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Abstract—This paper presents a model based on an hybrid
system to numerically simulate the climbing phase of an aircraft.
This model is then used within a trajectory prediction tool.
Finally, the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) optimization algorithm is used to tune five selected
parameters, and thus improve the accuracy of the model. Incor-
porated within a trajectory prediction tool, this model can be used
to derive the order of magnitude of the prediction error over time,
and thus the domain of validity of the trajectory prediction. A
first validation experiment of the proposed model is based on the
errors along time for a one-time trajectory prediction at the take
off of the flight with respect to the default values of the theoretical
BADA model. This experiment, assuming complete information,
also shows the limit of the model. A second experiment part
presents an on-line trajectory prediction, in which the prediction
is continuously updated based on the current aircraft position.
This approach raises several issues, for which improvements
of the basic model are proposed, and the resulting trajectory
prediction tool shows statistically significantly more accurate
results than those of the default model.

Index Terms—Air Traffic Control, Trajectory Prediction, Hy-
brid System, Total-Energy Model, Black-Box Optimization, Ma-
chine Learning

I. INTRODUCTION

Trajectory Prediction (TP) is the core component of auto-
mated systems in Air Traffic Control (ATC). Many functional-
ities of the Decision Support Tool directly rely on an accurate
TP: controller posting, workload estimation, arrival sequenc-
ing, loss of separation detection, and conflict resolution, to
name the most prominent ones. As a consequence, TP is the
weakness of the current automation ATC systems and a major
issue in the ATC research community, even more with the new
paradigmatic shift toward 4D trajectories in both the SESAR
Joint Undertaking and the NextGen project. The challenge
is to reduce the uncertainty of the prediction of the aircraft
states on a temporal horizon of at least 20 minutes. To achieve
this, the information of the current state of the aircraft and its
environment shall be reliable. As a matter of fact, the Flight
Management System (FMS) has access to the measurements
from the sensors of the aircraft and creates its own TP, which
is updated frequently. Therefore, we should expect that this TP
is the most accurate one. Thanks to the Data Link, it should be
possible for the ground control to receive data from this on-
board TP. Unfortunately, today, this promising technology is

not implemented in all aircrafts. Moreover, a decision support
tool requires the capacity to efficiently generate ’what-if’
scenarios. Today, it is unrealistic to receive many trajectories
from the on-board system of every aircraft in the airspace
and merge them into different airspace scenarios in real-time.
Therefore, the ground TP is still an essential component of
the future air traffic control systems.

A trajectory can roughly be separated in three phases: climb-
ing, level flight, and descent. Phases with altitude changes
are the most difficult to handle due to the differences of
aircraft performances and the effect of the weather conditions.
Operationally, the controllers of approach control centers, who
deal with climbing and descent phases, must have a good
representation of the vertical evolution of the aircraft to ensure
their separations. In most airspace, this separation shall be at
least 10 flight levels. For these reasons, this study will focus
mainly on the prediction in the vertical axis.

The paper is organized as follows: Section II surveys some
recent works in the domain of trajectory prediction. Section
III details the proposed model. The validation experiments are
described in Section IV, while the on-line prediction method
is experimented with in Section V. Section VI summarizes the
paper and gives some hints for further research in the area of
trajectory prediction.

II. RELATED WORK

Research on TP includes a set of methodologies for its spec-
ification, implementation and evaluation. First, the Eurocontrol
Specification for Trajectory Prediction gives the requirements
for an operational TP and a validation methodology useful for
the Air Navigation Service Providers in their choice of a new
ATM system compatible with SESAR. This document covers
many functionalities like flight plan and clearance processing,
airspace constraints and real-time monitoring. Unfortunately,
it does not specify the accuracy requirements. Besides, [22]
provides an important literature survey of trajectory prediction
technology with 282 reviewed documents and 20 selected
for further studies. From the selected set, many implement
the point-mass model where the rotational moments are not
modeled. This is an acceptable assumption for airline aircraft.
Also, [4] and [27] enumerate the principal difficulties inherent
to TP, i.e. the uncertainty on the input data, the controller



and pilot intents, and quantify the errors accordingly. The
input data mainly refers to aircraft characteristics which are
given in the Base of Aircraft DAta (BADA) Aircraft Perfor-
mance Model. Still, these values are only nominal and can
be different from the real situation. Therefore, the SESAR
project 5.5.2 [24] concludes that sharing airline operational
control data, like the mass and the speed schedule, could
provide quick improvement to ground trajectory prediction,
with limited investment. As a matter of fact, these parameters
are determinants for computing the TP with a point-mass
model.

More generally, a parametric approach refers to a model
based on flight equations and aircraft characteristics. The
point-mass model is an example of a parametric approach.
As we will see, many parameters can be used to tune the
model to reality. To generate trajectories, [7] uses six ordinary
differential integrators depending on the longitudinal motion
instruction. Similarly, [8] and [19] use hybrid systems to model
the change of differential equations according to the control
law and the aircraft states. A discrete space, e.g. an automaton,
is defined to represent the modes of the system. Every mode
defines the differential equations and creates trajectories in a
continuous space. As seen in [8], this model is well-suited for
implementing BADA. [1] exposes a technique to find a general
thrust settings, i.e. a control law, that could be used in such
framework. The idea of fitting the mass parameter of BADA
on a few past points is used. Results on the accuracy of this
generic control law in the vertical plane should be expected
in a near future.

A common flaw in parametric approaches concerns the
nominal values used for every parameters. As shown on figure
1, the effect of the mass parameter clearly shows the impor-
tance of tuning these parameters. As an example, 400 seconds
after the takeoff, there is already a difference of approximately
250 flight levels between the minimal and the maximum mass
which is enormous for an application like the TP. This can
easily become a burden when the model is rather complex. To
overcome this inherent difficulty, non-parametric approaches
are studied in order to obtain an aircraft model from the
past trajectories. Non-parametric approaches rely on machine
learning and statistical inference: [20] uses neural networks,
[2] uses genetic programming in order to learn the structure
of the variables of a linear regression and [9] uses fuzzy
regression with k-nearest neighbor. The main drawback of
non-parametric approaches is that it requires lots of historical
data and the model is learned for a specific context and can
hardly be generalized because of the airspace constraints, e.g.
aircraft following a Standard Instrument Departure.

Combining both approaches is an interesting research ques-
tion addressed by [1] and [5]. The latter combines Monte-
Carlo Simulation and worst-case scenario for modifying the
parameters of BADA while integrating a wind model. How-
ever, this work is limited to the descent phase and the exper-
iments are performed on trajectories obtained by simulation.
The main contribution of our work on this question is to show
that tuning the parameters of BADA during the progress of
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Figure 1. The Effect of the mass parameter

a flight is a way to overcome the difficulties of parametric
approach and avoiding to learn a model from the historical
data. To the best of our knowledge, no work has answered to
this question with results of the vertical plane.

III. MODEL

The basic idea is to create an hybrid system to generate a
trajectory in the vertical plane using BADA. The system de-
scribes the transitions between the different modes in function
of the states and the control laws. Following the mode, a given
differential equation is integrated to obtain the trajectory. This
section states the assumptions, defines the model and gives an
integration schema for generating the trajectories.

A. Assumptions

Depending on the requirements of the simulation, one
may choose different levels of complexity for the coordinate
systems and the aircraft control system. Since we consider
only the climbing phase, the system will evolve on a short
period of time on a limited geographical area. From these
considerations, we assume that the flat earth model is a
reasonable approximation (cf. [18]). This model assumes that
the earth is flat, non-rotating and can be defined as an inertial
reference frame. Also, the gravitational force is constant
and perpendicular to the ground. The atmosphere is at rest
relative to the earth and atmospheric properties solely depend
on the altitude. With these assumptions, one can define the
differential equations of kinematics and dynamics. For the
kinematics, the equations imply solely that the displacement is
proportional to the speed projected on the vertical or horizontal
plan. For the dynamics, we need to model the thrust, the drag,
the lift and the weight. To our knowledge, BADA is the most
complete model describing the capabilities of many aircraft
types.

B. Total-Energy Model

This section relies on the BADA 3.10 User Manual [3].
BADA is based on the total-energy model where the rate of
work is equal to the rate of potential and kinetic energy. Here,
the rate of climb is obtained by controlling the speed and
the throttle. From [3] p.14:eq.3.2-7 and by transforming the



quantities into functions of altitude h, speed V and mode q,
the rate of climb is defined by:

ḣ(V, q) =
T (h)−∆T

T (h)

[
(Thr(h)−D(V, h)) · V

m · g

]
·f(V, h, q)

(1)
where the function T (h) is defined in BADA 3.10 User
Manual [3] p. 10, Thr(h) at p.22, D(V, h) at p.20 and
f(V, h, q) at p.15-16. As a first approximation, the mass m,
the gravitational acceleration g and the temperature differential
∆T are constant during the climb phase. According to [18],
this is a reasonable assumption since the climb phase lasts
around 20 minutes. The terms h, V and q are variables that
evolve with the system and one must specify the evolution
of the two remaining independent variables. However, the
acceleration in function of the aircraft dynamic is not specified
in BADA. From [18], it is given by:

V̇ (h, ḣ) =
1

m
(Thr(h)−D(V, h)−m · g · sin(γ)) (2)

where sin(γ) = ḣ
V . So, from eq. 2, we can see that the

acceleration evolves independently of the mode given the
rate of climb. Also, when ḣ is high, sin(γ) is high and the
acceleration V̇ is low. This goes along with the hypothesis the
total-energy model. Finally, the next section will present the
evolution of the variable q.

C. Mode Definition

In this section, we define the modes and their transitions
based on BADA 3.10 User Manual [3]. First, let Q =
{CAS,MACH} × {LOW,HIGH} × {DEC,CST,ACC}
be the mode space. The first two modes, transition altitude and
tropopause, depend solely on the altitude:

q1(h) =

{
CAS if h ≤ Htrans

MACH otherwise

q2(h) =

{
LOW if h ≤ Htrop

HIGH otherwise

where Htrans is the transition altitude and Htrop is the
tropopause geopotential pressure altitude. Finally, the last
feature q3 is the mode of acceleration. The simplest controller
of this mode is given by:

q3(V, h) =


ACC if V ≤ V ∗(h)− ε
DEC if V ≥ V ∗(h) + ε

CST otherwise

where ACC is acceleration, DEC is deceleration and CST is
constant speed and V ∗ be a target speed at altitude h where
V tends to converge. V ∗ can be chosen according to the
speed schedule defined in the Airline Procedures Model of
BADA 3.10 User Manual [3] p.29, where three target speeds
(V1, V2,M) are required as parameters. The nominal values
can be found in the airline procedure files of BADA. Finally,
ε ∈ R is a threshold value to avoid jitter. Next, the energy share

factor function f takes its values according to the following
flight conditions:

1) Constant VM above tropopause,
2) Constant VM below tropopause,
3) Constant VCAS above tropopause,
4) Constant VCAS below tropopause,
5) Acceleration in climb,
6) Deceleration in climb

where VM is the Mach speed and VCAS is the calibrated speed.
These flight conditions can be defined in terms of conjunctions
of q1, q2 and q3. From [3] p.15-16, f is discontinuous when
q jumps from one mode to another. Also, f is bounded and
therefore, with the flight envelope, one can also bound ḣ and
V̇ . One must pay attention to the Zeno behavior (cf. [21])
where a system can make an infinite number of jumps in a
finite amount of time. With these considerations in minds, one
can use a numerical procedure to integrate eq.1 and eq.2.

D. Trajectory Generation

In order to generate the trajectory, one must specify eq.1
and eq.2 as functions of time. With respect to BADA, let
Thr(h(t), t) = Thr(h(t)), D(h(t), V (t), t) = D(h(t), V (t))
and T (h(t), t) = T (h(t)), that is the evolution of the thrust,
the temperature and the drag are time-invariant. Moreover, the
aircraft dynamic functions shall be specified with respect to the
flight envelope constraints. In this study, we choose a nominal
thrust function. In eq.1, Thr is replaced by the maximum
thrust Thrmax and the whole equation is multiplied by a
reduced climb power coefficient Cred, which is supposed to
give realistic profiles (cf. [3] p.24). To simulate the system,
a common fourth-order Runge-Kutta method is used. Let
f1(t, h, V, q) = ḣ(V, q) and f2(t, V, h, ḣ) = V̇ (h, ḣ). Then,
one obtains the following integration scheme:

dh1 = f1(tn, hn, Vn, q(Vn, hn))

dv1 = f2(tn, Vn, hn, ḣn)

dh2 = f1(tn +
∆t

2
, hn + dh1

∆t

2
, Vn + dv1

∆t

2
,

q(Vn + dv1
∆t

2
, hn + dh1

∆t

2
))

dv2 = f2(tn +
∆t

2
, Vn + dv1

∆t

2
, hn + dh1

∆t

2
, dh2)

dh3 = f1(tn +
∆t

2
, hn + dh2

∆t

2
, Vn + dv2

∆t

2
,

q(Vn + dv2
∆t

2
, hn + dh2

∆t

2
))

dv3 = f2(tn +
∆t

2
, Vn + dv2

∆t

2
, hn + dh2

∆t

2
, dh3)

dh4 = f1(tn + ∆t, hn + dh3∆t, Vn + dv3∆t,

q(Vn + dv3∆t, hn + dh3∆t))

dv4 = f2(tn + ∆t, Vn + dv3∆t, hn + dh3∆t, dh4)

hn+1 = hn +
∆t

6
(dh1 + 2dh2 + 2dh3 + dh4)

Vn+1 = Vn +
∆t

6
(dv1 + 2dv2 + 2dv3 + dv4)

tn+1 = tn + ∆t



where the initial conditions t0, q0, h(t0, q0) = h0, V (t0, h0) =
V0 are given. The choice of the Runge-kutta method is justified
by the jumps in the function f . As a matter of fact, this method
will minimize the impact of a jump during a timestep by
averaging the variations at the beginning, twice at the middle
point and at the end of the timestep (cf. [6]). Nevertheless,
stability questions shall be addressed in the later in order to
validate the approach.

E. Parameter Tuning

Now that the trajectory generator is defined, we would
like to tune the model parameters according to observations.
First, there should be a trade-off between the number of
parameters and the capacity of the model to approximate real
trajectories. As a bad example, instead of using the default
thrust controller defined in [3], we tried to find the optimal
controller for the acceleration mode for a given trajectory. The
resulting controller was a Bang-Bang control function where
we have observed that the mode switches between accelerating
and decelerating at every timestep. Clearly, this function can
approximate any real trajectories, but does not generalize from
one trajectory to another and does not reflect the real behavior
of the aircraft. So, from eq.1 and eq.2 and the speed schedule
V ∗, the parameters m, V1, V2 ,M and ∆T are good candidates
since they are time-invariant, contrary to a discrete control law.
Moreover, their values are fixed to nominal values and BADA
explicitly suggests to tune them.

One way to tune the parameters is to minimize the position
errors between the TP and the real trajectory. This leads
to an optimization problem where the function to minimize
is expressed by the trajectory generation scheme. Here, we
decide to use a black-box optimization algorithm that will
perform parameter estimation on the hybrid system. Due to
the relations between the parameters and the complexity of
the BADA models, we assume that parameter estimation is a
non-trivial optimization problem.

F. Black-Box Optimization

As already mentioned, parameter tuning pertains to non-
convex black-box optimization, and several methods could be
used to tackle it. Furthermore, no information whatsoever is
available regarding the modality of the objective function with
five parameters. As a matter of fact, it is unimodal when the
mass parameter or the differential temperature are the only
ones to be tuned. These have an effect on the whole trajectory.
But, the speed parameters have a local effect depending on the
speed schedule. Moreover, the differences between the speed
parameters will induce acceleration phases that will transform
the trajectory. Finding the best value for a speed parameter to
fit locally the trajectory will create a local optimum that could
be worse than finding the two speed parameters that will avoid
an acceleration phase that is not undertaken in reality. Even if
we did not prove that the objective function is multimodal, we
can think that it can possibly be the case. Finally, the objective
is non-differentiable (or at least the analytical derivative is out

of reach). Hence general-purpose derivative-free optimization
method is required.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [17] is today a state-of-the-art derivative-free op-
timization method that has demonstrated outstanding per-
formances for problems up to a few hundred variables, in
several official comparisons (see, among others, the CEC 2005
challenge [12], and both Black Box Optimization Benchmark
workshops at ACM-GECCO 2009 [13] and 2010 [23]), as
well as on a large number of real-world applications [11].
CMA-ES is an Evolution Strategy [25], [26] that uses Gaussian
mutation with adaptive parameter setting. A Gaussian mutation
is defined here by its step-size and its covariance matrix.
The step-size is increased (resp. decreased) if the cumulated
path of the current best solution is smaller (resp. larger)
than that of a random walk, and in the original version
[15], [16], the covariance matrix was updated by adding a
rank-one matrix with eigenvector the direction of progress.
An improved version with rank-µ update was later proposed
[14], and several additional variant made it more and more
powerful. The most recent version is the so-called bi-pop-
CMA-ES [10], that evolves both a large and a small pop-
ulation and outperforms previous versions in case of multi-
modal functions. All source code is available on the author’s
web page (http://www.lri.fr/∼hansen/index.html), in different
programming languages, including the bi-pop version. Using
CMA-ES for parameter estimation is then straightforward, and
amounts to interfacing the objective function for BADA TP
with the core CMA-ES program, after eventually normalizing
its parameters.

IV. MODEL VALIDATION

This section deals both with the empirical validation of the
nominal model and the estimation algorithm used to fit the
parameters on the whole trajectory.

A. Dataset

To validate our model, we will use a dataset composed
of 262 real departure trajectories of A320. These trajectories
have been recorded via a radar systems during one month.
For one trajectory, there is a data vector at every 5 seconds
composed of the aircraft position, the rate of climb and the
true airspeed. Then, the top of climb is calculated as the first
highest point of the trajectory. Also, these trajectories do not
have a rate of climb that is equal to zero for more than 30
seconds, they shall reach a cruise level at least of 300 FL and
their durations are at least of 1100 seconds. These filtering
conditions permits to keep trajectories that are not affected by
a level flight clearance.

B. Methodology

To assess the model, we evaluate the position error between
the TP and the real trajectory. Let H(θ; s0) be the sequence of
altitudes generated by the simulation of the hybrid system with
the parameters θ = [m ∆T V1 V2 VM ]

T and the initial
condition vector s0 = [t0 q0 h0 V0]

T . Then, the measure



TABLE I
MODELIZATION ERRORS - MEAN AND STANDARD DEVIATION

Time after takeoff Nominal (FL) Tuned (FL)

2min. 4.9195 (3.1422) 3.0929 (2.3133)

5min. 7.1416 (4.8556) 2.5496 (2.5282)

10min. 9.6714 (6.6146) 1.4057 (1.7441)

15min. 10.9441 (9.0016) 2.1957 (2.2600)

20min. 11.8008 (8.8068) 2.0546 (2.1367)

is simply the sum of absolute errors. In the case of parameter
estimation, we search in the feasible space of parameters Θ,
the point θ ∈ Θ that minimizes this measure. So, we have the
optimization problem:

θ∗i,j = argmin
θ∈Θ

j∑
n=i

|H(θ; s0)n − Tn| (3)

where H(θ, s0) is the sequence of ordered altitudes obtained
for given parameters θ and initial conditions s0 and T is
the sequence of observed altitudes from a trajectory of the
dataset. We suppose that (j − i) ≤ |H(θ, s0)| ≤ |T | and
that the timestamp associated to the point H(θ, s0)n is the
same than Tn. When fitting the whole climbing phase, some
difficulties with eq.3 may arise. First, we need to give a
termination criterion when simulating the hybrid system that
is to stop when the TP reaches the level flight. Depending on
the parameters, the cardinal of the resulting sequence of points
will be different. So, it might be necessary to add points to
the real trajectory T since the TP can reach the top of climb
after T, e.g. a high value for the mass parameter. To compute
this error, we simply add points at the level flight until the
TP reaches it. Inversely, we add these points to the TP if it
reaches the top of climb before the real trajectory. Besides,
i < j are bounds to restrain the optimization on any subset
of contiguous points of the trajectory. Thereafter, this notation
will be useful for the online predictor.

C. Results

Table I shows the evolution of the mean errors and the
standard deviation with time for both models: with nominal
values and with tuned values. The first important evidence
is the inaccuracy of the Total-Energy Model to model the
positions at the beginning of the trajectory. As a matter of fact,
for the tuned values, the errors at 2 minutes are the highest.
An explanation consists in the fact that the aircraft states
(position, speed, heading) change rapidly at the beginning of
the trajectory and the selected five parameters are not sufficient
to capture this complexity. Furthermore, the optimization of
the equation eq.3 has a global scope and so, the errors
generated by local behaviors of the aircraft are ignored in
favor of the common behavior. This depends directly on the
selected values of i,j in θ∗i,j , which in this case are i = 0
and j = ttoc where ttoc is the time at top of climb. From
our dataset, this common behavior happens around 10 minutes
where the errors are the smallest after an acceleration phase
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Figure 2. Trajectory Fitting
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Figure 3. Rate of Climb Modeling

which happens around 5 minutes. As an example, on the figure
2, we can distinguish three main behaviors: the initial climb
from 0s. to approximately 200s, a short acceleration phase
from 200s. to 300s. and the common behavior after 300s. From
figure 3, we can see that the initial climb is characterized with
high variability in the rate of climb and an acceleration phase
between 50s. and 100s., shown by a huge decrease in the rate
of climb. During this phase, the predicted rate of climb is far
from reality for both parameter sets. Thereafter, both models
capture the acceleration phase and finally, they average the
rate of climb during the common behavior, which fits well the
positions as shown on figure 2.

Another interesting result is the evolution of the standard
deviation, which is in parentheses, for the model with nominal
values. It increases with time from 2 min. to 15 min. and
afterwards, it seems to stabilize around 9 FL. This can be
interpreted as an uncertainty cone, which is often used in the
air traffic community, but here, we can see that the cone stops
to grow at 15 minutes and becomes a corridor of uncertainty.
First, we understand that the cone grows with the flight
envelope, but afterwards, the uncertainty is bounded by the fact
that the trajectories, as functions of time, are strictly increasing
because of the filtering conditions of the dataset (cf. Section
IV-A) and the upper bound that is the cruise level.



V. ONLINE TRAJECTORY PREDICTOR

In this section, we present an online trajectory prediction
which uses the observed positions of a current flight to tune at
the same time the parameters of the model used to predict the
rest of the trajectory. Different kind of algorithms can be used
to undertake this task. Traditionally, a probabilistic approach
is used in this online configuration, e.g. Kalman Filter, where
the uncertainty is explicitly modeled. These performs very
well on short periods of time but, for longer period like in
this context, the linearity of the model could be too limited
and should be subject to future experiments. In our approach,
we use the BADA model in conjunction with the optimization
algorithm CMA-ES in order to fit the parameters of the model
with an objective function that defines a distance between
the observed positions and the modeled one. As we will see,
the problem of overfitting, which is studied by statistics and
machine learning, arises in our context. The current section
presents the difficulties and the solutions chosen with the
associated results.

A. Design of Experiment

In order to verify that the idea of an online predictor, as the
one mentioned previously, is valid, we must do an empirical
evaluation of the chosen algorithm by replicating the same
context. The main hypothesis is that from the observation set,
we can determine the values of parameters that will be fitted to
the current flight. So the trajectory is separated in two subsets:
the observed altitudes from the beginning to the present and
the future altitudes from the present to the top of climb. As
in the subsection IV-C, we use metering points to evaluate
the quality of the prediction by computing the errors between
the predicted altitudes and the real ones. To distinguish if a
set of errors is statistically greater than the other one, we
use a Wilcoxon signed-rank test. The null hypothesis of this
test is that two related paired samples come from the same
distribution. In our case, this test is a relevant choice because
two approaches are tested on the same trajectory dataset. As
usual, we reject the null hypothesis if the p-value is lower than
0.05.

B. Methodology

The most naive way to learn the parameters of the model
from the observed altitudes is to directly apply Eq.3 from
subsection IV-B and to apply them to generate the rest of the
trajectory. By doing so, the default model is always better than
the fitted one with a significant p-value. The reason behind
this result is simply that the fitted model does not generalize
over all the behaviors of the aircraft. In other words, it is fitted
only to the behavior captured in the observations. This problem
is referred to overfitting in Machine Learning litterature. To
circumvent this problem, we must think of the trajectory as a
time serie where the observations arrive with an determined
order, i.e. the temporal order. So, at first, we will always
observe the initial climb where we know from Table I that
the inaccuracy of the model is the greatest. Furthermore, we
are more interested by the parameter values that fit better the

positions near the present time than at the beginning of the
trajectory. To this end, we will add a weighting vector α
that will penalize more the errors that are near the present
time. But still, this is not sufficient because, depending on
the present time, some parameters will not have any effect
on the trajectory. As a matter of fact, from 0 to FL60, a
predefined schedule is applied and only the mass parameter
has an effect in BADA. The scope of the parameter V1 is from
FL60 to FL100, the scope of V2 is from FL100 to the transition
altitude (around FL277) and finally, the scope of Vm is over
the transition altitude. Furthermore, we add the constraint that
V2 is greater than V1 to the optimization problem. To avoid
that the optimization algorithm assigns them some arbitrary
values resulting in unrealistic trajectories, we use a regulation
method that penalizes any deviation from the default param-
eters. A meta-parameter λ is associated to the weight of the
penalty, which controls the tradeoff between exploration and
exploitation. Consequently, the resulting objective function is:

θ∗0,t = argmin
θ∈Θ

 t∑
i=0

αi |H(θ; s0)i −Oi|+ λ

|θ|∑
i=0

∣∣θi − θdi ∣∣

(4)

where θd is the default parameters of BADA. Notice that
the penalty occurs on the parameters space, but could also be
applied on the trajectory space because the mapping from the
parameter space to the trajectory space is not linear in the sum
of differences of altitudes.

Finally, in order to set the value of λ, we use a cross-
validation approach where we partition the observation set
in two: the learning set and the validation set. We choose
the validation set to be just before the current altitude.
One must notice that the samples are not independent and
identically distributed and that we create a bias in favor of
the points located just after the current altitude. Because of
our extrapolation context, a bias is inevitable and this one
seems the most justifiable one in order to gain accuracy in
predicting the future positions. Figure 4 shows the partition
of the trajectory. The cross-validation technique used in this
study consists in learning the parameters of the model on
the learning set with the objective function and to use these
parameters for generating the points on the validation intervals.
Then, we compare these points with the real ones. We do it
for multiple values of λ and we choose the parameter values
where the validation error is the lowest to generate the rest of
the trajectory.

C. Results

The approach is validated on the same dataset than subsec-
tion IV-A. We choose three different time slices in order to
represent the online aspect of the method. The validation set
size is fixed to 36 points or 180 seconds. This choice must
do the trade-off between the validation purpose of avoiding
overfitting which could lead to a large validation set size
and the learning purpose of finding the best parameter values
which could lead to a large learning set size and therefore,
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Figure 4. Online Prediction

a small validation set size. At least, the validation set size
must be higher than the acceleration phase, where the local
behavior is the most different from the global one. In the
learning objective function (cf. Eq.4), we choose a linear
weight function where αi = i

t−1 . The initial lambda value
is arbitrarily set to 100 and are doubled until the penalty is
high enough so that the fitted values equal the default ones.
Then, the parameter values generating the lowest validation
error are chosen.

Also, to avoid that the algorithm changes the parameter
values based on a poor learning performance, we arbritrarily
set a threshold error at 5 FL, which is higher than the results at
subsection IV-C. When the threshold is exceeded, the BADA
default values are chosen.

Table II, III and IV show the results of the proposed
methodology for each time slice. At P = 400s, the two model
performances are not significantly different as shown with the
high p-values. We can see that our approach increases the
accuracy by 1 FL in average for the metering points at 2
minutes and 5 minutes after the current time slice with a p-
value significantly under 0.05. For the metering points at 10
minutes, the p-value is higher than 0.05 and the difference is
not statistically significant due to the high standard deviation
values. This can be explained by the fact that the model is
not very accurate during initial climb (cf. model validation
section) and the validation set covers the acceleration phase.
Also, because the learning error is too high, the algorithm can
choose the BADA default values. So, the default choice ratio
is around 20% which is rather high.

At P = 500s, the fitted model performs better at 2 and 5
minutes after the current position with small p-values. For 10
minutes, the two models are not significantly different because
of the high value of the standard deviation. In fact, this can
be interpreted as the two models are equally affected by the
uncertainty around the possible maneuvers of the aircraft. In
order to perform better, more information on the flight intents
are required to reduce the variability in the trajectories. Here,
the ratio of the default choice is 16%.

At P = 600s, the results are similar to P = 500s. The
reason is that the aircraft keeps the same behavior between
500s. and 600s. which is different from the behavior at 400s.

There is some kind of regularity that explains the fact that
the prediction is enhanced up to 5 minutes. This regularity
is captured more easily by the learning algorithm when the
behavior is stable during the validation interval. In this case,
the ratio of the default choice is 14%.

TABLE II
COMPARISON OF ONLINE MODELS AT P = 400S

Time after takeoff Nominal (FL) Tuned (FL) p-value

2min. 3.3029 (2.6698) 3.1699 (2.6740) 0.3401

5min. 6.7553 (5.6084) 6.5518 (5.6578) 0.6726

10min. 8.7851 (7.0757) 9.1846 (7.5687) 0.4541

TABLE III
COMPARISON OF ONLINE MODELS AT P = 500S

Time after takeoff Nominal (FL) Tuned (FL) p-value

2min. 4.0406 (3.2758) 3.2834 (2.7237) 5.612e-4

5min. 8.1290 (6.0885) 7.0567 (4.8281) 0.02049

10min. 9.0872 (7.0085) 9.4205 (6.7658) 0.7939

TABLE IV
COMPARISON OF ONLINE MODELS AT P = 600S

Time after takeoff Nominal (FL) Tuned (FL) p-value

2min. 4.5110 (3.4354) 3.5912 (2.4845) 1.289e-05

5min. 6.7936 (4.9209) 5.7231 (4.0456) 1.289e-03

10min. 8.5131 (6.6410) 9.4992 (7.8805) 0.09098

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, this article presents a flight model for the
climbing phase defined as a hybrid system based on BADA.
An integration scheme is defined in order to generate the
trajectories from this system. Then, tuning parameters are
identified in order to be used in the online context. The method
is validated through measuring the vertical errors between
real trajectories and generated ones: both for default and
fitted parameter values. In the validation context, fitting is
done on the entire trajectory i.e. with total information. The
measured errors are considered as the accuracy limit of this
five parameters model. Afterwards, the model is applied in the
online context, which evolves with time. Known altitudes are
used to fit the parameters and then, these are used to predict the
remaining points. To avoid overfitting, the known points are
partitioned in a learning set and a validation set. The validation
set is used to fit the regulation parameter, which penalizes
the deviation from the default values. Results shows that the
initial climb, which is before the main acceleration phase,
is not modeled accurately in order to fit the parameters. On
the contrary, when the flights adopt a common behavior after
this acceleration phase, the online learning method increases
the accuracy of the trajectory prediction. The gain is about
1 FL for 2 minutes and 5 minutes after the current time.
After that, the two models are not significantly different



because of the huge uncertainty on the trajectory. This study
shows that the uncertainty becomes too important between
5 and 10 minutes with minimal information. Consequently,
without further information on the flight intents and airspace
constraints, ground trajectory prediction is not accurate enough
for automated tasks such as conflict resolution. Furthermore,
this study confirms the need to use the aircraft derived data
to feed the BADA model in order to build a ground trajectory
prediction as the foundation stone of automated Air Traffic
control systems. The next step should be the identification of
the relevant onboard data improving significantly the trajectory
predictability on ground.
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[7] Eduardo Gallo, Javier López-leonés, Miguel A Vilaplana, and Fran-
cisco A Navarro. Trajectory Computation Infrastructure Based on BADA
Aircraft Performance Model. 26th Digital Avionics Systems Conference,
pages 1–13, 2007.

[8] William Glover and John Lygeros. A Stochastic Hybrid Model for Air
Traffic Control Simulation. Computer Engineering, 2004.

[9] Mohammad Ghasemi Hamed. Prédiction de trajectoires d’avions à
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