9,615 research outputs found

    Intelligent perturbation algorithms to space scheduling optimization

    Get PDF
    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed

    SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions

    Get PDF
    The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project

    Multiobjective Tactical Planning under Uncertainty for Air Traffic Flow and Capacity Management

    Get PDF
    We investigate a method to deal with congestion of sectors and delays in the tactical phase of air traffic flow and capacity management. It relies on temporal objectives given for every point of the flight plans and shared among the controllers in order to create a collaborative environment. This would enhance the transition from the network view of the flow management to the local view of air traffic control. Uncertainty is modeled at the trajectory level with temporal information on the boundary points of the crossed sectors and then, we infer the probabilistic occupancy count. Therefore, we can model the accuracy of the trajectory prediction in the optimization process in order to fix some safety margins. On the one hand, more accurate is our prediction; more efficient will be the proposed solutions, because of the tighter safety margins. On the other hand, when uncertainty is not negligible, the proposed solutions will be more robust to disruptions. Furthermore, a multiobjective algorithm is used to find the tradeoff between the delays and congestion, which are antagonist in airspace with high traffic density. The flow management position can choose manually, or automatically with a preference-based algorithm, the adequate solution. This method is tested against two instances, one with 10 flights and 5 sectors and one with 300 flights and 16 sectors.Comment: IEEE Congress on Evolutionary Computation (2013). arXiv admin note: substantial text overlap with arXiv:1309.391

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Online Learning for Ground Trajectory Prediction

    Get PDF
    This paper presents a model based on an hybrid system to numerically simulate the climbing phase of an aircraft. This model is then used within a trajectory prediction tool. Finally, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization algorithm is used to tune five selected parameters, and thus improve the accuracy of the model. Incorporated within a trajectory prediction tool, this model can be used to derive the order of magnitude of the prediction error over time, and thus the domain of validity of the trajectory prediction. A first validation experiment of the proposed model is based on the errors along time for a one-time trajectory prediction at the take off of the flight with respect to the default values of the theoretical BADA model. This experiment, assuming complete information, also shows the limit of the model. A second experiment part presents an on-line trajectory prediction, in which the prediction is continuously updated based on the current aircraft position. This approach raises several issues, for which improvements of the basic model are proposed, and the resulting trajectory prediction tool shows statistically significantly more accurate results than those of the default model.Comment: SESAR 2nd Innovation Days (2012

    Automatic MGA trajectory planning with a modified ant colony optimization algorithm

    Get PDF
    This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness

    MGA trajectory planning with an ACO-inspired algorithm

    Get PDF
    Given a set of celestial bodies, the problem of finding an optimal sequence of gravity assist manoeuvres, deep space manoeuvres (DSM) and transfer arcs connecting two or more bodies in the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem, and its automated solution would greatly improve the assessment of multiple alternative mission options in a shorter time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the planetary sequence for a multiple gravity assist trajectory and a good estimation of the optimality of the associated trajectories. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one DSM. The problem of matching the position of the planet at the time of arrival is solved by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. By using this model, for each departure date we can generate a full tree of possible transfers from departure to destination. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select one of the remaining feasible directions. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter, and solutions are compared to those found through traditional genetic-algorithm-based techniques
    • …
    corecore