52,693 research outputs found

    Next-Generation Sequencing:Application in Liver Cancer-Past, Present and Future?

    Get PDF
    Hepatocellular Carcinoma (HCC) is the third most deadly malignancy worldwide characterized by phenotypic and molecular heterogeneity. In the past two decades, advances in genomic analyses have formed a comprehensive understanding of different underlying pathobiological layers resulting in hepatocarcinogenesis. More recently, improvements of sophisticated next-generation sequencing (NGS) technologies have enabled complete and cost-efficient analyses of cancer genomes at a single nucleotide resolution and advanced into valuable tools in translational medicine. Although the use of NGS in human liver cancer is still in its infancy, great promise rests in the systematic integration of different molecular analyses obtained by these methodologies, i.e., genomics, transcriptomics and epigenomics. This strategy is likely to be helpful in identifying relevant and recurrent pathophysiological hallmarks thereby elucidating our limited understanding of liver cancer. Beside tumor heterogeneity, progress in translational oncology is challenged by the amount of biological information and considerable “noise” in the data obtained from different NGS platforms. Nevertheless, the following review aims to provide an overview of the current status of next-generation approaches in liver cancer, and outline the prospects of these technologies in diagnosis, patient classification, and prediction of outcome. Further, the potential of NGS to identify novel applications for concept clinical trials and to accelerate the development of new cancer therapies will be summarized

    Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine

    Get PDF
    Over the past decade, testing the genes of patients and their specific cancer types has become standardized practice in medical oncology since somatic mutations, changes in gene expression and epigenetic modifications are all hallmarks of cancer. However, while cancer genetic assessment has been limited to single biomarkers to guide the use of therapies, improvements in nucleic acid sequencing technologies and implementation of different genome analysis tools have enabled clinicians to detect these genomic alterations and identify functional and disease-associated genomic variants. Next-generation sequencing (NGS) technologies have provided clues about therapeutic targets and genomic markers for novel clinical applications when standard therapy has failed. While Sanger sequencing, an accurate and sensitive approach, allows for the identification of potential novel variants, it is however limited by the single amplicon being interrogated. Similarly, quantitative and qualitative profiling of gene expression changes also represents a challenge for the cancer field. Both RT-PCR and microarrays are efficient approaches, but are limited to the genes present on the array or being assayed. This leaves vast swaths of the transcriptome, including non-coding RNAs and other features, unexplored. With the advent of the ability to collect and analyze genomic sequence data in a timely fashion and at an ever-decreasing cost, many of these limitations have been overcome and are being incorporated into cancer research and diagnostics giving patients and clinicians new hope for targeted and personalized treatment. Below we highlight the various applications of next-generation sequencing in precision cancer medicine

    Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

    Get PDF
    Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license

    The future of laboratory medicine - A 2014 perspective.

    Get PDF
    Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine

    Review of precision cancer medicine: Evolution of the treatment paradigm.

    Get PDF
    In recent years, biotechnological breakthroughs have led to identification of complex and unique biologic features associated with carcinogenesis. Tumor and cell-free DNA profiling, immune markers, and proteomic and RNA analyses are used to identify these characteristics for optimization of anticancer therapy in individual patients. Consequently, clinical trials have evolved, shifting from tumor type-centered to gene-directed, histology-agnostic, with innovative adaptive design tailored to biomarker profiling with the goal to improve treatment outcomes. A plethora of precision medicine trials have been conducted. The majority of these trials demonstrated that matched therapy is associated with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To improve the implementation of precision medicine, this approach should be used early in the course of the disease, and patients should have complete tumor profiling and access to effective matched therapy. To overcome the complexity of tumor biology, clinical trials with combinations of gene-targeted therapy with immune-targeted approaches (e.g., checkpoint blockade, personalized vaccines and/or chimeric antigen receptor T-cells), hormonal therapy, chemotherapy and/or novel agents should be considered. These studies should target dynamic changes in tumor biologic abnormalities, eliminating minimal residual disease, and eradicating significant subclones that confer resistance to treatment. Mining and expansion of real-world data, facilitated by the use of advanced computer data processing capabilities, may contribute to validation of information to predict new applications for medicines. In this review, we summarize the clinical trials and discuss challenges and opportunities to accelerate the implementation of precision oncology

    Opportunities in biotechnology

    Get PDF

    Advancing transcriptome platforms

    Get PDF
    During the last decade of years, remarkable technological innovations have emerged that allow the direct or indirect determination of the transcriptome at unprecedented scale and speed. Studies using these methods have already altered our view of the extent and complexity of transcript profiling, which has advanced from one-gene-at-a-time to a holistic view of the genome. Here, we outline the major technical advances in transcriptome characterization, including the most popular used hybridization-based platform, the well accepted tag-based sequencing platform, and the recently developed RNA-Seq (RNA sequencing) based platform. Importantly, these next-generation technologies revolutionize assessing the entire transcriptome via the recent RNA-Seq technology
    corecore