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Abstract
Hepatocellular Carcinoma (HCC) is the third most deadly malignancy worldwide characterized by
phenotypic and molecular heterogeneity. In the past two decades, advances in genomic analyses
have formed a comprehensive understanding of different underlying pathobiological layers
resulting in hepatocarcinogenesis. More recently, improvements of sophisticated next-generation
sequencing (NGS) technologies have enabled complete and cost-efficient analyses of cancer
genomes at a single nucleotide resolution and advanced into valuable tools in translational
medicine. Although the use of NGS in human liver cancer is still in its infancy, great promise rests
in the systematic integration of different molecular analyses obtained by these methodologies, i.e.,
genomics, transcriptomics and epigenomics. This strategy is likely to be helpful in identifying
relevant and recurrent pathophysiological hallmarks thereby elucidating our limited understanding
of liver cancer. Beside tumor heterogeneity, progress in translational oncology is challenged by
the amount of biological information and considerable “noise” in the data obtained from different
NGS platforms. Nevertheless, the following review aims to provide an overview of the current
status of next-generation approaches in liver cancer, and outline the prospects of these
technologies in diagnosis, patient classification, and prediction of outcome. Further, the potential
of NGS to identify novel applications for concept clinical trials and to accelerate the development
of new cancer therapies will be summarized.

Keywords
Hepatocellular carcinoma (HCC); Next-generation sequencing (NGS); personalized medicine;
integrative genomics

1. Introduction
Cancers are caused by the accumulation of genomic and epigenomic alterations. Meaningful
integration of these diverse biological layers is a main challenge for the understanding of
complex diseases [1]. Exponential application of high-throughput methods over the past 10
years has significantly contributed to our understanding of cancer biology, diagnosis and
therapy [2]. These novel technologies for the study of genomics, epigenomics,
transcriptomics, and proteomics provide meaningful insights on the molecular features of
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different cancer subtypes [3]. However, this one-dimensional view on molecular alterations
will most likely be advanced by a multidimensional integrative approach (i.e., an integration
of different molecular layers such as genomic, epigenomic or transcriptomic information in
one analysis) using next-generation sequencing (NGS) analyses. Therefore, NGS
technologies promise a global view on oncogenomics by facilitating integrative and efficient
detection of genetic and epigenetic alterations in cancer at a single-base resolution.

In the last few years the omics-age has experienced a revolution in NGS [4] and
bioinformatic approaches [5] to analyze the challenging exponential growth in data.
Technologies, software development and decreasing cost are literally changing by the
minute to the point where we can obtain the complete sequence of a human genome roughly
within a day at a price that is realistic for implementation to the clinic. Today, the challenge
of translating and routinely applying NGS in the clinic is straightforward analysis and
interpretation of the data to improve health care for the individual. Given the molecular
heterogeneity observed in cancer, determination of causality between discovered variants
and carcinogenesis will not be straight forward and requires a comprehensive a priori
knowledge and understanding of the functional genome—an impediment that will take
significant time and effort.

2. NGS, the Next Leap in Clinical Diagnostics
Translational oncology and integrative genomics are systems biology-based strategies
suitable for decoding the human genome to determine the biological function and interaction
of genes. The advantage of a multidimensional approach to translational oncology is the
improved capacity to predict drug-response more accurately and to provide insight to
complex clinical problems. The central hypothesis is that the application of a
multidimensional approach will be the key to understanding many treatment-refractory
diseases, such as primary liver cancers (e.g., HCC), and to future clinical success. It is
imperative to future success that these methodologies are adapted to clinical trial designs
and practice, particularly in drug-resistant cancers (e.g., primary liver cancers). Notably,
genetic testing to guide cancer treatment, e.g., by assessing mutations in EFGR, KRAS,
FLT3 and NPM is already established in other cancers. However, while the detection of
these driver mutations are highly useful for clinical decision making, oncogene addiction
such as observed in lung cancer and AML is less frequently observed in HCC. Therefore,
detailed genetic information by NGS such as whole genome sequencing (WGS) or exome
sequencing (WES) will provide an unprecedented multi-layered insight into the underlying
biology of the disease. This offers the opportunity to detect less abundant genetic changes on
a single nucleotide resolution which is essential to advance early diagnosis, identify
prognostic markers and develop precision therapies for this disease.

To improve the genomic understanding of a heterogeneous cancer like HCC, and to identify
curative treatment options, detailed information such as WGS from the individual patient
may be a prerequisite for clinical success. Indeed, application of high resolution single
nucleotide DNA sequencing of a complete primary tumor/normal genome from the same
individual was first characterized from a patient with acute myeloid leukemia (AML) [6].

Already in 2008, Jones and colleagues combined genetic analyses and SAGE with massively
parallel RNA sequencing by synthesis in pancreatic cancers and demonstrated that core
pathways and regulatory processes can only be found by in-depth analyses [7]. Using this
approach they found that on average pancreatic cancers contain 63 genetic alterations, most
of them involved in a core set of 12 cellular signaling networks. Subsequently, the same
group sequenced the genomes of seven primary pancreatic cancers to evaluate the sequence
of malignant progression from primary cancer to metastatic disease [8]. The authors’
identified different clonal populations with the potential of generating distant metastases.
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Interestingly, it was clearly demonstrated that metastatic clones were evolved genetically
from the original tumor. Consistently the majority of acquired somatic mutations that
progress the generation of metastasis were already detectable within the primary tumors.
When a quantitative analysis of the timing of the genetic evolution of pancreatic cancer was
performed, duration of more than 15 years seemed to be required for the metastatic
potential. Validation of these findings stems from a similar study where DNA sequencing
was applied to 13 pancreatic cancers [9]. The authors’ confirmed that alterations of cancer
genes were predominantly manifested in early stages of cancer development and not in
advanced stages of disease. Key pathways affected by these genetic alterations involve
telomere dysfunction and abnormal cell-cycle control (e.g., G1-to-S-phase transition with
intact G2-M checkpoint). Further, the genetic alterations after cancer dissemination
persisted, resulting in ongoing, parallel and even convergent evolution among different
metastases. These NGS studies not only have important conceptual but also therapeutic
implications, indicating new therapeutic windows for the potential curative treatment of
pancreatic cancers.

Other studies focusing on the implementation of NGS in clinical diagnosis and consequently
supportive of treatment decision-making proved extraordinarily effective in identifying
therapeutic options, e.g., in the case of a patient with metastatic lung cancer, who initially
was presented with a rare adenocarcinoma of the tongue [10]. Characterization of this cancer
by genome and RNA sequencing prior to treatment suggested that the tumor progression
was driven by aberrant expression of the RET oncogene and thus, the patient was placed on
a targeted regimen with the potent multi-tyrosine kinase inhibitor sunitinib. Initial stable
disease was followed by progressive lung cancer and subsequent tumor regression was then
achieved by administration of sorafenib and sulindac, two drugs also identified in the initial
analysis as potentially effective in this case. After disease stabilization, a recurrent
metastasis progressed, new lesions developed and resistance to therapy was determined.
Additional genome sequencing was then performed, demonstrating that the accrual of new
somatic mutations was consistent with the observed drug resistance. This is a very important
study showing the promise and influence of NGS-based technologies in understanding the
underlying biology of primary cancers, development of therapeutic resistance and effective
direct treatment decisions.

3. Application of NGS in Liver Cancer
3.1. Genome Wide Associations Studies in Liver Cancer

The application of high-throughput technologies in HCC has a long standing tradition.
Recently, the advent of these technologies for unraveling the genomics of liver diseases was
initiated by the identification of different susceptibility loci using genome wide associations
studies (GWAS) [11]. Identification of the interleukin 28B (IL28B) gene locus in the
pathogenesis of hepatitis C virus (HCV) revolutionized the application of genomic data in
prediction of therapeutic response [12–14]. The notion that genetic variation in the IL28B
gene predicted treatment response and partially explained the observed ethnical disparity
observed during standard HCV therapy opened the avenue of next-generation
pharmacogenomics for diverse clinical applications.

Subsequently, GWAS was successfully applied to indentify genetic variation associated with
HCC development from different etiologies of viral background. A HCV-induced HCC
investigation of 432,703 autosomal SNPs in 721 individuals of Japanese origin revealed
eight SNPs with potential association to hepatocarcinogenesis [15]. Genetic variation in the
MHC class I polypeptide-related sequence A gene MICA on 6p21.33 (rs2596542) was
demonstrated to be associated with the progression from HCV to HCC. Although statistical
significance of this association was overall low, protein levels of MICA could be detected in

Marquardt and Andersen Page 3

Biology (Basel). Author manuscript; available in PMC 2013 June 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sera of affected patients with HCV-induced HCC [16]. Additionally, other SNPs such as
rs1012068, an intronic SNP in the DEPDC5 locus on chromosome 22, were associated with
progression to HCC in a Japanese patient cohort [17].

The intronic SNP (rs17401966) located in KIF1B on chromosome 1p36.22 was
demonstrated to be highly associated with hepatitis B virus (HBV)-induced HCC in 355
chronic HBV infected patients with HCC from China [18]. In addition to KIF1B, UBE4B
and PGD showed potential association to hepatocarcinogenesis. Interestingly, the identified
chromosomal region on 1p36.22 has been frequently implicated in cancer development in
several malignancies such as colorectal cancer, breast cancer, neuroblastoma, and also in
HCC [19]. Future investigation will demonstrate if these causal associations may have an
impact for translational medicine in HCC patients [19].

3.2. Gene Expression Signatures in Liver Cancer
Experience with transcriptomics, i.e., the generation of relevant gene expression signatures
for diagnostic or therapeutic classification of HCC patients commenced almost a decade
ago, and has been reviewed extensively [20–23]. In particular, the application of functional
and comparative genomics as well as the systematic application of integrative high-
throughput approaches have greatly advanced our understanding of hepatocarcinogenesis
and led the identification of several relevant genes within the landscape of molecular
alterations in HCC [24–27]. Despite these great efforts, clinical translation of these findings
for everyday medical practice such as observed in other cancers remains to be demonstrated
[28]. One potential reason is that sensitivity of imaging techniques (e.g., magnetic resonance
imaging and computer tomography) significantly improved diagnosis of HCC and in recent
guidelines biopsies are no longer mandatory to establish the diagnosis [29]. Therefore,
systematic validation of generated signatures in independent patient cohorts is virtually
impossible. Further, traditionally one-dimensional approaches (i.e., genomics/
transcriptomics/epigenomics) have been applied to HCC patients and multilevel integration
of the different molecular layers remains the exception. We have recently performed an
integrative transcriptomic and epigenomic profiling to generate a de-methylation response
signature that could be useful to identify patients that are likely to benefit from therapeutic
agents that target the cancer epigenome in HCC [30]. Also, a group from Heidelberg
integrated genome-wide methylation profiling with array-based CGH, and gene expression
data from patients with HCC [31]. As a result, the author’s identified three new potential
tumor suppressor genes (PER3, IGFALS, PROZ) downregulated in human HCCs compared
to peritumoral and normal liver tissues. These studies illustrate the potential of integrative
multi-layer approaches to facilitate the identification of promising new targets in liver
cancer and clear the way for NGS approaches.

3.3. Whole Genome/Exome Sequencing in Liver Cancer
As previously mentioned DNA sequencing of hematological cancers such as AML has
proven a success [32,33]. However, implementation of NGS to solid tumors like HCC
provides additional challenges as the proportion of normal cells or the stromal composition
within a given sample contributes to the genomic signature and therefore may require
additional coverage (i.e., read depth). Also, HCC often arise in the background of a
chronically diseased liver with underlying cirrhosis, fibrosis, HBV or HCV infection which
may complicate the tumor/normal variant discovery when compared to the peritumoral liver
tissue or even blood. Prospectively, a skin biopsy taken from the patient at diagnosis may be
an alternative option.

The number of studies where NGS technologies have been applied to investigate HCC is so
far limited. The course of translating the last decade of genomic profiling into the
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sequencing era is however increasingly entering practice and will likely become standard as
cost decrease and bioinformatic tools become easier to use. The first primary liver cancer
genome was sequenced in 2011 from a Japanese male diagnosed with HCV positive HCC
[34]. Here, massively parallel 50 base pair paired end reads and WES were used to analyze
the genome from the tumor and lymphocytes obtained from the same patient, revealing a
total of 11,731 tumor-enriched somatic mutations. Interestingly, the prevalence of somatic
alterations was largely in intergenic regions and only 88 substitutions or small insertions and
deletions were validated, including TP53 and AXIN1. Clinically, NGS has proven powerful
in the detection of viral infection (e.g., HCV) in liver biopsies [35]. Deep sequencing has
also been applied in a longitudinal analysis of the viral evolution following early viremia in
four asymptomatic acute HCV infected patients where blood samples were collected over
the initial 24 weeks [36]. To develop vaccines against e.g., HCV, understanding of selective
pressure on the viral population/genomes following infection is needed. Therefore,
information on the founder strain that effectively infected the host/patient and the primary
infection which either results in clearance or drives disease progression, causing chronic
infection and lastly liver disease, are important parameters to effectively control. Recently, a
couple of studies applied WES to cases with primarily HCV-related [37] or alcohol-
associated [38] HCC. In the first study, the authors sequenced 10 HCV-related HCC cases
and compared to normal tissues from the same patients [37]. Although, an average of ~43
mutations were identified per tumor only five genes (CTNNB1, TP53, ARID2, DMXL1 and
NLRP1) were determined to have recurrent mutations in more than two tumors. Re-
sequencing of these genes was performed in a larger cohort of HCC cases which were
subdivided into known risk factors (HBV, HCV, mixed or non-viral background).
Interestingly, the novel HCV-related mutation in ARID2 (6/43, 14%) was correlated with
mutations in CTNNB1 (13/43, 30%) but mutually exclusive with TP53 mutations known to
be associated with HBV infection. Similarly, in a cohort of 24 HCCs analyzed by WES,
somatic mutations of a related chromatin remodeling gene ARID1A (16.8%) was
predominantly associated with patients with a high intake of alcohol [38].

Another study used paired-end sequencing of 25 individuals with HCC from viral (i.e., HBV
and HCV) and non-viral etiology, including two sets of multicentric tumors in comparison
to matched normal lymphocytes [39]. Overall average genome coverage between 30–40×
could be obtained. The number of somatic substitutions, indels and rearrangements did not
vary between different viral-related (HBV- and HCV) HCCs. However, alcohol drinking
and multiple liver nodules were associated with specific somatic substitution patterns.
Interestingly, no overlap in somatic mutations could be detected in multicentric tumors
underlining the dramatic genetic heterogeneity observed in other cancers (e.g., kidney and
breast) and indicates that the clonal origin of these tumor pairs is distinct [40,41]. Statistical
and functional analyses showed that across all 27 HCC genomes, more than 2,000 (75.9 per
tumor) protein-altering point mutations, including missense mutations, nonsense mutations,
short coding indels and splice-site mutations. Consistently, TP53, CTNNB1 and EGFR
genes were frequently mutated in HCC. Additionally, multiple chromatin regulators,
including ARID1A, ARID1B, ARID2, MLL and MLL3, were mutated in around half of all
tumors, confirming the crucial role of the ARID family in hepatocarcinogenesis. Moreover,
Hepatitis B virus genome integration was investigated. HBV integration in the TERT locus
in a high clonal proportion was observed indicating that this event may confer growth
advantage in the early phase of HBV-related liver carcinogenesis. Another recent study
focused on the importance of HBV viral integration for hepatocarcinogenesis and validated
the importance of TERT [42]. Massively parallel sequencing of 81 HBV-positive and 7
HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues was
performed. The authors’ found that HBV integration observed at a higher incidence in
tumors compared to normal tissue and associated with induction of chromosomal instability
and Copy-number variations (CNVs). Furthermore, recurrent HBV integration events could
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be demonstrated and subsequently been validated by RNA-Seq and Sanger sequencing. In
summary, well known genes associated to cancer development such as TERT, MLL4 and
CCNE1 were demonstrated to be upregulated in tumor tissue. Finally, the author’s could
demonstrate that the number of HBV integrations is associated with patient survival.

3.4. RNA Sequencing in Liver Cancer
In relation to NGS, at present we have predominantly discussed WGS, however, RNA
sequencing is the most direct comparative NGS approach to conventional microarray
technologies to comprehensively characterize the transcriptome while concomitantly
obtaining information about genetic alterations (e.g., SNVs, gene fusion, etc.). However,
thus far, RNA sequencing was only used in one study to investigate the HCC transcriptome
in 10 matched HBV-related HCC cases, identifying a total of 1,378 differentially expressed
genes [43]. Interestingly, downstream enrichment analysis of these genes showed a
significant correlation with chromosome location on 8q21.3–24.3. Indeed, Woo et al.
showed in 139 HCC patients in a combined analysis of copy number alterations and gene
expression that genes located on chromosome 8q were the most predictive of overall
survival and that 22/50 potential driver genes were located in this region [44].

3.5. NGS in Cholangiocellular Carcinoma
The application of NGS technology for other primary liver cancers is even more limited.
Only one study applied WES for the study of Opisthorchis viverrini-related
cholangiocarcinoma (CCA) [45]. O. viverrini is a trematoda endemic in Thailand, Laos und
Malaysia associated with the development of CCA that constitutes a major public health
concern in these areas. The authors’ performed whole-exome sequencing of eight O.
viverrini-related tumors and matched normal tissue and validated 206 somatic mutations in
187 genes using Sanger sequencing. Frequent somatic mutations could be revealed in key
genes such as TP53, KRAS and SMAD4. Additionally, alteration in 10 previously
unrecognized genes, included inactivating mutations in MLL3, ROBO2, RNF43 and PEG3,
and activating mutations in the GNAS oncogene could be detected. This study does not only
improve our understanding of the landscape of mutations in CCA, it underlines the
importance of genes involved in histone modification for liver cancers other than HCC.

3.6. Other Applications of NGS in Liver Cancer
The concept that so called cancer stem cells (CSCs) or tumor-initiating cells (TICs) are
exclusively responsible for the development and progression of many tumors including HCC
is growing [46]. Already several years ago a group from Hong Kong demonstrated that the
mesenchymal stem cell marker CD90 might be a potential marker of liver CSCs [47,48]. As
a new application for NGS technology the authors’, in continuation of their previous work,
employed RNA-Seq for the detailed characterization of the putative CD90 liver CSCs in
comparison to non-tumorous liver tissues [49]. FACS-sorted CD90 cells from three different
HCCs as well as adjacent non-tumorous human liver tissues were subjected to pair-end
sequencing analysis. A total of 500 genes were identified to be differentially expressed
between the putative CSCs and non-tumorous human liver tissues. Consistently, these genes
were involved in pro-carcinogenic pathways such as inflammation, drug resistance and lipid
metabolism. Among the identified genes, the commonly used HCC marker glypican-3
(GPC3) could be detected. Overall, this study serves as a proof-of-principle for the
feasibility of performing RNA-Seq in a wide range of different applications in liver cancer
research.
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4. Conclusions
According to the commonly accepted dogma in cancer research, hallmarks of cancer include
at least eight conserved biological capabilities [50]. These general properties of cancer cells
are acquired during the multistep malignant transformation and include unlimited
proliferation potential, evading growth suppressors and immune response, increased energy
metabolism, resistance to cell death, replicative immortality, angiogenesis, as well as the
potential to grow invasively and a metastatic potential [50]. In primary liver cancer and
other malignancies the underlying genetic diversity is fostered by chronic inflammation of a
permissive tumor microenvironment.

Conceptual and technical progress in the last decade has greatly advanced our limited
understanding of tumor biology. Increasing awareness of the genetic complexity and
intratumoral heterogeneity remains a major challenge in the translational application of
high-throughput data for individualized medicine. The future of next-generation approaches
holds great promise for a better integration of multiple molecular layers to ultimately have a
more meaningful impact for clinical applications. However, to achieve this challenging goal
and to fully utilize the potential of NGS approaches for the understanding of the liver cancer
genome, systematic application of genome-wide analyses into clinical trials will be
necessary. In this context, high-throughput analyses should be adapted for diagnostic and
prognostic classification, dissecting the mechanism of acquired resistance and predicting
recurrence to ultimately contribute to treatment decisions and new drug development [3]. If
this endeavor could be achieved, it is highly possible that NGS technology will continue to
transform cancer research, leading to a comprehensive understanding of individual tumor
genetics. However, this goal will depend on the generation of better computational analyses
to identify changes of biological relevance within the continuously growing flood of
genomic data. Furthermore, collection of the diverse information in large databases to
connect genomic findings with clinical parameters will be of central importance. The near
future will show if liver cancer is braced for the NGS era.
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Key Points Describing the Potential and Challenges of NGS in Translational
Liver Cancer Research

• Whole genome NGS promises to bring unprecedented sensitivity, single
nucleotide resolution and multidimensional parallel detection of low abundant
genetic variations coupled with epigenetic and transcriptional changes for the
individual patient.

• Primary liver cancer is a disease with poor outcome which is increasing in
frequency worldwide and shows limited drug-response in clinical trials. Past
genomic studies have established that HCC is highly heterogeneous which may
complicate the interpretation of NGS data.

• The breadth of data from NGS and the rapidity by which it is obtained promises
through translational medicine to provide novel therapeutic options to the
individual by deepening the insight into the mechanisms of the disease.
However, the challenge in the analysis of NGS highlights not just the tumor
heterogeneity but also the complexity, robustness and technical noise (i.e., the
difficulty in technical versus biological discrepancies).
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