terms of total harmonic distortion (THD) and steady-state error
between the output voltage and its reference for different test cases. As it can be seen in
this table voltage THD is limited within 0.76% which fulfills IEEE 519 and EN 50160

standards for US and European power systems, respectively.
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Fig. 8.4 Steady-state results under highly distorting nonlinear load.

Table 8.2 Performance Comparison

Load Type Peak Error (%) THD (%)
No load 1.44 0.38
RL load 1.45 0.38
Highly nonlinear load 2.15 0.76

In a final study, the transient response to a -50% step change in amplitude of reference
voltage, V;(t), under nominal 37.5 [Q] resistive load is considered. As it can be seen in
Fig. 8.5, to represent the worst case operation, the reference command is changed when the
output voltage is at its peak value. Due to the excellent transient performance of the

proposed control schemes, the output voltage recovers in less than half of a cycle.
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Fig. 8.5 Transient results in response to -50% step change in amplitute of the reference voltage

under resistive load.

8.4 Summary

In this chapter a filter-based control scheme relying on only a single output voltage
measurement is proposed to regulate the instantaneous voltage of single-phase inverter in
stand-alone mode. The performance of the control scheme is confirmed through
experimental results in terms of steady-state tracking error, THD, stability as well as
transient response. In addition to the lower cost resulting from removing current
measurement sensors, the proposed control scheme has demonstrated its effectiveness in
terms of low THD, excellent voltage regulation and insensitivity to load variation, even
under a nonlinear load. The development of the control scheme for unknown system
parameters makes it more attractive for its robustness against parameter variations in
practical systems as the system parameters are subject to change during long term operation

of the system.
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CHAPTER 9

FILTER-BASED CONTROLLER WITH PARAMETERS

DISCREPANCY

This chapter presents a filter-based control scheme for an H-Bridge inverter with
output LC filter. This approach relies only on a single output voltage measurement to
reduce the system cost as well as measurement noise and disturbance injected by output
current and/or inductor current measurements. Also, the proposed control algorithm is
robust against parameter discrepancy. A Lyapunov stability analysis is utilized to
demonstrate the control object is met and that all signals in the closed loop system are
stable. Experimental results demonstrate excellent voltage tracking, insensitivity to the
load and system parameter variations, and low output voltage distortion as well as the
stability of the system under both linear and nonlinear loads. Since the proposed controller
requires only a single output voltage measurement, this scheme eliminates the need for
costly current sensors to measure the inductor and/or output currents. The elimination of
the sensor along with the removal of current ripple and noise from the control algorithm
provides an advantage over previous methods. The high frequency noise resulting from
PWM switching is inherently filtered out of the output voltage measurement by the LC
filter of the inverter. Also, the proposed control algorithm is robust against parameter
discrepancy which in turn reduces the control sensitivity to the system parameters

andcompensates for parameter variation. Unlike the work presented in the previous chapter
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[72] which is developed for unknown system parameters, this work utilizes the
nominalvalues of the system parameters and compensate for parameter discrepancies
which results in a significant improvement in the system performance. A Lyapunov
stability analysis proves that the sinusoidal voltage tracking objective is achieved by the
controller with all signals remaining bounded. Experimental results further validate this

approach.

9.1 System Model

An H-Bridge inverter with an output LC filter as seen in Fig. 9.1 is used for DC to AC
power conversion. Applying the state averaging method, with PWM switching scheme, the

average model for an H-Bridge inverter can be written as follows [47]:
L, = Vin(D + d,) = RI, — V, 9.1)
cv,=1,-1, 9.2)

where L, C, R are the inductance, capacitance and series resistance of the inductance,
respectively. V;, is the input supply voltage, D(t) is the PWM duty ratio, d,, is a slowly
time varying unknown disturbance and I; (t) is the inductor current. V,(t), and [,(t) are
the output voltage and output current, respectively. The objective of the control scheme is
to design D(t) such that V,(t) — V,(t) as t — oo, where V,;(t) is the desired sinusoidal
output voltage trajectory defined by amplitude, frequency and phase. Taking the derivative
of (9.2) and substituting for I, (t) from (9.1) the following second order equation is

obtained to represent the system dynamics of the inverter
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mV, +aV, +V, = V;,,D + V;,d, — RI, — LI, 9.3)

where m £ LC and a 2 RC.

DOy K

Fig. 9.1 H-Bridge inverter with output LC filter.

load

i
I
I:‘1<+

9.2 Filter-Based Control Development

In a practical system, the system parameters are subject to change during long term
operation for a control scheme in high volume production. Also, parameter tolerance can
be a performance issue. To this end, we assume that there are some uncertainties in the
values of system parameters, L, C, R, around their nominal values. This can be shown by

representing parameter m and a as:
m=m, +dm
94)

a=a,+d6a

where m,, and a,, are calculated based on nominal values of L, C, and R. ém and da are
offsets from nominal values. To facilitate the control development, the following

assumptions are made.
Assumption 1: Change of system parameters are limited in a certain range such that:

|6m| <™ (9.5)
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|6al <a (9.6)
where m and a are upper bounds and m < m,,.
Assumption 2: The rate of change of m with time is limited such that:
Im(®)| < M. (9.7)

Assumption 3: The output voltage V, (t) is measurable and the input voltage V;,, is known

and constant.

Assumption 4: The disturbance is unknown and slowly time-varying in the sense that d, ~

0.

Assumption 5: The load current and disturbance have the following properties:

Io(), [o(t), do (t)€L oo

Assumption 6: The desired voltage trajectory and its first and second time derivatives are

known and bounded, i.e. V;(t), V,(t), V;(t) € L.

To facilitate the controller development and characterize its performance, the tracking

error signal e(t) and filtered error signal, 75 (t), are defined as follows:

e2V; -V, (9.8)
p £ —Kirp+ (K; + a)(ae - rf) —e—ef 9.9)
rr2p+ (K +a)e (9.10)

where K;,K,,a are positive gains, p(t) is an auxiliary variable defined for filter

implementation and ef(t) is defined with the following differential equation
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e = —aer +17. (9.11)
To further the control development the following error signal is also defined:
n£eé+ae—r;. (9.12)
Taking derivative of (9.10) and using (9.9) and (9.12) results in:
e =—Kirp + (K + a)n — e —ey. (9.13)

Taking derivative of (9.12) and utilizing (9.12), (9.13) and the second derivative of (9.8)

after some mathematical simplifications results in the following error dynamic:
0=Vy—V,+ K + )y —K;n—a’e +e+e. (9.14)

Multiplying both sides of (9.14) by m and substituting for mV, from (9.3), we get the open

loop error dynamic equation (9.15) where (9.8) and (9.12) have been utilized:

mn = mVy + m(K; + @)1y — mK,n — ma?e + m(e + ef) + aV; + aae
(9.15)
—arg—an+V, —Vy,D — Vindo, + RI, + LI,.

From (9.15) and motivated by the subsequent stability analysis the duty ratio control signal

1s defined as:

1
D £

7o [mnVy + m,(Ky + @)1y — mpa?e + my(e + ef) + a,Vy + ayae
m

(9.16)

—anry + Vg + (K; + &)1y — Vindo + K3sgn(e — ef)]

where K; is a positive constant gain, sgn(.) is the standard signum function and d,, is the

estimated disturbance with the following estimation error:
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dy 2 d, — d,. 9.17)

Finally the closed loop error system is obtained by substituting (9.16) in (9.15) to yield the

following:
mn = N; + N —mK,n —an — e — (K, + a)ry — Vipd,

— K3sgn(e — ef)

(9.18)
1.
2™
With N; and N defined as:
N; 2 6mVy + 8aVy + R, + LI, 9.19)

~ 1
N 2 m(K, + a)r; — Sma’e + Sm(e + ef) + Saae — Sar; + Emr] (9.20)

where %Thr) is added to and subtracted from the right hand side of (9.18).

Motivated by the subsequent stability analysis the update law for d,is defined as:

do 2 —KyVim, (9.21)

where K, is a positive constant gain. As can be inferred from (9.12), n(t) is not a
measurable signal. But by substituting for 7(t) from (9.12) and taking the integral of (9.21)

the update law for d, becomes realizable as:

do(t) = —K, Vi, [ f t (ae(r) - rf(r)) dr + e(t) — e(O)l (9.22)
0
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9.2.1 Stability Analysis

Before stating the main theorem, the following lemma is presented to be invoked later.

Lemma 1: Let the auxiliary function L(t) be defined as follows:
L(t) £ n(N; — Kzsgn(e — ef)) (9.23)
If K5 is selected to meet the following gain condition:
Kz > (INy| + % |NL]) (9.24)

then

t
j L(v)dt <¢ (9.25)
0

where the positive constant ¢ is defined as:
¢ £ |e(0)N,(0)] + K3|e(0)]. (9.26)

Proof: The proof of Lemmalalthough essentially contained in [70], is given in Appendix

A for the sake of completeness.

Theorem 1: Using the closed loop error system equation found in (9.18) the error

signals defined in (9.8), (9.10), (9.11) and (9.12) are regulated as follows:
e(t),er(t),1e(t),n(t) > 0 ast — oo,

Proof: A non-negative Lyapunov function S(t) € R is defined as

S

(>

1 2 1 2 1 2 1 2 1 32 ‘
Ee +E€f +§T'f +Emn +2_K4d0+€_,l;)L(T)dT. (9.27)
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Taking the derivative of (9.27) with respect to time and substituting é(t), é(t), 7¢(t) and

mn(t) from (9.11), (9.12), (9.13) and (9.18), respectively, after some mathematical
simplifications the expression in (9.28) is obtained where (9.17), (9.21) and (9.23) are also

utilized.
S = —ae® — aef — Kyrf — K,mn? —an® + Nn (9.28)
To proceed we next need to find an upper bound for |1V |

|N| < [m(Ky + @) + al|ry| + m|ef| + [Ma? + m + aa]le| +
L (9.29)
5M|77| = b1|7”f| + b2|ef| + bsle|+b4|n|

where b; 2 [M(K, + a) + al, b, & M, by = [Ma?+m+ aa] and b, 2 -M.

N | =

1

mu—m

Assuming K, = (Ky1 + K55 + Ky3 + Ky,)  where  the  auxiliary — gains

K1, K22, Ky3, Koy are all positive and using (9.29), S(t) can be upper bounded as:

S < —ae? —aef — Kirf — an? + [ba|nl|ry| — K2am?] +
(9.30)
[b2|TI||ef| - Kzznz] + [bzInllel = Ky3n*] + (by — Kpa)n?.

The three bracketed terms in (9.30), each represent a nonlinear damping pair which can be

separately upper bounded as (9.31)-(9.33) [71].

blzrfz
b1|77||7”f| — Kym? < X (9.31)
21
bze.?
b2|77||ef| - K22772 < K ! (9.32)
22
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(9.33)

by
Ky > — 9.34
217 g (9.34)
b3
Ky, >— 9.35
22 2 (9.35)
b3
Ky3 > — 9.36
> (9.36)
Ky4 > by (9.37)
S < —=Pa1f — Pref — Pze? — Pan? (9.38)
A blz. A b% A b?% A 11
Where B, £ K; Tl B, 2« i bz 2« s and B, £ K,, — b, + a are positive

constants.

From (9.27) and (9.38) it is clear that e(t), es(t), 7¢(t),n(t) € L, N Lo, and dy € Lo,
. From (9.8) and the fact that V;(t) € L., therefore V,(t) € L. From (9.17) along with
Assumption 5 it is clear that d, € Lo,. Now from (9.16) along with Assumption 6 we can
see that all the signals contributed in the definition of D(t) are bounded, therefore D(t) €
L. From (9.11)-(9.13) along with the previously stated bounding statements it is clear
that é(t), €¢(t),7:(t) € Lo,. With é(t) € Lo, (9.8) can be used to deduce V,(t) € L.
From (9.3) it can be inferred that V,(t) € L. Hence it is clear that all signals in the closed
loop are bounded. From (9.14) it is clear that 7j(t) € L. Since e(t), e(t), 75 (t),n(t) €

Lo, N Ly and é(t), €:(t),7¢(1),7(t) € Ly, Barbalat’s Lemma [49] can be utilized to
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prove that e(t), ef(t), 7¢(t),n(t) > 0 ast — co. Thus completing the proof of the

theorem.

9.3 Experimental Results

The test rig used for verifying the performance of the proposed controller and
observers is shown in Fig. 9.2. The NI CompactRIO 9022, with cRIO-9113 chassis and the
commercial software LabVIEW are used for implementation of the controller algorithm.
The control algorithm is first developed using LabVIEW software on a personal computer
and then downloaded to the onboard Virtex-5 LX50 FPGA of the cRIO-9113. The real-
time experimental results were sent back to the personal computer through real time
controller cRIO-9022 for monitoring and data logging. The dc link is fed by a single phase
voltage doubler rectifier. The control algorithm requires only one voltage sensor to measure
the output voltage, V,(t). For the purposes of data logging and visualization two current

sensors are also utilized for the output current and inductor current measurement.

Fig. 9.2 Experimental setup of the H-Bridge inverter.
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Fig. 9.3 Output feed-forward controller.

The performance of the developed controller is compared with a commonly used
output feed-forward controller depicted in Fig. 9.3. For the sake of a fair comparison, the
gains of PI block of output feed-forward controller are adjusted so that the two closed-loop
control systems have the same transient time and percent overshoot. Therefore, the
performance of the controllers can be compared in terms of steady state error. Table 9.1

summarizes the system parameters used for experimental test.

Table 9.1 System Parameters

Inverter Parameter Value Proposed Controller Parameters Value
Output AC voltage 120 [Vrms] Gain K; 20
Supply DC voltage, V;, 350 [V] GainK, 4
Filter inductance, L 10 [mH] GainK; 20
Inductor Resistance, R 0.01 [Q] Gaink, 1
Filter capacitance, C 50 [uF] Gaina 2.5

AC Voltage frequency 60 [Hz]

Switching Frequency 5 [kHz] Output Feed-forward Controller Parameters Value
Loadl Inductance 32 [mH] K, 7
Loadl Resistance 37.5[Q] K; 7
Load2 Capacitance 220 [uF]

Load2 Resistance 250 [Q]
Load2 Crest Factor 3
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Fig. 9.4 Steady-state response of the filter-based controller under RL load.
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Fig. 9.5 Steady-state response of the output feed-forward controller under RL load.

In the first study, the steady state performance of the proposed control schemes under
linear resistive-inductive load is investigated. Fig. 9.4 and 9.5, show the desired, V;(t), and
actual, V, (t), output voltage, tracking error, e(t), and the inductor current, I, (t), as well
as the control signal, D(t), for the proposed control scheme and output feed-forward
controller, respectively. As can be seen in these figures, the filter-based control scheme

outperforms the output feed-forward controller in voltage tracking and an excellent
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reference tracking with the steady-state peak error less than 0.6% is achieved for the
proposed control scheme. The steady state error of the output feed-forward controller is

measured as 2%.

In a second study the transient response to a -50% step change in amplitude of
reference voltage, V;(t), under nominal 37.5 [Q] resistive load is considered. As it can be
seen in Fig. 9.6 and 9.7, to represent the worst case operation, the reference command is
changed when the output voltage is at its peak value. As it was mentioned earlier in this
section, the gain of output feed-forward controller is selected so that the two control
schemes have the same transient time and percent overshoot. This test provides a baseline

showing the transient response of both controllers have similar characteristics.
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Fig. 9.6 Transient response of the filter-based controller under resistive load.
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Fig. 9.7 Transient response of the output feed-forward controller under resistive load.

A third study evaluates the performance of the proposed control scheme and the
reference output feed-forward controller under a worst case operation scenario where a
highly distorting load is used consisting of a full wave rectifier bridge feeding a 250 [Q2]
resistor in parallel with a 220 [uF] capacitor. The results under nonlinear rectifier load are
illustrated in Fig. 9.8 and 9.9. Despite the highly distorted load current, the output voltage
tracking with the steady-state peak error less than 0.76% is achieved for the filter-based
controller in comparison with that of 3% of the output feed-forward controller. These
results shows that the proposed filter-based controller improves the system performance in

terms of steady-state error at least 70% in comparison with the reference output feed-
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forward controller for both linear and nonlinear loads.
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Fig. 9.8 Steady-state response of the filter-based controller under a highly distorting rectifier
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200 ~ ™~ ™~ 7
~ N 4 19?‘%
= ok Valt
- / \ / /
~_ _ N ~ —
200 . L { L . .
] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
— 5F !
A A n
= , , ,
! N AT e ‘ L4 -1* A AL R
= ofWl, anm/” Vy AL h """Pﬁ' M YW A ,'\4’- i f‘w WAL 2
k=1 AV WV T““ LR \
J J J
= 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05
1
= of - - - s e o ]
_' e A\ y
4 ! . . . ! .
[} 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
2 —~ : - =
= ;
Sopd \ o - S S L
= \/
[} 0.01 0.02 0.03 (_).04 . 0.05 0.06 0.07 0.08
Time [s

Fig. 9.9 Steady-state response of the output feed-forward controller under a highly distorting
rectifier load.

In a final study, the performance of the proposed controller is evaluated under +50%
parameter discrepancy for both inductance and capacitance values. To perform this study
the nominal value of inductance and capacitance have been considered 15 [mH] and 75
[uF], respectively, in the control law of the filter-based control scheme. Again, an excellent

reference tracking with the steady-state peak error less than 0.8% is achieved as shown in
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Fig. 9.10 and 9.11. The voltage THD is limited within 0.4% which fulfills IEEE 519 and

EN 50160 standards for US and European power systems, respectively.
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Fig.9.10 Steady-state response of the filter-based controller with +50% inductance discrepancy

under RL load.
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Fig. 9.11 Steady-state response of the filter-based controller with +50% capacitance

discrepancy under RL load.
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9.4 Summary

In this paper a new filter-based control scheme relying on only a single output voltage
measurement was proposed to regulate the instantaneous output voltage of a single-phase
inverter in stand-alone mode. The performance of the control scheme is confirmed through
experimental results in terms of steady-state tracking error, THD, stability and transient
response. In addition to the lower cost resulting from removing current measurement
sensors, this scheme has demonstrated its effectiveness in terms of low THD, excellent

voltage regulation and insensitivity to load and parameter variations.
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CHAPTER 10

CONCLUSION AND FUTURE WORKS

10.1 Conclusion

In this dissertation, nonlinear control techniques, such as backstepping controller and
filter-based controller, were utilized for the control of power converters in different
applications of DG systems. Key features and important results of each control technique

are being summarized in the following.

10.1.1 Backstepping Controller

The first nonlinear control scheme which was developped for the control of a PWM
power converter was based on backstepping technique. To overcome the drawbacks of the
backstepping controller such as dependency of the control law to the numerical derivative
of the noisy current measurement, a combination of the backstepping controller with other
control techniques such as output current observer, nonlinear sliding technique, periodic
learning and inductor current observer was proposed. Also, the extension of the work for a

3-phase system was developed and discussed in detail. The proposed backstepping
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controller was developed in dq0-frame for the control of a 3-phase 4-wire diode clamped
inverter with output LC filter under different loads including balanced, unbalanced, linear
and nonlinear loads. Furthermore, the seamless transition of the inverter from standalone
to grid-tie was investigated while the inverter was under the control of the proposed
controller. For each developed control scheme, a Lyapunov stability analysis was presented
which proved that the voltage tracking objective was achieved by the controller with all

signals remaining bounded. Simulation results further validated the proposed approaches.

Comparing the duty ratio control command signals for the backstepping controller
combined with a load-current observer and/or a inductor current observer with those of the
backstepping controller combined with sliding technique, we realize that the former has a
less harsh control command at the cost of greater steady state errors. A periodic learning
can untangle both shortfall of the sliding technique and output current observer at the cost

of more physical memory required to store one period of the observed disturbance.

10.1.2 Filter-Based Controller

In another effort, filter-based control techniques were developed as effective control
schemes which require only single output voltage measurement in their control law. The
proposed filter-based control schemes not only eliminate the need for costly current sensors
to measure the inductor and/or output currents, but also they are robust against system
parameter discrepancy and system disturbances. Our experimental results show that the
filter-based control technique utilizing the nominal values of the system parameters and
compensate for parameter discrepancies has much better performance than the filter-based
controller developed for unknown system parameters. Also, the controller developed for

unknown system parameters requires higher gain values to be stabilized. For each
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developed control scheme, a Lyapunov stability analysis is presented which proves that the
voltage tracking objective is achieved by the controller with all signals remaining bounded.

Experimental results further validate the proposed approaches.

10.2 Future Work

Some ideas for future work are mentioned below:

10.2.1 Grid-Tie Mode

Depending on the operation of the power converters in DG systems, power converters
can be classified as grid-forming (standalone) or grid-feeding (grid-tie) converters. In the
course of the dissertation, we have investigated the control of grid-forming converters
designed to generate an output voltage with desired amplitude, phase and frequency. On
the other hand, grid-feeding converters are mainly designed to deliver a specific amount of
active and reactive power to an energized grid. Control of grid-feeding converters could be

a possible extension of this work.

10.2.2 Hierarchical Cooperative Control Scheme and Optimization

Multi-microgrid and Hybrid ac/dc microgrids have been considered for better
interconnection of different DG systems to the power grid. As it can be seen in Fig. 10.1,
this interconnection is through utilizing interlinking power converters including: dc/dc,
dc/ac, ac/ac and ac/dc converters with a proper management and control strategy. The
interlinking converters as a subcategory of grid-feeding converters are responsible for
transferring a specific amount of active power from one microgrid to the other. In the top

layer of a hierarchical control strategy we can solve a centralized optimization problem to
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balance the resource utilization among all interconnected microgrids. The output of this
optimization problem is the target active (or reactive power) of all grid-forming and
subsequently grid-feeding converters. Then in the bottom layer of the control strategy we
can apply nonlinear control techniques to meet generation or delivery of these target
powers. Applying the nonlinear control techniques developed in this dissertation for the
control of grid-forming converters and extending these control algorithms for grid-feeding
converters in a multi-microgrid network when the whole network is utilizing an

optimization problem in a higher layer could be interesting to investigate.

Microgrid 1 Interlinking Microgrid 2
Inverter

Interlinking Central Interlinking

Inverter Controller e

Microgrid 3 Microgrid 4

Interlinking
Inverter

Fig. 10.1 Multi microgrid system.

146

45



[1]

[3]

REFERENCES

H. Gu, Z. Yang, D. Wang and W. Wu, "Research on Control Method of
Double-Mode Inverter with Grid-Connection and Stand-Alone," in Power
Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th

International, Shanghai, 2006.

R. J. Wai, C. Y. Lin, Y. C. Huang and Y. R. Chang, "Design of High-
Performance Stand-Alone and Grid-Connected Inverter for Distributed
Generation Applications," IEEE Transactions on Industrial Electronics, vol. 60,

no. 4, pp. 1542-1555, April 2013.

C. Trujillo Rodriguez, D. Velasco de la Fuente, G. Garcera, E. Figueres and
J. A. Guacaneme Moreno, "Reconfigurable Control Scheme for a PV
Microinverter Working in Both Grid-Connected and Island Modes," |IEEE
Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1582-1595, April

2013.

Z. Yao, L. Xiao and Y. Yan, "Seamless Transfer of Single-Phase Grid-
Interactive Inverters Between Grid-Connected and Stand-Alone Modes," |IEEE

Transactions on Power Electronics, vol. 25, no. 6, pp. 1597-1603, June 2010.

147



[5]

[6]

[7]

[10]

M. Schoen and M. Mclntyre, "Vehicle to grid as a household backup
generator utilizing a novel backstepping controller with uncertain load for full
bridge converter," in 4th IEEE International Symposium on Power Electronics

for Distributed Generation Systems (PEDG), Rogers, AR, July 2013.

D. Velasco de la Fuente, C. L. Trujillo Rodriguez, G. Garcera, E. Figueres
and R. Ortega Gonzalez, "Photovoltaic Power System With Battery Backup
With Grid-Connection and Islanded Operation Capabilities," IEEE Transactions

on Industrial Electronics, vol. 60, no. 4, pp. 1571-1581, April 2013.

R. Razi and M. Monfared, "Simple control scheme for single-phase
uninterruptible power supply inverters with Kalman filter-based estimation of

the output voltage," IET Power Electronics, vol. 8, no. 9, pp. 1817-1824, 2015.

M. J. Ryan, W. E. Brumsickle and R. D. Lorenz,, "Control topology options
for single-phase UPS inverters," in Power Electronics, Drives and Energy
Systems for Industrial Growth, 1996., Proceedings of the 1996 International

Conference on, New Delhi, 1996.

H. Komurcugil, "Improved passivity-based control method and its
robustness analysis for single-phase uninterruptible power supply inverters," |ET

Power Electronics, vol. 8, no. 8, pp. 1558-1570, 2015.

G. Willmann, D. F. Coutinho, L. F. A. Pereira and F. B. Libano, , "Multiple-
Loop H-Infinity Control Design for Uninterruptible Power Supplies," |IEEE

Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1591-1602, June 2007.

148



[11] G. Bonan, O. Mano, L. F. A. Pereira and D. F. Coutinho, "Robust control
design of multiple resonant controllers for sinusoidal tracking and harmonic
rejection in Uninterruptible Power Supplies," in IEEE International Symposium

on Industrial Electronics, Bari, 2010.

[12] Keliang Zhou and Yunhu Yang, "Phase compensation multiple resonant
control of single-phase PWM inverter," in Industrial Electronics (ISIE), 2012

IEEE International Symposium on, Hangzhou, 2012.

[13] S. Buso, S. Fasolo and P. Mattavelli, "Uninterruptible power supply
multiloop control employing digital predictive voltage and current regulators,"
IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1846-1854,

2001.

[14] Poh Chiang Loh, M. J. Newman, D. N. Zmood and D. G. Holmes, "A
comparative analysis of multiloop voltage regulation strategies for single and
three-phase UPS systems," IEEE Transactions on Power Electronics, vol. 18,

no. 5, pp. 1176-1185, 2003.

[15] Poh Chiang Loh and D. G. Holmes, "Analysis of multiloop control strategies
for LC/CL/LCL-filtered voltage-source and current-source inverters," |IEEE

Transactions on Industry Applications, vol. 41, no. 2, pp. 644-654, 2005.

[16] P. Mattavelli, "An improved deadbeat control for UPS using disturbance
observers," IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 206-

212, Feb. 2005.

149



[17] Kai Zhang, Yong Kang, Jian Xiong and Jian Chen, "Direct repetitive control
of SPWM inverter for UPS purpose," in IEEE Transactions on Power

Electronics, vol. 18, no. 3, pp. 784-792, May 2003.

[18] T. Haneyoshi, A. Kawamura and R. G. Hoft, "Waveform compensation of
PWM inverter with cyclic fluctuating loads," IEEE Transactions on Industry

Applications, vol. 24, no. 4, pp. 582-589, 1988.

[19] K. Zhang, Li Peng, J. Xiong and J. Chen. , "State-feedback-with-integral

Control plus Repetitive Control for PWM Inverters," in CSEE, 2006.

[20] Ying-Yu Tzou, Shih-Liang Jung and Hsin-Chung Yeh, "Adaptive repetitive
control of PWM inverters for very low THD AC-voltage regulation with
unknown loads," IEEE Transactions on Power Electronics, vol. 14, no. 5, pp.

973-981, Sep 1999.

[21] C. Rech, H. A. Grundling and J. R. Pinheiro, "A modified discrete control
law for UPS applications," in Power Electronics Specialists Conference, 2000.

PESC 00. 2000 IEEE 31st Annual, Galway, 2000.

[22] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro,,
"Comparison of digital control techniques with repetitive integral action for low
cost PWM inverters," |IEEE Transactions on Power Electronics, vol. 18, no. 1,

pp. 401-410, Jan 2003.

150



[23] Ying-Yu Tzou, Rong-Shyang Ou, Shih-Liang Jung and Meng-Yueh Chang,
"High-performance programmable AC power source with low harmonic
distortion using DSP-based repetitive control technique," IEEE Transactions on

Power Electronics, vol. 12, no. 4, pp. 715-725, Jul 1997.

[24] Keliang Zhou, Kay-Soon Low, D. Wang, Fang-Lin Luo, Bin Zhang and
Yigang Wang, "Zero-phase odd-harmonic repetitive controller for a single-phase
PWM inverter," IEEE Transactions on Power Electronics, vol. 21, no. 1, pp.

193-201, Jan. 2006.

[25] A. Roshan, R. Burgos, A. C. Baisden, F. Wang and D. Boroyevich, "A D-Q
Frame Controller for a Full-Bridge Single Phase Inverter Used in Small
Distributed Power Generation Systems," in APEC 07 - Twenty-Second Annual
IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA,

USA, 2007.

[26] D. Dong, T. Thacker, R. Burgos, F. Wang and D. Boroyevich, "On Zero
Steady-State Error Voltage Control of Single-Phase PWM Inverters With
Different Load Types," IEEE Transactions on Power Electronics, vol. 26, no.

11, pp. 3285-3297, Nov. 2011.

[27] D. N. Zmood and D. G. Holmes, "Stationary frame current regulation of
PWM inverters with zero steady-state error," IEEE Transactions on Power

Electronics, vol. 18, no. 3, pp. 814-822, May 2003.

151



[28] A. Kawamura and T. Yokoyama, "Comparison of five different approaches
for real time digital feedback control of PWM inverters," in Industry
Applications Society Annual Meeting, 1990., Conference Record of the 1990

IEEE, Seattle, WA, USA, 1990.

[29] Shih-Liang Jung, Meng-Yueh Chang, Jin-Yi Jyang, Li-Chia Yeh and Ying-
Yu Tzou, "Design and implementation of an FPGA-based control IC for AC-
voltage regulation," IEEE Transactions on Power Electronics, vol. 14, no. 3, pp.

522-532, , May 1999.

[30] P. Mattavelli, G. Escobar and A. M. Stankovic, "Dissipativity-based
adaptive and robust control of UPS," IEEE Transactions on Industrial

Electronics, vol. 8, no. 2, pp. 334-343, 2001.

[31] G. Escobar, A. M. Stankovic and P. Mattavelli, "Dissipativity-based
adaptive and robust control of UPS in unbalanced operation," in Power
Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual,

Vancouver, BC, 2001.

[32] G. E. Valderrama, A. M. Stankovic and P. Mattavelli, "Dissipativity-based
adaptive and robust control of UPS in unbalanced operation," IEEE Transactions

on Power Electronics, vol. 18, no. 4, pp. 1056-1062, July 2003.

[33] P. C. Tan, P. C. Loh and D. G. Holmes, "High-Performance Harmonic

Extraction Algorithm for a 25 kV Traction Power Quality Conditioner," IEE

152



Proceedings - Electric Power Applications, vol. 151, no. 5, pp. 505-512, Sept.

2004.

[34] M. Monfared, S. Golestan and J. M. Guerrero, "Analysis, Design, and
Experimental Verification of a Synchronous Reference Frame Voltage Control
for Single-Phase Inverters," IEEE Transactions on Industrial Electronics,, vol.

61, no. 1, pp. 258-269, Jan. 2014.

[35] M. Dai, M. N. Marwali, J. W. Jung and A. Keyhani, "A Three-Phase Four-
Wire Inverter Control Technique for a Single Distributed Generation Unit in
Island Mode," IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 322-

331, Jan. 2008.

[36] Hong Yi, Jiyang Dai and Jiaju Wu, "Research on modeling and control of
the single-phase inverter system with a nonlinear load," in Intelligent Control

and Automation, 2008. WCICA 2008. 7th World Congress on, Chongging, 2008.

[37] Tsang-Li Tai and Jian-Shiang Chen, "UPS inverter design using discrete-
time sliding-mode control scheme," IEEE Transactions on Industrial

Electronics, vol. 49, no. 1, pp. 67-75, Feb 2002.

[38] R. Majdoul, E. Abdelmounim, M. Aboulfatah and A. Abouloifa, "The
Performance comparative of Backstepping, Sliding Mode and PID controllers
designed for a single-phase inverter UPS," in Multimedia Computing and

Systems (ICMCS), 2014 International Conference on,, Marrakech, 2014.

153



[39] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, "Control topology options
for single-phase UPS inverters," IEEE Transactions on Industry Applications,

vol. 33, no. 2, pp. 493-501, 1997.

[40] N. M. Abdel-Rahim and J. E. Quaicoe, "Analysis and design of a multiple
feedback loop control strategy for single-phase voltage-source UPS inverters,"

IEEE Transactions on Power Electronics, vol. 11, no. 4, pp. 532-541, Jul 1996.

[41] M. J. Ryan and R. D. Lorenz, "A high performance sine wave inverter
controller with capacitor current feedback and “back-EMF” decoupling," in
Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual

IEEE, Atlanta, GA, 1995.

[42] W. Kempton, J. Tomié, "Vehicle to Grid Implementation: from stabilizing
the grid to supporting large-scale renewable energy," J. Power Sources, vol. 144,

no. 1, pp. 280-294, 1 June 2005.

[43] M. Mohebbi, M. L. Mclntyre and J. Latham, "Vehicle to grid utilizing a
backstepping controller for bidirectional full-bridge converter and five level
active neutral point inverter," in IEEE 16th Workshop on Control and Modeling

for Power Electronics (COMPEL), Vancouver, BC, 2015.

[44] P. Barbosa, P. Steimer, L. Meysenc, M. Winkelnkemper, J. Steinke and N.
Celanovic, "Active Neutral-Point-Clamped Multilevel Converters," in 2005

IEEE 36th Power Electronics Specialists Conference, Jun. 2005.

154



[45] M. Mohebbi, M. L. McIntyre, J. F. Naber and R. Hickman, "13.8 kV five
level ANPC inverter for wind power," in 2014 IEEE Energy Conversion

Congress and Exposition (ECCE), Pittsburgh, PA, 2014.

[46] H. Sira-Ramirez , R. Perez-Moreno, R. Ortega, M. Garcia-Esteban ,
"Passivity-based Controllers for the stabilisation of DC-to-DC power

converters," Automatica, 1997.

[47] R. Middlebrook, "A general unified approach to modeling switching

converter power stages," Int. J. Electronics, vol. 42, pp. 521-550, 1997.

[48] V. M. Rao, A. K. Jain, K. K. Reddy and A. Behal, "Nonlinear Control of a
Single Phase Unity Power Factor Rectifier: Design, Analysis, and Experimental
Results," IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.

1301-1307, Nov. 2008.

[49] J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ:

Prentice Hall, 1991.

[50] Mohan, Undeland, Robbins, Power Electronics: converters, applications
and design , Singapore, John Wiley and sons,1989,book., Singapore: John Wiley

and sons, 1989.

[51] G. Hua and F. C. Lee, "Soft-switching PWM techniques and their
applications," in Power Electronics and Applications, 1993., Fifth European

Conference on, Brighton, 1993.

155



[52] Dong-Choon Lee and G-Myoung Lee, "Linear control of inverter output
voltage in overmodulation,," IEEE Transactions on Industrial Electronics, vol.

44, no. 4, pp. 590-592, Aug 1997.

[53] N. Mohan, T. M. Undeland and W. P., Power Electronics, John Wiley &

Sons, 2003.

[54] S. Chen, Y. M. Lai, S. C. Tan and C. K. Tse, "Fast response low harmonic
distortion control scheme for voltage source inverters," IET Power Electronics,

vol. 2, no. 5, pp. 574-584, Sept. 2009.

[55] F. J. Chang, E. C. Chang, T. J. Liang and J. F. Chen, "Digital-signal-
processor-based DC/AC inverter with integral-compensation terminal sliding-

mode control," IET Power Electronics, vol. 4, no. 1, pp. 159-167, January 2011.

[56] L. Schirone, F. Celani and M. Macellari, "Discrete-time control for DC-AC
converters based on sliding mode design,," IET Power Electronics, vol. 5, no. 6,

pp. 833-840, July 2012.

[57] M. Mohebbi, M. L. Mclntyre and J. Latham, "Energy efficient DC to AC
power conversion using advanced controllers and novel voltage trajectories," in
2015 IEEE 16th Workshop on Control and Modeling for Power Electronics

(COMPEL), Vancouver, BC, 2015.

[58] D. Hart, Power Electronics, McGraw Hill, 2011.

156



[59] M. N. Marwali and A. Keyhani, "Control of distributed generation systems-
Part I: Voltages and currents control," IEEE Transactions on Power Electronics,

vol. 19, no. 6, pp. 1541-1550,, 2004.

[60] M. Kojima, K. Hirabayashi, Y. Kawabata, E. C. Ejiogu and T. Kawabata,
"Novel vector control system using deadbeat controlled PWM inverter with
output LC filter," in Industry Applications Conference, 2002. 37th IAS Annual

Meeting. Conference Record of the,, Pittsburgh, PA, USA, , 2002.

[61] Xuejuan Kong, Jingjiang Wang, Li Peng, Yong Kang and Jian Cheng, "The
control technique of three-phase voltage-source inverter output waveform based
on internal model theory," in Industrial Electronics Society, 2003. IECON '03.

The 29th Annual Conference of the IEEE, 2003.

[62] M. Mohebbi, M. L. Mclntyre and J. Latham, "A learning backstepping
controller for voltage source inverter with nonlinear loads," in IEEE Power and

Energy Conference at Illinois (PECI), Champaign, IL, 2017.

[63] W. Messner, R. Horowitz, W. W. Kao and M. Boals, "A new adaptive
learning rule," IEEE Transactions on Automatic Control, vol. 36, no. 2, pp. 188-

197, 1991.

[64] M. Mohebbi, M. L. Mclntyre, J. Latham and P. Rivera, "Nonlinear control
of standalone inverter with unbalanced, nonlinear load," in IEEE Power and

Energy Conference at Illinois (PECI), Champaign, IL, 2017.

157



[65] M. Mohebbi, M. L. McIntyre and J. Latham, "A backstepping controller for
voltage source inverter with inductor current and output current observers," in

IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, 2017.

[66] P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez and L. G. Franquelo,
"Model Predictive Control of an Inverter With Output LC Filter for UPS
Applications," IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp.

1875-1883, 2009.

[67] M. Mohebbi, M. L. McIntyre, J. Latham and P. Rivera, "A filter-based
controller for a buck converter," in 2017 IEEE 18th Workshop on Control and

Modeling for Power Electronics (COMPEL), Stanford, CA, 2017.

[68] M. Mohebbi, J. Latham, M. L. McIntyre and P. Rivera, "Filter-based control
of an H-Bridge inverter with output LC filter," in American Control Conference

(ACC), Seattle, WA, 2017.

[69] B. Xian, M. S. Queiroz, D. M. Dawson, and M. L. Mclntyre, "A
discontinuous output feedback controller and velocity observer for nonlinear

mechanical systems," Automatica, vol. 40, no. 4, p. 695-700, 2004.

[70] B. Xian, M. S. de Queiroz, D. M. Dawson and M. L. Mclntyre, "Output
feedback variable structure-like control of nonlinear mechanical systems," in

Decision and Control, Maui, HI, USA , 2003.

158



[71] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive

Control Design, John Wiley & Sons, 1995.

[72] M. Mohebbi, Joseph Latham, Michael McIntyre, Pablo Rivera, "Filter-
Based Control of an H-Bridge Inverter with Output LC Filter," in Proceedings

of the 2017 American Control Conference, ACC, Seattle, WA,, 2017.

[73] A. Nabae, 1. Takahashi and H. Akagi, "A New Neutral-Point-Clamped
PWM Inverter," IEEE Transactions on Industry Applications, Vols. IA-17, no.

5, pp. 518-523, 1981.

[74] M. Khazraei, H. Sepahvand, K. Corzine and M. Ferdowsi, "A generalized
capacitor voltage balancing scheme for flying capacitor multilevel converters,"
in Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-

Fifth Annual IEEE, Palm Springs, CA, 2010.

[75] H. Iman Eini, Sh. Farhangi, and J.L. Schanen, "A modular AC/DC rectifer
based on cascaded H-bridge rectifer," in Power Electronics and Motion Control

Conference, 2008 EPE-PEMC, sept. 2008.

[76] [Online]. Available: http://www.plexim.com/.

[77] M. R. Islam, Y. Guo and J. Zhu, "A transformer-less compact and light wind
turbine generating system for offshore wind farms," in Power and Energy

(PECon), 2012 IEEE International Conference on, Kota Kinabalu, 2012.

159



APPENDIX A

After substituting 7 from (9.12) into (9.23) and integrating in time, we get (a.1) where (9.11) is also

utilized.
fo L(oydr = fo t (6() + ae(®) - ¢;(x) — aer (@) (Nl(f) ~ Kysgn (e(@) ef(r))) dr @l)
Defining new variable w(t) 2 e(t) — e (t) and substituting into (a.1), simplifies (a.1) as:
fo tL(T)dT = jo t(aw(r) + (D) (N (1) = Kysgn(w(D))) dr
= jo taw(r) (1\/1 (1) — K3sgn(w(‘[))) dr (a.2)
+[I W (@) (1v1 (1) — K3sgn(w(‘r))) dr.

The last integral in (a.2) can be calculated as:

t t
[ #@ (M@ = Kysgn(w@)) dr =w@M@ [ - KW@l [ - [ wOM@dr. @3
0 0

Substituting (a.3) into (a.2) we obtain:

t
[ t@dr = wm@ | - Kl [
’ (a.4)

+ fot w(T) (aNl(T) - N, () — aK3sgn(W(T))) dr.

Assuming the gain condition (9.24), the integral of L(t) can be upper bounded as (a.5) with ef(0) = 0.
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f L(mydr < [wO|(IN1(O)] = K3) + [w(0)N1(0)]| + K3|w(0)]

+ fotlw('[)l(alNl(r)l +|N,(@)| - ak;) dr (@5)

< e(0)N,(0)] + Kzle(0) = ¢

Thus completing the proof of the Lemma 1.
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