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ABSTRACT 

This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including 

the sequence of planetary encounters. The problem is treated as planning and scheduling of events, 

such that the original mixed combinatorial-continuous problem is discretised and converted into a 

purely discrete problem with a finite number of states. We propose the use of a two-dimensional 

trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one 

deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look 

for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn  

and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its 

effectiveness. 

1. INTRODUCTION 

In the literature on multiple gravity assist trajectories (MGA), their automatic complete design (i.e. 

the definition of an optimal sequence of planetary encounters and the definition of one or more 

locally optimal trajectories for each sequence) has been approached with several different 

techniques. All of them can be classified in two main categories: two level approaches and 

integrated approaches. 

Two-level approaches split the problem into two sub-problems which are solved one after the other:  

firstly, a sequence (or a set of sequences) is selected, by using a simplified, low-fidelity model for 

representing the trajectory [1]; then, at the second level, the optimal trajectory can be searched for, 

within the set of selected sequences only [2], using full model. Although the number of possible 

planetary sequences is finite, it can be very high. Furthermore, for each sequence, there is an infinite 

variety of possible trajectories. The issue with two-level approaches is that if the low-fidelity model 

is not accurate enough, either some good sequences are discarded, or many of the retained ones can 

result to be actually not interesting. 

As opposed to the two-level approaches, integrated approaches define a mixed integer-continuous 

optimization problem, which tackles both the search of the sequence and the optimization of the 

trajectory, using a single model, at the same time [3]. This kind of problem is known in literature as 

a hybrid optimization problem [4]. The main difficulty with integrated approaches is that a variation 

of even a single celestial body in the sequence corresponds to a substantially different set of 

trajectories. In addition, a variation of the length of the sequence implies varying the number of legs 

of the trajectory, and thus the total length of the solution vector. 

The automatic design of a trajectory with discrete events was recently formulated as a hybrid 

optimal control problem [5], and a solution was proposed by Conway et al. [6] with a two level 

approach based on genetic algorithms. 

Here we propose to formulate the complete automated design of a multiple gravity assist trajectory 

as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the 

planetary sequence for a multiple gravity assist trajectory and a good estimation of the optimality of 

the associated trajectories. A specific MGA trajectory model was developed to automatically 

schedule the events, if a plan is available, and to provide a good estimation of the feasibility and 

quality of a trajectory. A novel algorithm, partially inspired by the Ant Colony Optimization (ACO) 

paradigm [7], was devised to explore the space of possible plans. ACO was originally created to 

solve the Travelling Salesman Problem, and later successfully applied to a number of other discrete 



optimization problems. Here the original idea behind ACO was elaborated to solve the planning 

problem associated to the design of MGA trajectories. In the literature, some ACO-derived meta-

heuristics exist for the specific solution of different scheduling problems. In particular, Merkle et al. 

[8] proposed to apply ACO to the solution of the Resource-Constrained Project Scheduling 

Problem, while Blum, in his work [9], suggested the hybridization of Ant Colony Optimization with 

a probabilistic version of Beam Search for the solution of the Open Shop Scheduling problem. 

The paper is structured as follows: at first we will present the trajectory model and the integrated 

scheduling of the events; then the novel ACO-based algorithm and how the plan is constructed; 

finally, two case studies will demonstrate the effectiveness of the proposed approach at solving 

known space trajectory design problems. 

2. TRAJECTORY MODEL 

The trajectory model is devised having in mind the planning and scheduling process and the 

planning algorithm fully exploits its characteristics. 

The model is based on a two dimensional linked conic approximation of the trajectory and planar 

orbits of the planets. The trajectory is composed of a sequence of planar conic arcs linked together 

through discrete, instantaneous events. In particular, the sequence is continuous in position and 

piecewise continuous in velocity, i.e. each event introduces a discontinuity in the velocity of the 

spacecraft but not in its position. The discrete events can be: launch, deep space manoeuvre (DSM), 

swing-by, and brake. 

A final assumption of the present implementation is that all the orbits of both spacecraft and 

celestial bodies are direct, thus no retrograde orbits are allowed. 

In summary, the proposed trajectory model is composed of: a launch from the departure celestial 

body; a series of deep space flight legs connected through gravity assist manoeuvres (modelled 

through a linked-conic approximation); an arrival at a target celestial body. Each one of these basic 

components will be explained in the following. 

2.1 Launch 

The launch event is modelled as an instantaneous change of the velocity of the spacecraft with 

respect to the departure planet. The velocity change is given in terms of modulus 0v  (which depends 

on the capabilities of the launcher) and in-plane direction, specified through the angle 0ϕ , measured 

counter clockwise with respect to the planet’s orbital velocity vector 
P

v  at time of launch 0t . 

0t  and 0ϕ  are free parameters of the model, while launch velocity modulus 0v  will be used to target 

the next planetary encounter and solve the phasing problem, as explained in section 2.4. 

2.2 Swing-by 

Gravity assist manoeuvres, or swing-bys, are modelled as instantaneous changes of the velocity 

vector of the spacecraft due solely to the gravity field of the planet.  

Given the relative velocity vector −

∞v  before the swing-by, the physical properties of unperturbed 

hyperbolic orbital motion prescribe that v v v
+ −

∞ ∞ ∞= = , which means that the modulus of the 

outgoing velocity v
+

∞  at infinity is known. Its direction can be computed considering the anomaly of 

the outgoing asymptote: 
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Here, 
P

µ  is the gravity constant of the planet, and 
p

r  is the radius of the pericentre of the 

hyperbola. The value of 
p

r  can be used to control the magnitude of the deflection angle 

( )2δ θ π∞= ± −  of the incoming velocity and is limited to be above the radius of the planet, 
P

R , to 

avoid a collision, or to be above the atmosphere to avoid a re-entry. The direction of deflection is 

determined using a signed radius of pericentre 
ps

r , such that 
p ps

r r=  and ( ) ( )sgn sgn
ps

rδ =  . 

Once δ  is computed, the relative outgoing velocity is calculated by rotating −

∞v  in the plane of an 

angle δ . As for the launch velocity magnitude, the radius of pericentre 
ps

r  is tuned to meet the 

terminal conditions of the transfer leg following the swing-by. 

2.3 Deep space flight leg 

Each deep space flight leg starts at a departure planet 
i

P  and ends at an arrival planet 1i
P+ , and is 

made of two conic arcs linked, at a point 
i

M , through a single discrete event. The event is an 

instantaneous change in the heliocentric velocity vector of the spacecraft, or deep space manoeuvre, 

due to an ignition of the engines. In this model, we assume that the DSM is performed either at the 

apocentre or pericentre of the conic arc preceding the manoeuvre. In addition, the change in 

velocity is tangential to that arc. 

For clarity, in the remainder of this section, we neglect the subscript index i of the leg in all the 

variables. 

First arc 

Let us assume that the spacecraft is at a given planet 1P  at time 1t . Its position coincides with that of 

the planet, which is known from the 2D ephemeris. The heliocentric velocity of the spacecraft, 

instead, depends on the preceding launch or swing-by event. 

If the transfer leg contains a DSM, the first step is to find the position M and time 
DSM

t  of the deep 

space manoeuvre. The position can either be the pericentre or the apocentre, according to a binary 

parameter /p a
f . The true anomaly of the DSM is 0

DSM
θ =  if / 0

p a
f =  (pericentre) or 

DSM
θ π=  if 

/ 1
p a

f =  (apocentre). 

The time of the DSM 
DSM

t  is found by using the time law. The parameter ,1rev
n  is used to count the 

number of full revolutions before the deep space manoeuvre. 

At M, the DSM is applied tangentially, being the free parameter 
DSM

m  the magnitude and direction 

of the DSM: if 
DSM

m  is positive, the thrust is along the velocity of the spacecraft, otherwise it is 

against the velocity of the spacecraft. The complete state of the spacecraft at the beginning of the 

second arc is thus fully determined. 

If the leg does not contain any DSM, i.e. 0
DSM

m = , the first arc is propagated up to a fictitious point 

M, defined by adding an angle θ∆  to the initial true anomaly of the spacecraft. The quantity θ∆  is a 

small angular displacement, larger than the machine numerical precision, but small enough to allow 

for the modelling of very short transfer legs. For this work, 0.3 radθ∆ =  was chosen. The time 
M

t  

at M is found by solving the time law. Parameters /p a
f  and ,1rev

n  are not used. 

Second arc 

The second arc starts at point M and is propagated until the intersection of the orbit of planet 2P . 

Given the orbital parameters of the spacecraft at M, and the orbital parameters of planet 2P , the task 

is to find the intersection between the two coplanar orbits. If there are no intersections, the leg is 



unfeasible, and the initial conditions of the leg, or its parameters, have to be changed. Otherwise, 

one of the two intersections is selected according to the binary parameter 1/2f : let us call int ,θ θ  the 

true anomalies of the selected intersection, respectively along the orbit of the spacecraft and of the 

planet. From intθ , the time 
int

t  at which the spacecraft intersects 2P ’s orbit can be computed with 

the time law, and considering the integer parameter ,2rev
n  counting the number of full revolutions 

between the point M and the orbital intersection. Fig. 1 illustrates a complete leg, including a DSM. 

2.4 Solution of the Phasing Problem 

In order to perform a gravity assist manoeuvre or a planetary capture, the terminal position of the 

spacecraft has to match that of the planet. However, at intersection time 
int

t , planet 2P  is at true 

anomaly 
2P

θ , which is generally different from θ . The time of intersection is a function of the 

states at the beginning of the leg, which ultimately depend on 0v  or 
ps

r  depending on the starting 

event. Therefore, if we introduce the parameter λ , such that 
ps

rλ ≡  if swing-by, or 0vλ ≡  if 

launch. 

The true anomalies of the intersection point and of the planet can be expressed as ( )θ λ  and 

( )
2Pθ λ . Matching the position of the planet with that of the intersection point at time 

int
t  (also 

known as the phasing problem), then, translates into finding a value *=λ λ  that satisfies the equation 

(see Fig. 1 again): 

 ( ) ( ) ( )
2

* * * 0
P

θ λ θ λ θ λ∆ ≡ − =  (2) 

Fig. 2 (a) and (b) represent the function ( )θ λ∆  for different transfer cases. The case depicted in 

Fig. 2 (a) shows that the function ( )θ λ∆  is continuous, smooth and monotonic over the range of 

interest of λ . Hence, the phasing problem has only one solution. This solution can be found with a 

simple Newton-Raphson method in one dimension. However, when a resonant transfer is 

considered, as in Fig. 2 (b), ( )θ λ∆  is discontinuous and multiple zeros exist. Each zero 

corresponds to a different resonance with the planet (and of course a different transfer time). Since 

there is no easy way, at a given transfer, to prefer one value of λ∗  over another, all the solutions 

need to be retained for the evaluation of the following transfers. 

In ACO-MGA, the search for the zeros of the function ( )θ λ∆  is performed with the Brent method. 

A set of starting points, defining multiple intervals for the bisection method, needs to be provided to 

initialize the Brent method and are specified case by case. 

Note that in the example in Fig. 2, the parameter λ  is the radius of pericentre of the swing-by 
ps

r . It 

is possible to show that the same behaviour of ( )θ λ∆  holds for a leg starting with launch. It is also 

worth noting that for some values of λ , ( )θ λ∆  is not defined: this is the case when there is no 

possible orbit intersection, or when 
ps P

r R< . 

 



 
Fig. 1. Representation of a complete leg, starting from 1P  with either a swing-by 

or launch, with a DSM and possibly multiple revolutions. The phasing problem at 

P2 is not solved, as 2P  at the time of intersection is not at the intersection point. 
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Fig. 2. ( )ps
rθ∆  for: (a) Venus to Mercury leg following a swing-by of Venus. (b) 

Venus to Venus resonant leg following a swing-by of Venus. 

2.5 Complete trajectory 

A complete trajectory is made of a sequence of transfer legs connecting 1
P

n +  celestial bodies 

0 1, ,
Pn

P P P  K . The trajectory starts from 0P  at time 0t  with a launch event characterized by a 

departure angle 0ϕ . The first leg goes from 0P  to 1P , then a number of swing-bys and interplanetary 

legs follow until the final planet 
Pn

P . Thus, a complete trajectory with 1
P

n +  planets has 
P

n  legs, 

and 1
P

n −  swing-bys. 

The solution of Eq. (2) provides a complete scheduling of the trajectory given the initial time 0t  and 

the five parameters ,1 ,2 / 1/2, , , ,
DSM rev rev p a i

m n n f f    for every leg 0,..., 1
P

i n= − . 

Since these five parameters fully characterize all possible legs from a planet 
i

P  to a planet 1i
P+ , they 

are said to define a type of transfer. Conversely, because of the multiplicity of the zeros of Eq. (2), 

each transfer corresponds to a set of legs. 

Hence, assigning a value to 0t , 0ϕ , 
i

P , 
Pn

P , ,1 ,2 / 1/2, , , ,
DSM rev rev p a i

m n n f f    for  0,..., 1
P

i n= −  creates 

a plan, or solution, which is a tree structure in which every branch, from root to leaves, is a 

trajectory. Each trajectory is characterised by a different combination of *

0v  and *

pr  for each leg.  

Swing-by 
or 

departure 

Selected intersection 
point with planetary 

orbit 

Destination 
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planetary orbit 

1P

2P

nrev,2 complete revolutions 
before interception 

Tangential DSM ∆v 
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The entire tree is a complete set of trajectories from 0P  to 
Pn

P  and represents a solution of the MGA 

trajectory planning problem. Thus, a plan is fully defined by assigning a value to the parameters for 

all 0,..., 1
P

i n= − . 

An algorithm keeps track of all the trajectories in the tree, and yields a list containing all the 

possible conditions of arrival at the last reachable planet. If no trajectory in the set associated to leg 

i satisfies the phasing problem, then planet 1i +  cannot be reached and the algorithm terminates. A 

partial or incomplete plan is the set of parameters sufficient to describe a solution up to leg i. 

Furthermore, no solution to the phasing problem exists at leg i, the plan is broken and the solution is 

said to be infeasible at leg i. Furthermore, an upper bound on the time of flight of the entire 

trajectory, or of some legs, is introduced. Trajectories that exceed the total or partial time of flight 

constraint are discarded from the list. The information of infeasibility at a given transfer will be 

used to fill in a taboo list of broken or impracticable solutions. 

For each of the trajectories found, the model computes: the sum of all the deep space manoeuvres, 

or total v∆  and the launch excess velocity, 0v ; the relative velocity at the last planet, v∞ ; the total 

time of flight of the trajectory, T. 

The whole model was implemented in ANSI C and compiled as a MEX-file for interfacing with 

MATLAB. 

3. THE ACO-MGA ALGORITHM 

The model described in the previous section yields a set of scheduled trajectories provided that a 

complete or partial plan is available. In this section, we present an optimization procedure, based on 

the ant colony optimization paradigm, to explore the space of possible plans. 

At first, the continuous space of the real parameters 0t , 0ϕ  and DSM i
m  is reduced to a finite set of 

states. Then, the optimization algorithm, called ACO-MGA in the following, operates a search in 

the finite space of possible values for the design parameters. A complete description of the 

algorithm ACO-MGA follows. 

3.1 Solution coding 

In ACO-MGA, a solution is coded through a string of discrete values assigned to the parameters. 

However, the set of parameters discussed before is inhomogeneous, as it is made of real, integer and 

binary variables. In particular, 0t , 0ϕ  and DSM i
m  are real continuous variables and need to be 

properly discretised. In the present implementation of ACO-MGA, the values of the departure date 

0t  and the departure angle 0ϕ , are assumed to be pre-assigned and therefore the two parameters are 

removed from the list of the variables. The rationale behind this choice is that, although the launch 

date has a great impact on the resulting trajectory, if an algorithm exists that is able to efficiently 

generate a complete plan for a given launch date, a systematic search can be performed along the 

launch window, with a given time step. The angle 0ϕ  on the other hand can very often be estimated 

depending on the mission [2]. 

Using the additional assumptions on 0t , 0ϕ , and fixing 0P , each solution can be coded using a 

vector s  of positive integers. The vector has 2
legs

n  components. Each pair of consecutive 

components encodes all the parameters necessary to characterise one leg of the solution. The first 

element of the pair is encoding the identification number of the target planet for the corresponding 

leg according to the following procedure: an ordered list ,P i
q  containing all the planets available as 

a target for each leg i is predefined (and fixed); then, if ( )2 1 1i
k s

− +
= , the target planet is the k

th
 entry 

in the list ,P i
q , i.e. ,( , )P i k

q . 



The second element of the pair is the row index of a matrix 
i

G  containing all possible combinations 

of indexes identifying the elements of the five sets: 1, 2, 3, 4, 5,, , , ,
i i i i i

q q q q q . These sets contain the 

possible values for each one of the five parameters identifying the type of transfer at leg i. Thus, 

each row of 
i

G  is a vector representing a different type of transfer. The parameters for the j
th

 type 

of transfer for the i
th

 leg can be obtained as follows: 

 ( ) ( ) ( ) ( ) ( )1 2 43 5
,1 ,2 / 1/21, , 2, , 4, ,3, , 5, ,

; ; ; ;
DSM rev rev p ai k i k i ki k i ki ii i i

m q n q n q f q f q= = = = =  

where ( ), ,
, 1,...,5

l i j l
k G l= = . 

3.2 The taboo and feasible lists 

A transfer from planet 
i

P  to planet 1i
P+  can be feasible or unfeasible, for the same set of parameters, 

depending on all the preceding legs from 1 to ( )1i − . For this reason, when an infeasible leg is 

generated, it is necessary to store the path that led to that infeasible leg. Thus, all the parameters 

characterising the partial solution up to 1i
P+  are stored in a taboo list. 

In particular, if the problem involves 
P

n  legs, then the same number of taboo lists are used. The 

taboo list of leg i contains all the partial solutions which are unfeasible at leg i (but feasible for legs 

1 1i −K ). Each taboo list is stored in a matrix, which has an arbitrary number of rows and 2i  

columns. 

Dual to the list of taboo partial solutions, the feasible list stores all the solutions, which are 

completely feasible, i.e. reach 
Pn

P . This is once more a matrix with an arbitrary number of rows and 

2
P

n  columns. 

Since each solution contained in the feasible list is complete, then it is possible to associate an 

objective value to each one of them. A scalar value can be computed identifying the value of the 

trajectories. In the following test cases, we will use, as objective value, the v∞  and a combination of 

v∞  and T. Note that, since, in general, there is more than one trajectory for a given solution (i.e. for 

a given set of free design variables), the objective value of a solution is given by the best trajectory 

value. 

3.3 Search engine 

The search space is organised as an acyclic oriented tree. Each branch of the tree represents a leg of 

the problem, while each node (or leave) represents a different destination planet and type of 

transfer. A population of virtual ants are dispatched to explore the tree, searching for an optimal 

solution. 

The search runs for a given number of iterations ,iter max
n , or until a maximum number of objective 

function evaluations ,eval max
n  has been reached. An evaluation is a call to the model, in order to 

compute the objective value associated to a given solution. 

Each iteration consists of two steps: first, a solution generation step, and then a solution evaluation 

step. In the former step, the ants incrementally compose a set of solution vectors, while the latter 

invokes the trajectory model to assess the feasibility and the objective value of each generated 

solution. When the main loop of the search stops, the feasible list contains all the solutions, which 

were found feasible, with their corresponding objective value. The solutions are then sorted 

according to their objective value. 



3.4 Solution generation 

The tree is simultaneously explored, from root to leaves, by m ants. At each iteration, each one of 

the m ants explores the tree independently of the others, but taking into account the information 

collected by all the ants at the previous iterations, through the feasible list and the taboo lists. As an 

ant moves along a branch, it progressively composes a complete solution. At first, each ant assigns 

a value to the odd entries of the solution vector, i.e. composes the sequence of planetary encounters, 

then it assigns a value to the even entries of the solution vector, i.e. the parameters defining the type 

of transfer for each legs. 

Planetary sequence generation 

Each ant composes a solution adding one planet at the time. As the departure planet is given, the ant 

has only to choose the destination planet for each leg. The choice is made probabilistically by 

picking from the list ,P i
q . The selection depends on the discrete probability distribution vector ,P i

d  

(one for every leg) which contains the probability associated to each body in ,P i
q . Every time an ant 

is at leg i, the probability distribution vector is reset to [ ], 1 1 1
T

P i
=d K , i.e. all the planets have 

equal probability to be chosen, and the ant sweeps the entire list ,P i
q  substituting the identification 

number of each element in ,P i
q  into the i

th
 odd component of the partial solution vector s . Then, the 

feasible list is searched, for all the solutions which have a (partial) planetary sequence which 

matches the one in s . Say that the j
th

 element of ,P i
q  is added to s , and the resulting partial 

sequence in s  matches the partial sequence of the l
th

 solution in the feasible lists, then the 

probability ( ), ,P i j
d  associated to the j

th
 element of ,P i

q  is increased as follows: 

 ( ) ( ), , , ,

1
planetP i j P i j

l

d d w
y

← +  (3) 

The amount of probability which is added depends on the objective value 
l

y  of the matching 

solution in the feasible list, and on the weight 
planet

w . Thus, the probability of choosing the j
th

 planet 

increases according to how many times it generates a promising sequence (leading to a feasible 

solution), to the value of the feasible solution itself, and to the parameter 
planet

w . 

This mechanism is analogous to the pheromone deposition of standard ACO and aims at driving the 

search of the ants toward planetary sequences, which previously led to good solutions. In fact, those 

planets which generate (partial) sequences that appear either frequently in the feasible list, or rarely, 

but with low objective function are selected with higher probability. On the other hand, the 

probability of selecting other planets remains positive, such that one or more ants can 

probabilistically choose a planet that generates an undiscovered sequence. Note that, if the feasible 

list is empty, then all the planets have the same probability to be selected. 

The parameter 
planet

w  controls the learning rate of the ants. A low value of 
planet

w  will make the 

term 
planet l

w y  small, and thus the probability distribution will not change much, even if the 

solution appears repeatedly in the feasible list, or with low values of y . Thus, a relatively low value 

of 
planet

w  will favour a global exploration of the search space, while a high value of 
planet

w  will 

greatly increase the probability of choosing a planet which led to a feasible sequence. If the value of 

planet
w  is high enough with respect to a reference objective value, then the ant will preferably choose 



a feasible sequence, rather than trying a new one, which has not proven to be feasible. For these 

reasons, we can say that low values of 
planet

w  will favour local exploration of planetary sequences. 

The procedure iterates for all the legs of the problem, and for all the ants. At the end, all the odd 

entries of the temporary solution s  contain a target planet and the planetary sequence is complete. 

The next step is to find the type of transfers for each leg, thus filling the even entries of s  and 

complete the solution. 

Type of transfer generation 

Once a ant has composed a temporary solution s , containing the planetary sequence, it proceeds 

assigning values to the even components. Similarly to the planet sequence generation, for each leg, 

all the available types of transfer are assigned, one at the time, to the temporary solution s . A vector 

s  for which a value is assigned to both the odd and even component up to leg i represents a partial 

solution. Similarly to before, a vector ,t i
d  contains the probability distribution associated to the 

rows of the matrix 
i

G . For each new partial solution, at first the taboo list is checked. If the partial 

solution appears in the taboo list, then it means that this solution will be unfeasible, regardless of 

the way the solution is completed. The probability of the type of transfer associated to that sequence 

is set to zero, to avoid the future selection of this type of transfer. If the partial solution does not 

appear in the taboo list, the feasible list is searched for any matching partial solution. For every 

match found, the probability distribution ,t i
d  is modified in an analogous way as in Eq. (3). The 

weighing 
type

w  is introduced, with analogous meaning to 
planet

w , to regulate the learning rate of the 

type of transfer. At the end of the solution generation step, the solution s  is either discarded 

(infeasible) or complete. Once all the ants completed their exploration, the result is a set S  of 

solutions (less than or equal to the number of ants m) to be evaluated. 

3.5 Solution evaluation 

Once a set of solutions S  has been generated by the ants, each solution has to be evaluated to assess 

its feasibility and its objective value. This is done by calling the trajectory model. 

Solutions in S  are evaluated one by one, by means of the model presented before. The trajectory 

model can be seen as a function which takes a solution vector s  as an input, together with 0 0 0, ,t Pϕ , 

and gives as an output either an objective value y (if the solution is feasible) or the leg 
u

l  at which 

the solution becomes unfeasible. If the solution is feasible, it is stored in the feasible list and 0
u

l = , 

otherwise it is stored in the 
u

l
th

 taboo list. 

4. CASE STUDIES 

The proposed optimisation method was applied to two case studies inspired by the BepiColombo  

[10] and Cassini [11] missions. 

Since the launch date is not taken into account in the optimisation, in the following tests it is 

considered fixed. In a real mission design case, where the launch date is to be determined, the entire 

launch window can be discretised with a given time step, and a systematic scan of several dates 

within the whole launch window should be run. The launch direction 0α  is also kept fixed in these 

tests, although it is easy to find heuristics for determining the value of this parameter, or discretise it 

and include it in the optimisation process as an additional variable. 

ACO-MGA was tested against genetic algorithms, which are known to perform well on these kinds 

of problems. In particular, it was chosen to use the genetic algorithm implemented in MATLAB
®

 

within the Genetic Algorithm and Direct Search Toolbox™ (GATBX), and the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) [12]. Settings for all the optimisers will be specified for each 



test case. While NSGA-II can deal with discrete variables, GATBX only uses real variables: a 

wrapper of the objective function was coded to round the continuous solution vector to the closest 

integer. 

Due to the stochastic nature of the methods involved in the comparative tests, all the algorithms 

were run for 100 times. The performance index used to compare the ACO-MGA against the other 

global optimisers is the success rate: according to the theory developed in [13], 100 repetitions give 

an error in the determination for the exact success rate of less than 6%.  

Some preliminary tests showed that the best performances of ACO-MGA are achieved if the 

algorithm is run in 2 steps, using different sets of parameters. In particular, in the first step, the 

weights ,
planet type

w w  are set to 0. Remembering Eq. (3) this choice translates into an initial pure 

random search. In the second step, weights are set to non-null values, to explore around the feasible 

solutions found. 

This two-step procedure can be explained in the following way. The first step allows a random 

sampling of the solution space, with the aim of finding a good number of feasible solutions. This is 

done to prevent the algorithm to stagnate around the first feasible solution found.  

The second step intensifies the search around the feasible solutions which were found at step one. 

Because of Eq. (3), feasible solutions with low objective value are likely to be investigated more. In 

addition, the random component in the process does not forbid to keep exploring the rest of the 

search space. 

The test cases were run on an Intel
®

 Pentium
®

 4 3 GHz machine running Microsoft
®

 Windows
®

 XP. 

4.1 BepiColombo case study 

In this mission, the spacecraft departs from Earth (on 15 August 2013, i.e.  

0 4974.5 d, MJD2000t = ) to reach a scientific orbit around Mercury: therefore, it is advisable to 

minimise the relative velocity at arrival v∞ . The launch date has been set to match the one proposed 

in [10], such that a reference solution for this date is available. Three legs (and thus two swing-bys) 

are considered for the transfer, while the launch angle was set to 0ϕ π= . The following set of 

parameters was considered: 

 
{ } { } { } { }

{ } { } { } { } { } { }
, 1, 2, 3, 4, 5,

,3 1,3 2,3 3,3 4,3 5,3

1,2 : Mercury, Venus, Earth ; 0 ; ; 1, 2,3,4 ; ; 0,1

Mercury ; 50,0,50 m/s; 0 ; 1,2,3, 4 ; 0,1 ; 0,1

P i i i i i i

P

i = = = = ∅ = = ∅ =

= = − = = = =

q q q q q q

q q q q q q
 

Since there is no DSM in the first two legs, the parameters ,1 2,rev ii
n ∈q  and / 4,p a ii

f ∈q  are not 

influent. The number of revolutions is entirely controlled by the parameter ,2 3,rev ii
n ∈q . In general, 

there is no easy way to identify whether the first or the second orbital intersection is the best one, so 

the binary parameter 1/2 i
f  was left free to be chosen by the ants. For the third leg, a DSM of 50 m/s 

can be exploited to target Mercury and to reduce the v∞  with respect to it. The departure excess 

velocity module 0v  is constrained to be within 2 and 4 km/s, while 
p

r  for Earth, Venus and Mercury 

swing-bys is between 1 and 5 
P

R . The total time of flight was limited to a maximum of 10 years 

and the objective function for a complete solution is the v∞  at Mercury. The average time for 

evaluating one solution (finding all the trajectories that generates) of this test case is 1.75 ms, and 

there are 54000 distinct solutions. Thus, a systematic approach, scanning all the solutions, would 

require about 94.5 s. 



All the optimisers were run for up to 2000 function evaluations. GATBX and NSGA-II were run 

with the settings shown in Table 1. In addition, the initial population of GATBX is spread in the 

whole domain. 

Results in the form of statistical parameters over the 100 runs are presented in Table 2. The best 

average value is computed on the runs which found feasible solutions only, while the value of 6 

km/s as a target value for the v∞  has been chosen to compute the success rate according to the 

procedure proposed in [10]. 

Two different set of parameters were used for ACO-MGA: (1) in Table 2 refers to a first step with 

200 iterations and , 0
planet type

w w = , followed by a second step of 200 iterations with 

, 60 km/s
planet type

w w = ; (2) instead uses the same values for the weights, but the first step has only 

60 iterations, while the second 440. This shows that a high number of iterations allocated to the 

second step does not necessarily improve the results, if the first step did not sample enough random 

points in the solution space. ACO-MGA was run on the same optimisation problem for different 

values of the weights, and the best results were obtained with the values mentioned before. Because 

of the normalisation shown in Eq. (3), the weight values appear to have general validity, and can be 

applied also to other transfer problems, as will be shown in the next case study. 

Since the size of the population is very important for genetic-based algorithms, and it can affect the 

results significantly, this case study was also run 100 times with a population of 40 and 100 

individuals (maintaining the predefined number of total function evaluations by varying the number 

of generations accordingly). For NSGA-II, it resulted that there was no noticeable change in the 

quality of the results over 100 runs. This is related to the fact that NSGA-II is not completely 

converging with 2000 function evaluations. 

As a reference, by increasing the number of function evaluations to 10000, the average value of the 

solution from NSGA-II lowered to 7.47 km/s, with 18% below 6.5 km/s. This shows a considerable 

improvement but the result is still worse than ACO-MGA. 

For GATBX, instead, results were changing significantly, and the settings leading to the best 

solutions were used. 

The results in Table 2 point out that, while all the algorithms find feasible solutions in practically all 

the runs, the quality of the solution is much better for ACO-MGA, for either of the two different 

sets of settings used. Moreover, NSGA-II found a good solution only in 2 runs, and GATBX in 13. 

ACO-MGA, instead, found a good solution in about 25% of the runs. 

The run time for ACO-MGA (1) was about 220 s. The simplicity of the test case, together with the 

implementation of ACO-MGA in a high-level language like MATLAB, makes the use of an 

optimisation method slower than the systematic scan of the whole solution space. Note that this will 

not happen in the more complex Cassini test case. 

 

Table 1. Parameters of GATBX and NSGA-II for the BepiColombo test case. 
GATBX  NSGA-II 

Parameter Value  Parameter Value 

Generations 20  ngen 100 

PopulationSize 100  popsize 20 

StallGenLimit +Inf  pcross_bin  0.5 

   pmut_bin 0.5 

 

Table 2. Comparison of the performances of ACO-MGA, GATBX, NSGA-II over 

100 runs for the BepiColombo problem. 
 Average best value, km/s % runs < 6 km/s % feasible runs 

ACO-MGA (1) 6.102 26% 100% 

ACO-MGA (2) 6.176 24% 100% 

GATBX 8.82 13% 98% 

NSGA-II 9.957 2% 100% 

 



The best solution found by ACO-MGA is represented in Fig. 3 (a). The sequence for this solution is 

EVVMe, and the objective value, i.e. the final relative velocity, is 5.5082 km/sv∞ = . The solution 

exploits a 50 m/s DSM in the last leg and performs 1, 3, 4 full revolutions on each leg respectively. 

The validity of the model is verified by re-optimising the best solution found with ACO-MGA, but 

using a full 3D model with 1 free deep space manoeuvre per leg [14], and minimising the total v∆ . 

The x-y projection of the resulting trajectory is shown in Fig. 3 (b). Also, a relevant out of plane 

component that is introduced while considering a full 3D model with real ephemerides, and mainly 

due to the high inclination of Mercury. 

Finally, Table 3 compares some parameters of the 2D solution with the re-optimised 3D solution 

and the ESOC reference solution. Note the similarity of the 3D trajectory to the one found by ESA 

and described in [10]. 

It is interesting to note that the launch velocity is higher in the 3D version mainly because of the 

small inclination of the planets. The v∞  also is higher due to the inclination of the target planet but 

again the difference is small. 
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Fig. 3. (a) Best solution found by ACO-MGA, (b) solution re-optimised with a 

full 3D model, minimising the total ∆v. 

 

Table 3. Characteristics of the ACO-MGA solution, the re-optimised 3D solution, 

and the ESOC reference solution. 
Variable ACO-MGA 3D optimised ESOC  Variable ACO-MGA 3D optimised ESOC 

0
v , km/s 3.63 3.8 3.79  v

∞
, km/s 5.51 5.68 5.68 

1
v∆ , m/s 0 7 7  

1
T , d 438.5 438.5 438 

2
v∆ , m/s 0 0 0  

2
T , d 674.1 674 674.1 

3
v∆ , m/s 50 11 11  

3
T , d 630.8 630.8 630.9 

4.2 Cassini case study 

Cassini is the ESA-NASA mission to Saturn. The planetary sequence designed for the mission, 

EVVEJS is particularly long, allowing a substantial saving of propellant. For testing the ACO-

MGA we will make use of a 5-leg trajectory, with starting date 0 779 d, MJD2000t = − , 

corresponding to 13 November 1997. The following sets of parameters were used, to allow DSMs 

in the first 3 legs only: 



{ } { } { } { } { }

{ } { } { }
1, 2, 3, 4, 5,

1, 2, 3, 4, 5,

1,2,3 : 600, 350, 200, 0  m/s; 0 ; 0 ; 0,1 ; 0,1

4,5 : 0 ; ; 0 ; ; 0,1

i i i i i

i i i i i

i

i

= = ± ± ± = = = =

= = = ∅ = = ∅ =

q q q q q

q q q q q
 

The planets available for swing-bys are { }, Venus, Earth, Jupiter , 1,.., 4P i i= =q , while the target 

planet is obviously fixed to Saturn. The number of maximum full revolutions was fixed to 0, as it 

can be seen from the choice of parameters ,1rev
n  and ,2rev

n . This is done to limit the total time of 

flight of the mission. Since the trajectory is going outwards of the orbit of the Earth, every full 

revolution implies more than one additional year in the transfer time. The main aim of this case 

study, then, is to assess the ability of finding promising planetary sequences, using deep space 

manoeuvres. The total number of distinct solutions for this test is 7,112,448, and the average time to 

evaluate a solution is 1.26 ms. This translates in 8961.7 s (or about 2.5 hours) to systematically 

evaluate all the solutions. 

The launch excess velocity module was bounded between 2 and 4 km/s. For the swing-bys of Earth 

and Venus, the radii of pericentre span from 1.1 to 5 
P

R . A different choice was adopted for Jupiter. 

In fact, the mass of this planet is considerably bigger than the masses of Venus and Earth, so higher 

radii of pericentre are enough to achieve considerable deviations. It was decided to consider the 

range 5 to 100 
P

R . 

Regarding the choice of the objective function, it has to be noted that for all the missions to outer 

planets, the time of flight becomes very important, as very long missions are needed to reach farther 

destinations. Even limiting the number of complete revolutions to zero, is not enough to guarantee a 

mission with reasonable duration. Therefore, it is important to include the total time of flight T in 

the objective function, in addition to the total v∆ . Since the current algorithm cannot deal with 

multi-objective optimisation, the total time of flight and the v∞  are weighed inside the objective 

function, such that y v Tσ∞= + : for this test case the weight on T was chosen to be 

1 1000  km/s/dσ = . 

The total time of flight has been limited to a maximum of 100 years: limiting the time of flight to 

lower values would over-constrain the search for optimal solutions. Instead, better results are 

obtained by allowing long solutions to be returned as feasible, and introducing their duration into 

the objective function. 

The three optimisers were run at first for 4000 and then for 6000 function evaluations. The weights 

of ACO-MGA were set to , 0
planet type

w w =  for the first step, and , 140 km/s
planet type

w w =  for the 

second step. With these settings, a run of ACO-MGA takes 161 s for 4000 evaluations and 273 s for 

6000 evaluations. This is considerably faster than the exhaustive scan of the solution space. 

The parameters used for GATBX and NSGA-II are reported in Table 4. The comparative results for 

the two sets of runs are shown in Table 5. It can be seen that, for 4000 evaluations, ACO-MGA 

found feasible solutions in 91% of the runs, compared to 25% of GATBX and 26% of NSGA-II. 

The average ACO-MGA solution is also slightly better than GATBX, and considerably better than 

NSGA-II. The performances of ACO-MGA increase significantly by using 6000 evaluations: all the 

runs produce a feasible solution, and in 80% of the cases, the best solution found is below 16 km/s. 

The average value of the solution also decreases to 15.434 km/s. It is interesting to note that, for 

GATBX, the average best solution found with 6000 evaluations is higher than for 4000: this is 

partly balanced by the fact that it finds feasible solutions in 28% of the runs. Another thing worth 

noticing is that NSGA-II finds more often feasible solutions than GATBX, but their quality is in 

average worse. 

The best solution found through ACO-MGA (sequence EVVEJS) has an objective value of 6.9686 

km/s: The characteristics of this solution can be found in Table 6, compared to the best solution 

found for the Earth-Saturn transfer problem (see http://www.esa.int/gsp/ACT/inf/op/globopt/



edvdvdedjds.htm) found with MIDACO and reproduced with the model in [3]. The trajectory of the 

ACO-MGA solution is shown in Fig. 4 (a), while the 3D reference solution is in Fig. 4 (b). 

 

Table 4. Parameters of GATBX and NSGA-II for the Cassini test case. 
Function 

evaluations 

GATBX  NSGA-II 

Parameter Value  Parameter Value 

 
StallGenLimit +Inf  pcross_bin  0.5 

   pmut_bin 0.5 

4000 
Generations 20  ngen 200 

PopulationSize 200  popsize 20 

6000 
Generations 30  ngen 300 

PopulationSize 200  popsize 20 

 

Table 5. Comparison of the performances of ACO-MGA, GATBX, NSGA-II over 

100 runs for the Cassini problem. 
Function 

evaluations 
Optimiser 

Average best 

value, km/s 

% runs 

< 16 km/s 
% feasible runs 

4000 

ACO-MGA 16.24 44% 91% 

GATBX 16.349 14% 25% 

NSGA-II 20.426 5% 26% 

6000 

ACO-MGA 15.434 80% 100% 

GATBX 16.526 17% 28% 

NSGA-II 20.122 7% 37% 

 

Table 6. Characteristics of the ACO-MGA solution and the reference solutions. 
Variable ACO-MGA Reference  Variable ACO-MGA Reference 

0
v , km/s 3.14 3.259  

1
T , d 168 167 

1
v∆ , m/s 600 480  

2
T , d 423 424 

2
v∆ , m/s 350 398  

3
T , d 53 53 

3
v∆ , 

4
v∆ , 

5
v∆ , m/s 0 0  

4
T , d 596 589 

v
∞

, km/s 4.21 4.246  
5

T , d 2290 2200 
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Fig. 4. (a) ACO-MGA solution; (b) Cassini reference solution. 

5. CONCLUSION 

The paper introduced a novel formulation of the automatic complete trajectory planning problem 

and proposed a new algorithm (ACO-MGA), based on the ant colony paradigm, to generate optimal 

solutions to this problem. Each solution is a complete, unscheduled plan. Each plan is then 



processed through a specific model that efficiently generates families of scheduled trajectories for 

multi-gravity assist transfers. The 2D trajectory model proved to be accurate enough to closely 

reproduce known MGA transfers even with moderate inclinations. Furthermore, the scheduling of 

the trajectories is fast and reliable allowing for the evaluations of thousands of plans in a short time. 

ACO-MGA operates an effective search in the finite space of possible plans. The algorithm 

demonstrated a remarkable ability to find good solutions with a very high success rate, 

outperforming known implementations of genetic algorithms. As ACO-MGA requires very little 

information on the MGA problem under investigation, it represents a valuable tool for the complete 

automatic design of future space missions. Future work aims at a more efficient handling of the 

lists, which is currently the major bottleneck of the ACO-MGA implementation. 
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