5 research outputs found

    Application of coupled electro-thermal and physics-of-failure-based analysis to the design of accelerated life tests for power modules

    Get PDF
    In the reliability theme a central activity is to investigate, characterize and understand the contributory wear-out and overstress mechanisms to meet through-life reliability targets. For power modules, it is critical to understand the response of typical wear-out mechanisms, for example wire-bond lifting and solder degradation, to in-service environmental and load-induced thermal cycling. This paper presents the use of a reduced-order thermal model coupled with physics-of-failure-based life models to quantify the wear-out rates and life consumption for the dominant failure mechanisms under prospective in-service and qualification test conditions. When applied in the design of accelerated life and qualification tests it can be used to design tests that separate the failure mechanisms (e.g. wire-bond and substrate-solder) and provide predictions of conditions that yield a minimum elapsed test time. The combined approach provides a useful tool for reliability assessment and estimation of remaining useful life which can be used at the design stage or in-service. An example case study shows that it is possible to determine the actual power cycling frequency for which failure occurs in the shortest elapsed time. The results demonstrate that bond-wire degradation is the dominant failure mechanism for all power cycling conditions whereas substrate-solder failure dominates for externally applied (ambient or passive) thermal cycling

    Fault Tolerance Enhance DC-DC Converter Lifetime Extension

    Get PDF
    One of the most crucial renewable energy sources today is solar energy. Power convertors play an important role in adjusting the output voltage or current of photovoltaic (PV) systems. Using efficient and reliable switches for power converters and inverters is crucial for enhancing the safety and reliability of a platform. Generally, power converters suffer from failure mechanisms, such as wire bond fatigue, wire bond lift up, solder fatigue and loose gate control voltage, which mainly occur in power switches. In this paper, the junction temperature of the Insulated Gate Bipolar Transistor (IGBT) acting as a power switch used in the Impedance-Source DC-DC converter is estimated using an electro-thermal model in order to develop an adaptive thermal stress control (ATSC). The proposed stress control adjusts reference input of the PI control to extend the life expectancy of the device under the mission. The accuracy of results present using The Modified Coffin-Manson Law has been used to determine the life of IGBT and the lifetime has been successfully increased base on implementing imperative ATSC and comparing the result with the constant reference input of the PI controller. The result integrates with converter health management to develop advanced intelligent predictive maintenance

    Prognostics and health management of power electronics

    Get PDF
    Prognostics and health management (PHM) is a major tool enabling systems to evaluate their reliability in real-time operation. Despite ground-breaking advances in most engineering and scientific disciplines during the past decades, reliability engineering has not seen significant breakthroughs or noticeable advances. Therefore, self-awareness of the embedded system is also often required in the sense that the system should be able to assess its own health state and failure records, and those of its main components, and take action appropriately. This thesis presents a radically new prognostics approach to reliable system design that will revolutionise complex power electronic systems with robust prognostics capability enhanced Insulated Gate Bipolar Transistors (IGBT) in applications where reliability is significantly challenging and critical. The IGBT is considered as one of the components that is mainly damaged in converters and experiences a number of failure mechanisms, such as bond wire lift off, die attached solder crack, loose gate control voltage, etc. The resulting effects mentioned are complex. For instance, solder crack growth results in increasing the IGBT’s thermal junction which becomes a source of heat turns to wire bond lift off. As a result, the indication of this failure can be seen often in increasing on-state resistance relating to the voltage drop between on-state collector-emitter. On the other hand, hot carrier injection is increased due to electrical stress. Additionally, IGBTs are components that mainly work under high stress, temperature and power consumptions due to the higher range of load that these devices need to switch. This accelerates the degradation mechanism in the power switches in discrete fashion till reaches failure state which fail after several hundred cycles. To this end, exploiting failure mechanism knowledge of IGBTs and identifying failure parameter indication are background information of developing failure model and prognostics algorithm to calculate remaining useful life (RUL) along with ±10% confidence bounds. A number of various prognostics models have been developed for forecasting time to failure of IGBTs and the performance of the presented estimation models has been evaluated based on two different evaluation metrics. The results show significant improvement in health monitoring capability for power switches.Furthermore, the reliability of the power switch was calculated and conducted to fully describe health state of the converter and reconfigure the control parameter using adaptive algorithm under degradation and load mission limitation. As a result, the life expectancy of devices has been increased. These all allow condition-monitoring facilities to minimise stress levels and predict future failure which greatly reduces the likelihood of power switch failures in the first place

    Measuring Level of Degradation in Power Semiconductor Devices using Emerging Techniques

    Get PDF
    Title from PDF of title page viewed May 24, 2021Dissertation advisor: Faisal KhanVitaIncludes bibliographical references (page 124-154)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics, University of Missouri--Kansas City, 2021High thermal and electrical stress, over a period of time tends to deteriorate the health of power electronic switches. Being a key element in any high-power converter systems, power switches such as insulated-gate bipolar junction transistors (IGBTs) and metal-oxide semiconductor field-effect transistors (MOSFETs) are constantly monitored to predict when and how they might fail. A huge fraction of research efforts involves the study of power electronic device reliability and development of novel techniques with higher accuracy in health estimation of such devices. Until today, no other existing techniques can determine the number of lifted bond wires and their locations in a live IGBT module, although this information is extremely helpful to understand the overall state of health (SOH) of an IGBT power module. Through this research work, two emerging methods for online condition monitoring of power IGBTs and MOSFETs have been proposed. First method is based on reflectometry, more specifically, spread spectrum time domain reflectometry (SSTDR) and second method is based on ultrasound based non-destructive evaluation (NDE). Unlike traditional methods, the proposed methods do not require measuring any electrical parameters (such as voltage or current), therefore, minimizes the measurement error. In addition, both of these methods are independent of the operating points of the converter which makes the application of these methods more feasible for any field application. As part of the research, the RL-equivalent circuit to represent the bond wires of an IGBT module has been developed for the device under test. In addition, an analytical model of ultrasound interaction with the bond wires has been derived in order to efficiently detect the bond wire lift offs within the IGBT power module. Both of these methods are equally applicable to the wide band gap (WBG) power devices and power converters. The successful implementation of these methods creates a provision for condition monitoring (CM) hardware embedded gate driver module which will significantly reduce the overall health monitoring cost.Introduction -- Failure mechanisms of modern power electronic devices -- Existing degradation detection & lifetime prediction techniques -- Accelerated aging methods -- SSTDR based degradation detection -- Ultrasound based degradation -- Degradation detection of wide band gap power devices -- Conclusions and future researc
    corecore