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Abstract   

Strategies for biotechnology must take account of opportunities for research, innovation and 
business growth.  At a regional level, public-private collaborations provide potential for such growth 
and the creation of centres of excellence.  By considering recent progress in areas such as genomics, 
healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for 
smart, strategic and specialised investment are discussed. These opportunities often involve 
convergent or disruptive technologies, combining for example elements of pharma-science, 
molecular biology, bioinformatics and novel device development to enhance biotechnology and the 
life sciences.  Analytical applications use novel devices in mobile health, predictive diagnostics and 
stratified medicine.  Synthetic biology provides opportunities for new product development and 
increased efficiency for existing processes. Successful centres of excellence should promote public-
private business partnerships, clustering and global collaborations based on excellence, smart 
strategies and innovation if they are to remain sustainable in the longer term. 

Keywords: biomedicine, genomics, m-health, digital science, synthetic biology, gene editing, 
agriculture, collaborations 

 

1.Introduction 

The biotechnology sector operates on an increasingly global basis, with the 25 biggest drug and 
biotech companies coming from eight different countries (Morrison & Lhäteenmäki 2017; NASDAQ 
Biotech Index, 2017). The sector has however, undergone considerable consolidation, including the 
$130 Bn merger of Dow Chemical with Du Pont and Chem China’s bid of $43 Bn for Syngenta, 
leading to a smaller number of truly global players. Major revenue earners include Abvie’s Humira 
monoclonal  antibody for arthritis, psoriasis, and Crohn’s disease therapy ($15.9 Bn), Gilead’s 
Harvoni small molecule for hepatitis C antiviral therapy ($13.8 Bn) and Celgene’s Revlimid for 
multiple myeloma and mantle cell lymphoma ($6.9 Bn; 1, illustrated  in Fig. 1).  Approximately 26% 
of revenue sales are currently spent on research and development, in what is increasingly an 
expensive escalating biotechnological arms race, with upwards of 40% of venture capital centred on 
just two areas: Boston Bay and San Francisco (Morrison & Lhäteenmäki, 2017). 

Amongst European companies, one of the biggest recent changes has seen Bayer bid $66 Bn for 
Monsanto, to create a global entity dedicated to innovation in healthcare, including 
pharmaceuticals, consumer & animal health and agriculture.  Digital farming combining big data with 
the internet of things, is one example of how Bayer will meet the challenges posed by world 
population increasing to 10 Bn by 2050. Farmland per capita will decline by 17% and climate change 
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is forecast to reduce yields by a further 17%.  This means an effective 60% productivity increase will 
be necessary to meet the needs of 10 Bn global citizens (Gartland & Gartland 2016; Food & 
Agriculture Organisation, 2016). Sustainably producing more food with fewer inputs will require 
precision data on needs and opportunities for growers. Bayer hope to provide an improved quality 
of life by combining aspects of their current crop protection portfolio with seed, trait and climate 
change platforms from Monsanto (Bayer, 2017).  At a national level, EU28’s largest biotechnology 
products pipeline comes from the UK, where €34.66 Bn was generated from pharma, medtech and 
biotechnology products in 2015 (PWC, 2017). This activity provides 482,000 UK jobs, €9.81 Bn tax 
take and equates to a Gross Value Added of €118,500 per employee, being the highest in Europe.  
What then are the areas of biotechnology where opportunities exist for smart, specialized strategies 
to emerge and be successful in research and innovation, including economic and future employment 
prospects? 

2.Synthetic Biology 

Producing new gene components, epigenetic factors and novel genomes from chemically 
synthesized nucleic acids is an area which has been growing steadily in recent years.  The ‘bio-parts’ 
economy is forecast to reach $14 Bn by 2019 and $39 Bn by 2030 through activities which currently 
have little or no regulation or restrictions on use (Manheim, 2016). This extends from relatively 
simple genetic switches, to potentially synthesising an artificial human genome in ‘Ultrasafe’ cell 
lines, genetically crippled to prevent escape or unforeseen adverse consequences through projects 
such as ‘Human Genome Project Write’ (Boeke et al., 2016).  Areas where this approach could prove 
beneficial include virus resistance, improving cancer treatments, testing of novel therapeutics and 
genome stability studies.  A distant goal is to produce sets of pan-human reference alleles for the 
dissection of disease susceptibility and complex phenotypes through gigabase scale genome 
engineering. Much progress has been made using yeast as model systems, including the construction 
of five new yeast chromosomes in Sc 2.0 (Richardson et al., 2017). Combining this type of approach 
with the search for a minimal genome, the JC Venter Institutes and Synthetic Genomics Inc. have 
developed JCVI Syn 3.0 through four cycles of design, synthesis and testing to identify life-essential 
functions using the Mycoplasma mycoides Syn 1.0 genome as a starting point (Hutchison et al., 
2016).  Potential applications include new protein products, increasing the efficiency of existing 
processes and enhancing biofuel production.  The JCVI Syn 3.0 genome consists of a mere 473 genes, 
with 33 genes associated with preservation of information, although 149 genes have unassigned 
functions (see Table 1).  Much further work is needed to design and build a fully synthetic organism 
(Service, 2016). 

[Table 1] 

Questions also remain about ownership and restrictions on use of synthetic organisms and products 
developed using synthetic biology tools (Manheim, 2016). Opportunities exist for a limited number 
of large scale synthetic biology factories, or innovation foundries, such as the SynbiCITE foundry 
based at Imperial College, providing advanced facilities and expertise at a commercial scale and cost 
that would be uneconomic for individual universities and institutions. SynbiCITE, established in 2013 
with €31 Mn support from a consortium of EU, government, research councils and industrial 
partners has now grown to more than 146 synthetic biology companies (SynbiCITE, 2017). In total 
more than €340 Mn was invested to set up six research centres for synthetic biology across the UK. 
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The breadth of potential applications of synthetic biology, is illustrated in Table 2. This area is 
accessible to all, requiring only significant design experience and imagination.   

[Table 2] 

 

3.Innovative biomedical devices 

Identifying, designing and constructing novel devices for biomedical purposes have been areas of 
massive growth in the last decade.  The ever expanding capabilities of smartphones, allied to new 
LED technologies, wireless internet protocols and cloud data warehousing now allow remote 
acquisition of real time patient data, interpretation and analysis without the previous necessity of 
attending a doctor’s surgery. This has been recognized by several charitable foundations and 
companies, such as Qualcom, who offer the Qualcom Tricorder X-Prize.  Innovative devices using 
smartphones have benefitted greatly from ‘Health Kit’ and ‘Research Kit’ software from Apple, 
particularly for diabetes management using iPhone or Apple Watch, and a growing number of 
android powered platforms, allowing anyone to create health applications.  Qualcom, an innovation 
engine, stimulated development of the first consumer-focussed, mobile diagnostic devices, inspired 
by the medical tricorder of Star Trek fame through a $10 Mn prize fund. More than 300 entrants had 
to demonstrate a palm sized device that could capture five key health metrics, provide patient tests 
on ten core health conditions including chronic obstructive pulmonary disease, urinary tract 
infection and atrial fibrillation, together with at least three further elective health conditions, such as 
whooping cough, HIV and shingles (Qualcom, 2017).  2017 Tricorder X-Prize winners were ‘DxtER’ 
from the American company Final Frontier Medical Devices, receiving the $2.5Mn first prize and the 
Taiwan-based Dynamical Biomarkers Group’s ‘Deep Q’ tricorder prototypes, in partnership with HTC, 
receiving $1 Mn (Basil Leaf Technology, 2017; Dynamical Biomarkers Group, 2017; Fig 2). DxtER 
integrates emergency medical room data with real time patient data, using non-invasive sensors.  
Acquired data is used by DxtER’s diagnostic engine to make a rapid assessment (18). Other 
smartphone based devices can be used for multitudinous applications, including fluorescence 
microscopy, DNA sequencing, mutation analysis, eye scanning and the diagnosis of infectious 
diseases (Michaud, 2017; Kuhnemund et al., 2017, Feng et al., 2017) with up to 98% accuracy.  These 
devices benefit from low cost (<$500 at scale) and ultimate portability, to allow for remote use in 
the field (Fig 3). Data can also be uploaded to the Cloud using the smartphone.   

[Figure 2] 

[Figure 3] 

Not all health applications of remote sensing have met with regulatory approval, as the Proteus 
Digital Health/Otsuka ingestible smart pill, combining a wireless sensor and the antipsychotic Abilify, 
to treat schizophrenia and bipolar disorder was initially refused USFDA approval (Thadani, 2017). 
Other similar Proteus sensors use a stomach skin patch and have achieved approval.     

3D-printing (additive manufacturing) has also been used to develop devices for a range of health 
applications, including a system for using a $500 consumer 3D printer, with a custom printed 
magnetic particle processing attachment replacing the usual extruder head.  This AI 
Biosciences/Johns Hopkins device allows extraction and processing of 12 DNA/RNA samples in 13 
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minutes proving effective for detection of infectious agents, including chlamydia, dengue fever and 
for general PCR amplification (Chan et al., 2016). Bespoke surgical implants, often made out of 
unique plastic polymers, or metal alloys, are increasingly being used to repair and protect against 
head trauma, for example following road accidents (University Utrecht Medical Centre, 2014). The 
range of 3D printing applications seems almost endless, from bacterially imprinted clothing, with 
pores able to change size and shape in response to heat and moisture (Wang et al., 2017), to 
regenerative medicine applications using bioprinted tissues, such as reconstructed ears and heart 
valves (Ameri et al., 2017). The search for novel antimicrobials is also benefitting from 3D printing, 
with standardised bacterial or viral impregnated materials being used for standardised testing of 
candidate molecules.  This is an increasingly important area for future research, as the World Health 
Organisation has recently published a list of 12 bacterial families posing the greatest risk to public 
health, through multidrug resistance, carbapenem and G3 cephalosporin resistance (WHO, 2017). 

4.Sequencing costs continue to decline 

The continuing dramatic reduction in the cost of genomic sequencing and increases in speed allow a 
human genome to be sequenced for considerably less than $1000 in a single day (Hoeksma, 2017). 
Oxford Nanopore, through their innovative portable MinION device offer a low cost (sub-$1000) 
entry into the world of genomics, able to sequence 1-20 Gbp per cell, and usable in almost any field 
setting, being powered from a laptop.  This extends the applicability of the technology, based, on 
voltage changes as a DNA strand passes across a nanopore, greatly. It can be scaled up through 
devices such as PromethION, combining up to 48 flow cells, each with up to 3,000 nanopore 
channels, giving up to 50 Gb capacity per run and an ability to sequence a human genome in 2-4 
hours (Loose, 2017; Magi et al., 2017).  Other massive scale sequencing systems, such as Illumina’s 
multi-channel flow cells (Fig 4), for example, are combining their HiSeqX technology with Philips 
artificial intelligence platform in the identification of key mutations and the provision of data for 
clinicians.  Illumina, who are also working with IBM Watson Health, now believe that the $100 
genome is close to fruition. There is however, a clear and as yet unmet need for genomics to be 
mainstreamed at the point of care, alongside radiology and pathology services data (Hoeksma, 
2017). Perhaps the largest current genomics project is Genomics England – Illumina ’100,000 
Genomes Project’ partnership, aiming to meet this ambitious target by 2018, having reached 36,083 
genomes by Oct 1, 2017 (Genomics England, 2017).  Genomics England Clinical Interpretation 
Partnerships (GECIPS), open to international scientists and clinicians, will play an important role in 
analysing individual rare diseases or conditions from the findings.  

[Figure 4] 

Together with several bioinformatics and computing companies, big data and artificial intelligence 
techniques are being utilised to educate a new type of professional, able to translate and interpret 
such data for incorporation in clinical workflows.  Universities and bodies such as the Wellcome 
Trust/Sanger Institute in Cambridge have recognized this and are now offering big data 
interpretation apprenticeships to meet burgeoning demand (Sanger Inst/Wellcome Trust, 2017) with 
the creation of up to 56,000 new jobs forecast by 2030. Amongst other large scale genomics 
projects, Astra Zeneca aim to analyse 2 million genomes in the coming decade; GSK are working 
closely with the US sequencers Regeneron, and the UK BioBank to sequence 500,000 exomes from 
de-identified UK citizens over the age of 40 years, over the next 3-5 years (Withers, 2017; Hirschler, 
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2017).  Typically, such large scale projects involve commercial partners having closed access to public 
data for nine months, followed by freely available public access through for example, UK BioBank . A 
focus of such operations has emerged in the UK ‘Golden Triangle’, between London, Oxford and 
Cambridge, where a critical mass of facilities and specialist expertise is being constructed. Synergies 
provided by companies such as Oxford Nanopore, Horizon Discovery, Eagle Genomics and Congenica 
are well placed to take advantage of these developments, although as yet, there is not a large scale 
sequencing facility quality assured to international clinical standards (Hirschler, 2017). This means 
that Astra Zeneca, for example, continue to have to send diagnostic samples for processing to the 
United States.  This is an opportunity for a European ‘Mega-Hub’ to evolve, able to compete with 
American and Chinese facilities, creating thousands of jobs, as well as technological, economic and 
societal advantages. This has been recognized by the UK Chief Medical Officer (Dame Sally Davies) 
who has described a new genomics era ‘Gold Rush’ in her 2016 annual report ‘Generation Genome’ 
(Davies et al., 2017).  As the largest organised health system in the world, the role of the National 
Health Service (NHS) in finding new and innovative ways to bring genomics data and interpretations 
to point of treatment facilities across the UK, to realise these benefits cannot be underestimated 
(Davies et al., 2017).  Other countries, both within Europe and further afield, are developing similarly 
ambitious genomics and clinical bioinformatics targets, such as American plans to link up more than 
1 million genotypic, phenotypic and lifestyle data sets to speed up biomedical discovery, with a €441 
Mn budget (Obama, 2016). Precision medicine initiatives extend to ROADMAP, combining US 
National Institutes of Health EpiGenomics Consortium and ENCODE data to boost understanding of 
the role of individual genetic variants in disease susceptibility and prognoses (Herceg et al., 2017; 
Kuiper et al., 2015), as well as the EU Innovative Medicines Initiative, with a 10-year budget of €5.3 
Bn to identify and address bottlenecks in the development of novel drugs, therapies and biomedical 
devices, including rapid approvals. So far, 90 projects have involved 863 participants, delivering 6995 
project outputs and 2686 publications (Innovative Medicines Initiative, 2017). Bottlenecks in drug 
discovery have been addressed by making trials more reliable, improving translatability, and helping 
companies to predict patient safety earlier on in the development process, by encouraging 
collaboration in a pre-competitive space, sharing knowledge and skills, and data pooling. Recent 
examples include establishing a European biobank for quality assured human induced pluripotent 
stems cells (De Sousa et al., 2017), developing a portable rapid diagnostics device for filovirus nucleic 
acids testing (e.g. Ebola virus),  in 75 minutes (MOFINA Project, 2017), and discovering new ways to 
target drug-resistant bacteria (Chan et al., 2017).   By combining different cutting edge expertise and 
stakeholders, this EU-led public private partnership is successfully identifying new ways to tackle 
global health challenges.  

The combination of mobile (m-) health and big data tools is providing new insights into disease 
prevention, diagnostics and therapies, especially when allied to artificial intelligence, novel sensors, 
smartphones and decision making tools in a market estimated to exceed €26 Bn by 2020 (Albrecht, 
2016). The e-Estonia Portal is an early example of a European model for such systems, based on an 
efficient ‘once only’ principle of data acquisition, allowing multiple interrogation of cloud data using 
standardised formats and a capture-analyse-improve approach.  Other European states are adopting 
similar, common format systems, including several German lände (Liiv, 2017; Becker et al., 2014). 
Direct to consumer tests for DNA ancestry (23andMe, 2017), pharmacogenomic predictions of the 
suitability of particular drugs for individual patients to identify poor metabolisers (Somogyi and 
Phillips, 2017) and predictive genotypic analyses for as little as €100, can all contribute to the m-
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health revolution, but not without careful interpretation of results (Genes-for-Good, 2017). For 
example, two CYP2C19 alleles found in up to 14% of patients, are associated with poor clopidogrel 
(Plavix) metabolism, linked to a high risk of treatment failure for this globally significant medicine 
used to reduce heart attack and stroke risk (Topol & Schork, 2011). This also represents a substantial 
waste of resources, perhaps as much as $1.5 Bn annually. A further area of blossoming personalised 
activity is consumer demand for gut microbiome profiling.  ‘SmartGut’ (µBiome) testing assesses gut 
bacterial diversity from faecal samples, using 16s ribosomal RNA sequencing and comparison with a 
100,000 microbial gut sample database, at a cost of $89 for US health workers.  Interpretable data 
includes information on 26 microbial species with risk factors for disease or long term conditions 
(Costandi, 2013; Shankar, 2017).  ‘Map My Gut’ is a $381 assessment of faecal microbes, allowing 
comparison with 16s rRNA and metagenomics sequence databases and can be commissioned by 
NHS health professionals (Beaumont & Goodrich, 2016). As public understanding of personalised 
genomics rises, the links between microbial diversity and disease are enhanced, assessments such as 
these will become increasingly popular and less expensive.  

There are however many questions relating to personal genomics, ethics and privacy which have not 
yet been fully addressed.  For example, do direct-to-consumer kits sold as part of a €9.6 Bn market 
sector provide adequate privacy protection (Aitken et al., 2016)? A recent survey found that 28% of 
UK consumer genetic tests did not comply with UK Human Genetics Commission guidelines 
(Geoghegan, 2016; Hall et al., 2017).  Questions regarding informed consent, preservation of 
anonymity, data confidentiality, de-/re-identification, ownership of intellectual property arising from 
personal data and the ability to withdraw at any time are not yet fully answered (Krieger et al., 
2016). Whether informed consent also relates to future rather than merely present research is also 
frequently unclear. Without adequate consideration, these questions could adversely impact on risk 
perception, medical decision making, current and future participation in personal genomic testing. 
American survey data suggests that direct to consumer test users learn from their individual results 
and modify their beliefs, particularly when seeking further medical actions relating to large or 
unexpected risks (Aitken et al., 2016; Hall et al., 2017). Whether this applies equally in other 
marketplaces remains unclear.  There is however, a clear need for greater public education around 
the issues related to personal genomic testing, so that medical decision making, can be better 
informed, especially by and for the benefit of patients (Krieger et al., 2016). One area where big 
data, artificial intelligence and transcriptomics, the study of the complete set of RNA sequences 
produced by the genome under particular conditions, are likely to bring substantial benefits is in 
modelling the cancer transcriptome. Using the Swedish national supercomputer, University of 
Stockholm scientists mapped the transcriptomics of 315 genes to 17 major cancer types using RNA, 
protein and outcome data from 8,000 individual patients and clinical metadata, to produce 900,000 
patient survival profiles for personalised patient models (Uhlen et al., 2017).  Findings from this, the 
biggest study of its kind to date, suggest that within tumour variation can be as large as that 
between tumour types, reflecting the heterogeneity of cancers.  An overall tendency for shorter 
survival to be associated with up-regulation (increased transcription) of genes associated with 
mitosis and cell growth was observed, together with down–regulation of cell differentiation 
associated genes. That there is a need for actions and not just words on issues of patient data and 
public health has been highlighted (Parry, 2017), alongside recognition of the need to consider 
implications for other family members, both current and future, in making decisions on what to do 
with personal genomics data.  Inter-generational differences in how insurance companies and 
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pension funds might choose to interpret such data must also be taken into account (Economist, 
2017).  

 

5.CRISPR Genome editing systems take command 

Clustered regularly interspersed short palindromic repeats (CRISPR) have in recent years become a 
ubiquitous system for altering the genome of almost any organism (Zetsche et al., 2015).  In the first 
nine months of 2017, 2,568 publications citing CRISPR were found in PUBMED  and the cumulative 
total of publications or patent applications citing CRISPR exceeded 64,500 since 2002 (Makarova, 
2011).  The diversity of CRISPR systems and the associated CRISPR effector proteins, such as Cas9, 
provide bacterial adaptive immunity, having a defensive role not unlike restriction endonucleases. 
Crucial to their effectiveness is an ability to recognise double stranded DNA, or sometimes RNA, and 
produce precise cuts in a predictable, structured fashion (Makarova, 2011; Makarova et al., 2015, Fig 
5).  A guide RNA can be programmed to match any specific sequence, to which Cas9 is attached.  The 
guide RNA binds to target DNA, following the rules of base pairing, allowing Cas9 to align precisely 
and cut both DNA strands.  The cut DNA can be altered with extra DNA sequences inserted, or the 
target DNA sequence eliminated by deletion (Barrangou & Doudna, 2016; Charpentier, 2015, Fig 5).  
The range of CRISPR-Cas systems are classified by the nature and configuration of their Cas proteins.  
Although other gene editing systems exist, such as Zinc finger nucleases and TALENS (Ruiz de 
Galaretta & Lujambio, 2017), these do not appear to have as much programmable flexibility as 
CRISPR systems.  Class 1 CRISPR systems use several Cas proteins and the CRISPR RNA (crRNA) in 
cleaving DNA, whilst Class 2 systems use a larger single Cas Protein together with crRNA (Makarova 
et al., 2015). Cpf1 for example, is a Class 2 CRISPR system based on a 1,300 amino acid protein from 
Prevotella and Francisella (Zetsche et al., 2017), with a single RNA guided endonuclease, which may 
have wider and simpler applicability in manipulating genomes (Zaidi et al., 2017).   Other Cpf1 
enzymes have been isolated from, amongst others, Acidaminococcus and Lachnospiraceae bacteria 
and shown to be effective in editing human genomes (Zetsche et al., 2015).  

[Figure 5]  

CRISPR systems have been used to reduce HIV-1 retroviral load and virus production 20-fold in 
cultured cells (Zhu et al., 2015), and to excise HIV-1 progenomes in human T-cells (Kaminski et al., 
2016), whilst also being useful in screening for protein domains in disease target genes (Shi et al., 
2015) and in the epigenetic mapping of p53 ‘Guardian Angel’ binding sites (Korkmaz et al., 2016). 
CRISPR-Cas is also being used as a DNA-based search tool for smart antimicrobials, for selective 
eradication of microbial pathogens without risking the development of antibiotic resistance 
(Barrangou & Ousterout, 2017) and has even been used to store static images and a digital movie of 
a galloping mare in the E. coli genome (Shipman et al., 2017). Food based applications of CRISPR 
technology to improve crop plants such as non-browning white mushroom (Agaricus bisporus, Fig 6) 
have been declared as not requiring regulation in the United States (Waltz, 2016), in a similar fashion 
to browning resistant Arctic Apples produced using RNAi and non-browning potatoes silencing up to 
four polyphenol oxidase genes (Waltz, 2015). The EU continues to avoid making a decision on 
whether products of CRISPR use would be categorised as genetically modified or not, even though 
they may reach the commercial marketplace before CRISPR-derived medical drugs (Bomgardner, 
2017).  Public acceptance may however, be uncertain.   
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[Figure 6] 

Gene editing is not, as yet, globally regulated, with at least partially unanswered questions relating 
to off-target effects and mosaicism, where chimaeric products could be counter-productive (Broad 
Institute, 2017).  Issues surrounding consequential liability  and ultimate patent rights are also being 
contested, although the Broad Institute, together with Harvard University and MIT, who have been 
granted US patents on CRISPR, have adopted an enlightened approach to licensing for uses excluding 
human germline editing, tobacco and ‘terminator’ seed type applications, based on ‘inclusive 
innovation’ principles (Luo et al., 2016). Perhaps the best efforts to develop a set of guidelines for 
the application of genome editing technologies has come from the National Academies and 
Wellcome Trust, who concluded that significant scientific progress was needed before genome 
editing could satisfy risk/benefit standards for starting clinical trials for anything beyond treatment 
or prevention of disease or disability (National Academies Press/Wellcome Trust, 2017).  These 
authors, amongst many others, also distinguish between uses for somatic cells in humans and 
potential germline applications, which could affect future generations.    

Whilst earlier research-led studies in human embryo genomic editing using CRISPR proved 
successful, using abnormal and therefore waste embryos, low efficiency and mosaicism proved 
problematic, as expected from animal studies (Chen et al., 2015). By combining CRISPR-Cas9 
treatment with intra-cytoplasmic sperm injection (icsi) in metaphase II of meiosis, scientists from 
Oregon Health & Science University, Salk Institute and University of Korea were able to overcome 
some of these problems.  A team led by Shoukhrat Matalipov, has corrected the dominant 
pathogenic gene mutation MyBPC3 in viable human embryos (Ma et al., 2017).  This mutation, found 
in up to 8% of some Indian populations and affecting up to 1 in 500 adults, leads to hypertrophic 
cardiac myopathy. This is a significant cause of heart failure in young adults (Maron et al., 1995)). 
The combination of icsi and metaphase II editing (Lin et al., 2014) successfully corrected 72% of 
embryos to wild type genotypes with mosaicism limited to 25%, with no evidence of off-target 
effects when these embryos were allowed to reach the blastocyst stage, as assessed by whole 
exome and genomic sequencing (Fig 7). This approach which has significant efficiency, accuracy and 
safety advantages over other methods, has great potential as an adjunct to preimplantation genetic 
diagnosis in the correction of heritable mutations in human embryos.  Sun Yat-sen University 
scientists recently successfully swopped a single adenine-thymine base pair for a guanine-cytosine 
base pair using base editing (Kim et al., 2017), to correct a beta-thalassemia gene defect in human 
embryos (Liang et al., 2017). As with the Oregon study none of these edited embryos were allowed 
to develop beyond the blastocyst stage, meaning that none were implanted.  Despite massive global 
media hype, these studies are as yet a long way from clinical application, but do represent significant 
staging posts on the journey towards human germline editing in years to come.   Faster progress is 
likely around opportunities in understanding more fully how tools like CRISPR work (Stella et al., 
2017) and in agricultural gene editing leading to enhanced crops and animals. For example, CRISPR 
edited pigs produced using the uncoupling protein UCP1 gene from mice lowers fat content and 
increases cold tolerance in modern breeding pig genotypes (Zheng et al., 2017). 

[Figure 7] 
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6. Increasing scope for novel cancer therapies 

Two single-shot chimaeric antigen receptor T-cell (CAR-T) therapies have received US Food & Drug 
Administration approval, as novel cancer therapies move forward.  CAR-T therapies combine an 
antibody derived targeting fragment fused to signalling domains capable of activating T-cells (Gross 
& Eshhar, 2016). Although not without significant risks, Novartis’ CAR-T Kymriah and Kite Pharma’s 
(a recent $10 Bn purchase by Gilead) Yescarta offer hope for certain types of relapsed leukaemia and 
possibly other blood cancers. Yescarta clinical trials showed a 72% therapy response rate, with 51% 
of patients showing complete remission (Rodriguez Fernandez, 2017). Caution is needed when 
considering CAR-T therapies, however, as several deaths due to side effects probably related to 
cytokine storms have been observed, and a number of other CAR-T trials have been abandoned.  
Such single-shot infusions come at a very high price, with Gilead listing Yescarta therapy at €316,000 
and Novartis’ Kymriah priced at €398,000, for blood cancer patients already having had two other 
failed treatment lines.  The development of novel biotech cancer therapies is likely to continue to be 
an emotive, exciting and profitable vista for the future, especially if costs can be reduced as more 
alternatives approach regulatory approval (Sadelain, 2017). Such approaches would seem ideal 
candidates for Innovative Medicines Initiative or Breakthrough Drug support (Innovative Medicines 
Initiative, 2017). 

 

7. The power of partnerships and international collaboration 

Few biotechnological opportunities can be effectively exploited by single countries alone, as the 
complexity and cost of research and development continues to rise and applications increasingly 
require multidisciplinary inputs. This could be in m-health where health-apps have been recognised 
as a global opportunity for the insurance industry (Guest, 2017) or web-based data sharing platforms 
such as MyGene2 which allow families and clinicians seeking molecular diagnoses to share data 
(Karow, 2017). International and public-private partnerships will become increasingly important in 
realising potential such as in understanding the basis of so-called ‘rare’ diseases. These affect less 
than 1 in 2,000 people in the EU28. Collectively however, such rare diseases are actually quite 
common (Boycott et al., 2017).  International partnerships and shared data can improve the 
probability of finding other mutations in the same or similar genes. MyGene2 has accumulated 1,225 
freely available data sets in its first year from 880 clinicians, families and researchers on 723 genes 
including many unique disease gene variants (Karow, 2017).  The International Rare Diseases 
Research Consortium is developing strategies for enabling the diagnosis of all rare genetic diseases 
using common standards, tools and genomic analysis utilities (Parry, 2017; Boycott et al., 2017; 
Global Alliance for Genomics and Health, 2017; Im et al., 2015; Gabrielczyk, 2017). This should 
ultimately improve rapid diagnosis and treatment prospects for rare disease sufferers through 
collaborative partnerships.  Regions seeking opportunities in biotechnology should seek to input 
their unique expertise and where possible facilities and investment to international and public-
private partnerships such as these to create the new knowledge, jobs, economic and societal 
advantage that further progress will bring (Hirschler, 2017; Davies et al., 2017). 

  



10 
 

References 

23andMe (2017) Your Ancestry DNA. www.ancestry.co.uk 

Aitken M, de St Jorre J, Pagliari C et al. (2016) Public responses to the sharing and linkage of health 
data for research purposes: a systematic review and thematic synthesis of qualitative studies. BMC 
Med Ethics 17:73-80 

Albrecht U-V (2016) Chances and risks of mobile health apps. Charismha Report. Hannover Med Sch., 
Germany 

Ameri K, Samurkashian R, Yeghiazarians Y (2017) Three-dimensional bioprinting; emerging 
technology in cardiovascular medicine. Circulation 135: 1281-1283 

Barrango R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat 
Biotech 34:933-941 

Barrangou R, Ousterout DG (2017) Repurposing CRISPR-Cas systems as DNA-based smart 
antimicrobials. Cell & Gene Therapy Insights 3: 63-72 

Basil Leaf Technology Group www.basilleaftech.com/dxter/ 

Bayer (2017) Bayer: Science for a better life. www.bayer.com 

Beaumont M, Goodrich JK (2016) Heritable components of human faecal microbiome are associated 
with visceral fat. Genome Biol. 17:189 

Becker S, Miron-Shatz T, Schumacher N et al. (2014) mHealth 2.0: experiences, possibilities and 
perspectives. JMIR mHealth and uHealth 2(2): e24 

Boeke JD, Church G, Hessel A et al. (2016) The Genome Project-Write. Science 353:126-127 

Bomgardner MM (2017) CRISPR: A new toolbox for better crops. Chemical & Engineering News 24: 
30-34 

Boycott KM, Rath A, Chong JX et al. (2017) International cooperation to enable the diagnosis of all 
rare genetic diseases. Am J  Human Genetics 100: 695-705 

Broad Institute (2017) Principles for Disseminating Scientific Innovations: Information about licensing 
CRISPR genome editing systems. https://www.broadinstitute.org/partnerships/office-strategic-
alliances-and-partnering/information-about-licensing-crispr-genome-edi 

Chan K, Coen M, Hardick J et al. (2016) Low-cost 3D printers enable high-quality and automated 
sample preparation and molecular detection. PLOS ONE 11(6): e0158502 

Chan, PF, Germe, T, Bax, BD, et al. (2017). Thiophene antibacterials that allosterically stabilize DNA-
cleavage complexes with DNA gyrase. PNAS E4492–E4500, doi: 10.1073/pnas.1700721114 

Charpentier E (2015) CRISPR-Cas9: how research on a bacterial RNA-guided mechanism opened new 
perspectives in biotechnology and biomedicine. EMBO Mol Med 7: 363-365 

http://www.ancestry.co.uk/
http://www.basilleaftech.com/dxter/
http://www.bayer.com/
https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi
https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi


11 
 

Chen Y, Zheng Y, Kang Y et al. (2015) Functional disruption of the dystrophin gene in rhesus monkey 
using CRISPR/Cas9 Human Molecular Genetics 24: 3764-3774 

Costandi M (2013) Citizen microbiome.  Nat Biotech 31:90 

Davies S, et al. (2017) Generation Genome. Chief Medical Officer 2016 Annual 
Report. www.gov.uk/government/publications/chief-medical-officer-annual-report-2016-
generation-genome 

De Sousa PA, Steeg R, Wachter E,  et al. (2017)  Rapid establishment of the European Bank for 
induced Pluripotent Stem Cells (EBiSC) - the Hot Start experience.  Stem Cell Research 20: 105–
114. http://www.ebisc.org/ 

Dynamical Biomarkers Group  www.dbg.ncu.edu.tw/ 

Economist (2017) Genetic testing threatens the insurance industry: the genie is out of the bottle. 
Economist 3 Aug. www.economist.com/news/finance-and-economics/21725783-insurers-worry-
about-adverse-selection-insured-worry-about 

Feng S, Tseng D, Di Carlo D et al. (2017) High-throughput and automated diagnosis of antimicrobial 
resistance using a cost-effective cellphone-based micro-plate reader. Sci Rep 6: 39203 

Fern J, Schulman R (2017) Design and characterisation of DNA strand-displacement circuits in serum-
supplemented cell media. ACS Synthetic Biology 6: 1774-1783 

Food & Agriculture Organisation of the United Nations (2016) The State of Food and Agriculture: 
Climate Change and Food Security. UNFAO Rome, Italy. ISBN 978-92-5-109374-0 

Gabrielczyk T (2017) First EU members unveil plans to share patient data.  European Biotechnology 
16: 6-8 

Gartland KMA, Gartland JS (2016) Biotechnology for food security in climate change. Elsevier 
Reference Module in Food Science doi.org/10.1016/B978-0-08-100596-5.03071-7 

Genes-for-Good (2017) www.genesforgood.sph.umich.edu 

Genomics England 100K Genomes Project (2017) www.genomicsengland.co.uk/the-100000-
genomes-project/ 

Geoghegan P. (2016) Over the counter genetic tests raise human rights concerns. The Ferret 
10.08.2016 

Global Alliance for Genomics and Health (GA4GH) (2017) http://genomicsandhealth.org/ 

Gross G, Eshhar Z (2016) Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer 
treatment: counteracting off-tumour toxicities for safe CAR T cell therapy. Ann Rev Pharmacolology 
and Toxicology 56: 59-83 

Guest S (2017) Next big thing in insurance: health apps. European Biotechnology 16:17-21 

http://www.gov.uk/government/publications/chief-medical-officer-annual-report-2016-generation-genome
http://www.gov.uk/government/publications/chief-medical-officer-annual-report-2016-generation-genome
http://www.ebisc.org/
http://www.dbg.ncu.edu.tw/
http://www.economist.com/news/finance-and-economics/21725783-insurers-worry-about-adverse-selection-insured-worry-about
http://www.economist.com/news/finance-and-economics/21725783-insurers-worry-about-adverse-selection-insured-worry-about
http://www.genesforgood.sph.umich.edu/
http://www.genomicsengland.co.uk/the-100000-genomes-project/
http://www.genomicsengland.co.uk/the-100000-genomes-project/
http://genomicsandhealth.org/


12 
 

Hall JA, Gertz R, Amato J et al. (2017) transparency of genetic testing services for ‘health, wellness 
and lifestyle’: analysis of online prepurchase information for UK consumers.  Euro Jnl Human 
Genetics 25:908-917 

Herceg Z, Ghantous A, Wild CP et al. (2017) Roadmap for investigating epigenome deregulation and 
environmental origins of cancer. Intl Journal of Cancer (ahead of print) doi: 10.1002/ijc.31014 

Hirschler B (2017) GSK and Regeneron to mine gene data from 500,000 Britons. Reuters/The Wire 
23.03.17. www.uk.reuters.com/article/uk-health-genes-gsk-regeneron-pharms-idUKKBN16U01O 

Hoeksma J (2017) Genomics to hit mainstream with AI and $100 genome. Digital Health 
02.2017, www.digitalhealth.net/2017/02/100-dollar-genome-possible-with-ai 

Hutchison CA III, Chuang R-Y, Noskov VN et al. (2016) Design and synthesis of a minimal bacterial 
genome. Science 351: aad6253 

Im H, Castro CM, Shao H et al. (2015) digital diffraction analysis enables low-cost molecular 
diagnostics on a smartphone. PNAS 112: 5613-5618 

Innovative Medicines Initiative 2 Joint Undertaking (2017) Europe’s Partnership for Health. 
Innovative Medicines Initiative Highlights 2017. ISBN 978-92-95207-02-8; doi:10.2879/147553 

Jagtap UB, Jadhav JP, Bapat VA et al. (2017) synthetic biology stretching the realms of possibility in 
wine yeast research. Intnl Jnl of Food Microbiology 252: 24-34 

Kaminski R, Chen Y, Fischer T et al. (2016) Elimination of HIV-1 genomes from human T-lymphoid 
cells by CRISPR/Cas9 gene editing.  Sci Rep 6:22555 

Karow J (2017) MyGene2 resource lets families, clinicians searching for molecular diagnosis share 
data. Genome Web Newsletter 18.10.2017 

Kim YB, Komor AC, Levy JM et al. (2017) Increasing the genome-targeting scope and precision of 
base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotech 35: 371-376 

Korkmaz G, Lopes R, Ugalde AP et al. (2016) Functional genetic screens for enhancer elements in the 
human genome using CRISPR-Cas9. Nat Biot 34:192-196 

Krieger JL, Murray F, Scott Roberts J et al. (2016) The impact of personal genomics on risk 
perceptions and medical decision-making. Nat Biotech 34:913-918 

Kuhnemund M, Wei Q, Darai E et al. (2017)Targetted DNA sequencing and in situ mutation analysis 
using mobile phone microscopy. Nat Comms 8:13913 

Kuiper R, van Duin M, van Vliet MH et al. (2015). Prediction of high- and low-risk multiple myeloma 
based on gene expression and the International Staging System. Blood, 126: 1996–
2004. http://doi.org/10.1182/blood-2015-05-644039 

Liang P, Ding C, Sun H et al. (2017) Correction of beta-thalassemia mutant by base editor in human 
embryos. Protein Cell https://doi.org/10.1007/s13238-017-0475-6 

http://www.uk.reuters.com/article/uk-health-genes-gsk-regeneron-pharms-idUKKBN16U01O
http://www.digitalhealth.net/2017/02/100-dollar-genome-possible-with-ai
http://doi.org/10.1182/blood-2015-05-644039


13 
 

Liiv I (2017) Welcome to E-Estonia, the tiny nation that’s leading Europe in digital innovation. The 
Conversation e7446 

Lin S, Staahl BT, Alla RK et al. (2014) Enhanced homology-directed human genome engineering by 
controlled timing of CRISPR/Cas9 delivery. eLife 3: e04766 

Loose M (2017) The potential impact of nanopore sequencing on human genetics. Human Molecular 
Genetics https://doi.org/10.1093/hmg/ddx287 

Luo X, Min Li M, Su B (2016) Application of the genome editing tool CRISPR/Cas9 in non-human 
primates. Zoological Research 37: 241-249 

Ma H, Mart-Gutierrez N, Park S-W et al. (2017) Correction of a pathogenic gene mutation in human 
embryos. Nature 548: 413-419 

Magi A, Semeraro R, Mingrino A et al. (2017) Nanopore sequencing data analysis: state of the art, 
applications and challenges. Briefings in Bioinformatics (June) 1-17 

Makarova KS (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9: 
467-477 

Makarova S, Wolf YI, Alkhnbasi OS et al. (2015) An updated evolutionary classification of CRISPR-Cas 
systems. Nat Rev Microbiol 13: 722-736 

Manheim BS (2016) Regulation of synthetic biooogy under the Nagoya protocol. Nat Biotech 34: 
1104-1105 

Maron BJ, Gardin JM, Flack JM et al. (1995) Prevalence of hypertrophic cardiomyopathy in a general 
population of young adults. Circulation 92: 785-789 

Michaud S (2017) Photonics enabled by 3D printing. Optics Photonics News 1.2.2017 

MOFINA Project (2017). Mobile Filovirus nucleic acid test. http://www.imi.europa.eu/projects-
results/project-factsheets/mofina 

Morrison C, Lhäteenmäki L (2017) Public biotech in 2016-the numbers. Nat Biot 35: 623-629 

NASDAQ Biotech Index (2017) https://en.wikipedia.org/wiki/NASDAQ_Biotechnology_Index 

National Academies Press/Wellcome Trust (2017) Human genome editing: science, ethics and 
governance. National Academies Press doi: 10.17226/24623 

Obama B, (2016) State of the Union Address. www.obamawhitehouse.archives.gov/sotu 

Parry V (2017) Commit to talks on patient data and public health. Nature 548: 137 

PWC (2017) ‘The economic contribution of the UK Life Sciences industry’. Price Waterhouse 
Cooper/ABPI RMI-0071-0217 

Qualcom Tricorder X-Prize (2017) www.tricorderX-Prize.org 

https://doi.org/10.1093/hmg/ddx287
http://www.imi.europa.eu/projects-results/project-factsheets/mofina
http://www.imi.europa.eu/projects-results/project-factsheets/mofina
http://www.obamawhitehouse.archives.gov/sotu
http://www.tricorderx-prize.org/


14 
 

Rathman C, Chueng SD, Yang L, Lee KB (2017) Advanced gene manipulation methods for stem cell 
treatments. Theranostics 7: 2775-2793 

Re A (2017) Synthetic gene expression circuits for designing precision tools in oncology. Front. Cell 
Dev Biol 28 Aug 2017 

Richardson SM, Mitchell La, Stracquadanio G et al. (2017) Design of a synthetic yeast genome. Sci. 
355: 1040-1044 

Rodriguez Fernandez C (2017) The FDA approves a second CAR-T therapy, cheaper than Novartis. 
Labiotech EU Newsletter 19.10.2017 https://labiotech.eu/yescarta-kymriah-car-t-therapy/ 

Ruiz de Galaretta M, Lujambio A (2017) Therapeutic editing of hepatocyte genome in vivo. J 
Hepatology 67: 818-828 

Sadelain M (2017) chimeric antigen receptors: a paradigm shift in immunotherapy. Ann Rev Cancer 
Biology 1: 447-466 

Sanger Institute/Wellcome Trust (2017) Helping apprentices lead the field in big 
data. http://www.sanger.ac.uk/news/view/helping-apprentices-lead-field-big-data 

Service RF (2016) Synthetic microbe lives with fewer than 500 genes. Sci 351: 1380-1381 

Shankar J (2017) Gut microbiome profiling tests propelled by customer demand. Nat Biotech 35:9 

Shi J, Wang E, Milazzo JP et al. (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of 
protein domains. Nat Biotech 33:661-667 

Shipman S, Nivala J, Macklis JD et al. (2017) CRISPR-Cas encoding of a digital movie into the genomes 
of a population of living bacteria. Nature 547: 345-349 

Somogyi AA, Phillips E (2017) Genomic testing as a tool to optimise drug therapy.  Australian 
Prescriber 40:101-104 

Stella S, Alcon P, Montoya G (2017) Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army 
knives of genome editing. Nature Structural & Molecular Biology (2017) doi:10.1038/nsmb.3486 

SynbiCITE (2017) UK synthetic biology start up survey 2017. http://www.synbicite.com/news-
events/materials/uk-Synthetic-biology-start-up-survey-2017/ 

Thadani T (2017) Did you take your pill? Ingestible sensors can tell. San Francisco Chronicle 13 
June. http://www.sfchronicle.com/business/article/Did-you-take-your-pill-Ingestible-sensors-can-
11206980.php?cmpid=gsa-sfgate-result 

Topol EJ, Schork NJ (2011) Catapulting clopidogrel pharmacogenomics forward. Nature Medicine 17: 
40-41 

Uhlen M, Zhang C, Lee S et al. (2017) A pathology atlas of the human cancer transcriptome. Science 
Aug 18; 357(6352) doi: 10.1126/science.aan2507 

https://labiotech.eu/yescarta-kymriah-car-t-therapy/
http://www.sanger.ac.uk/news/view/helping-apprentices-lead-field-big-data
http://www.sfchronicle.com/business/article/Did-you-take-your-pill-Ingestible-sensors-can-11206980.php?cmpid=gsa-sfgate-result
http://www.sfchronicle.com/business/article/Did-you-take-your-pill-Ingestible-sensors-can-11206980.php?cmpid=gsa-sfgate-result


15 
 

University Medical Centre Utrecht (2014). 3D-printed skull implanted into 
patient. http://www.umcutrecht.nl/en/Research/News/3D-printed-skull-implanted-in-patient 

Waltz E (2015) Non-browning GM apple cleared for market. Nat Biotech 33: 326-327 

Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 14.04.2016 

Wang B, Xie Y, Zhou S (2017) Reversible data hiding based on DNA Biocomputing. Computational 
Intelligence and Neuroscience 2017: 7276084 

Wang W, Yao L, Cheng C-Y et al. (2017) Harnessing the hygroscopic and biofluorescent behaviors of 
genetically tractable microbial cells to design biohybrid wearables. Sci Adv 3:e1601984 

Withers I, (2017) ‘Welcome to the genomic era…’  Sunday Telegraph 09.07.17, Business 5-6 

World Health Organisation (2017) Global Priority List of Antibiotic-Resistant 
Bacteria.  www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-
ET_NM_WHO.pdf 

Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: A new tool for plant genome editing. Trends 
Plant Science 22: 550-553 

Zetsche B, Gootenberg JS, Abudayyeh OO et al. (2015) Cpf1 is a single RNA-guided endonuclease of a 
Class 2 CRISPR-Cas system. Cell 163:759-771 

Zetsche B, Strecker J, Abudayyeh OO et al. (2017) A survey of genome editing activity for 16 Cpf1 
orthologs. bioRxiv 4 May. Doi: https://doi.org/10.1101/134015 

Zheng Q, Lin J, Huang J et al. (2017) Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose 
tissue of pigs decreases fat deposition and improves thermogenic capacity. PNAS Online 23 Oct 2017 
doi: 10.1073/pnas.1707853114 

Zhu W, Lei R, Le Duff Y et al. (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. 
Retrovirol. 12:22  

 

  

http://www.umcutrecht.nl/en/Research/News/3D-printed-skull-implanted-in-patient
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
https://doi.org/10.1101/134015


16 
 

Table 1 JCVI Syn 3.0 Gene Functions 

Function Genes 
Gene Expression 41% 
Cell Membranes 18% 

Cytosolic Metabolism 17% 
Genome Preservation 7% 

Unknown Function 17% 
 

Source: Hutchison et al., 2016; Service, 2016 
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Table 2 Application Areas for Synthetic Biology 

Application Example Refs 
Gene Circuits Assembly Strand displacement switches in 

serum-free media  
Fern & 

Schuman, 2017; 
Re, 2017 

Synthetic Theranostics Stem cell manipulations  Rathman et al. 
2017 

Alginate Bead Delivery Systems Protection against liver failure in 
mice  

Service, 2016 

Novel Flavours, Food and Drinks ‘Raspberry’ ketones from wine 
yeasts  

Jagtap et al., 
2017 

Identity Preservation Reversible data hiding using DNA 
computing  

Wang et al., 
2017 

Precision Oncology Tailored tumour diagnosis and 
gene based therapy  

Re, 2017 
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Figure 1 Humira (left) and Revlimid (right) structures. Source: Wikiwand 
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Figure 2 The Qualcom Tricorder 2017 X-Prize Winning DxtER portable diagnostic device 

Source: X-Prize.org 

 

 

 

 

 

Figure 3 iScope smartphone mobile device  

Source: NIH 
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Figure 4 Illumina 8 channel sequencing flow cell 

Source: Illumina.org 
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Figure 5 CRISPR structure and function 
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Figure 6 The common white mushroom (Agaricus bisporus) has been gene-edited with CRISPR to 
reduce browning. 

Source: USDA 

 

 

 

 

 

Figure 7 Human blastocyst 

Source: Open i- Open Access Pub Med Central 
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