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Abstract 

Prognostics and health management (PHM) is a major tool enabling systems to 

evaluate their reliability in real-time operation. Despite ground-breaking 

advances in most engineering and scientific disciplines during the past decades, 

reliability engineering has not seen significant breakthroughs or noticeable 

advances. Therefore, self-awareness of the embedded system is also often 

required in the sense that the system should be able to assess its own health 

state and failure records, and those of its main components, and take action 

appropriately. This thesis presents a radically new prognostics approach to 

reliable system design that will revolutionise complex power electronic systems 

with robust prognostics capability enhanced Insulated Gate Bipolar Transistors 

(IGBT) in applications where reliability is significantly challenging and critical. 

The IGBT is considered as one of the components that is mainly damaged in 

converters and experiences a number of failure mechanisms, such as bond wire 

lift off, die attached solder crack, loose gate control voltage, etc. The resulting 

effects mentioned are complex. For instance, solder crack growth results in 

increasing the IGBT’s thermal junction which becomes a source of heat turns to 

wire bond lift off. As a result, the indication of this failure can be seen often in 

increasing on-state resistance relating to the voltage drop between on-state 

collector-emitter. On the other hand, hot carrier injection is increased due to 

electrical stress. Additionally, IGBTs are components that mainly work under 

high stress, temperature and power consumptions due to the higher range of 

load that these devices need to switch. This accelerates the degradation 

mechanism in the power switches in discrete fashion till reaches failure state 

which fail after several hundred cycles. To this end, exploiting failure 

mechanism knowledge of IGBTs and identifying failure parameter indication are 

background information of developing failure model and prognostics algorithm to 

calculate remaining useful life (RUL) along with ±10% confidence bounds. A 

number of various prognostics models have been developed for forecasting time 

to failure of IGBTs and the performance of the presented estimation models has 

been evaluated based on two different evaluation metrics. The results show 

significant improvement in health monitoring capability for power switches. 
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Furthermore, the reliability of the power switch was calculated and conducted to 

fully describe health state of the converter and reconfigure the control parameter 

using adaptive algorithm under degradation and load mission limitation. As a 

result, the life expectancy of devices has been increased. These all allow 

condition-monitoring facilities to minimise stress levels and predict future 

failure which greatly reduces the likelihood of power switch failures in the first 

place. 
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1 1 Introduction 

1.1 Scope of Research 

Power electronics is becoming significant at all levels of energy conversion. 

Power switching modules, such as Insulated Gate Bipolar Transistors (IGBTs), 

are one of the main components in power conversion systems. Generally, all 

power switches, power electronic devices and modules have a non-zero 

probability of failure and the overall system using them will also demonstrate 

this degree of unreliability. Generally, power switches suffer from wide-ranging 

failure that could be classified as packaging problems (e.g. wire bond lift off, 

substrate solder joint crack and die-attached failure), dynamic latch up, and 

loose gate control voltage thermal runway, during exposure to thermal variation 

and high electrical stresses. Within this classification, faults introduced by 

irreversible physical changes in the packaging, known as extrinsic failures, are 

dominant failures, whilst other physical changes, known as intrinsic failures, are 

mostly triggered by dominant failures. These faults have a great impact on 

reducing the reliability of the power system in highly-reliable applications, such 

as chemical/nuclear and space/aeronautic/medical industries. In cases of extreme 

dependence on the severity of the environmental conditions and the load 

operating conditions, replacement of malfunctioning devices may be difficult, and 

thus, earlier failure prediction and on-line repair are the only options. With 

regard to failure prediction, industry fabrication is still in its infancy and no 

datasheets with typical characteristics are available to build prognostics models. 

Power electric and electronic systems of industrial applications, such as space 

and aerospace applications, are comprised of electronic boards integrating 

various complicated electronic power switches and converters. To facilitate 

integrated system health management prognostics, it is necessary that the 



 

2 

system is monitored properly and the degradation profiles of these power 

electronic components are obtained. Monitoring and collection of vital signals 

from active components for extracting appropriate features, with a standard 

level of reliability, suitable for prognostics and estimating RUL, are a 

prerequisite for monitoring the state of the system’s health. 

1.2 Research Background 

In the long-term vision, the ambition of health monitoring and prediction 

of future behaviour of power electronics become a great interest of an underlying 

research for an innovative new generation of the powertrain system. 

“Prognostics” also becomes an interesting part of an advanced health 

management tool to handle prediction and forecasting anomalies and failure 

regions which reduce system downtime. Furthermore, within the field of PHM, 

creating prognostics models for estimating the RUL of a system continues to 

consume time and require expensive resources and historical data. PHM, which 

is considered to be one of the most challenging disciplines in condition-based 

maintenance (CBM), had rarely been applied to power electronic modules and 

therefore is relatively immature in this field. This may be due to the fact that the 

development of wear and damage models that enhance more interactive reliable 

power electronics switches are comparatively complex to indicate the end of life. 

In addition, scattered intermittent faults populated in power electronic devices 

may not necessarily lead to failure. This becomes really difficult for developing 

prognostics algorithms to distinguish switch degradation from incipient faults 

and threats that may arise from early impending failure [1]. 

Current prognostics approaches for power electronics can be classified into 

three different methods: (1) Data-driven approach, (2) Physics of failure (PoF), 

(3) Fusion method or hybrid model which consists of a combination of the data-

driven and PoF approaches.  

The data-driven approach to prognostics is highly dependent on a 

sufficient amount of online measurement data which is not easy to obtain for 
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model training in real time in order to predict future status and remaining 

useful life estimation. However, the data can be obtained from experiment data 

to train the model [2]. PoF is an analytical model of the degradation process 

based on the knowledge of failure mechanisms which uses damage parameters in 

calculation of the RUL. Although developing physics-based models for such 

complex systems may not be feasible because mapping the physical structure’s 

model parameters with prognostics features is still an ongoing challenge for 

designers. The hybrid model aims to fuse both the data-driven and PoF methods 

to compensate for the imperfections of both models [3].  

1.3 Hypothesis 

Enhancing power modules with system health management provides a 

substrate upon which power electronics designers can implement their 

architectures with the security of knowing that, if degradation occurs, the 

remaining useful life of the component/system is estimated. Additional care 

through self-awareness features is taken automatically to avoid the power 

converter from being faced with actual faults while the healthy passive devices 

(e.g. capacitors, inductors and resistors) keep functioning properly. Having power 

switches with embedded estimated degradation models allows significant health 

monitoring locally in each component. This will allow the industry to benefit in 

terms of significant maintenance cost reduction and low-carbon electricity 

generation.  

The main novelty and aim of this project are to develop versatile 

prognostics for IGBTs’ packaging and to investigate how signals from electrical 

parameters that monitor thermo-mechanical stress, can be used for failure 

prediction and protection as well as to modify the control strategy and reliability 

assessment. Feature extraction provides facilities in which just one parameter of 

an IGBT as a precursor provides relevant signals that can be used for detection if 

degradation or failure is from the die or packaging of the IGBT. The goal of this 

would be to exploit real-time health monitoring technology to overcome the above 

limits by adopting the game-changing concept of real-time prognostics for power 
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electronics, allowing industry to benefit in terms of significant maintenance cost 

reduction and low-carbon electricity generation.  

Within this context, this three-year EPSRC funded PhD project on 

embeddable and efficient prognostics and health management of power 

electronics which can be derived from ageing test data and conditions. The model 

can be adapted to the available data set and the results help in decision-making. 

The dynamic of the model can be integrated into RUL calculation method which 

results in enhancement of the potential of failure for power electronics 

components “IGBTs”. This, in turn, improves the prognostics capability for 

IGBTs module. This will contribute to the following research objectives via the 

methodologies described in sections 1-5: 

 Light real-time prognostics development for IGBT conditional 

health monitoring 

 Compare and contrast various prognostics health assessment   

 Improve IGBT reliability  

 Implementation, assessment and justification.  

1.4 Research Methodology 

The research methodology outlines the research goals and objectives in a 

structured approach as shown in Figure ‎1-1 through a number of scientific and 

technical steps. The ultimate goal in employing precursor parameters of 

prognostics for life extension of power modules requires us to look for parameters 

that can be used for prognostics of IGBTs. This has been widely addressed in 

much research conducted by other researchers. However, prognostics capability 

concepts have been rarely applied to power electronic modules because failure in 

power electronic modules is difficult to identify in real time. Hence, this thesis 

contributes a number of prognostics techniques utilising parameters that have 

been investigated by other researchers. This avoids repetition of previous 

research in the field and develops real-time condition monitoring. In this regard, 
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the research method presented in this thesis contributes to the evaluation of 

RUL using: 

 Statistical techniques (e.g. Poisson distribution and Gamma 

distribution models), 

 Artificial intelligence techniques (e.g. Time Delay Neural Network, 

Fuzzy Logic) 

 Hybrid data-driven method 

 Analytical method. 

 

 

 

 

 

 

 

 

 

Figure ‎1-1 Flowchart of the research methodology 

This research methodology then evaluates and assesses RUL estimation 

derived from each technique leading us to critique design policies/rules for 

formulating a light prognostics and real-time processing approach that addresses 

which techniques under which conditions are more suitable for a particular 

application. Finally, the research is followed by assessment and justification of 

the hypothesis. The research outcome through various comparisons highlights 

the benefit of using these techniques which are the improvement of the 
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paradigms of future power electronic reliability. The research methodology fulfils 

the project’s contributions to the objectives through the following tasks: 

 Research review: The current state-of-the-art of power electronics 

prognostics has been properly addressed in the literature. This leads us 

toward existing knowledge in regard to figuring out the gap of knowledge in 

developing robust prognostics techniques. We, however, justify if the 

selected precursor parameters addressed by other researchers is really right 

failure indication parameter within power electronics fault indicator 

parameters. This is conducted through a pre-processing step that involves 

identifying precursor parameters amongst several different parameters 

data set, noise filtering and classification. 

 Research collaboration to collect reliability data from other research 

centres that have been active in the field, including NASA, the Power 

Electronics Group Centre at the University of Nottingham. 

 Prognostics modelling: Classification of failure data use for early 

anomaly detection, and robust statistical failure modelling using the light 

embeddable Monte Carlo propagation technique to simulate remaining 

useful life. A hybrid model time delay neural network (TDNN) and 

analytical integration have been implemented to eliminate the uncertainty 

of failure modelling and a statistical model approach is studied. Expert 

knowledge incorporates with unified model-based prognostics has been 

developed in order to be scalable with IGBT operating condition factors.  

 RUL estimation and prognostics evaluation: Prognostics results 

have been simulated and RUL estimation performance of models was 

evaluated using a well-known common evaluation metric method to 

quantify the accuracy of the prognostics results and to obtain light 

prognostics performance. 

 Hypothesis evaluation: Implementing a case study of DC-DC 

Single-Ended Primary Inductance Converter (SEPIC) in real time that has 

a precursor parameter of light prognostics employed for modifying the 
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control strategy of a power module to extend the lifetime of the module 

while the lifetime itself is assessed by light prognostics. 

 Publication: Research contribution in well-known high-impact 

international publications to distribute its findings to other research 

centres. 

1.5 Research Assumptions 

Although research has been already conducted to develop prognostics for 

IGBTs, there is still a lack of knowledge about whether precursor parameters 

and results derived from prognostics can be employed for modifying the control 

strategy of power modules. For the purpose of this radically novel research, it is 

impossible to find results from published research that test a similar hypothesis. 

Hence, we have conducted the validation steps considering the following 

assumption: 

It is assumed that the physics-based prognostics of IGBTs can be used as a 

reference for prognostics evaluation. We accept this assumption because physics-

based models are mainly based on the well-known Coffin-Manson law and a 

creep model of the material properties of IGBTs’ packaging structure and 

junction temperature. On the other hand, other prognostics techniques are 

mainly based on collected data and training iterations that either needs data to 

be collected from a huge number of IGBT prototypes or proper training 

algorithms. Both the IGBT prototypes and the training algorithms are random. 

Physics-based models can be a precise prognostics reference as the uncertainty 

has less impact on the results.  

1.6 Research Outcomes 

The research conducted by this thesis delivers as follows: 

1. Steps to approach failure model learning and a light prognostics 

algorithm specific to power switches. 
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2. Prognostics policies and rules leading us to guidelines for a suitable 

prognostics approach for particular power converter applications. The 

results have prioritised and categorised maintenance policies in different 

prognostics implementations, such as less computational power 

consumption and less complexity of implementation, improvement of the 

confidence boundary for decision-making, and elimination of model 

uncertainties. 

3. Stress minimisation and improvement of power converter reliability by 

fusing health management parameters with the control strategy. 

The scientific contributions of IGBT health management are outlined as 

follows: 

1. Investigating dominant failure in IGBT module using an empirical 

failure model. 

2. Develop a novel real-time data-driven prognostics model based on a 

statistical approach. 

3. The development a robust fusion prognostics approach involves 

building neural network models of failure with the intuition of uncertainty 

and a probabilistic approach to estimate the end of life of an IGBT. 

4. The development of an electro-thermal model for an IGBT module 

and estimating the junction temperature and feature extraction of the 

obtained thermal stress. 

5. Introducing control stress minimisation in order to improve the 

lifetime of the IGBT as it is imposed to thermal stress due to the variation 

of the load conditions. 

1.7 List of Publications 

A list of publications that contributed to the IGBT prognostics literature 

during this research listed below: 
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2 2 Literature Review 

 

The purpose of this chapter is to provide a literature review of the logistic 

capabilities of CBM includes prognostics and diagnostics. The several 

conventional hierarchical prognostics methods are discussed for power electronic 

switches (i.e. IGBT). Next, a description of various IGBT structures and IGBTs’ 

failure mechanisms are presented. In the conclusion of this chapter, the more 

challenging parts of the prognostics models that cause complexity in the area of 

intelligent maintenance are discussed. 

2.1 Prognostics and Health Management 

Reliability is the definition of a product capability that can rely on its 

normal performance. This is initially in the design stage and is intended to 

perform without failure within a specific life cycle frame. Prognosis is the process 

of predicting the future health state of a product by realising the current 

degradation and expected nominal operational condition. Furthermore, 

calculation of a number of lifetimes left is conducted by extrapolating the 

performance of the product degradation process up until to the expert defined 

failure threshold using light versatile failure models and algorithms [4], [5]. 

These models and algorithms may need to integrate the sensing and 

interpretation of relevant recorded data for assessing and predicting the 

reliability of a product in its actual application environment. It is necessary to 

identify the failure modes and mechanisms that can take place in electrical 

components in the first step for employing a PHM system [6], [7]. To identify the 

main failure mechanisms, the precursor parameters, such as voltage, current, 

temperature, amongst others, have to be identified and monitored. The recorded 

data and interpretation of the working environment and loading conditions are 

then used in a PHM system to help predict the remaining lifetime. The condition 
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monitoring can be developed for the product using various techniques to indicate 

and interpret the health condition through the sensory parameters [5]: 

i) Degradation parameters, such as an operating parameter, have 

deviated from their nominal values. 

ii) Electrical degradation, such as material cracking (e. g. solder 

crack), and interfacial delamination cause an increase in electrical 

voltage and resistance. 

iii) Environment life cycle variations, such as temperature, vibration, 

and humidity variation in ambient. 

 

The maintenance procedure can be planned according to the information 

of the product’s health and life cycle conditions. The new product has the 

advantage of health monitoring information being concurrently designed 

according to the appropriate life cycle environment [5]. Most of the safety critical 

mechanical systems and structures, such as aircraft engines and structures, 

propulsion systems and rotary gears and equipment, have benefited from the 

advanced sensory measurement platform which has contributed to online 

diagnostics and prognostics tools. Thus, mechanical systems are relatively 

known for online health monitoring with considerable useful knowledge of 

conditional health monitoring [8], [9]. 

Today, improving the reliability of power electronics devices is a key 

requirement for future technologies as it protects systems from various 

reliability issues [10], [11]. A revolutionary step is to equip power electronics 

with an Integrated System Health Management (ISHM) unit, which offers 

solutions to enhance the reliability of power conversion devices via failure 

prediction, detection, and mitigation techniques [12]. Prognostics and diagnostics 

are the key players for power electronic systems in service planning, 

predictability maintenance which minimise unscheduled maintenance through 

effective timely repair actions and result in maintenance cost reduction, 

minimising the down state of the equipment. Diagnostics focuses on the 

detection, isolation and identification of failure when they occur whilst prognosis 
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focuses on predicting failure before it occurs. This means that technical 

prognostics could be understood as an extending/complementary element of 

technical diagnosis. Prognosis can be referred to as the ability to predict how 

much time is left or RUL before a failure occurs given an observed machine 

condition variable and a past operational profile. The observed condition can be 

attributed from the physical characteristics or process performance of its failure. 

For instance, some condition parameters that can be used in prognostics are 

acoustic data, temperature, moisture, humidity, weather, voltage and current 

[13]. 

Technical prognosis, which is considered a part of PHM, is a relatively 

new field of research and it is still considered as the weakest point in the 

condition-based maintenance processing chain. There are several applications of 

prognostics methods but the results and accuracy vary and are not always 

sufficient even if researchers so claim. Although several patents have been 

registered and many journals and conference papers have been published, the 

field of technical prognosis is still quite new and not well researched. In 

particular, robust real system applications are still missing [14]. 

2.2 CBM in Power Electronics 

The desire and need for efficient maintenance in advance and complex 

machinery become progressively vital over the last few decades. The goal for the 

industry is to reduce unscheduled maintenance and maximise system/component 

availability and functionality. Predictive maintenance has become more 

ambitious recently for power electronics systems and the associated challenges 

have been addressed. The paradigm shift of the early fault detection and 

protection in revolutionary electronic systems enables prognosis and health 

management for power electronic switches. CBM is a predictive and preventive 

maintenance strategy with real-time monitoring which indicates signs of 

upcoming failure, helps to optimise and adapt the functionality and the 

reliability of power conversion applications with integrated trending possibility 

of single or of several condition parameters. The aim of CBM is to reduce 
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maintenance costs by reducing unscheduled downtimes and furthermore to 

minimise spare part costs [15]. Having in situ intelligent condition monitoring 

improves efficiency and reliability and increases operating time significantly. 

The characterisation of the system behaviour is part of the CBM in order to be 

able to develop the model to indicate the current health state and predict failure. 

Therefore, CBM implies to be backed up by the relevant disciplines of PHM and 

Integrated Vehicle Health Management (IVHM). 

The preliminary concept of the reliability for the power generation (e.g. 

wind turbines) and power conversion (e.g. AC-DC converters) are an imperative 

role for the IVHM maintenance framework. As a potential maintenance 

application, fault detection capability improves real-time condition monitoring to 

detect an abnormality. This also prevents catastrophic failure which is a 

requirement of pre-emptive maintenance and prognosis model prerequisites for 

planning predictive maintenance. 

2.2.1 Diagnostics and Prognostics in CBM 

Diagnostics and prognostics approaches are the main two aspects of the 

CBM [16]. 

 Predictive Maintenance (RCM, CBM) 

Designing a prognostics capability for power electronics requires 

understanding the physical or electrical degradation, such as solder cracking, 

wire bond corrosion, packaging structure’s layer delamination, and increase in 

electrical resistance, threshold voltage or thermal resistance, changes in a 

lifecycle environment, such as ambient temperature and humidity, vibration, 

and shock. Such information results in better model development for predictive 

maintenance which will be an intuitive adaptive model to determine the 

schedule of maintenance actions. Predictive maintenance is classified into two 

categories: CBM (condition-based maintenance) and RCM (reliability-centred 

maintenance). RCM emphasises much broader and deeper failure mechanisms 

(e.g. FMECA) and analysis to perform two tasks: first, to analyse and categorise 
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failure modes and second, to assess the degree of risk and system functionality 

and maintainability of the asset [17]. 

Diagnostics is a complementary tool for CBM which deals with fault 

detection and the location of the faults. This information can be helpful for 

providing maintenance decision-making and informative feedback for improving 

model-based monitoring for prognostics. It aims to detect the incipient failure 

and failure progression to prevent catastrophic failure. This will help to increase 

the time between failures for upcoming component failure which improves 

system availability and safety. 

A prognostic gives a probabilistic forecast of the system’s or component’s 

future health based on the current health and historic condition failures before 

they happen [4]. It would be necessary to provide data that can be used for 

modelling the future health level by trending the current health level up to 

failure status and predicting RUL [16]. It is considered to be one of the most 

challenging keys and potential payoffs of CBM for enabling power electronics 

with advance warning, extending maintenance cycles and residual life 

computation. Figure ‎2-1 depicts the platforms of diagnostics and prognostics in 

CBM. 

In power electronics applications, the term “Prognostics and Health 

Management”, as shown in Figure ‎2-2, is manifesting current health state of the 

system through both conditional monitoring and data processing. Health 

assessment function provides feature extraction, state detection using pattern 

recognition and clustering which are supporting steps for the fault detection and 

diagnostics. Furthermore, failure model effectively to be developed for 

forecasting future health state and prognostics algorithm computes RUL. 

Finally, the decision-making unit provides scheduled maintenance actions 

related to the current health of the asset. All this informative health information 

is used in satisfactory operating conditions before the incipient failure happens 

in downtime which can be controlled in a fault avoidance unit. 
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Figure ‎2-1 Diagnosis and prognosis in CBM 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-2 Power electronics PHM overview  
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2.2.2 CBM Challenges 

It is noted that the prediction can basically be done based on failure rates 

and the operation of components under operating conditions, whereas it is 

generally impossible to develop the prediction model based on a single data 

source or one set of environmental factors. Thus, a wide variety of failure data 

sources from different operating conditions needs to be pre-processed in terms of 

populated noise and uncertainty information in order to be able to design 

accurate failure rate modelling. With real-time measurement for monitoring, the 

old components in place can be difficult to retrofit with sensors. The lack of 

factual data can be the main reason to competence CBM for quantifying lifecycle 

prediction of products. Lifecycle prediction is needed in real services to monitor 

MTBF and MTTF of complex systems through reliability programmes. However, 

there are practical evaluations of system reliability that enable customers to 

access the products lifetime with a tangible value. MTBF (Mean Time between 

Failures) is for providing time to repair in the interval where during useful life 

typically displays the number of hours to failure. The desired MTBF can be used 

as quantifiable objectives in order to avoid maintenance cost exceed replacement 

cost. Furthermore, MTTF (Mean Time to Failure) is the numeric value requires 

an intrusive programme that could introduce the indication of the product’s end 

of life. 

Essentially, there is an increasing need for failure detection technologies 

to provide state-of-health or early warning information which can detect 

abnormality at an earlier stage. It is possible to increase the time to failure or 

the duration of the potential of failure (POF) (see Figure ‎2-3). On the other hand, 

prognostics results can be used for optimisation of system controls to extend the 

overall RUL. In order to justify the usefulness of prognostics, the duration of 

POF must be quite long. Therefore, it is important to know which feature must 

be monitored to detect malfunction at an early stage. For example, if the 

monitored parameters persistently deviate by more than 3δ (Std) as a detection 

error over the flat region, this implies that there is an abnormality at this time 

[17].  



 

20 

 

 

 

 

 

Figure ‎2-3 Potential of failure interval 

2.3 Benefit of CBM in Power Electronics 

Recent surveys of maintenance strategies in US industry indicate one-

third of every dollar spent on maintenance is wasted due to inappropriate 

maintenance plans. The premise of diagnostics and prognostics in CBM has a 

significant effect on reducing unnecessary and improperly carried out 

maintenance and results in reducing scheduled maintenance costs and mission 

failure. The capabilities of the systems to prevent upcoming component failure 

will be included using real-time detection and estimating the health state. In 

addition, prognostics piece becomes the function of using in the monitoring to 

make predictions. Fault detection and prognostics become significantly effective 

parts for decision making where the safety and reliability are the paramount 

concern in power electronics. This will save greatly 50% maintenance cost and 

enable power electronics with 80% end-of-life prediction capability. CBM in 

power electronics strives to maximise the availability at the optimal time and 

MTBF of the component by identifying incipient failures before they become 

catastrophic failures [18]. The overall benefits of CBM have been evaluated to 

significantly improve the overall performance and operation of systems in highly-

integrated power conversion systems. 
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2.4 Review of Prognostics Approaches 

In condition-based maintenance, prognostics can be defined as a controlled 

engineering discipline that focuses on the prediction and estimation of the future 

course of a system or component that tries to establish when the 

system/component starts to slowly develop irregularities and faults to the point 

where it eventually malfunctions. A system or component has malfunctions 

mean that it can no longer operate accordingly. The predicted lifecycle of a 

system or component is referred to RUL. This is used in decision-making for 

contingency mitigation and maintenance. There are various scientific techniques 

used that help constructs the prognostics of a system or component, including 

failure mode analyses, early detection of ageing signs, and damage propagation 

models. Failure mechanisms are often used in conjunction with system lifecycle 

management to create PHM disciplines. PHM is also sometimes known as 

system health management (SHM). Within the field of transportation 

applications, it is either known as vehicle health management (VHM) or engine 

health management (EHM). 

Four main technical approaches related to building prognostics models can 

be categorised into data-driven approaches, PoF approaches, knowledge-based 

models, and hybrid approaches. 

Data-driven models (DDMs) employ and develop models based on 

routinely collected sensory data from operating conditions and/or past historical 

reliable data instead of formulating an analytical model based on the physics of 

failure of the system or expert knowledge of the failure propagation. DDMs 

strive to track the degradation of power electronics and significant failure can be 

predicted for the components using projection techniques (e.g. regression, 

machine learning, Hidden Markov Models (HMMs), and neural networks). They 

basically depend on the past run-to-failure data to forecast future degradation 

[19]. 

Data-driven prognostics [20] are mainly based on statistical and learning 

techniques from the theory of pattern recognition and machine learning 
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approaches that help identify and detect trends and changes in the individual 

phases of a system’s state. A way to predict trends in nonlinear systems is by 

using classical data-driven methods, such as stochastic models, an 

autoregressive model, the bilinear model, the projection pursuit, etc. Soft 

computing techniques that involve using various types of neural networks (NNs) 

and neural fuzzy (NF) systems have also been commonly adopted to deal with 

data-driven forecasting of a system state [21], [22]. This prognostics approach 

applies to applications that have complicated system architecture, i.e. systems 

that incur high costs when developing an accurate prognostics model. Thus, 

adopting this approach to deal with complex systems will lead the prognostics of 

a system to be much faster and cheaper to set up as compared to other 

approaches. In contrast, data-driven approaches may have wider confidence 

intervals than other approaches which mean they will require a substantial 

amount of data for training purposes [23]. 

There are various strategies used to develop data-driven prognostics 

which involve the analysis of either (1) modelling cumulative damage and then 

extrapolating out to a damage threshold, or (2) directly learning from the data 

based on the remaining useful life. 

As it is lengthy and rather a costly process to fail each and every system 

one by one, we thus seek to obtain the run-to-failure data which refers to the 

main fundamental setbacks, especially for new systems. In order to retrieve 

adequate data-driven prognostics, the accelerated ageing data should be 

extracted cautiously from a number of similar/related products by using 

appropriate measuring tools. This means that both the quality and quantity 

aspects of the data-driven prognostics will add to the cost, especially since the 

data sources may have been derived from a wide range of factors, including 

temperature, pressure, oil debris, currents, voltages, power, vibration and 

acoustic signal, spectrometric data, as well as calibration and calorimetric data. 

As a result, it is important to fully understand what parameters and signals will 

be necessary to measure, and which features will need to be extracted from the 

noisy and high-dimensional data [20], [21], [23]. 
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2.4.1 Statistical Models 

The degradation model structures are based on probabilistic distributions 

and tuned using the run-to-failure data obtained from the accelerated ageing 

experiments. Again, the ageing data sets are used to train the statistical model 

depending on what probability distributions are employed. The distribution of 

the statistical approach is defined by two parameters: scale, which is 

comparatively dependent on the proportion of time to failure and shape which is 

an indication of the distribution of data alongside with scale parameters [24]. 

The Weibull distribution, the most suitable probability function, can be used for 

lifetime estimation of the data analysis. The trained statistical model and testing 

data set are used to support the calculation of the RUL. Data-driven methods 

based on the statistical approach are subjected to two different approaches. The 

first approach is known as a direct estimation of RUL in which the direct 

condition monitoring (CM) preserves the damage propagation to manifest the 

underlying health state, and the RUL prediction is evaluated up until a 

predefined threshold value (e. g. solder crack, thermal resistance). In contrast, 

the second indirect approach initially needs to estimate a damage progression 

model using indirect condition-monitoring data from the system’s health state 

(e.g. sensory information, temperature, voltage, current) and then, propagates 

the expected data through the model until a predefined threshold for the RUL 

calculation is reached. The difficulty with the second method is that obtaining a 

reliable failure data set is often challenging due to non-identical devices and 

complete knowledge of the component is often unavailable [2]. Several models 

covering almost all statistical approaches are categorised as direct and indirect 

CM for RUL estimations. The model based on direct CM data is regression-

based, Wiener processes, Gamma processes and Markovian-based models. For 

statistical models based on indirect CM data, some of the approaches which have 

been included are stochastic filtering-based, covariate-based hazard and HMM 

and semi-Markov models (SMM). 

Overall, RUL calculation is one the most challenging tasks of PHM for 

high, medium and low-density power electronic modules, such as IGBTs, 
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MOSFETS and BJTS, etc. We attempt to present a comprehensive review 

through a statistic-based model in RUL prediction of power electronic modules. 

Sreenuch et al proposed a probabilistic Monte-Carlo framework to predict 

the RUL of an IGBT with TO-220 packaging. The probability distribution 

functions (PDF) are used to model the degradation process occuring during 

accelerated ageing tests. The parameter of the model is defined using Maximum 

Likelihood Estimation (MLE). The RUL and confidence bounds are calculated by 

estimating the mean, median and ±10% statistics values of the simulated 

degradation path, respectively [22]. 

Alghassi et al implemented the simple state-based prognostics (SSBP) 

method to estimate the RUL of the IRG4BC30K IGBT. The SSBP model is a 

statistical model for modelling the failure mode that evolves through a finite 

number of discrete states. The model implementation process involves three 

steps: clustering, cluster evaluation and RUL calculation [25]. 

Saha et al [18] implemented a particle filter algorithm for the prediction of 

the RUL  of a punch through (PT) IGBT. The algorithm was implemented on 

data obtained by performing high-temperature power cycling ageing tests on a 

planar PT IGBT IRG4BC30KD manufactured by International Rectifier. The 

trend of the IGBT collector-emitter current (ICE) at turn-off was fit with an 

exponential degradation model. A third-degree polynomial was used for the 

regression fit as given by the equation below. 

𝐼𝐶𝐸 = 𝑒(𝑃1𝑡3+𝑃2𝑡2+𝑃3𝑡+𝑃4) 

As the coefficients of the polynomial fit were highly correlated, only the 

trend of the first coefficient P1 with time was analysed over the ageing lifespan 

and used for tracking among the correlation coefficient matrix. This trend was 

then used in the particle filter (PF) framework for remaining useful life 

prediction. The framework consists of extracting features from sensor data and 

using these features to estimate and track the system behaviour. During the 

state estimation and tracking step, model parameters can also be learned from 
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the feature data. The state estimation and tracking continue until a diagnostic 

trigger enable the state prediction and RUL estimation steps. 

This thesis proposes a new data-driven approach for power electronics 

components (e.g. IGBTs) which addresses issues in previous IGBT prognostics. 

In [14], Celaya et al proposed an empirical degradation model based on the 

increase in the observed drain to source on-state resistance ∆RDS(ON) as the 

degradation process for six aged devices for a power MOSFET IRF520Npbf in a 

TO-220 package. This condition-monitoring parameter represents the failure 

process due to die-attached failure mechanisms as the only active degradation 

during the ageing process. The exponential model is formed as a first-order 

linear discrete model for using Bayesian tracking algorithms like an extended 

Kalman filter (eKF) for on-line RUL estimation calculation at time tp. 

In [26], Patil et al introduced a prognostics framework for non-punch 

through and field stop IGBTs (NPT IGBTs) which includes the Mahalanobis 

distance (MD) as the diagnostic parameter. The MD was evaluated using healthy 

baseline data and transformed into a normal distribution for anomaly detection. 

The PF is performed for future health prediction of the component using the VCE 

(ON) as a precursor parameter. This parameter indicates the health state of the die 

attached and wire bonds through changes in thermal resistance which effectively 

causes to increase in the VCE (ON). The first step in this approach is to propagate a 

number of particles through the probabilistic laws to estimate the initial state. 

In this approach, a multi-model distribution can be presented for the evolution of 

the system health state. The second step is to estimate the next state based on 

the previously updated system state as the posterior pdf. The system state is 

presented by the set of associated particles which characterise the prior and 

posterior distribution, and also set of associated weight denoting Markov 

probability of the discrete state. 

Azarian et al proposed a PF approach predicting RUL of IGBTs in wind 

turbine applications. In this approach, the second-order least squares regression 

has been driven based on VCE (ON) measurement from power cycling ageing 
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experiments to present the behaviour of the component failure. The RUL 

calculation is triggered when failure threshold value reaches 20% rise in the VCE 

(ON). In this research, they claim the ageing process for run-to-failure data 

collection lasts for 21.4 minutes and the result of RUL estimation at the 

measurement time detection of 11.8 minutes shows 20.8 minutes with an 

accuracy of 2.6% prediction error. The mean time RUL prediction was simulated 

with boundary levels and was presented with the Gaussian probability 

distribution of the particles at the end of life estimation [27]. 

Celaya in [28] has used the Gaussian Process Regression (GPR) technique 

for lifetime prediction of power MOSFETs based on on-state resistance 

degradation due to thermal and power cycling accelerated ageing tests. The 

monitoring parameter was computed as the ratio voltage and current across the 

drain and source of the device. The raw data was filtered by taking the mean of 

the data reading over one minute’s duration window length. The RUL prediction 

is described by a mean function and used as an output parameter and the 

dynamic behaviour of the system incorporates with uncertainty. The covariance 

function is designated to compute the response of uncertainty. 

Alghassi et al presented a light-weight statistical prognostics approach as 

an alternative to the EKF and PF. In this approach, the model is constructed 

based on the probability of failure for 9 different discrete phases from the 

decomposed historical run-to-failure data of VCE (ON). The probability model is 

formed utilising the duration of the failure phase as a versatile feature in order 

to aid the model propagation, with lifetime estimation effectively requiring only 

0.3ms computing time for each measurement [17]. 

2.4.1.1 Artificial Neural Network (ANN)-Based Model 

ANN is a data-processing has been acquired in black box tool which is 

attracted to prognostics field. This can be used in a modelling system which 

conventional models including complex nonlinear physical model are not either 

analytically exist or practically difficult for modelling. This model consists of 
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three layers: input layer, hidden layer and output layer. All layers are in 

interaction with different neurones, inspired by the human brain neurone 

structure, the so-called synapses, and connected with associated numerical 

weights. ANN is formed in mapping inputs to outputs through training a 

network of between set of n-dimensional real input and output. ANN is usually 

used in pattern recognition due to the ability of a having synthesised process via 

numeric information from multiple channels. In prognostics, ANN is well-known 

machine learning used to model a trend of non-linear failure objects by 

classifying the training data. However, the number of hidden layers and the 

number of participated nodes become a complicated issue in the training process 

as the feedback connection requires for learning the dynamic of the model. Also, 

two types of training methodologies are mainly defined thus far in the ANN 

machine-learning technique, namely supervised and unsupervised training. In 

supervised training, the network is trained from the input/output data set from 

direct health indicators or indirect sensory data to adapt to the changes of data 

and this requires a large set of training data. In contrast, unsupervised learning 

is widely used in clustering analysis and pattern mining for finding hidden 

clusters in unlabelled data by using primary functions of networks. The self-

organising map is one the most widely-used architectures for unsupervised 

learning algorithms. Zhang and Ganesan have used the technique for developing 

multivariable fault indices for monitoring rotating machinery [29]. Eker et al 

used an unsupervised learning algorithm (e.g. k-means clustering) for evaluating 

the health state indices of railway turnout [30]. Several types of neural networks 

are considered in supervised model prediction, such as a feed-forward neural 

network (FFNN), recurrent neural network (RNN), time-delay neural network 

(TDNN) and dynamic wavelet neural network (DWNN). FFNN is constructed 

from multiple series of layers where the first layer is connected to the input and 

each subsequent layer consists of a number of neurones which perform the 

summation of the weights from the previous layer. The network output is formed 

by the summation of the output of the hidden layer’s weight which can be called 

the output layer [31]. Byington et al used FFNN to obtain model prediction of the 

control valve position in the electro-hydraulic servo valve from the F/A-18 
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stabiliser actuator which has used the principle of electric current signature 

analysis in tracking the degradation of the actuator, and a KF was taken apart 

to calculate the RUL of the actuator [32]. RNN was proposed in the 1980s for 

modelling time series and is formed of multi-layer perception with distinction 

allowing a hidden unit to retain information from previous calculations as it has 

a “memory” which is a model capable of complex sequence prediction [33]. Yam 

et al successfully applied the RNN approach for prediction of nonlinear time-

based trends for critical equipment of power plants in order to avoid loss of parts 

before reaching major maintenance [34]. Yu et al presented a type of RNN, 

known as the Elman recurrent neural network (ERNN), which has shown the 

potential of promising the prediction of feature signature reading from a boring 

process sensor with 95% confidence levels [35]. TDNN is proposed and developed 

by Waibel in the 1980s and is inspired from neurobiology where the time delay 

occurs in axons due to different conduction times and the length of the axon 

fibres [36]. TDNN is typically similar to FFNN; however, the input signals are 

augmented by introducing time delay varying activation on the inputs and 

propagates through in a similar way to feed-forward fashion connection. This 

network architecture is used to model the dynamic of the set of input properties, 

and also identifies the behaviour of the series inputs [37].  

Alghassi et al used TDNN for the development of failure modes for IGBTs, 

and a statistical approach was fused to model for RUL estimation. 

DWNN can act as a real-time prognostics tool which can be trained in a 

time-dependent way by either using the gradient descent technique or the 

generic algorithm for prediction and classification issues. The sensory data is 

recorded with time information for training the DWNN in a dynamic fashion, 

also enabling the model to update the component’s remaining life distribution 

[38]. Gebraeel et al used a feed-forward and back-propagation neural network to 

model bearing degradation signals and update the failure time with sensory 

information to compute the RUL for the components based on the DWNN 

approach [39]. 
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Oukaour et al [40] developed an approach to distinguish defective IGBTs 

from healthy IGBTs. In this study, power cycling tests were performed on IGBT 

modules by subjecting them to a cyclic DC collector-emitter current ICE of 20A 

with 30 seconds power on and 20 seconds power off. Four parameters, namely 

the collector-to-emitter on-state voltage VCE, the case temperature Tc, the 

junction temperature Tj and the junction-to-case thermal resistance Rth-jc, were 

monitored during the tests. The healthy IGBT state was established by applying 

small DC currents to the IGBT from 200mA to 16A by steps of 200 mA with 30 

seconds power on and 1-second power off. The VCE (sat) and Tj measurements were 

performed during this test. After determining the healthy IGBT state, the device 

was power cycled to failure. The VCE (sat) and Tj were monitored during the ageing 

tests. A neural network based classifier scheme was implemented to determine a 

boundary that could be used to identify defective IGBTs, as shown in Figure ‎2-4 

[40]. 

 

Figure ‎2-4 Boundary to distinguish defective IGBTs from healthy IGBTs 
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2.4.2 Knowledge-Based Models 

In contrast to the data-driven and physics-of-failure approaches which 

require large samples of real reliable run-to-failure data of systems and accurate 

mathematical models for physical systems, respectively, knowledge-based models 

(KBA) utilise graphical models, such as Bayesian networks and rule-based 

reasoning, and this requires an implicit reasoning technique, such as ANN, to 

observe previous failure history from the data repository assess the health state 

of the system. This model becomes more promising as there is no need for a 

complex model, an expert system and fuzzy logic that are typically employed in 

this application [41]. Expert systems have long been used in diagnostics tools, 

and are currently becoming a more interesting subject for implementation in the 

prognostics field. Expert systems integrate human knowledge from previous 

experience with explicit reasoning techniques, such as rule-based techniques 

(e.g. IF-THEN), to allow system software language to realise the lifetime of the 

system [42]. This can be more problematic when an increase in the number of 

inputs requires a consistent combination rule to address the desired output [43]. 

As the system condition is upgraded or reconfigured, the knowledge base also 

needs to be updated during the process. A rule-based technique also needs to be 

prepared to address the domain knowledge of the failure phenomena in different 

conditions. Fuzzy logic can provide a robust rule to examine the sequence of 

failure mechanisms by configuring the membership function to map numerical 

values of the degradation feature. In expert systems, the logic covers the true 

and false statement, and this can be considered to be a major defect of the 

approach in that some important data will be effectively excluded, making it 

difficult to define a precise membership function [44]. A fuzzy system is an 

effective way of overcoming the above deficiencies by applying the algorithm to 

both the knowledge base and the fuzzy rule base. The data received from sources 

will be pre-processed and converted to a fuzzy form to be compared with a set of 

fuzzy rules. A few rules are selected and manually developed which represent 

the number of possible input and output combinations. This process, known as 

fuzzification, is about to define the membership function which finds the 

mapping between input data and particular fuzzy variables. The next step is 
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about defuzzify the resulting data into numeric output values. The extensive use 

of fuzzy systems has contributed significantly to control systems with the 

physical device’s current state, and output of the controller to control the system 

behaviour. Thus, this process also can be used in prognostics models [45]. 

Feng et al proposed a new fuzzy expert system in real-time condition 

monitoring of a chemical pulp mill. In this expert system approach, the 

reasoning inference engine of the fuzzy system is driven by the dynamic fuzzy 

rules. Thus, the rule is time-dependent and detects the change in the dynamic 

membership function of input/output and is fired due to changes in working 

conditions [42]. 

Chinnam et al presented a neuro-fuzzy approach for performing online 

RUL estimation of a physical system under degradation conditions. The method 

was implemented for measuring online data from thrust force and torque acting 

on the drill bit for a drilling operation. A Sugeno fuzzy inference model (FIM) is 

used to address the potential of failure by extracting strong experiential 

knowledge of the degradation signal. The model considers predominately the 

torque degradation profile in reliability assessment. The model was trained by 8 

samples from drill bits and 2 samples from network testing for estimating online 

reliability [45]. 

Alghassi et al proposed a prognostics capability algorithm for active power 

electronics devices (IGBTs) based on an adaptive neuro-fuzzy inference system 

(ANFIS) failure model. In this approach, 4 samples of the run to the failure of 

two parameters, namely measurement junction temperature (Tj) and VCE (ON), and 

the dynamic of inputs variable are used to train fuzzy Sugeno model (FSM) 

reasoning to map the dynamic membership function of the output to input. The 

failure data was collected from emulated failure mechanisms of solder fatigue 

degradation in IGBT simulation modelling. The prognostics results were 

evaluated with the root mean squared error (RMSE) against the probabilistic 

model, and results have shown significant improvement  compared to the ANFIS 

model approach [46]. 
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2.4.3 Model-Based Approach 

Model definition, as the first step for model-based prognostics, requires 

understanding the failure mechanisms of the system enhanced with PoF models 

and this is often a difficult task because establishing an accurate physical model 

is difficult to achieve. The aim is to integrate a physical model of the system to 

estimate the RUL which can be achieved using either through micro or macro 

levels. The model is driven as such is known for model-based prognostics [47], 

[48], [49]. 

In contrast to physical expressions used in micro-levels (also recognised as 

a material level) which is the integration of the damage propagation with 

relevant series of model dynamic equations, macro-level models use 

mathematical frameworks at a system level to make sense of relations among 

system input, system state, and system variables. The mathematical model often 

builds in simplified converged form but this may decrease the accuracy of the 

failure model. This model also suffers from a lack of expert knowledge in 

developing robust mathematical models which may add uncertainties and 

accordingly increase inaccuracy in the developed model [12], [50], [23]. 

In power electronics, PoF is an approach that employs knowledge of power 

electronic modules’ life-cycle loading and failure mechanisms to perform 

reliability modelling, design, and assessment. The approach is based on the 

identification of potential failure modes, failure mechanisms, and failure sites for 

the power electronic module at a particular life cycle loading condition. The 

stress at each failure site is obtained as a function of both the loading conditions 

and the geometry and material properties of the power electronic module [51]. 

The second method is the PoF for lifetime prediction based on Coffin-Manson 

models, Norris-Landzberg models, or Bayerer’s models [52]. The lifetime 

expectancy (in numbers of cycles) of an IGBT is experimentally obtained from 

the given environmental and load condition [53]. The cumulative fatigue (or 

damage) of an IGBT is calculated based on stress amplitude at each individual 

stress level and also from various actual operational conditions. Furthermore, 

RUL can be then expressed when incremented damage reaches a critical 
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threshold. Thereafter, the number of cycles to failure is used to estimate the life 

usage of the device [54]. 

The PoF method has been employed for estimating life usage of the wear 

out mechanisms of the materials in power electronics packaging modules. It can 

be noticed that the early fault detection and estimation of the current 

degradation level are often difficult [55]. 

Gu et al developed a PoF model for the RUL estimation of the printed 

circuit boards (PCBs) under vibration load for electronics application. The finite 

element analysis is developed to calibrate the analytical model to calculate the 

strain stress at the solder interconnection using sensory data indicating solder 

joint vibration fatigue of critical components under certain vibration loading. The 

time to failure obtained using a cumulative damage model incorporates the 

extracted cycle-counting algorithm for the solder strain and validated based on 

the resistance in-situ measurement [56]. 

Musallam et al [13], [57], [58] have developed an integrated real-time 

electro-thermal model to estimate the junction temperature of an IGBT module. 

The estimation has been carried out for different layers of the structure of the 

active device package which is difficult to access for real-time measurement. A 

rain-flow algorithm was employed to extract features from the temperature 

profile vs. time data, such as the number of cycles for different ranges of thermal 

cycling. The obtained knowledge enhances the Coffin-Manson model to estimate 

the end-of-life of the IGBT bond wire interconnects and the substrate solder 

joints under nominal operating conditions using the Palmgren-Miner 

accumulated damage rule. 

Kovacevic et al developed a comprehensive the energy-based lifetime 

model for a power electronic module based on the physical behaviour phenomena 

of the solder interconnections. The proposed model is based on Clech’s algorithm, 

which unlike the Coffin-Manson model, explains the properties of the junction 

temperature, i.e. frequency, dwell-ramp time, minimum/maximum temperature 

[52]. 
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Yin et al proposed a PoF-based prognostics approach for power electronic 

modules. The reliability assessment was carried out in real time under thermal 

cycles with different temperature swings. A linear thermo-mechanical model of 

the solder interconnect was formulated using the information of plastic strains 

under different load conditions to estimate the lifetime of the module [59]. 

Huang and Mawby developed a prognosis method for an inverter based on 

the physical IGBT and freewheeling diode. The Coffin-Manson equation is 

constructed based on the modified accumulated creep strain based model for only 

one failure mode, die-attached solder fatigue. The rain-flow counting method 

incorporating the damaged accumulated after one temperature profile was 

conducted to calculate the estimated lifetime using Miner’s rule [60]. 

Ji et al presented a precursor parameter in-situ monitoring methodology 

to diagnose the health of wire bond interconnection degradation in IGBTs and 

estimation lifetime of the device. Furthermore, the forward voltage bias VCE and 

VF are selected and indicated wire lift-off and integrated into the power drive for 

the IGBT and diode, respectively, with both parameters dependent on the high 

current and die junction temperature [61]. 

Xiong et al [7] proposed a real-time diagnosis and prognosis tool to 

forecast the critical failure region of an IGBT power module applicable in the 

automotive industry. In this study, power cycling tests were performed on 

Toshiba 600V/800A IGBT modules for approximately 10,000 hours. The stressing 

was performed by the application of repeated cycles of a 400A current pulse (1 

second), followed by a 20A current pulse (0.5 seconds) and a dwell period (8.5 

seconds). During the test, the collector-emitter voltage at saturation VCE (sat) was 

monitored continuously. A sudden drop of the VCE (sat) followed by a rise was 

observed. The authors suspected an initial solder joint degradation before wire-

bond failure eventually caused the failure of the power module. 

Based on the test results, the authors proposed a quasi-real-time IGBT 

failure model prognosis. The prognostics approach of the authors consisted of a 

prognostics check-up routine that would be implemented at a pre-set frequency 
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and current during vehicle turn-on and turn-off. During the check-up, the VCE (sat) 

of the IGBT module would be compared with a look-up table of healthy data. Any 

variation of the VCE (sat) over 15% would signal an alarm. Although the authors 

reported this approach as a prognostics approach, the remaining useful life of 

IGBTs was not reported [62]. 

Ginart et al [63] performed a study of IGBTs to develop an online ringing 

characterization method to detect early IGBT faults in power drives. The authors 

proposed the analysis of ringing characteristics of current and voltage 

transitions during switching as a feature for the evaluation of IGBT ageing. In 

this study, IGBTs were aged by exposing the active device to more heat 

generated from the junction temperature and switching it on and off until device 

latch-up occurred. A few times after latching occurred, the transistors were 

turned off. After the transistors recovered, they have aged again in a similar 

manner. The transistors latched after recovery but at a lower temperature and 

for a shorter ageing duration in comparison to the previous ageing. The 

transistors were evaluated using a custom ringing platform. It was observed that 

transistors that had latched multiple times had more damped voltage responses 

to an input gate pulse. The damped responses observed are shown in Figure ‎2-5. 

 

Figure ‎2-5 Changes in the ringing characteristic of the new (i.e. T1) and aged (T2, T3, 

and T4) IGBTs [63]  
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The authors speculated that the damped response was due to defects in 

the gate oxide which increased the channel resistance and hence, the damping in 

the power drive system. Hot-carrier injection and time-dependent dielectric 

breakdown were suggested as possible failure mechanisms in operation that 

could have resulted in the observed damped response [63]. 

Lu et al [64] analysed an IGBT power electronic module for railway 

applications. Based on a reliability analysis, the lifetime of the module was 

determined to be limited to the lifetime of the wire bond, bus bar, chip and 

substrate solder interconnects. The authors estimated the lifetime of the power 

module based on a strain-based model for each of the solder interconnects. In 

this study, no comparison of the predicted lifetime was made with experimental 

results. 

Patil et al [14], [65], [66] developed a fusion prognostics framework for an 

IGBT module. The approach has used a failure mode, mechanism, and effect 

analysis (FMMEA) to identify failure mechanisms in order to enable parameters 

to monitor degradation and fault isolation and trending, furthermore, 

prognostics is developed to be capable of addressing critical failure mechanisms 

and relevant physics-of-failure models for RUL calculation. 

2.4.4 Prognostics Cells 

Prognostics cells are devices which have the same failure modes and 

mechanisms as the real power electronics devices but their failure modes occur 

much sooner. They are embedded in the actual product and are monitored. With 

regard to the failure time of the real power semiconductor module, the lifetime of 

prognostics cells is pre-calibrated [67]. Therefore, prognostics cells will produce 

an early warning of failure and their failure time can be employed to predict the 

remaining life of the power electronic modules. In the power semiconductor, 

where the common failure modes, such as the hot carrier damage, metal 

migration, are far worse at geometries below 0.25 µm, prognostics cells have 

been employed for prediction of semiconductor reliability. Prognostics cells are a 
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suitable way of providing an early warning of a system failure when it is 

impossible to embed sensors in the failure site in power electronic modules. 

Prognostics cells are used for wear out failure prediction in power 

semiconductors [13]. 

Goodman et al [68] described the benefit of the canary method to fail 

before catastrophic failure for the benefit of integrated circuit protection. The 

method also calls prognostics cells mounted down on the chip or circuit 

calibrated with respect to the time of circuit’s actual failure. The failure mode is 

expected to be the same for both prognostic cells and main circuit, and meant to 

provide early warning of failure in all service operating conditions prior to the 

circuit board meets failure. The canary prognostics design has the capability of 

foreseeing failure in the same environment as the actual chip but at the 

relatively accelerated rate. These cells were developed for example (i.e. 0.35, 

0.25, and 0.18 micron) in complementary metal oxide semiconductors (CMOS) to 

predict failure as a result of time-dependent dielectric breakdown (TDDB), hot 

carrier injection (HCI), and negative bias temperature instability (NBTI).  

2.4.5 Hybrid Prognostics Model 

Initially, hybrid approaches intended to bring together the strengths of 

the data-driven and model-based approaches integrates them in one prognostics 

algorithm. This can be done in 1) pre-processing data-mining and 2) post-

processing for prognostics model learning. The first approach is about feature 

extraction and classification techniques for run-to-failure data sets. The second 

technique is applied for eliminating uncertainties which occur during model 

learning. In general, this will narrow down the ambiguities of the prognostics 

model as a result of the uncertainty interval of each individual prognostics model 

[69], [70]. 

A hybrid model involves with failure mode analysis, component failure 

parameters, pattern recognition of the parameters of the components, and data 

driven for machine learning. This is a versatile technique in prognostics and 
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provides more accurate diagnostics (e.g. anomaly detection and parameter 

isolation) and overcomes the drawbacks of data-driven and physics of failure 

models but it is a relatively new area in prognostics and considered to be 

promising and cost-effective. Liao and Kotting [71] reviewed the development of 

the hybrid prognostics method that has employed the advantages of various 

types of prognostics capability. They categorised the hybrid approach with the 

combination of three main types of prognostics: data-driven models, knowledge-

based models and physics-of-failure based models as follows: 

The H1 type approach leverages the underlining expert knowledge domain 

of the system health state and converts them in appropriate membership 

functions which then integrates with data-driven models for the system’s RUL 

estimation. 

In the H2 category, knowledge-based models can be used for diagnostic 

tools which are enhanced with physics-of-failure models to estimate future 

failure propagation. 

Samie et al developed a novel prognostics model using mathematical 

modelling of physical systems, and also graph and duality theories of the 

subsystem’s topology for a single phase DC-to-DC Cuk converter and its dual 

version (D-Cuk). The degradation profile has induced to both Cuk and its dual 

circuit as a time series data, signals such as input/output voltage and current are 

measured accordingly. The input/output impedances and admittances are 

calculated to implicate system transfer function with a number of time-

dependent Tee and Pi models. The damage model fuses with energy relaxation 

(tr) from the Cuk converter, Δtr, attenuation, and the current of load (from D-

Cuk) are used by a fuzzy RUL estimator to estimate the remaining useful life of 

the Cuk’s dual circuit [72]. 

The H3 type hybrid model includes two different types of data-driven 

approaches, wherein in the absence of direct measurement of the failure growth, 

one can be used as an estimation of the internal system’s health to extrapolate 
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the future health state. The results are enhanced with another data-driven 

approach to generate RUL predictions.  

Alghassi et al developed a novel prognostics model for a power electronics 

active device (IGBT). The power cycling ageing dataset has been used for the 

development of failure modelling based on the TDNN approach. In addition, 

health state classification incorporates with probabilistic Monte Caro RUL 

calculation to significantly reduce the uncertainty occurring from an incomplete 

failure model. Thus, the technique enables effective health state indication plus 

improves the accuracy of the RUL calculation [73]. 

Hybrid prognostics under the category H4 is intuitive to leverage the 

advantage of both data-driven and physics-of-failure models to strengthen RUL 

prediction. 

Pecht et al [4] developed A fusion prognostics method for estimating the 

RUL of electronics systems. The fusion method is a combination of data-driven 

and physics-of-failure methods. It benefits from the merits of both methods while 

eliminating some of their drawbacks. In this method, the anomalies exhibited in 

the monitored data are detected by data-driven methods and the remaining 

useful life prediction can be conducted by a combination of data-driven and 

physics-of-failure methods when the anomalies are detected or at any time when 

remaining useful life prediction is needed by users [65].The fusion prognostics 

method for remaining useful life prediction is shown in Figure ‎2-6. The fusion 

prognostics method can be implemented as the following steps [65]. 

As is obvious in Figure ‎2-6, the precursor parameters and the load of the 

power converter are measured. Then, the total power dissipation of the power 

electronic module is calculated and then based on this and a compact electro -

thermal model of the power electronic module, the temperature of various parts 

of the power electronic module are estimated. At the same time, precursor 

parameters of the power electronic module are monitored and compared with a 

healthy behaviour baseline. If anomalies are detected, a counting algorithm is 

run and operates automatically on the temperature-time data and identifies the 
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full and half cycles of the temperature profile. Lifetime models for various failure 

mechanisms of the power electronic module are then integrated with the output 

of the counting algorithm to estimate the life consumption of the power electronic 

module [65]. 

 

 

 

 

 

 

 

 

Figure ‎2-6 The hybrid method of category H4 proposed in prognostic lifetime of power 

module 

The advantages and disadvantages of prognostics approaches are summarised in 

Table ‎2-1 [74]. 

Table ‎2-1 Benefits and Drawbacks of Prognostics Models 

 Advantages Disadvantages 

Physics-Based 

Models 

-Prediction results depend on 

fidelity model. 

-Does not depend on historical 

data. 

-Just calibration may be needed 

to adjust the model for different 

conditions. 

-Provide a root cause analysis 

and maintenance decision.  

-Difficult to obtain underlying physical failure 

processes. 

-Computationally expensive to run the high-fidelity 

model in the real-time process. 

-Difficult to determine intermittent faults.  

-If the component is redesigned, it would be necessary 

to repeat the extended process of evolving the model.  

Data-Driven 

Models 

-Can be applied to complex 

systems. 
-Lack of identification of failure mechanisms. 

-Require large amounts of data (e.g. historical data 
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-Easy to be implemented. 

-The more data is available; the 

more physical behaviour can be 

gained. 

-Suitable for diagnostics. 

-More robust and adjustable in 

optimisation performance. 

for training), increased complexity in computation.  

-Deal with sources of uncertainty (e.g. process noise, 

measurement noise) presents inefficiently uncertainty 

in long-term monitoring. 

Prognostics 

Cells 

-No need to sense data.  

-Possibly a low-cost option. 

-Need to pre-calibrate with product lifetime.  

-Replacement cells need to be recalibrated with the 

aged condition of the product. 

Precursor 

Monitoring 

-Indicates relatively direct failure 

progression. 

-Easy to characterise changes 

with failure.  

-Easy to be implemented.   

-Relatively time-consuming and costly.  

-Difficult to characterise for a large number of usage 

profiles. 

Hybrid 

Prognostics 

Models 

-Provide detailed knowledge of 

the failure mode and effect 

analysis. 

-Determine the failure 

mechanisms for root cause 

analysis. 

-Determine parameters for in-

situ monitoring. 

-Detect intermittent failure.  

-Identifying all sources of 

uncertainties lie within the 

prediction results. 

-Need both accurate and noiseless data.  

-An inaccurate model or noisy data may bias each 

other, and accordingly, alleviates disadvantages. 

2.5 Insulated Gate Bipolar Transistor (IGBT) 

IGBTs are well-known active power transistor devices which are widely 

used in highly-effective modern appliances, such as power conversion, in the 

renewable energy sector, electrified railway traction, more electric aircraft (e. g. 

Boeing 787) and electric cars. This device is the gate drive voltage control using 

the characteristics of a field effect transistor (FET) that insulates the gate from 

high power density capability which allows the device to have high current 

density with the low voltage saturation capability of the output performance of 

the conventional bipolar power transistor [75]. It has also the advantage not to 

latch during a short circuit. 
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The IGBT was first experimentally demonstrated by Baliga in 1979 [76]. 

Plummer and Scharf in 1980 also experimentally demonstrated the IGBT and 

provided a quantitative analysis and models for the device [77], [78]. Becke and 

Wheatley filed what is considered the seminal patent on IGBTs in 1980 which 

was subsequently awarded in 1982 [79]. The first IGBT devices were 

commercially available from General Electric in 1983. Currently, IGBTs are 

widely used in medium-frequency (20-200 KHz) and medium-power (10KW-

1MW) applications, such as switch-mode power supplies (SMPS), AC motor 

drives, uninterrupted power supply (UPS) and inductive heating. High voltage 

and high current IGBTs (6500V, 200-400A) are used in electric traction 

applications for locomotives and streetcars [79]. Companies that manufacture 

IGBTs include Toshiba, Infineon, Microsemi, ON semiconductor, International 

Rectifier, IXYS, Hitachi, Fuji Electric, Fairchild Semiconductor, Dynex, Powerex 

and Siemens. 

The vertical cross-section of an IGBT structure in Figure 2-7 illustrates 

the three terminal configurations of the device layout where the collector forms 

the bottom node of the device under the additional punch through a p+ layer 

which enables fast switching turn off by injecting holes into the drift region to 

neutralise the leftover electrons. This leads to lower on state resistance. The 

emitter region occupies a similar region of the source for a metal oxide 

semiconductor field effect transistor (MOSFET) at the vicinity of the gate region 

[79].   

 

 

 

 

 

Figure‎2-7 Schematic of n-channel IGBT operation [79] 
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As mentioned above, an IGBT is a voltage control and by just applying 

small positive voltage on the gate to maintain the switch in conduction mode 

with a unidirectional current. Basically, the positive carries from the injected p+ 

layer into the drift region allows the current flow through the collector to the 

emitter. In addition, the switching speed of the device can be simply improved by 

adding an extra n+ layer as the buffer right above the p+ layer to evacuate the 

remaining charge in the drift region. 

IGBTs are classified based on the orientation of the gate as planar or 

trench. In planar structures, the gate is parallel to the collector. In trench 

IGBTs, the gate is vertical to the collector terminal. In the planar IGBT, 

electrons flow through a horizontal channel and then downwards to the collector. 

This current path leads to higher losses during conduction. The trench IGBT, on 

the other hand, has a single direction of current flow, from the emitter, through 

the vertical channel down to the collector. This path lowers the conduction loss of 

the trench IGBT, and minimises the use of silicon, allowing for the reduced size 

of the trench IGBT for a given voltage rating in comparison to the planar IGBT 

[79]. 

IGBTs are further classified as punch-through (PT), non-punch-through 

(NPT) and field stop (FS), as shown in Figure ‎2-8. The punch-through IGBT is 

manufactured using an expensive epitaxial process. The electric field punches 

through and terminates in the p+ layer (buffer layer). The non-punch-through 

IGBT is manufactured using a less expensive float zone silicon process. In this 

device, the electric field terminates in the drift region. For a given voltage rating, 

the NPT IGBT is smaller than a PT IGBT. The field stops IGBT is manufactured 

using the inexpensive float zone process and has a buffer layer that is used to 

terminate the electric field. It is the smallest for a given voltage rating among 

the three technologies [79]. 

The conduction loss is a function of the on-state collector-emitter voltage 

VCE (ON). The VCE (ON) is a function of the n-drift region thickness. From Figure ‎2-8, 

it is obvious that the punch-through and field stop IGBTs have thinner drift 
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regions in comparison to the non-punch-though IGBT. Therefore, the punch-

through and the field stop IGBTs have lower conduction loss in comparison to 

the NPT IGBT. However, the NPT IGBT can sustain large currents, such as in 

short circuit events, due to the thicker n-drift region [79]. 

 

 

 

 

 

 

 

Figure ‎2-8 Overview of IGBT technologies 

The switch-off losses in IGBTs are based on the time required for the holes 

in the drift region to recombine with electrons and be swept out of the device 

through the collector. The punch-through IGBT uses the heavy-hole injection to 

reduce conductivity losses. These excessive holes lead to high switching losses for 

punch-through IGBTs in comparison to the NPT IGBT and field stop transistors 

[79]. 

Trench IGBTs, due to their vertical gate structure, have lower VCE (ON). 

Hence, trench IGBTs have lower conduction losses in comparison to planar 

IGBTs. A modification of the trench IGBT to include a field stop buffer layer 

leads to a reduction in switching losses as well. The trench IGBT configuration in 

comparison with the planar structures is shown in Figure ‎2-8 [79]. 

Overall, an IGBT is a power electronic switching device gaining popularity 

because of: 
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 The high input impedance 

 The high current carrying capacity 

 High switching speed 

 Low switching losses. 

In power electronics converters, power semiconductor switches, such as 

IGBTs, MOSFETs, diodes, capacitors and inductors are mainly used to convert 

input quantity values of the electricity supply into load demand quantity values 

by using the switching configuration. All quantity values such as voltage and 

current amplitudes, voltage and current frequency generate a number of input 

and output phase and phase delays. Power electronics converters have 

implemented in different power conversion demands as shown in Figure ‎2-9. 

 

 

 

 

 

 

Figure ‎2-9 Overview of definition of power electronic converter 

In order to model the reliability of power electronic components, it is 

necessary to understand the failure mechanisms and identify the precursors of 

failure as well as of ageing under various operating conditions and 

environmental stress to predict the malfunctioning of the component. 

2.6 IGBT Failure Mechanisms 

Most failures in power electronic modules are due to thermal effects, but 

other failures, such as mechanical vibration, may also be significant. The failure 
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mechanisms for thermally-induced failure are thermal cycling and power cycling. 

Thus, the thermal cycling capability has induced the substrate solder joint 

fatigue phenomena at between the substrate layers that have attached to the 

base plate via solder joint layer. Furthermore, thermal expansion during a 

converter load cycle drives stress–strain cycles within the device and packaging. 

solder cracking and bond wire lift-off on the die are the dominants failure in 

IGBT packaging which fairly happens due to power cycling capability. Moreover, 

the energy lost through hysteresis causes crack propagation in the solder or at 

the bond wire/device interface. Failure may be precipitated by thermal runaway 

due to the increased resistance caused by a reduction in the active device area as 

the solder area decreases or the bond wire lifts off. 

The two major failure mechanisms of IGBTs are intrinsic and extrinsic 

faults that are related to IGBTs’ physics and packaging, respectively. The 

phenomenon of intrinsic failure mechanisms in power electronics includes hot 

carrier injection, the latch-up mechanism (i.e. sudden collapse of the collector to 

emitter voltage), dielectric breakdown and electromigration, whereas extrinsic 

faults consist of wire lift off, die solder delamination and substrate solder 

degradation [80]. On the other hand, the ageing of power electronics systems 

resulting from harsh operating conditions and environmental stress are two 

potential failure modes of stress and causes of catastrophic failure in IGBTs. 

One of the most important defects relevant to electric stress is related to 

dielectric breakdown [81], [82]. This defect mechanism occurs in between the 

channels of the gate oxide, the emitter and collector. It is noted that the gate 

oxide degrades when the dielectric layer wears out due to a strong electric field 

10MV/Cm or above and electrostatic discharge [83]. The gate structure includes 

a thin oxide layer which is used to isolate the gate from the MOS transistor and 

due to a large voltage spike, punches through and causes an immediate 

breakdown [84]. HCI, an intrinsic failure mechanism, is considered as either 

being the primary cause of TDDB or wearing out of chips under harsh operating 

conditions [85]. Under the high electric field, the carriers (electron/hole) have 

sufficient energy to break through the Si/SiO2 barrier which causes leakage 
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current through the oxide, whereas high temperature causes gate oxide 

breakdown. As a result of hot electron injection which leads to excessive leakage 

current, the IGBT’s turning off time is effectively increased and causes 

subsequently gate voltage losses to control collector current (ic). Hence, HCI has 

a major effect on the long-term reliability of power electronic components [14]. 

Another intrinsic failure phenomenon is an electro-migration failure which 

might occur when the current is unevenly distributed among wire bonds. The 

reason is that the current density is much higher in the vicinity of around some 

bonding wires. With an increase in temperature will cause an adjustment in the 

interconnection of the wire bonding which eventually resulting in a break in the 

cross section of the wires. As a result, the conductor resistance and overall 

temperature of the devices are increased [86], [87]. 

Power electronic modules are always working in certain duty cycles from 

the requirement of an inductive load along with a defined switching frequency 

operating condition. This will result in instantaneous power dissipation during 

freewheeling diode recovery mode and IGBTs conduction mode plus turn on and 

turn off mode. Furthermore, the growth of the wear out mechanisms in power 

electronic modules adds more adverse operating conditions in the modules.  

Furthermore, implementing a non-optimum thermal management design 

causes external electrical dysfunctions. Thus, inappropriate thermal 

management will accelerate the packaging degradation inside the module, which 

in turn triggers abnormal behaviour, such as short circuit, over-current, or over-

voltage, and over time contributes more stress to the components. The harsh 

environment and load condition impact can also pose a severe stress issue for the 

power module. Overall, it is important to determine the failure signature in 

order to enable health management to derive precious information regarding the 

origin of the failure. Obviously, the operating conditions for active devices 

become more adverse during wear out mechanisms due to thermal fatigue 

mechanisms [88], [89]. 



 

48 

2.6.1 Thermal Fatigue 

In long-term reliability, packaging wears out is one of the important 

limiting factors that power electronics suffer from. The thermo-mechanical 

effects on power module wear-out depend on the package materials, geometries, 

usage conditions (external cooling system, air temperature, etc.). Usage 

conditions produce thermal cycles on the package assembly, which induce 

thermal stresses and strains that produce the so-called thermal fatigue. The 

term fatigue is driven by the exhausted material mechanics which is degraded 

due to a cyclic load on the component. The following are the failure mechanisms 

which are dominant for packaging technology [90], [91]. 

2.6.1.1 Reconstruction of Metallisation 

Power cycles are capable of inducing cyclic expansion and contraction 

stresses on the upper metallization of the device due to large thermomechanical 

mismatch with the silicon die. Such stresses are not tolerated and with a certain 

degree of freedom can go beyond the elastic limit, and eventually they reach the 

relaxation region where the mechanical processes led through (e. g. diffusion 

creeps, grain boundary sliding or by plastic deformation through dislocation 

glide). This mechanical stress phenomenon leads to the extrusion of the 

aluminium grains which are dependent on the texture of the metallization. This 

finally can result in aluminium reconstruction which causes an increase in sheet 

resistance of the metal. This can be observed and monitored by changing in VCE 

(ON). 

2.6.1.2 Wire-Bonding Fatigue 

Wire-bonding occurs under varied working conditions from temperature 

swing stress which is predominately induced by power dissipation in the silicon 

die. This will result in fatigue due to shear stress which occurs in between the 

wire pad and the wire-bonding. This will continue till that they disconnect from 

dying itself. As a result, they will become sudden open circuit failure. Two 
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related phenomena can be observed: one can be initial crack propagation in the 

vicinity of the wire bonding heel, and the second is observed as wire-bonding lift-

off. The problem is due to inappropriate wire bonding process which 

mechanically initiates a crack on the wire-bonding heel. Mechanical stress is 

inevitable and causes the wire-bonding to age which eventually becomes wire 

lift-off failure due to the high coefficient thermal expansion (CTE). The failure 

phenomenon can be seen in contact resistance which can be monitored externally 

by VCE (ON). 

2.6.1.3 Solder Joint Fatigue 

The thermo-mechanical fatigue is seen as the main failure mechanism for 

power electronic modules. The power module constructs of seven layers of the 

materials to which they are attached to each other in order to conduct heat 

transformation to ambient. The most susceptible part is the solder which is used 

to join the die attach ceramic substrate and the ceramic substrate base plate. 

The solder (i.e. the tin-silver, indium or tin-lead alloys) is critical material that is 

used frequently in multi-chip power electronic modules, and it has a good 

electrical characteristic. The more challenging part is when a material with 

copper metallization is going to be a solder with the property of a standard lead-

tin alloy. At the central of the solder joint two materials tin and lead are formed 

together and during accelerating ageing the copper which is more brittle than 

the tin-lead starts often early to receive thermo-mechanical fatigue. The crack 

will appear often at the outside corners pointing and edges which are responsible 

for rising up stress at this location. The crack continues to propagate towards the 

centre of the solder joint in the source of high temperature where the module is 

located. 

2.6.1.4 Summarised IGBT Failure Mechanisms 

The intrinsic failure mechanisms in power electronics include hot carrier 

injection and dielectric breakdown and electro-migration, while extrinsic faults 

consist of latch up, wire lift off, die solder delamination and substrate solder 
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degradation [80]. These are summarised in [87]. Power electronic modules are 

subject to two potential failure mode stresses: the first is associated with high 

electric fields and the second is due to high temperatures. One of the most 

common defects which are relevant to electric fields is dielectric breakdown [81], 

[82]. 

Table ‎2-2 Identifying IGBT Failure Mechanisms 

Failure Mechanisms  Failure Type Failure 

Mode 

Full-cycle temperature swings due to power 

dissipations and self-heating of wire bonds 

Bond wire fatigue 

 

Extrinsic 

Coefficient of Thermal Expansion (CTE) mismatches 

between wires and silicon 

Bond wire lifts 

off 

Extrinsic 

Thermo-mechanical stress due to temperature cycles  Bond wire heel 

cracking and 

fractures 

Extrinsic 

Large thermo-mechanical stress and mismatches due 

to stiffness of the silicon and materials that cause 

junction temperature at the centre of the die to rising 

Aluminum 

reconstruction 

and metallurgic 

damage 

Extrinsic 

Thermal and thermo-mechanical stress during 

operation propagates micro-cracks and aluminium 

metallization 

Current leakage Intrinsic 

Sharp stress level at the pre-existing damage points 

for brittle materials 

Fatigue crack 

propagation 

Extrinsic 

Thermo-mechanical cycling and residual deformation 

in the bond wires 

Corrosion of the 

wires 

Extrinsic 

High-temperature swings and mismatch in the 

various intermetallic layers with solder between them 

Solder fatigue 

and voids 

Extrinsic 

During transients: High electrical energy produces 

excessive charging energy in IGBT which leads to 

excessive current flow through the gate oxide and high 

voltage drop across the IGBT. Results in loss of gate 

control. 

Static and 

dynamic latch up 

Intrinsic 
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Energetic particles in the form of heavy particles, such 

as electrons, interact with cosmic neutron rays and 

burst localised which leads to catastrophic failures. 

(Cosmic rays) 

Single event 

effect 

Intrinsic 

2.7 Summary of Prognostics Challenges in IGBTs 

The reliability of power electronics is a vital issue for the commercial 

success of industrial applications. Initially, in such applications, IGBT module 

life cycle expectancy is estimated at several thousand of hours. However, their 

lifetime under excessive temperatures or in other harsh environments will be 

much shorter, depending on the application, i.e. pulsed power. As a solution, 

diagnostic and prognostics approaches are the two principal aspects of CBM [92] 

that are developed to increase the useful lifetime of IGBTs by monitoring critical 

parameters such as VCE, ICE, etc. [15]. 

As systems mainly work in critical harsh and noisy environments, sensory 

data is highly polluted with noise. Hence, robust prognostics models that 

mitigate uncertainty are necessary. However, a wide range of numerical and 

statistical methods, as well as well-known machine learning approaches, have 

been employed for the development of prognostics models. Incomplete failure 

model becomes the imponderables of uncertainties involves with surrounding 

future health estimation which has not been taken into account. 

Figure ‎2-10 summarises the basic knowledge needed to develop data-

driven and model-based prognostics. As shown in this figure, the development of 

prognostics models is generally started with the definition of a model for model-

based prognostics that requires understanding the physics-of-failure of the IGBT 

component. It is often a difficult task to establish an accurate physical model. On 

the other hand, data-driven approaches start with accelerated ageing tests 

followed with pre-processing (filtering) and classification for eliminating noise 

from collected data, and damage model formulation followed by RUL estimation. 

There is also an important initial step (known as the feature extraction step) to 



 

52 

investigate which signals should be monitored that would allow prognostics to be 

successfully developed based on features extracted from those signals [72]. 

The next chapter describes the accelerated ageing test in power 

electronics, and two different ageing processes and data manipulation of each 

experimental data collection. 

 

 

 

 

 

 

 

 

Figure ‎2-10 Algorithm to develop prognostics model 
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3 3 Accelerated Ageing Test 

 

In order to create a prognostics model, it is important to collect reliability 

information in the form of a degradation profile that covers failure data under 

various types of operating conditions. It takes a long time for failures to progress 

in actual operating conditions. It is thus necessary to employ a number of 

different techniques to accelerate failure mechanisms. These techniques, known 

as accelerated ageing tests, are divided into three main categories: thermal 

cycling [53], [93], [94], [95], power cycling [96], [97], and electrical overstress [98]. 

It is noteworthy that due to the nature of failures, different failures are induced 

under different ageing experiments. Hence, it is necessary to collect degradation 

information which is accelerated by different types of accelerated ageing tests. 

For example, wire bond failure is the dominant failure for IGBTs in relatively 

highly-accelerated thermal and power cycling ageing tests [99]. However, other 

mechanical failures, such as solder joints and metallization, can dominate the 

failure mode in lower temperature condition stress testing. The accelerated 

ageing test is useful in identifying these dominant failures. Furthermore, it is 

worth mentioning that there is also an important initial step to investigate what 

signals should be monitored that could allow prognostics to could be successfully 

developed based on features extracted from those signals [100]. 

3.1 Thermal Cycling 

Thermal cycling may be characterised as follows. In high-frequency 

cycling, with a time period of tens of milliseconds, the device temperature varies 

with the load current during an inverter modulation cycle. The modulation 

frequency is typically between one and a few hundred hertz, depending on the 

load characteristics. For most of the time, the relatively high frequency 
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compared with the heat sink time constants results in low amplitude cycling. In 

fact, it is assumed that the low amplitudes are sufficiently small to be ignored.  

However, at low modulation frequencies, the amplitude may approach 

tens of degrees. Therefore, these cannot be ignored. Low-frequency cycling, with 

a time period of many seconds, is due to the variation in the average (RMS) load 

current throughout the load cycle because the inverter loads change. This may 

significantly vary over several seconds or minutes and may result in a change in 

the junction temperature of more than 50ºC. 

Deep thermal cycling, with a time period of many minutes or hours, is 

caused by operational changes, i.e. a rise and fall in the device temperature as 

the inverter comes in or out of use. For example, if the electric vehicle is used 

twice a day, two peak-to-peak thermal cycles of 100ºC may result from this 

pattern of use. Despite the low frequency of this cycling, the high amplitude has 

a severe effect on device reliability. This is particularly the case from a cold start 

(down to −40ºC). 

Traditionally, device and packaging reliability have been tested by using 

accelerated thermal cycling, which may be active, using the device to heat itself, 

or passive, where the heat is applied externally. The number of cycles to failure 

is given for the mean temperature Tm and temperature range ΔT during the 

test. This is often used by device manufacturers as a means to evaluate 

packaging performance. 

Several studies have explored power device reliability in relation to device 

temperature. The stress–strain locus is calculated directly from the transient 

device temperature profile, which is followed by a fatigue model applied to the 

stress and strain variations to predict the number of cycles to failure. The energy 

absorbed by the packaging materials in each cycle is calculated from the 

material temperature rise in order to predict the crack growth and the number of 

cycles to failure. A large sample of IGBT modules was tested across a wide range 

of cycle conditions, giving the only known comprehensive data set for the 

thermal reliability of IGBT power modules.  
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All these methods share the difficulty that the interaction between failure 

mechanisms for different temperature cycling conditions is not known with 

certainty. It is suggested that above a range ΔT of 130 K, the dominant 

mechanism is solder cracking, whereas, below 130 K, it is bond wire lift off. Also, 

different mechanisms gave rise to nonlinear damage accumulation that was 

observed with temperature ranges of 80 K–110 K interleaved during a thermal 

cycling test [101], [95]. 

3.1.1 IGBT Thermal Cycling Data Repository 

NASA Ames conducted thermal cycling accelerated ageing tests to 

determine the associated failures mechanisms on the International Rectifier 

IRG4BC30KDPBF IGBT. Initially, the temperature was set within the 

maximum operating junction temperature 150°C. Then, it was increased beyond 

the safe operation in order to induce thermo-mechanical. And, due to the 

difference in a thermal coefficient mismatch between different IGBT’s structure 

layers several failures such as latch-up, thermal runaway and loss gate control 

have been considered. Several parameters, such as transient and steady state 

collector-emitter ON voltage VCE (ON), the collector-emitter current, device case 

temperature, and transient and steady state gate voltages have been monitored 

in order to be able to identify the precursor parameters that indicate the 

degradation on the die. The VCE (ON) was measured across the collector-emitter 

terminals of the transistor where the emitter is directly connected to the ground 

of the power supply and the collector with a resistor is in series with the positive 

lead of the power supply. And also configuration consists of gate voltage 15 V 

which the gate was driven by an independent power supply. Initially, by looking 

at the parameter data sets, it can be noticed the VCE (ON) increases monotonically 

in a discrete manner while the phenomena die to attach voids migrated and 

degraded over the ageing cycles. Due to very harsh operating conditions, the 

eligibility of the data sets for assessing IGBT reliability is the major challenge. 

The IGBT accelerated ageing experiments are designed to study the 

ageing characters of the IGBT and develop the algorithm of prognostics for 
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prediction of the remaining useful life. The IGBT degradation data set is 

acquired from the ageing process system, which is provided by the AMES 

laboratory of the National Aeronautics and Space Administration (NASA) [22]. 

The data set can be used to design and develop prognostics algorithms for 

semiconductor components, such as IGBTs, which have been increasingly used in 

modern multiple vehicle systems. IGBT accelerated ageing experiments belong 

to the project in NASA to investigate the degradation characterisations of 

electronic components [102]. As electronic components have an increasing 

consumption in new generation aircraft and vehicles, and the amount of 

electronic failure will also become significant. Fault diagnostics and prognostics, 

estimation of remaining useful life and health management play a vital role in 

avoiding catastrophic failure, improving aircraft reliability, reducing 

maintenance cost and increasing performance. 

IGBT accelerated ageing experiments are based on the ageing platform 

which induces the degradation and electronic faults into the test system. 

Prevalently, four kinds of accelerated ageing methods are widely used in 

accelerated ageing experiments, namely thermal cycling, hot carrier injection, 

electrical overstress and time-dependent dielectric breakdown stimulus. The 

IGBT functional failure, such as die solder degradation and wire lift, were 

brought by the thermal cycling accelerated ageing approach. Hot carrier injection 

could accelerate electrons and holes pass into the gate oxide, which could result 

in the increase of the IGBT threshold voltage. IGBT condition mutation and 

lighting could be caused by the electrical overstress due to the excessive voltage, 

current or power. The breakdown of the IGBT gate oxide will occur when the 

charge injection exceeds the threshold which is caused by the increase of the 

temperature in the gate oxide when it is being operated. Accelerated ageing 

approaches, such as thermal cycling and electrical overstress, are used in IGBT 

accelerated ageing experiments to speed up the degradation and failure of the 

IGBT in experimental environments which simulate scenarios of industrial 

practical applications. Precursor parameters, such as collector voltages, collector 

currents, gate voltages and currents, and environmental parameters, such as 
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temperature, are monitored and recorded to be utilised for IGBT diagnosis and 

prognosis research [103].  

The experiment data and measurements are shared on the website of 

NASA as an open database which can be used to develop prognostics algorithms 

available to academic and industrial researchers. The IGBT accelerated ageing 

measurements and sensory data collection from the IGBT accelerated ageing 

experiment platform is shown in Figure ‎3-1. 

 

 

 

 

 

 

 

 

Figure ‎3-1 IGBT accelerated thermal cycling ageing experiments hardware [104] 

The data set includes the measurements recorded from IGBT experiments 

(or operating) environment, and survey data is representing the deterioration of 

IGBT in the experiments. This data set contains mass data from thermal 

overstress ageing experiments, including several parameters being recorded 

continuously, such as collector current, collector voltage, gate voltage, package 

temperature, etc. [104]. These data and parameters were monitored and 

recorded constantly until IGBT failure in accelerated ageing experiments. The 

data set was formatted in a data array which could be read by MATLAB to 

facilitate analysis and processing of the data in subsequent research and 

investigation [22]. 
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The aim of data processing is to gain useful information from the data 

with the approach of analysis and sorting. Collector-emitter voltage is selected as 

a precursor parameter for the IGBT ageing prognostics [25]. The profile of the 

VCE collected from the ageing experiment is presented in Figure ‎3-2. The 

collector-emitter voltage of the IGBT presents a monotone increasing in the 

whole ageing process and the VCE also presents a fluctuation and oscillation 

during this process, but the VCE falls quickly at the end of the ageing process 

when the IGBT begins to fail. The whole ageing process is more than 10,000-time 

units [22]. 

 

 

 

 

 

 

 

 

 

Figure ‎3-2 IGBT collector-emitter voltage profile 

The ageing data of raw VCE as a precursor parameter are processed by 

low-pass filtering, and its filtered profile is shown in Figure ‎3-3. It can be seen 

that VCE presents an increase step by step during the whole IGBT ageing 

process. The data is now clean and more suitable for analysis. The variation of 

VCE in the whole ageing process could be separated into 8 stages, and the values 

of VCE for each phase are discretely different. Seven IGBTs were used in the 

accelerated ageing experiment. It can be seen that the degradation stages are 
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clearly separated from one another. The VCE voltage value is approximately 

2.45V at the start of the ageing process. The degradation states can be 

determined by the level of VCE. In this particular IGBT, VCE increases about 0.5V 

discrete step at each degradation phase [22]. 

 

 

 

 

 

 

 

 

 

Figure ‎3-3 IGBT collector-emitter voltage after filtering and K-Mean clustering 

3.2 Power Cycling 

IGBTs are designed to work below the nominal characteristic temperature 

(i.e. 150°C). However, in railway traction and automotive applications, they 

could experience increased thermal cycling (rise and fall of temperature) which 

leads to thermo-mechanical stress on the weakened part of the IGBTs’ packaging 

interconnections [105]. To simulate this environment in a laboratory set-up, 

accelerated ageing techniques, such as power cycling, are used. This type of 

reliability testing can be used to characterise failure mechanisms more 

accurately than traditional thermal cycling inside an environmental chamber 

due to the flow of current through the IGBT, and heat dissipation which is 

similar to what is experienced in the application. The induced failure 
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mechanisms depend on the testing conditions and have various levels of 

degradation similar to real industry applications. Power cycling tests are used to 

define failure modes and estimate the reliability of standard power electronic 

module IGBTs [101]. 

In power cycling tests, the IGBT actively heats up due to the amount of 

power dissipated at the junction during a constant load cycle. The load cycle also 

depends on the pull time and change in junction temperature. These results in 

strain and stress between the aluminium wire and silicon die, as well as between 

the die and insulation substrate, where differences in CTE initiate cracks at the 

bonding surface and creep in the solder joint and substrate layer. Finally, peel 

progression of the copper metallization and crack propagation in the solder joint 

lead to the aluminium nitride substrate (AlN) failure mode and wire bond liftoff, 

respectively [17]. 

The Power Electronics Group at Nottingham University has carried out a 

power cycling ageing test for IGBT power electronic devices under high thermal 

stress values up to 60°C for the baseplate temperature and 120°C for the die. 

The failure mode involves wire bond lifting off and progressively ending before 

reaching the open circuit. The device is assembled using Dynex technology of the 

alumina-copper using Direct Bonded Copper (DBC) for heat conduction and 

relatively low conductivity of alumina, and aluminium wire bonds (see 

Figure ‎3-4) [17]. The test bench is equipped with a switched current supply and a 

constant current power supply to heat and cool a die sample. Each IGBT die is 

soldered and wire bonded onto a substrate tile. A coupon is used to hold the die 

and to constantly dissipate heat through the heatsink and water coolant loop. 

This also allows the temperature to be measured using an infra-red (iR) sensor. 
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Figure ‎3-4 Proposed sample [17] 

The custom test bed provides a coolant at a constant 20°C using a chiller 

unit (Thermo Fisher-Scientific A200-A25) and the coolant flows in a U-shape 

circuit through the heat-sink. The four coupons sit in recessed areas on the upper 

surface of the heat-sink. The supported infra-red sensors above the coupons used 

are Micro-Epsilon CS-SF15-C1 miniature pyrometers. These can be configured to 

output an analogue voltage, proportional to temperature, in the 0-5V range using 

a USB programming kit (TM-USBK-CS USB Kit) (see Figure ‎3-5) [17]. 

 

 

 

 

 

 

Figure ‎3-5 Actual heat sink assembly, iR sensor support and iR sensor [17] 
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The voltage signal from the iR sensor can also be used to visualise the 

temperature cycling in real time using Labview or similar software. Each coupon 

is allowed to heat up within the range of operating junction temperature (60°C to 

120°C). Once the reading from the iR sensor indicates the temperature has 

reached the upper bound, then the bypass switch (designed to keep the 

temperature within a hysteresis bound) diverts heat away until the temperature 

drops to the lower limit. On the other hand, if the iR sensor indicates the 

temperature has fallen to the lower temperature bound, the bypass switch will 

be disabled and the cycle repeats until the safety temperature-bound which is set 

to prevent the device to from open-circuit failure. Such a test bench is needed to 

age the component under various operating conditions subjected to various 

mission profiles, which characterise the operational environment. It is expected 

to work under ambient, high-temperature cyclic and intermittent loading 

conditions (i.e. power cycling) which ultimately induces more stress on the weak 

parts of the device [106]. 

An iR sensor is used to monitor the temperature of each die, and when the 

temperature reaches below or above some specified threshold, the heating 

current will be automatically removed. The temperature is constantly recorded 

and the collector-emitter voltage is measured as a precursor and recorded during 

each heating cycle. Each of the test beds is controlled independently and they are 

allowed to heat up until the iR sensor indicates the temperature has reached the 

upper limit of 120°C. The bypass switch diverts the heating current away from 

the test bed so it starts to cool until the iR sensor indicates that the temperature 

has fallen to the lower limit of 60°C and the bypass switch stops and this power 

cycling is repeated. The typical temperature waveform during cycling is shown in 

Figure ‎3-6 [100]. 

Power cycling ageing tests enable monitoring and measurement of 

temperature and electrical parameters. The junction temperature and the 

collector-emitter are measured and recorded constantly until the IGBT fails in 

accelerated ageing experiments. The data set is formatted in a data array 

fashion which can be read by MATLAB to employ reliability analysis on the raw 
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data for conducting data pre-processing. It was noticed during tests that wire lift 

off occurred because of thermal expansion mismatches between the wire bond 

and solder contact points after short-circuit failure [17], [100]. 

 

 

 

Figure ‎3-6 Temperature cyclic [100] 

3.3 Data Pre-processing 

Following the transfer of data to MATLAB, it is necessary to conduct pre-

processing which makes the reliability information suitable for developing a 

prognostics model (i.e. data-mining). Data-mining comprises pre-processing 

(filtering), classification (discretising), formulating a degradation model, and 

propagation (RUL simulation) [107], [108]. The VCE (ON) parameter indicates 

increases in non-monotone discrete steps including noise until the IGBT fails 

and before an open circuit occurs for 4 IGBT samples (see Figure ‎3-7). 

 

 

 

 

 

 

 

Figure ‎3-7 Four IGBT run-to-failure data set samples [110]  
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The VCE measurement enables the detection of wire bond lift off or emitter 

metallization damage [109], [61], [26]. The VCE variation due to the degradation 

process is very small and requires a very high degree of accuracy for this 

measurement. As shown in Figure ‎3-7, the VCE voltage precursor indicates a 

sudden fall at the end of the ageing process when the IGBT fails after more than 

4,500-time units [17]. 

IGBT raw data sets have inherent noises which obscure the trend 

underlying the samples. The first IGBT sample has shown an obvious peak. This 

is due to the initial value setting of the PID controller which is the input value of 

the PWM generator. This spike is eliminated after the first control loop iteration 

where the PID sets its output according to the reference input. The VCE (ON) is 

obtained from a standard power cycling experiment to failure and this will be 

formatted into a dimension to be used in the data-mining analysis. Initially, the 

raw data set is processed using a 1-pole low-pass filter in MATLAB with initial 

correspond setup according to the data set properties where the time between 

samples (T=1sec). And, the filter time constant (=200 sec) attempts to reduce 

internal noise as a dispersion sensitivity to reveal the true value of the ageing 

data of raw VCE. The drawback of this filter is that it imposes delays on the data 

set. In Figure ‎3-8, the green plot represents a low-pass filter with RC delay of 

1,000-time units, the magenta plot depicts a symmetrical low-pass filter with RC 

delay of 1,000-time units and the blue plot represents the raw data. 

As a solution, asymmetrical low-pass filter (i.e. moving averages filter) is 

proposed to overcome the lagging. The advantages of the moving average filter, 

as in Equation (1), is that it results in more weighting of the population of data 

and less delay in filtering, and while minimising noise, it effectively smoothes 

the data set and can be a better use for data pattern recognition or classification 

as an essential step for developing stringent prognostics modelling [17]. 
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Figure ‎3-8 First VCE sample after filtering [110] 

The parameter j denotes the reading points of both filtered and non-

filtered test data. Xi is non-filtered test data at reading point i. n shows the 

length of the first relaxing points which are varied from test data to test data. n 

is set to 1,000 for the data test shown in Figure ‎3-8. 

𝑀𝐴𝑗 = ∑
𝑥𝑖

𝑛−𝑗

𝑛
𝑖=𝑗            (1) 

𝑛 = 1000 

 𝑗 =  1,2,2, … , 𝑛 − 1  

The rate of filtering windows increases when it reaches close to the 

relaxing point, whereas the length of the defined window becomes increasingly 

smaller. After noise elimination, the data set is clean enough and suitable to be 

separated into different health states (see Figure ‎3-9). Therefore, classification, 

an important part of the data-mining approach, is performed for accurate and 

efficient RUL computation. 
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It is noted in Figure ‎3-9 that the ageing process started at almost 2V and 

degradation is progressed for more than 4,500 cycles, whereas the failure has 

occurred at about 2.4V. 

The monitoring data and experiment’s parameters are recorded and 

collected to transport into the software platform which is used as data formation 

and data storage. IGBT diagnostic and prognostics investigation will be based on 

this data set. Prognostics algorithm for RUL prediction will be developed, and 

Monte-Carlo simulation (MCS) is used in the prognostics algorithm which will be 

described in more detail in the subsequent sections. 

 

 

 

 

 

 

 

Figure ‎3-9 Four IGBT run-to-failure data sets after filtering [110] 
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4 4 IGBT Probabilistic Data-Driven 

Prognostics Modelling 

 

In this chapter, it is considered to contribute the novel prognostics 

technology development in the PHM for the power electronics active devices. 

Undoubtedly, the detection of an IGBT fault prior to prognosis or even after 

diagnosis is of critical importance for a healthy converter operation system. 

Conventional vehicles are equipped with on-board diagnostic (OBD) systems 

which are capable of detecting a “happened” fault and flag it up to the driver of 

the vehicle [17], [109]. In the event of an IGBT failure, the detection must be 

quick enough (ideally, less than 10μs) to prevent a fault from propagating, which 

places a limitation on the hardware setup [17]. 

Hence, a comprehensive approach to the development of a prognostics 

framework for IGBTs is required. There is a need to develop methods to predict 

the RUL of IGBTs to prevent system stoppage and costly failures. Prognostics 

technology is aimed at high-technology sectors, for example, the automotive or 

aerospace industries, for ensuring safety and customer satisfaction. Most modern 

vehicles monitor their systems to ensure correct operation. If a fault is detected 

or predicted, the user of the vehicle is usually notified before the fault has had a 

detrimental effect on the vehicle. Modern vehicles also monitor their usage and 

change their service intervals accordingly. The reliability of IGBTs directly 

affects the reliability and performance of these vehicle systems. In recent years, 

a series of research work about IGBT reliability, failure mode and ageing 

analysis has been carried out, and a suitable prognostics method for IGBTs and 

an efficient algorithm for predicting IGBTs’ RUL have become increasingly 

important. 
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This chapter proposes a new data-driven approach for power electronics 

components which addresses issues in previous IGBT prognostics. The defect in 

[1], [26] are dependent on the propagation by time steps. However, it is not 

computationally feasible to perform several Monte-Carlo simulations. In the 

proposed novel prognostics algorithm, the dependency of RUL efficiency on the 

time step is eliminated and an MCS is carried out at different degradation phase 

durations. 

As a result, the RUL time consumption is significantly reduced and a 

considerably improved prognostics feasibility model is embeddable. The aim of 

this chapter is to develop a computationally efficient and embedded real-time 

prognostics approach. In this regard, we propose a novel probabilistic prognostics 

model for each degradation phase of the system for estimation of the health state 

of the IGBT component. RUL simulation is performed using the Monte-Carlo 

technique (multiple runs) of the degradation model up to the predefined end-of-

life threshold. In this approach, the RUL calculation is carried out using the 

probabilistic model as a function of the component’s life duration. This modelling 

technique uses the historical degradation data to construct the probability of 

failure during operating conditions. The data set is discretised in different states 

which have different durations. Therefore, the probabilistic model is formed 

utilising the duration of the failure phase in order to aid the model propagation, 

which effectively reduces the total computing processing [17].  

4.1 Classification 

Classification is an important part of the data-mining prognostics 

approach which is mostly used in supervised learning. In classification, the 

important part is to group similarities. In the field of data mining, vector 

quantization (VQ) is known as a classical quantization technique that models the 

probability of density functions using the distribution of prototype vectors. VQ 

clustering is proposed to divide a large set of vectors into groups so that members 

of the group share similarities in their properties with a group representative. 

For instance, the different regions of the feature (e.g. VCE) divide into vectors 
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with similar and minimum centroid distance within the vectors and K-mean as a 

clustering technique is used for grouping vectors and identifying the best set of 

clusters such that data within a cluster are more similar to each other. 

A VQ technique is one of the most powerful techniques in data 

compression and information retrieval to manage size and meaning of metadata 

while maintaining an acceptable level of quality and fidelity within the core of 

ISHM systems. Using this technique, a codebook which consists of a bank of 

codewords of failure patterns is created by iterative clustering algorithms 

conducted on different parts of the systems (partitions). The codebook constitutes 

the core of the reference model with which prognostics models and features of 

partitions of the system are linked to representative patterns of the system from 

the reference engine. Then, the health state of any partition is estimated based 

on the similarities of query failures (failure pattern of that partition) with 

similar patterns (codewords) from the codebook. In other words, the prognostics 

of systems are created from using the similarities gathered from the failure 

patterns of partially-related systems within the different shared partitions. The 

accuracy of the prognostics model and the estimated lifetime is highly dependent 

on the accuracy of the codebook, selecting the right codewords from the codebook, 

and the mechanisms used to effectively reconstruct and track failure objects 

based on the specific failure feature queried. Applying such a technique to IVHM 

systems may open a new avenue in the design of reliable systems by the creation 

of a VQ-based reference engine that develops prognostics of a system based on 

the prognostics and failure patterns of its counterparts [17], [111]. 

This starts with given a data set X= {x1,…,xn} to create a k-dimensional 

space which is mapped from a vector space of Rk onto a finite set of vectors Y = 

{yi: i = 1, 2, ..., N} where yi is center of ith reign known as a Voronoi centre, or 

preferably known as codeword i. Hence, a set of all Voronoi centres (Y) generates 

a codebook. All locations within any region are closer to the centre (codeword) of 

that reign than to any other. Thus, determining K clusters 𝑅1, …,𝑅𝑘 (with 

𝑅𝑖 ∩ 𝑅𝑗 = ∅, for 𝑖 ≠ 𝑗, and Rj=𝑋). Therefore, associated with each codeword, yi, is a 
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nearest neighbour region called a Voronoi region or centroids of cluster 𝑅j, and it 

is defined by [112]: 

 

𝑉𝑖 = {𝑥 ∈ 𝑅𝑘: ‖𝑥 − 𝑦𝑖‖ ≤ ‖𝑥 − 𝑦𝑖‖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 }     (2) 

 

The representative codeword is determined to be the closest in Euclidean 

distance from the input vector as defined by the following equation: 

 

𝑑(𝑥, 𝑦𝑖) = √∑ (𝑥𝑗 − 𝑦𝑖𝑗)
2𝑘

𝑗=1         (3) 

 

where xj is the jth component of the input vector, and yij is the jth component of 

the codeword yi. Now it is worth to find a (𝑘. 𝑑)-dimensional vector of centroids 

and corresponding clusters in order to develop typical loss function. 

 

∑ ∑ ‖𝑥 − 𝑦𝑗‖2
𝑥∈𝑅𝑗

𝐾
𝑗=1          (4) 

 

A standard K-mean algorithm is useful to optimise the cluster vector. The 

algorithm (see Figure ‎4-1) starts with VQ processes which follow with clustering 

failure objects in the form of codewords. Each VQ is comprised from a) 

determining the centroid coordination of the degradation profile in a k-

dimensional vector; b) determining the distance of each object to centroids and 

finally, d) codebook generation and codeword indexing. An index matching step 

then assigns the most appropriate group of objects based on minimum distance 

to the failure object codeword (find the closest centroid). The same process is 

continued up until the outcome leads to a number of codewords of failure objects 
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that will be correlated with the same duration codewords for a number of 

different samples that have similar properties and specifications [113]. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-1 K-mean algorithm 

The degradation process is now classified into different health state 

processes and each degradation state increases about 0.054V in a discrete 

manner which corresponds to one wire bond lift off. Figure ‎4-2 depicts 10 health 

states and each state lasts for a period of time before it reaches the subsequent 

state [17]. 

 

  



 

72 

 

 

 

 

 

 

 

 

Figure ‎4-2 Classified ageing data 

4.2 Developing the Failure Model 

Figure ‎4-3 depicts the overall process of the data-mining algorithm 

development for the IGBT VCE data set collected from power cycling experiments. 

Initially, the ageing data of raw VCE as a precursor parameter is processed by 

low-pass filtering. Then, the state of degradation is discretised in the form of the 

hidden health condition. The estimation model as a failure model (degradation 

model) is then structured from the training data set using conventional 

statistical models (Gamma, Poisson, etc.). Subsequently, the trained model is 

used with the test data to estimate the current health of the component up until 

a predefined threshold state where it fails gradually in a discrete manner. This 

information is then used with an MCS to predict the remaining useful life of the 

IGBT. The outline of the algorithm is described in Figure ‎4-3 [17]. 
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Figure ‎4-3 The proposed algorithm process [17] 
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4.2.1 Problem Formulation 

As mentioned in the previous section, the noise-free ageing data was 

discretized into different steps (phases). The phase durations of the run-to-

failure of four IGBT samples are recorded after using a quantized cluster validity 

index and are displayed in Table ‎4-1. The highest number of the failure 

progression occurs at the tenth health state [114]. 

Table ‎4-1 records the run-to-failure degradation process of 4 IGBT 

samples used in the accelerated ageing experiment. The columns are the time 

durations of each degradation phases. It can be seen that an IGBT will degrade 

and undergo 10 degradation phases before it eventually fails. Each phase will 

last for a period of time before the degradation progresses further to the next 

phase. Take the first IGBT for example. The operational use life of IGBT-No.1 is 

4,498-time units, and the duration of the IGBT staying in its first degeneration 

phase is a one-time unit. Then, the IGBT degraded into the second degradation 

phase and stayed 109-time units before its further degradation to step into the 

third degradation phase, and so on, until the IGBT had stayed for 111-time units 

in the last phase wherein the IGBT continued to degrade and completely failed 

[17].  

Table ‎4-1 IGBT Degradation Phase Duration [17] 

D
u

ra
ti

o
n

 o
f 

E
a
ch

 D
e
g
ra

d
a
ti

o
n

 P
h

a
se

 

IGBT No. 1 2 3 4 

1ST Phase 1 2 2 2 

2nd Phase 109 132 61 117 

3rd Phase 1,245 955 1,069 1,561 

4th Phase 1,440 1,429 1,940 1,296 

5th Phase 656 866 317 341 

6th Phase 88 164 645 480 

7th Phase 521 879 266 394 

8th Phase 282 94 145 331 

9th Phase 45 78 209 85 

10th Phase 111 6 17 91 

IGBT Life 4,498 4,605 4,671 4,698 
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A stochastic model is used in this section because the occurrence of the 

IGBT degradation is assumed to have followed a non-homogenous probability 

distribution process which renders the occurrence of a random event. As a result, 

the failure pattern follows the statistical approach in which the mean and 

standard deviation are the main parameters for tuning the probability functions 

(see Table ‎4-2). Hence, the prognostics model can be formulated with statistical 

distribution models [17]. 

Table ‎4-2 Probability Distribution Function [17] 

Models Density Functions Parameters 

Gamma 
f(𝑇𝑖 = x) = 𝑥𝑘−1 (e

−x
θ

Γ(k)θk
⁄ ) 

κ, θ 

Poisson f(𝑇𝑖 = x) =
𝑒−𝜆𝜆𝑘

𝑘!
 

Λ 

 

Both can be modelled into each individual degradation phase. The 

duration time (∆T) of the degradation is considered to be a random variable 

which can be a random parameter for the PDF. The duration of each degradation 

process is used as a parameter λ for the Poisson PDF and K, θ for the Gamma 

PDF [114]. 

In this chapter, the histogram of the limited (four) run-to-failure samples 

will not provide the precise distribution. As such, two distributions have been 

selected: the Gamma and Poisson distributions. Two major types of distributions 

have been identified: 1) the distribution which has mean (λ) and standard 

deviation (δ), i.e. Gaussian, exponential, Weibull distributions, etc.; 2) the 

distribution with solely δ = λ, i.e. Poisson, binomial distributions, etc. All the 

listed distributions in Type 1 will work in a similar manner and vice versa for 

the Type 2 distribution. Therefore, each distribution has been peaked up from 

both types randomly. The Gamma distribution has been chosen as it is 

associated with mean and standard deviation parameters, whereas the Poisson 

distribution involves only a mean parameter [17]. 
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Unlike the binomial probability distribution that observes the number of 

events occurring during a given number of repeated trials, there is a different 

probability distribution that observes the number of events that occur in a 

specific region or within a given time interval that is independent of any other 

events occurring in any set of the disjoint time interval. In this case, it is 

appropriate to use the Poisson distribution model which is developed by the 

French mathematician, Simeon Denis Poisson. Basically, both the binomial and 

Poisson distributions are discrete. Hence, this chapter aims to presents the 

feasibility of Gamma and Poisson models in the problem formulation of 

prognostics [17]. 

4.2.2 Degradation Model Optimisation 

MLE is used as an objective function to maximize the density probability 

function (i.e. Poisson distribution function). The Poisson distribution (𝑃(𝑥𝑖|𝜆) =

[
𝜆𝑥𝑖 .𝑒−𝜆

𝑥𝑖!
] , 𝑥𝑖 ≥ 0) is the probability distribution of IGBT data (𝑥𝑖) given Poisson 

parameter λ. The MLE method is used to estimate the underlying rate parameter 

(λ) for the Poisson process in order to generate the probability of occurrences for 

each λ. The first step is to write the joint probability mass function in this case 

because 𝑥𝑖 is a discrete random variable of positive integers. Hence, each ‘λ’ is 

the times over a specific time interval or the mean number of occurrences in the 

given specified time interval. As all discrete random variables are independent, 

the probability distribution depends on λ which constructs the probability of 

exactly ‘x’ occurrences. The product of individual density functions can be 

obtained when the probability of measuring x number of events that occurs in 

one unit of measurement is followed using this formula: 

P[x1, x2, … , xn|λ] = ∏
λxne−eλ

xn!

N
n=1 = c. e−λN . λ∑ xn

N
n=1     (5) 
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The next step would be to calculate the maximum of this probability mass 

function with respect to λ. This can be done by taking a logarithm which 

simplifies the product of exponents. This is equivalent to finding Max λ [115]. 

log (c. e−λN . λ∑ xn
N
n=1 )= −𝑁𝜆 +  (∑ 𝑥𝑛

𝑁
𝑛=1 ). ln 𝜆      (6) 

Then, taking the derivative from Equation (5) and setting it to zero (
𝜕

𝜕𝜆
=

0) produces 𝜆̂𝑀𝐿𝐸 [24]: 

𝜆̂𝑀𝐿𝐸 =
1

𝑛
∑ 𝑥𝑛

𝑁
𝑛=1   

 

For the Gamma distribution, there are two modelling parameters, κ and θ, 

to be estimated. MLE generically is formulated as: 

𝜃 =
1

𝜅𝑁
∑ 𝑥𝑖

𝑁
𝑖=1           (7) 

The maximum likelihood criterion is a fairly general one, and also, fairly 

powerful to show the true value (the maxima) in close form algebraically. The 

true maximum likelihood estimator 𝜃̂ and 𝜆̂ MLE parameters converge to the true 

parameter value λ. Using the analytical MLE method, estimation of the best fit 

of the modeling parameter λ for tuning the Poisson distribution is performed 

[116] (see the estimated values in Table ‎4-3 and Table ‎4-4 which summarise the 

parameters for 10 uncorrelated degradation phases obtained from MLE of the 

Poisson and Gamma distributions, respectively). 

Table ‎4-3 MLE for Poisson Probability Distribution [17] 

MLE 
Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Model 

6 

Model 

7 

Model 

8 

Model 

9 

Model 

10 

λ 2 98 1210 1531 520 330 520 211 126 70 
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Table ‎4-4 MLE for Gamma Probability Distribution [17] 

MLE Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Model 

6 

Model 

7 

Model 

8 

Model 

9 

Model 

10 

Κ 0.6646 0.6020 0.4284 0.3378 0.3086 0.2692 0.2389 0.2456 0.2578 0.2964 

 694.9 766.9 1053.3 978.3 576.5 458.4 372.9 153.0 63.3 20.0 

 

 

In Figure ‎4-4, the black discrete plot is the optimized parameters of all 

four IGBT samples, using the MLE function, which has shown the tracking of 

the trend of the first IGBT sample as an example. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-4 The estimated parameter tracks the trend of the IGBT data set [17] 

4.2.3 Prognostics Approach 

In the previous chapter, the IGBT degradation models have been 

developed based on probabilistic distributions and tuned using the data obtained 

from accelerated ageing experiments. Based on the degradation profiles shown in 

Figure ‎3-8 and Figure ‎4-2, the degradation process can be observed by tracking 

the VCE measurement values. The profile indicates that VCE monotonically 
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increases in discrete steps. In this chapter, MCS is utilised to generate the 

degradation paths to represent the duration the IGBT stays in different 

degradation phases [17]. 

In this chapter, the prognostics algorithm is described in detail and is 

shown in Figure ‎4-5. Feature extraction (i.e. duration), clustering, and duration 

optimisation using MLE functions are obtained before model estimation. The 

threshold value must, therefore, be defined for the propagation stage. In this 

regard, the ninth state is predefined as a threshold state which almost indicates 

the end of the component’s life. This is an essential step for the data-mining 

process which the degradation model propagates up until the predefined 

threshold state. 

A cross-validation technique is used to assess the accuracy of the 

predictive degradation model (Poisson model, Gamma model). Therefore, in this 

chapter, the first three IGBT samples are chosen as the training data set and the 

fourth as the test data. In the next iteration, the first training data set is shifted 

to the second training data set and the second training data set is shifted to the 

third and so on, until the first data set reaches the last one. The test data will 

then be rotated one by one for all four IGBT data sets. The PDF (e.g. Poisson 

function) is used to estimate the expected value using mean parameter λ value 

[17].  

Next, nine stochastic models are built based on nine degradation phases 

which look similar to a Markov model structure as shown in Equation (8). 

1

𝑁
∑ ∑ ∆𝑇(𝑆𝑗)

(𝑗)9
𝑗=1

4
𝑖=1 = 𝐸(∆𝑇𝑆𝑗)        (8) 
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Figure ‎4-5 Prognostics approach algorithm [17] 
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After the states are parameterized by mean duration 𝐸(∆𝑇𝑆𝑗) for all 

degradation phases (see Figure ‎4-6), the degradation model based on stochastic 

probability density functions (Poisson probability distribution) are constructed in 

the form of a Markov model structure, the next step is to calculate the end of life 

of the component [30]. 

 

 

 

 

 

Figure ‎4-6 Degradation model’s structure for prognostics [17] 

4.2.4 RUL Estimation 

The feasibility of RUL estimation presents as the useful life left on an 

IGBT component at a particular time of measurement. The approach depends on 

past observed IGBT degradation data which is processed to construct an 

estimated model based on the duration parameter of the failure data using the 

Poisson and Gamma distribution functions. Both Poisson and Gamma models 

are conducted with the same RUL estimation format. Due to this similarity, only 

the RUL estimation for the Poisson process is described. However, whilst both 

are conducted with the same process, the results for both emphasise differences 

in RUL calculations which will be explained in the next section. The degradation 

model is constructed using the Markov approach and MCS are used to estimate 

the value up to a predefined threshold state [117]. Then, the RUL (i.e. mean, 

median and confidence bounds) is calculated using the distribution of simulated 

RULs based on the duration of the degradation phase. Firstly, the particle is 

peaked up from the selected data set and propagated through the degradation 
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model up until the predefined threshold state 9. The propagation is iterated 5 

times according to the algorithm (see Figure ‎4-5). 

Before incrementing at a particle number, the mean of the expected value 

is calculated using MATLAB command Poisstat and subsequently, using Poissfit 

to return a 90 percentile confidence level of the optimised parameter. The 10 

percentile bounds of the expected value are also calculated using Poissinv. To 

successfully estimate the RUL of the IGBT component, this process will continue 

up until the last particle of the selected test data set is greater than the length of 

the test data and if not, the particle is incremented by one. The same process is 

to be repeated for all data points. Subsequently, the process moves to calculate 

the prognostics evaluation metric using the RMSE method. Cross-validation is 

performed to evaluate the prognostics results by changing the test sample one by 

one after the RMSE value is calculated for each individual test sample. The RUL 

of the component is calculated using the operation time (opt) measured at t0, 

using Equation (9), e.g. IGBT1 shown in Figure ‎4-7 [118]. 

 

RUL (𝐼𝐺𝐵𝑇1)= component life ( 𝑖𝑔𝑏𝑡1) ─ operation time ( 𝑡0)  (9) 

C_life ( 𝑖𝑔𝑏𝑡1) = 𝑡0 + ∆𝑡𝑟𝑒𝑚
𝑠3 + ∆𝑡4

𝑠4 + ∆𝑡5
𝑠5+ ∆𝑡6

𝑠6+ ∆𝑡7
𝑠7+ ∆𝑡8

𝑠8+ ∆𝑡9
𝑠9  (10) 

 

where C_life is component life, and ∆𝑇 is generated by a MCS which presents the 

duration of the relevant degradation phase. It follows the model distribution 

based on the duration of the degradation phase, and it is optimised using the 

MLE function. As is noted from Figure ‎4-7, 𝑡1 is the ending time of the last 

degeneration phase and is ready to jump into the next degradation. If the 

random value ∆𝑡𝑟𝑒𝑚
𝑠3  is equal to (E[∆𝑡𝑠3] = ∆𝑇) for the duration of ∆𝑇 ≤ 𝑡1, then 

the random value (∆𝑡𝑟𝑒𝑚
𝑠3 ) would be equal to 0. In the case of ∆𝑇 ≥  𝑡1, ∆𝑡𝑟𝑒𝑚

𝑠3  is 

equal to ∆𝑇 −  𝑡1, this means the component health state is still in this 

degradation phase, and it also continues in the same degradation phase [17].  
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Figure ‎4-7 Constructed Markov model and MCS for RUL calculation [17] 

4.2.5 Stochastic RUL Simulation Results 

For both estimation models, the prognostics methods have tested all four 

IGBT data sets and the results are depicted by a series of polylines. In this 

process of calculation, at the beginning, the convergence of the RUL estimation is 

high and it will decrease towards the end of the real RUL. At each measurement 

point, the degradation phase of the IGBT is predicted and the end of the 

degradation process is forecasted. 

Figure ‎4-8 shows the whole IGBT prediction life results, which are 

validated with test samples using the cross-validation technique for the 

prognostics results, computed using a Poisson distribution model depicted in 

Figure ‎4-8, in which the straight red line represents real RUL. The scattered red 

and green plots are used as ±10% confidences levels, respectively. The scattered 

blue line is the mean value of the RUL prediction. They are used as baselines to 

show the MCS results during the degradation process. 

It can be noted that the 90 and 10 percentiles confidence width bonds are 

very narrow and unrealistically close to the mean during the whole prediction 
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and do not provide meaningful information for decision-makers due to the fact 

that the Poisson distribution does not have a standard deviation parameter. At 

the beginning of the execution, the mean is quite divergent and linear with 

sudden changes reflecting the number of discrete changes in the degradation 

phase but slowly becomes convergent with the real value once the VCE 

measurement is updated and reaches the end of the component’s life [17]. 

 

 

 

 

 

 

 

 

 

Figure ‎4-8 RUL prediction results using Poisson distribution [17] 

In contrast to the Poisson process, initial results for the Gamma process 

were populated with uncertainty which provides meaningless information for the 

decision-maker. The reason for this controversy is the Poisson distribution’s 

mean value (λ) is equal to the standard deviation (δ) which causes confidence 

intervals to overlap with the mean value. As a result, uncertainty is trapped in 

between the narrow confidence bounds and does not appear in simulation 

results. The advantage of the Gamma-based estimation model is to have such a 

large confidence bound which provides meaningful information for decision-

makers in comparison with the Poisson process. To resolve the problem of 
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uncertainty, and to make the Gamma-based RUL estimation more appropriate 

for the decision-maker, we propose FIFO (i.e. First-In First-Out) buffering. 

A FIFO buffer is a useful way to store and smooth the estimated values 

using averaging FIFO buffer sizes. This will conduct further care to reduce 

uncertainty for increasing accuracy of the RUL estimation and improve 

confidence bounds. Conventional estimation models are relatively inefficient in 

that they reserve a large amount of uncertain data and unwanted information 

and this will propagate for the whole RUL process calculation and become stale. 

This leads to ineffective pre-fetching when the Monte-Carlo method simulates 

the RUL estimation. We propose an alternative structure to store an estimation 

value in a predefined FIFO buffer size (e.g. 550 buffer sizes). All estimated data 

are placed at the bottom of the buffer and removed from the top. The mean 

buffer is maintained in direct correlation with the FIFO buffer. Thus, this 

method reduces stale uncertainty data and allows a more accurate 

reconstruction of the Monte-Carlo RUL simulation [17]. 

The MLE estimation value of the PDF (e.g. Gamma, Weibull distributions, 

etc.) is returned in a vector (i.e. phat) which contains elements {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} 

and fetches into a FIFO buffer where the size of the buffer is optional. However, 

if the buffer size extends to the length of the component life, then the excess 

buffering of the estimated RUL causes high latency where the RUL estimation 

simulation is slightly off from the real RUL at the beginning (see Figure ‎4-10). It 

can be noted in Figure ‎4-9 that the first element fetches into the FIFO buffer 

frame and has shifted the next part when the second element arrives, and will 

continue until all buffer sizes (550) are occupied with estimation elements. 

Simultaneously, the mean buffer keeps recording the average of the FIFO buffer 

elements as it increases (see Equations (11) and (12)). Once it becomes bigger 

than the size of the buffer, the first element fetches out. Additionally, averaging 

of the FIFO buffer creates a single number at the end of the buffering that 

represents the typical distance where the buffer sample is from the average. This 

phenomenon is essentially equivalent to the DC offset (i.e. mean value). This will 

shift the estimated RUL , and needs to be eliminated because provides 
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significantly longer divergent of tracking real values. The elimination of the DC 

value is identical to the equation: μ−min (μ) where μ is mean value [17]. 

 

If buffer size = 𝑆 ≤ 550 ⇨ {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑠} =
∑ 𝑎𝑛

𝑛=𝑠
𝑛=1

𝑠
     (11) 

If buffer size = 𝑆 > 550 ⇨ {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑠} =
∑ 𝑎𝑛

𝑛=𝑠
𝑛=(𝑠−550)

𝑠
   (12) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-9 Implementing FIFO buffer for prognostics approach [17] 

Figure ‎4-10 shows 4 IGBT samples of RUL prognostics results. The results 

are computed based on a Gamma distribution model with the implementation of 

the FIFO buffer. As can be seen in Figure ‎4-10, the results are promising for 

early failure findings and improve decision-making based on ±10% confidence 
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levels. The straight red dash lines are used as the real RUL values. This is used 

as the baseline to indicate how well the prognostics algorithm performs during 

the test. In Figure ‎4-10, the blue scatters plots are the mean value of the RUL 

prediction. The green and red plots are the 90 and 10 percentiles of the Monte 

Carlo simulated degradation paths. At the beginning of the rendering test, the 

RUL prediction is slightly higher than the real RUL value. However, the 

predicted RUL slowly converges to the real RUL values as the operating time 

reaches the end of the component life [17]. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-10 RUL prediction results using Gamma distribution [17] 
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4.2.6 Prognostics Evaluation Metric 

The errors between the predicted and real RUL values reflect the 

performance of the IGBT prognostics approach. In this chapter, the prediction (or 

prognostics) error is defined by: 

 

𝐸𝑟 = 𝑅𝑈𝐿𝑅 − 𝑅𝑈𝐿𝑃          (13) 

 

where Er is the error value between the predicted and real values, RULR is the 

real RUL value of an IGBT and RULP is the predicted value obtained from the 

prognostics algorithm. Using Equation (13), the prognostics accuracy can be 

quantitatively calculated using: 

 

𝑃𝑝𝑟 =
𝐸𝑟

𝑅𝑈𝐿𝑅
=

𝑅𝑈𝐿𝑅−𝑅𝑈𝐿𝑃

𝑅𝑈𝐿𝑅
         (14) 

 

The difference between the estimated value and the real RUL is 

considered as an error and the standard deviation of the error is recognised as 

the RMSE value. This prediction metric renders the accuracy and precision for 

all prognostics methods. Therefore, in this research, RMSE is used to evaluate 

the prognostics results of the Poisson and Gamma distribution models [45]. A 

smaller value for RMSE means a more accurate result is produced by the 

prognostics model. If the 𝑥𝑖
^ is the estimated and 𝑥𝑖 is the real value, then the 

RMSE can be calculated using the following equation of mean squarer error 

(MSE). 

 

MSE =
1

𝑛
∑ (𝑥𝑖̂ − 𝑥𝑖)2𝑛

𝑖=1         (15) 
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MSE =
1

𝑇𝑓
∑ (𝑅𝑈𝐿𝑃𝑖

− 𝑅𝑈𝐿𝑅𝑖
)

2
=

1

𝑇𝑓
∑ (𝐸𝑟𝑖)

2𝑇𝑓

𝑖=1

𝑇𝑓

𝑖=1
     (16) 

RMS = √
1

𝑛
∑ (𝑥𝑖̂ − 𝑥𝑖)2𝑛

𝑖=1 = √
1

𝑇𝑓
∑ (𝐸𝑟𝑖)2𝑇𝑓

𝑖=1
     (17) 

 

Table ‎4-5 and Table ‎4-6 summarise the mean-based RMSEs of the Poisson 

and Gamma distribution models of the 4 IGBT samples, respectively. The 

Poisson model has lower RMSE values in comparison to the Gamma model. 

Comparing the RMSE of the predicted RULs, the IGBT test sample number 2 

has the smallest RMSE value for the Poisson model, whereas the IGBT test 

sample number 1 has the smallest RMSE value for the Gamma model. The rest 

of the other IGBT test samples have similar prognostics results. 

Table ‎4-5 Prognostics Performance Metric of Poisson Distribution [17] 

RUL Estimation Metric IGBT 1 IGBT 2 IGBT 3 IGBT4 

RMSE % 0.286 0.200 0.258 0.272 

 

Table ‎4-6 Prognostics Performance Metric of Gamma Distribution [17] 

RUL Estimation Metric IGBT 1 IGBT 2 IGBT 3 IGBT4 

RMSE % 0.3317 0.3397 0.3485 0.3319 

4.3 Summary 

In this chapter, the prognostics algorithm represents a Monte Carlo RUL 

simulation and is based on a Markov stochastic duration model using Poisson 

and Gamma distribution functions. The VCE (ON) is chosen as the best degradation 

indicator and precursor parameter. A degradation profile is obtained using the 

duration of the degradation process and the degradation phase is parameterized 

for the PDF to be integrated into the prognostics algorithm for RUL estimation. 

It can be seen that the algorithm is capable of recalculating the RUL based on 
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the measurement updates and merging it with the real RUL profile. The RMSE 

result indicates a good prognostics performance using the cross-validation 

technique. In contrast to the Poisson process, the Gamma process needs FIFO 

buffering for the improvement of the prognostics results as uncertainty was an 

issue with the Gamma process. In contrast to current state-of-the-art 

prognostics, this thesis represents a light-weight simulation-based prognostics 

approach because the RUL calculation takes less time, about 0.3 ms for each 

measurement point. Therefore, it could be implemented efficiently in a real-time 

prognostics calculation and is capable of providing an advanced failure warning 

and preventing costly power electronic system downtimes and failures [17]. The 

next chapters will discuss hybrid prognostics approach to developing degradation 

models with the TDNN approach and fuse the MCS for calculating the area 

under the estimated IGBT’s TDNN degradation model for RUL estimation and 

present the proposed RUL algorithm. 
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5 5 IGBT Hybrid Prognostics Model 

 

This chapter bases its study on failure data sets derived from a power 

cycling test rig wherein IGBTs were exposed to cyclic temperatures similar to 

those encountered in railway traction applications. We introduce an approach for 

the development of a time delay neural network for failure modelling using 

health state classification fused with probabilistic Monte-Carlo RUL simulation, 

thus enabling a significant reduction of the uncertainty occurring from an 

incomplete failure model and enhancing the clear indication of the current 

health state as well as an improvement the RUL calculation. This has been 

successfully employed in the accurate and robust prediction of the current 

degradation of the device and allows better decisions to be made regarding 

scheduling of maintenance policies in IVHM. 

5.1 The Motivation of the Hybrid Model for IGBT 

The collection of data requires accelerated ageing tests which are used to 

fail device parts at high temperatures in a shorter time frame under various 

working conditions, such as high baseplate temperature (60°C to 100°C) and 

large temperature swings (60°C to 120°C), these values depending on system 

applications. In an accelerated ageing test, the particular wear-out mechanisms 

which are of interest accelerate to cause failure. The part/device is monitored 

throughout the test, noting the critical parameters for the particular device. 

Accelerated ageing tests which are used to obtain a detailed understanding of 

IGBT failure modes, and in turn, determine parameters are indicative of the 

various failure mechanisms. Employing these precursor parameters are 

prerequisite to develop a forecasting model for observing significant changes in 

the current health of the device and predicted failure [95]. However, precursor 
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parameter identification for power electronics prognostics is challenging due to 

the representation of the uncertainties in the degradation profile for the 

precursor parameter. The precursor is also used to monitor direct or indirect 

failure mechanisms trend in order to enable the prognostics model estimates the 

longest possible remaining useful life (RUL). This tool is applied to facilitate the 

power electronics with predictive maintenance. Hence, an advanced approach to 

the development of a prognostics tool for IGBTs is required. This could then be 

used to forecast failures, improve system life and reduce unnecessary 

maintenance [119]. 

Following the identification of parameters which are a precursor to 

failure, the feature extraction (i.e. mean, median) and clustering of the collected 

data (i.e. finding the number of states for the degradation profile) are carried out 

to provide information for training a prognostics model. The trained model is 

given a predefined threshold value which is used in the prognostics algorithm. 

Data-driven methods are subjected to two different approaches. The first 

approach is known as a direct estimation of RUL in which the model learns 

directly from the damage data set. In contrast, the second indirect approach 

initially needs to estimate a damage progression model and then propagates the 

expected data through the model until a predefined threshold for the RUL is 

reached. The difficulty with the second method is that obtaining a reliable data 

set is often challenging due to the diverse devices and incomplete knowledge of 

the component [2]. 

Following the classification/clustering step, a damage model is created 

using data-mining techniques that ultimately models the failure mechanisms of 

the IGBT. Although there are a number of popular conventional numerical 

methods (such as KF, PF, machine-learning approaches, support vector 

machines [120], etc.) used for developing degradation models in a wide range of 

different applications, only a few of them have been employed so far for the 

modelling of degradation of IGBTs. A Kalman Filter tunes and updates the 

parameters of the model on stream noisy input test data for linear systems. In 

contrast, a PF updates the parameters of the model with the most weighted 
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samples generated from a probability distribution of the system which mitigates 

the degeneracy of particles by a number of iterations. 

In general, developing a versatile physical model for both the KF and PF 

is necessary to present a degradation model that avoids the main disadvantages 

of both techniques. The KF can be a good estimator if it is given a precise state-

space model which constructs from all interpretable unobservable dynamic 

parameters of the component. Overall, imprecise knowledge of the model 

parameter and inaccurate initialization of the filter lead to inconsistency with 

the true component failure model [121]. Our proposed hybrid prognostics 

approach overcomes the complexity of developing the PoF, learns the 

degradation pattern online, and adapts itself with the dynamic of the parameter 

trend which will create a robust failure model. 

In [26], Patil et al proposed early anomaly detection implementing MD 

using on-state collector-emitter voltage VCE and collector-emitter current (Ice) as 

precursor parameters and a PF approach to calculating RUL before catastrophic 

failure occurs. Patil et al present an anomaly detection parameter which is used 

as a diagnostic parameter. However, the mean time of failure estimation has 

considerable divergent from failure parameter. The RUL accuracy evaluation 

metric involves on-going examining the estimation results.  Evaluation is just 

conducted from anomaly detection till the predefined failure threshold thus, the 

efficiency of the results will be expected highly greater than 21% prediction error 

and less precision. 

Celaya et al develop a prognostics algorithm technique using an extended 

KF for a MOSFET component [1]. The algorithm claims to be a versatile 

candidate for component-level RUL calculation. The on-state resistance of the 

device is chosen as a precursor parameter which has increased due to die-

attached degradation process. The accuracy of the prognostics results has been 

challenged using evaluation metric relative Accuracy (RA). 

In [18], Saha et al implement a PF to calculate RUL and use the Monte 

Carlo (MC) method for simulation results. The reliable run-to-failure data set 
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was obtained by conducting thermal overstress accelerated ageing tests on an 

IRG4BC30KD IGBT. A third-order polynomial fit of the tail of the Ice waveform 

was used to create a failure precursor model. In [18], data manipulation and 

model-based learning using regression analyses were performed while offline. 

Furthermore, the PF has implemented on a model-based approach for just the 

tail of the collector-emitter current parameter which has less duration of POF. 

This will not be appropriate estimation either for predictive or corrective 

maintenance Saha’s model has not been developed for the entire degradation 

process and the strategy of failure model learning close to critical condition will 

not be applicable for maintenance decision-makers. 

5.2 Testing Significance of IGBT Data Set  

The Chi-squared goodness-of-fit is a robust statistical test used to examine 

the difference in relationships between nominal variables. In this case, it is used 

to validate the significance of the expected distribution for the given data set. 

The chi-square test is named after the British statistician Karl Pearson to 

analyse the probability of the bet on a roulette wheel in a Monte Carlo casino. 

This testing method is used in the s number of IGBT samples B1, …, Br have n 

data points X1,…, Xn into these samples independently of each other with 

probabilities: 

P (Xiϵ B1) = 𝑝1, …, P (Xiϵ Br) = 𝑝r, so that 𝑝1 + … + 𝑝r =1 

 

Let 𝑣𝑗 is the number of data points in the 𝑗th sample: 

 𝑣𝑗 = # {data points X1,…, Xn in the sample Bj } = ∑ (𝑋𝑖ϵ𝐵𝑗)𝑛
𝑖=1  

 

Then, the expectation of the random data points in the 𝑗th sample will be 𝑛𝑝𝑗 

since 
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E𝑣𝑗= ∑ 𝐸𝐼(𝑋𝑖ϵ𝐵𝑗)𝑛
𝑖=1 =∑ 𝑃(𝑋𝑖𝜖𝐵𝑗)𝑛

𝑖=1 =𝑛𝑝𝑗 

Convergence in distribution of the data set is close if the computed 

statistic test is not large and the null hypothesis H0 is true. The distribution of 

the data fits with the expected distribution if the variables are independent. By 

the theory of the Pearson says that we know the random variable of the last 

sample if we have the number data points for 𝑠-1 sample. 

 

∑
(𝑣𝑗−𝑛𝑝𝑗)2

𝑛𝑝𝑗

𝑠
𝑗=1 =𝑋2

𝑟−1         (18) 

 

During the prevalent power, cycling accelerated the ageing process, 

emitter wire bonds were lifted off and damaged. The collector-emitter voltage on 

state tracks the degradation and is presented as the precursor parameter for 

developing IGBT prognostics in this thesis. During the duration of the 

degradation process, the VCE (ON) measurement shows an increase in non-

monotone fashion in discrete steps with noise until the failure of the IGBT. The 

VCE indicates failure as a quick rise at the end of the ageing process. Data 

collection has been successfully carried out for 22 IGBT samples which can be 

used as a promising data-mining tool. The trend of the raw sensory of time series 

data indicates useful and meaningful pattern which can be used for the statistic 

judgment. The histogram of all samples indicates the normal distribution is the 

most appropriate statistical distribution, but for simplicity, only four of them are 

shown in Figure ‎5-1. The chi-squared has been used to validate the goodness of 

fit test, and the results are recorded in Table ‎5-1 [122].  

Table ‎5-1 Chi-Squared Hypothesis Testing [100] 

Probability Distribution Weibull Gamma Poisson Normal 

H 1 1 1 0 

P 0.0336 1.5169e-25 2.4599c-13 0.1542 
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It is noted that the null hypothesis (H=goodness-of-fit to PDF) will be 

accepted if the H value is zero and P=U [0, 1] greater than the default value at 

significance level a=0.05. To this end, amongst all data sets, the four IGBT raw 

data sets for simplicity of computation and testing have been chosen and are 

shown in Figure ‎5-3. The y-axis represents the VCE (voltage) value, while the x-

axis represents the number of cycles (time), and cycle duration lasts for 6 

seconds. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-1 Normal distribution best fit to IGBT sample [100] 
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5.3 Developing the Degradation Model 

Figure ‎5-2 depicts the overall process of the data-mining algorithm 

development for the IGBT data sets collected from power cycling experiments. 

Initially, a model is structured from the training data set using artificial neural 

networks (TDNN, neural fuzzy network, etc.). Subsequently, the trained model is 

used with the test data to estimate the current health of the component. This 

process continuously tracks the degradation health state of the component and is 

used as a performance degradation assessment [123]. This is then used with a 

trapezoidal rule for calculating the area under the estimated curve to predict the 

remaining useful life of the IGBT (discussed in more detail in the next section). 

The outline of the algorithm is described in Figure ‎5-2. 

 

 

 

 

Figure ‎5-2 Outline of the proposed data-mining prognostics approach [100] 

5.3.1 Discretization of Ageing Data 

Figure ‎5-3 shows the filtered 𝑉𝑐𝑒 for four different IGBTs utilised in this 

thesis. From this figure, it is noted that the data set is comparatively clear and 

separated into several discrete states possess different deterioration of the IGBT 

health states. However, the following initial life durations are recognised: 

A flat region where a more and less the ageing process began at a signal 

amplitude of approximately 2V. This region is representing the IGBT’s healthy 

condition for the duration of 2,500 cycles. 

A monotonic region where the region was characterised right after flat 

region by a monotonic increasing trend until reaches discrete manner. 
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An early degradation sign where the degradation process has clearly 

progressed in increasing discrete steps until IGBT failure has occurred at about 

2.4V. 

Failed where the IGBT reaches to failure region after 4,500 life cycles. The 

life of the IGBT decreases when the amplitude of the VCE has increases abruptly 

beyond the initially-defined amplitude level corresponding to the healthy normal 

condition. The degradation process is discretized using a uniform quantization 

process [22] and each degradation state increases about 0.054V in a discrete 

manner which corresponds to one wire bond lift off and is due to one bond wire 

cut off [124]. 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-3 Outline of the proposed data-mining prognostics approach [100] 

The degradation process is characterised by increasing discrete steps of 

the VCE (from noise-free data) where the step of each degradation phase is 

uncorrelated to the subsequent phase. Using a quantized cluster validity index, 

the phase durations of the run-to-failure of four IGBT samples are obtained and 
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recorded as given in Table ‎4-1 IGBT Degradation Phase Duration [17]. The best 

number of the failure progression occurs at the tenth health state. Thus, 

degradation undergoes 10 degradation phases using a uniform quantization 

process for all four IGBT samples wherein each phase lasts for a period of time 

before the degradation progresses further to the next phase. The next step is 

about the optimisation of the number of clusters for all IGBT samples. 

Genetic algorithms (GA) are robust search engine algorithms that are 

inspired by the evolutionary idea of genetics (e.g. natural selection). As such, the 

search engine evaluates the best solution to historical information based on 

optimising a set of variable parameters or a minimised cost function or a 

measurement error. The algorithm is typically used for nonlinear problems and 

is not meant to treat the independent parameters. Therefore, the combined 

parameters have been taken into account in order to maximise the output [100]. 

In this method, the GA-based clustering maintains 10 code vectors 

(𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑖) that are assigned to each cluster. And, they are also associated 

with the sum of the Euclidean distance of the each cluster centres. Select the 

best fit of the 𝑛 cluster centres of the raw data set. Then, the clustering can be 

performed as a solution from the natural evolutionary process to sum the object 

‘𝑋’ with the cluster centre ‘C’ by appending Euclidean distance. The evaluation of 

clustering attains the high intra-clustering which a clustering metric ’𝐷’ for 𝑛 

number of clusters is: 

𝐷𝑖𝑛= [𝑑𝑖1
𝑛 , 𝑑𝑖2

𝑛 , 𝑑𝑖3
𝑛 ,…,𝑑𝑖10

𝑛 ] =∑ ∑‖𝑋𝑖𝑛 −𝐶𝑖‖𝑛
𝑖=1       (19) 

The GA (see Figure ‎5-5) attempts to minimise the clustering metric. The 

algorithm searches for optimal validity which then uses the crossover (uniform 

crossover) as a probabilistic approach for a number of iterations alongside 

mutation (i.e. substituting a random code vector with the training vector). This 

entails swapping new cluster that addresses the appropriate cluster centre and 

continues till when to validate validity index as 10 cluster data sets, as shown in 

Figure ‎5-4 [125]. 
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Figure ‎5-4 Degradation phase after optimisation process [100] 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-5 GA process  
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5.3.2 Problem Formulation with TDNN  

Time delay neural networks were initially used in speech recognition. TDNN 

architecture is constructed of mapping a finite number of times series data input 

into a single output as being shared with weights. It is inspired by feedforward 

networks but equipped with tap delays of the input’s signal which presents the 

input at a hidden layer at a different time sequence. Thus, it appears as an Auto-

Regressive Moving Average model (ARMA). 

𝑋𝑡= β + ∑ ∑ ∅𝑖𝑗𝑋
𝑗
𝑡−𝑖

𝑁𝑃
𝑗=1

𝑁𝐷
𝑖=1 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑁𝜀
𝑖=1       (20) 

 

∑ 𝜃𝑖𝜀𝑡−1
𝑁𝜀
𝑖=1 , which is a moving average (MA) part, consists of a series of 

linear combination of 𝑁𝜀 ‘noise’ signals, so that 𝜀𝑡−1 is a sequence of errors with a 

constant factor 𝜃𝑖. As degradation is not limited to linearity as a non-stationary 

time variant, assume the network forms a non-linear autoregressive model 

(NAR). Thus, ∑ ∑ ∅𝑖𝑗𝑋
𝑗
𝑡−1

𝑁𝑃
𝑗=1

𝑁𝐷
𝑖=1  presents a non-linear autoregressive part where 

𝑁𝐷 is assigned for a number of delays and 𝑁𝑃 is the number of polynomial orders. 

Both β and ∅𝑖𝑗 are the constant variables in NARMA and 𝑋𝑡−𝑖 contains 

information about the previous input delay as the memory for the network. 

A TDNN model is used in this thesis because the IGBT degradation curve 

of VCE has followed non-homogenous sequential dynamic process data which 

renders the occurrence of a random event, and this can be efficiently modelled 

into each individual defective voltage. A TDNN is well defined for deep learning 

prediction of the model involves with the dynamic of the failure model. The 

dynamic of the model is stored using time-delayed tap and the nodes are updated 

by using recursive feedback from the output to the input at the nodal levels for 

each iteration. As an advantage, the nonlinear relationship feature of the 

prediction model that incorporates the input parameters and the output 

parameters can be eased off efficiently. The TDNN is then adapted to associate 

the prediction model with the complex relationship between multivariate inputs 

and outputs. This is one of the main advantages of the neural network in general 
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in that the physical phenomena of the complex system with non-linearity 

dynamic behaviour can be ignored. And, this effectively recognises the model 

between multi-dimensional inputs and outputs with unsupervised training. 

However, this can be a drawback for this technique as the model is unable to 

interpret the backbone of the physical performance of the system [74]. To include 

dynamic features of degradation processes and failure mechanisms into the 

model, the drift voltage (∆𝑣𝑐𝑒) of the degradation is considered to be an index of 

health states, which if not equal to zero, can be presented as wire bond lift off 

process. The duration of each degradation process is used as an associated 

failure time 𝜆𝑖
𝑁𝑖 for the input of the TDNN model [126]. The topology of the 

proposed TDNN model (see Figure ‎5-6) is comprised from one layer for each 

input and output. And, one hidden layer with four number of delayed of inputs 

signals (VCE and ∆VCE) which are introduced to the input layer. All the layers are 

connected with appropriate weights [127].  

 

 

 

 

 

 

 

 

 

 

Figure ‎5-6 Architecture of the proposed TDNN model [100]  
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The proposed TDNN model directly uses VCE (on state) measurement 

values and the rate of the measurement is changed, i.e. dynamic of the actual 

measurement at current inspection 𝑡 and previous inspection points 𝑡𝑑 = [(𝑡 − 0), 

(𝑡 − 1), (𝑡 − 2), (𝑡 − 3)] assigned as the inputs’ time delay. The model takes into 

account all these measurement points and changes of the measurement points, 

all at the same time and at three previous measurement points in order to 

develop a precise model for prediction of the future health state of the IGBT 

component in real time. Increasing the number of input nodes would add on 

more weights and be time-consuming for optimisation of the weights. 

Consequently, model training which has more inspection points would not 

improve the model’s estimation capability. 

The neurones’ functions are set as 𝑓(∑  (𝑎𝑚𝑤𝑚)𝑚 ) where f is the neuron’s 

activation function as sigmoid (1 −
1

𝑒𝑥) and wm is the synapses’ weight associated 

with the mth input of the neuron in general. Hence, the neuron’s output at the 

hidden layer is constructed in Equation (21) [128] as 𝑓𝑘𝑝 where K={1, 2} is the 

layer’s number (k=1 for hidden, and 2 for output layer); p={1, 2, ..., 5} is the 

neuron number at the hidden layer. The synapses’ weight between jth input 

neuron (j= {1, 2, ..., 8}) and the pth neuron at the hidden layer is presented as 𝑊𝑗𝑝. 

Considering two sets of delayed inputs from v and Δv, the neuron’s output at the 

hidden layer is given by Equation (21) where k=1, and time delay 𝑡𝑑 with d={0, 1, 

2, 3} [129], [130]: 

𝑓𝑘𝑝 = ∑ 𝑓1𝑝
5
𝑃=1 = ∑ (𝑏𝑘𝑝

5
𝑝=1 + 𝑓((∑ 𝑤(𝑗+1)𝑃𝑣𝑗(𝑡−𝑡𝑗)) + (∑ 𝑤(𝑗+5)𝑃∆𝑣𝑗(𝑡−𝑡𝑗))))3

𝑗=0
3
𝑗=0  (21)  

 

where Wjp is a two-dimension matrix constructed from all synapses’ weights 

between inputs and the hidden layer’s neurones: 

 𝑊𝑗𝑝 = [

𝑤11 ⋯ 𝑤15

⋮ ⋱ ⋮
𝑤81 ⋯ 𝑤85

] 
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Similarly, the outputs of neurones, 𝑓𝑘𝑛, are obtained from Equation (22) 

where k=2, n={1, 2} is the neuron’s number at the output layer, and 𝑊𝑃𝑛 is the 

synapses’ weight between the pth neuron at the hidden layer and the nth neuron 

at the output layer. The 𝑓𝑘𝑛 forms the output model of the TDNN which describes 

the estimation and dynamic of the process using the initial constructed model 

[36]. 

𝑓𝑘𝑛 = 𝑓2𝑛 = ∑ (𝑏2𝑝 + 𝑓(𝑤𝑝𝑛𝑓1𝑝))5
𝑝=1       (22) 

 

where Wpn is a two-dimension matrix constructed from all synapses’ weights 

between the hidden layer’s neurones and the neurones of the output layer: 

 𝑊𝑝𝑛 = [
𝑤11   𝑤12

⋮
𝑤51     𝑤52

] 

A TDNN topology including all the synapses’ weights and parameters of 

the neurones’ activation functions are predefined to fit in the condition 

monitoring failure measurement. Then, the four IGBTs’ ageing data set samples 

are used for training the model using cross-validation techniques. During the 

training process through a number of iterations, the model is adjusted with the 

weights and biases to converge the output of the desired model and optimisation 

is performed to minimise the error as much as possible to render the best-fit 

prognostics model. To that end, MSE is used to evaluate the performance of the 

desired model to computed output values. The model is trained by 150 iteration 

times and the MSE incredibly becomes increasingly lower where the final 

estimation error reaches 0.0333 and the gradients of the output model with 

respect to weights obtained by 
𝜕𝑓𝑘𝑛

𝜕𝑊𝑝𝑛
 is optimised with Levenberg-Marquardt. The 

details of the LM for optimisation of the TDNN can be found in [131]. 
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5.3.3 Procedure of Learning Algorithm of the Proposed TDNN  

The procedure of the proposed TDNN method is shown in Figure ‎5-7. The 

explanation of the flowchart of the proposed algorithm is provided below [132], 

[114]. The flowchart is executed with the following three steps: 1) data 

manipulation; 2) model training; 3) propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-7 Algorithm of the proposed TDNN method [100]  
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Step 1: We start from the available run-to-failure IGBTs’ historical data, 

which includes the degradation process values from the precursor parameter VCE 

at inspection points for the power cycling ageing measurement. The low-pass 

filter is used to filter the noises that are populated inside the data set. The 

duration of the degradation phase for all data sets is optimised using maximum 

likelihood estimation, the results of which will be used for the classification 

using K-mean clustering on the data set. The threshold value is generally set 

based on expert knowledge, in this case at three times greater than the standard 

deviation of the flat region where the degradation exponentially starts to rise 

with a rapid gradient. 

This almost deviates by ±15%  from its original value [62]. In this dataset, 

we attempted to set the threshold state at 7 that is almost the critical discrete 

level. This will represent the catastrophic failure in order to validate the 

prognostics model and algorithm. The classified data for a failure history is used 

for the development of the TDNN to estimate the future health state of the 

IGBTs in real time. The model starts to build up with two input parameters VCE 

and ∆VCE in conjunction with two hidden layers where the first hidden layer 

includes 5 neurones and the second layer contains 2 neurones. The two input 

parameters are assisted with three tapped delay lines as embedding local 

memory into both the input and hidden layers which provide the dynamic ability 

to the model structure. The first data set (m=1) is peaked up for training the 

TDNN model and the second data set (n=1) is chosen as a test data for model 

validation [133]. 

Step 2: Training the TDNN model is a stochastic process and depends on 

the initial weights and is adjusted using the LM method which also requires the 

training data set and the testing data set. The training of the model is conducted 

using time series data and the difference in time-related to the pattern, to 

estimate the number of the sequence of states that corresponds to the currently 

observed health state for 150 iterations. The training process is completed using 

cross-validation techniques surely due to the overcoming dissatisfaction of 

availability of a lower number of data sets. Therefore, all data sets are 
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partitioned to be used for both training and testing which limits the overfitting 

model with the training data set. The last training sample is checked before the 

data set reaches the last data set (Cross Number) for testing. And, if Cross 

Number is remaining, thus, the learning algorithm continue simply run both the 

training and the testing sample incrementing by one. This process repeats until 

4 failure histories to construct the TDNN training model and validation of the 

model (see Figure ‎5-8 for the cross-validation; cross=1,..,4). Four failure history 

data sets are divided into three training sets and one testing set. The model 

learns from three samples and is validated with one sample and the learning 

model will replicate once the first sample becomes the last sample/last cross in 

the algorithm for validation. The model learns to estimate the failure 

degradation phase but if the current health state based on the measurement 

point needs to be identified, then the mean of the RUL results from each of 

validation represents the final results [100]. 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-8 TDNN training and testing modelling for IGBTs’ failure data set [100]  
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Step 3: The end-of-life (EoL) of the IGBTs can be calculated by peaking up 

the first particle from the selected data set as the measurement value at the 

current state which will be propagated through the degradation model until the 

threshold value. The availability of the new inspection particle will be checked 

out once the estimation value reaches the predefined threshold value if the new 

inspection particle is available. Therefore, the number of particles will be 

incremented by one until the last particle. The propagation process continues 

when the measurement point is greater than the length of the last particle and it 

then moves to calculate the RUL and then the prognostics evaluation metric, 

such as RMSE, RS and MAD. If the expected value or estimated value has not 

reached the threshold value, then the current inspection particle will be updated 

by an estimated value of the measurement parameter. As the recursive 

algorithm progressing the degradation phase until it reaches a significant 

promising threshold state. The LM algorithm for the TDNN training is run four 

times, and the trained TDNN corresponding to the lowest prediction 

performance MSE after 626 epochs is 3.9805e-06.The prediction performance is 

shown in Figure ‎5-9, which is almost mapping the test data (e.g. input 

measurement data) to the train TDNN model [100]. 

 

 

 

 

 

 

 

 

Figure ‎5-9 Performance of the proposed TDNN [100]  
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The degradation duration for the estimation model is quite random for each 

testing model and the number of degradation phases varies slightly. The 

estimation degradation is assumed to have followed a probability distribution. 

Given the fact that all samples are comparatively continuous time series data 

sets, therefore as a solution, normal distribution from the chi-squared test is 

selected. Results using Gamma and Poisson distributions are presented in [17]. 

In this chapter, we present results from the normal distribution and compare it 

with Gamma and Poisson distributions, and their validity is evaluated. In a 

normal distribution, mean µ and variance 𝜎2 parameters in Equation (23) are 

estimated in order to obtain the best fit PDF for each degradation phase. 

5.4 Degradation Model Estimation Optimisation 

MLE has been used again to maximise the density probability function 

(i.e. normal distribution function) of the estimation results. A normal 

distribution as shown in Equation (23) is the probability distribution of the IGBT 

estimated degradation phase (𝑥𝑖) given normal parameter μ and 𝜎2  [134]. 

 

𝑦 = 𝑓(𝑥𝑖|𝜇, 𝜎2) = [
1

√2𝜋𝜎2
𝑒

−(𝑥−𝜇)2

2𝜎2 ] , 𝑥𝑖 ≥ 0      (23) 

 

The MLE method is used to estimate the underlying rate parameters’ 

sample mean μ and the variance σ for the normal process in order to generate 

these counts. Again, the joint probability mass function is needed to formulate 

MLE; in this case, 𝑥𝑖, because it is a discrete random variable of the positive 

integers [115]. Since all discrete random variables are independent, the product 

of the individual density functions can be obtained. 

 

P[x1, x2, … , xn|μ, 𝜎2] = ∏ (2𝜋𝜎2)−𝑛/2exp (
−1

2𝜎2
∑ (𝑥𝑗 − μ)2𝑛

𝑗=1 )N
n=1    (24) 
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The next step is to calculate the maximum of this probability mass 

function with respect to μ, σ. However, simplifications in [116] make it possible to 

find the maximum of the probability mass function from a maximum of μ, σ in 

the form of Equations (26) and (27). 

 

log(μ, 𝜎2; 𝑥1, … , 𝑥𝑛)= 
−𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2𝜎2
∑ (𝑥𝑗 − μ)2𝑛

𝑗=1    (25) 

 

Then, take the derivative and set 
𝜕

𝜕µ
,

𝜕

𝜕𝜎
= 0 

μ𝑛̂ 𝑀𝐿𝐸 =
1

𝑛
∑ 𝑥𝑛

𝑁
𝑗=1          (26) 

𝜎𝑛̂
2𝑀𝐿𝐸 =

1

𝑛
∑ (𝑥𝑗 − μ̂)2𝑛

𝑗=1         (27) 

 

It is desirable to find some estimator which would be as close to the true 

value (𝜆̂𝑀𝐿𝐸). This is consistent with having the estimated value makes the 

observed data more probable which maximizes the chances of getting the results 

data. Using the MLE method to estimate the best fit of the modelling parameter, 

the estimator μ̂ equals the sample mean and the estimator 𝜎̂2 equals the 

unadjusted sample variance for a normal distribution [116]. According to 

Table ‎4-1, the number of health states for each of the four components’ health 

estimation is 10 non-homogenous discrete phase durations. The MLE function is 

employed for each health state (HS) of the four components as in Equations (28) 

and (29) and the results are presented in Table ‎5-2 [22]. 

𝜇
(𝐻𝑆)𝑗=

1

𝑛
∑ ∑ 𝐻𝑆𝑗

10
𝑗=1

4
𝑛=1

        (28) 

 𝑗 = 1, … ,10 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑒𝑠 
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 𝑛 = 1, … ,4 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐺𝐵𝑇 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

𝜎
(𝐻𝑆)𝑗=

1

𝑛
∑ ∑ 𝐻𝑆𝑗

10
𝑗=1

4
𝑛=1

        (29) 

 

Table ‎5-2 MLE Parameters of Estimated Duration [100] 

Parameters µ δ 

Model 1 1.75 0.5 

Model 2 104.75 30.685 

Model 3 1207.5 264.138 

Model 4 1526.25 283.491 

Model 5 545 263.920 

Model 6 344.25 262.699 

Model 7 515 264.054 

Model 8 213 111.758 

Model 9 104.25 71.978 

Model 10 56.25 52.506 

5.5 RUL Calculation Algorithm 

In this chapter, simulation of RUL presents as the useful life calculation 

for the IGBT component at each measurement time. The approach depends on 

the IGBT failure model estimation and the normal distribution based on the 

optimised duration parameter. 

The process of the RUL calculation and its related simulation algorithm 

are processed based on the fact that the maximum estimated lifetime of the 

IGBT is divided into a number of estimated durations. Failure at each estimated 

duration is progressed in a different manner which results in different rates of 

degradation, known as estimated degradation phases (τ), as discussed in the 

previous section (see Figure ‎5-8). Estimated degradation phases result from the 

TDNN model, and present a number of health states that the IGBT may 

experience in real time. Considering n number of τ, the life of a health state is 
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calculated in normalised form (in respect to summation of τ) using the following 

equation [100]: 

𝐻𝑆𝐿𝑖 =  𝑡𝑡ℎ𝑟 .
𝜏𝑖

∑ 𝜏𝑗
𝑛
𝑗=1

𝑖 =  {1, 2, … , 𝑛}       (30) 

 

where HSLi presents a period that ith health state life will last for a number of 

cycles between a starting cycle (𝑡𝑠) and an ending cycle (𝑡𝑛); and tthr is the 

maximum real lifetime of the IGBT that is not necessarily equal to the total 𝜏, 

because total 𝜏 is the accumulation of estimated values. A normal PDF (f(t)) is 

assigned to each HSL, wherein the centre and variance of f(t) are the mean of 

cycles occurring in the HSLi ((𝑡𝑠+𝑡𝑛)/2) and the difference of the maximum and 

the minimum cycles of the HSLi (𝑡𝑠-𝑡𝑛), respectively. As each HSL has an area of 

1 and different variance values, accordingly, HSLs will have different maximum 

probabilities. A per-unit HSL is obtained by the following equation [100]: 

 

𝐻𝑆𝐿𝑝𝑢𝑖
=

𝑓𝑖(𝑡)

   ∑ ∫ 𝑓𝑘(𝑡)
𝜏

𝑡0
𝑛
𝑘=1  

𝑖 =  {1, 2, … , 𝑛}      (31) 

 

where HSLpui is ith HSL in per-unit form, fi(t) is the normal PDF for the ith 

estimated degradation duration, and t0 is the operation time at the measurement 

point. The probability of estimated duration for each inspection time (PDLT) is: 

 

𝑃𝐷𝐿𝑇𝑖 =  𝐻𝑆𝐿𝑝𝑢𝑖
. 𝜏𝑖𝑖 =  {1, 2, … , 𝑛}       (32) 

 

𝑖 = 1, … , 𝑝 = number of duration lives 

𝑗 = 1, … , 𝑘 = number of particles for each duration life 
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The simulation of the RUL calculation is given in the flowchart of the 

proposed algorithm in Figure ‎5-10. The approach depends on the IGBT failure 

model estimation and the normal distribution based on the optimised duration 

parameter. A time delay neural network approach for the degradation modelling 

is constructed and sweeping the estimation value under the normal distribution 

curve for each estimated degradation phase (𝜏𝑖) until the end of the component’s 

life or it can be swept up to a predefined threshold value. Then, the RUL (i.e. 

mean and confidence levels) is calculated using the distribution of estimated 

values based on the area of each estimated degradation phase by MCS [100]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-10 RUL calculation approach algorithm [100]  
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Figure ‎5-11 show an example (i.e. IGBT sample number 4) of 𝐻𝑆𝐿𝑝𝑢 

results. The results were computed based on a normal distribution model which 

shows the area under each curve equivalent to one unit per duration. The 

oscillated blue, red and green curves show the mean of the area per unit, 10% 

and 90% deviation confidence bounds of the area per unit, respectively. The 

oscillations present the degradation process and the RUL predictions are also 

carried out at each moment of the degradation process. Hence, the RUL 

prediction occurs throughout the whole process of the IGBT degradation 

experiment. For instance, the observation peaks at measurement 1,500 cycles 

(cycle per second) where the black area under the each oscillation cycle presents 

the duration life per unit till it reaches its maximum life which is slightly above 

4,000 cycles (Figure ‎5-11) [100]. 

 

 

 

 

 

 

 

Figure ‎5-11 Normalisation of the duration life [100] 

5.5.1 Hybrid RUL Simulation Results 

The RUL prognostics results which have been estimated by the TDNN and 

fused with the probabilistic approach to reflect the discrete change in the 

degradation state are expressed by a series of polylines. The prognostics 

simulation is a process from the beginning of the healthy state condition of the 

IGBT running to the threshold value at 7 (e.g. # degradation phase). The VCE as a 
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degradation indicator is monitored and the relevant sensor data during the on-

state are recorded at each cycle where the degradation related to the packaging 

failure mode has caused the IGBT to fail. 

Figure ‎5-12 shows four IGBT samples of RUL simulation results. The 

RUL result is computed using the statistical approach based on the estimation 

results from the TDNN failure model. The results are promising for early failure 

findings and improve decision-making based on confidence levels. The straight 

black, red and green oscillatory lines are used as the real RUL and it's 10 and 90 

percentile deviation confidence bounds, respectively. These three lines present 

the accuracy of the prognostics estimation during each degradation transient. 

The blue plot indicates the mean value of the RUL simulation.  

 

 

 

 

 

 

 

 

 

 

Figure ‎5-12 Hybrid RUL simulation 

At the beginning of the RUL rendering, all prediction plots diverge from the 

real RUL value. As the operating time is rendered toward the end of the IGBT 

life, the 10 and 90 percentile confidence bounds significantly converge to the real 
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RUL value where the accuracy of the life estimation is vital rather than at the 

beginning of the device life. The confidence bounds initially offer meaningful 

information as the normal distribution is associated with mean and standard 

deviation. However, the confidence bounds lie very close to the mean value as the 

degradation process reaches the end of the ageing process. Confidence levels 

provide assurance so that we can comfortably rely on the performance of an aged 

system. The critical point to consider is that the accuracy of prognostics models 

has always been under doubt and remains to be under margins of confidence 

levels [100], [135]. 

5.6 Hybrid Estimation Error 

In this chapter, RMSE and RA are used to assess the precision of the 

proposed prognostics performance for all durations of failure progression, and 

the results are compared against an extended KF [1]. Basically, RA measures the 

error in RUL calculation relative to the real RUL at a specific time index 

determined by predicted values while prediction is performed by a model or an 

estimator [136]. Due to the nature of degradation data that may widely differ 

from one sample point to the next sample, mainly where wire bonds lifted off, RA 

might provide us with a more accurate metric to evaluate the performance of 

prognostics models [1], [113]. The range of RA values is between zero and one, 

where the best performance evaluation score is absolute 1. RA can be evaluated 

at multiple time variants. Therefore, it conveys the estimation results’ accuracy 

at a specific time.  

If 𝑦𝑖𝜆
 is the real RUL value at time index 𝑖𝜆, then 𝑦𝑖𝜆

^ is the estimated RUL 

distribution at 𝑖𝜆 , so that RA can be calculated using Equation (34): 

 

RA=100(1 −
|𝑦𝑖𝜆

−𝑦𝑖𝜆
^  |

𝑦𝑖𝜆

)        (34) 
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The performance of the proposed prognostics technique is summarised in 

Table ‎5-3 and Table ‎5-4 using RMSE and RA metrics for each life duration, 

respectively. Table ‎5-5 also compares the RMSE values of the proposed technique 

with the RMSE values from [17] that employ Gamma and Poisson probability 

distributions in a Markov chain probabilistic approach. It is observed from the 

metric that the proposed fusion technique has considerably improved prediction 

for all degradation phase processes compared to the stochastic model based 

approach. In general, the hybrid approach is proved to be a versatile approach 

for both prediction processes and RUL calculation and presents better RMSE 

values. Furthermore, it offers significant decision-making benefits because the 

90 and 10 percentiles confidence width bounds are narrow realistically close to 

the mean during the whole prediction. This will provide meaningful information 

for decision-makers due to the fact that most of the occurrence of the estimated 

failure data is disseminated within standard deviation. According to the RA 

values based on the proposed approach, the IGBT test sample number 1 has the 

largest RA value. Therefore, it presents a more accurate predictive failure model 

amongst all four IGBTs and can be employed as a precise prognostics model. 

From [1], extended KF-based prognostics presents maximum RA (97.052) as a 

significant prognostics performance. Based on our approach, it can be noted from 

Table ‎5-4 that RA incredibly gives better results for all four samples in average 

99.9. 

 

Table ‎5-3 RMSE Hybrid Prognostics Performance Metric up to a Predefined Threshold 

Value [100] 

Degradation Phase IGBT 1 IGBT 2 IGBT 3 IGBT 4 

1 1.15 1.15 1.16 4.28 

2 1.10 1.12 0.85 4.14 

3 0.89 0.93 0.84 3.58 

4 0.90 0.90 0.87 3.45 

5 0.94 0.87 0.91 3.28 

6 0.97 0.84 0.91 3.17 
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Table ‎5-4 RA Hybrid Prognostics Performance Metric up to a Predefined Threshold 

Value [100] 

Degradation Phase IGBT 1 IGBT 2 IGBT 3 IGBT 4 

1 99.9703 99.9433 99.9738 99.9994 

2 99.9774 99.9466 99.9747 100.00 

3 99.9905 99.9380 99.9579 99.9912 

4 99.9924 99.9245 99.9487 99.9747 

5 99.9939 99.9233 99.9492 99.9714 

6 99.9940 99.9249 99.9511 99.9678 

 

Table ‎5-5 RMSE Probabilities Prognostics Performance Metric [100] 

RMSE % IGBT 1 IGBT 2 IGBT 3 IGBT 4 

Normal 0.9917% 0.9683% 0.9233% 3.65% 

Poisson 28.6% 20.0% 25.8% 27.2% 

Gamma 33.17% 33.97% 34.85% 33.19% 

 

5.7 Summary  

The main contribution of Chapter 5 is the development and 

implementation of a TDNN failure model of IGBTs for indication of the current 

health state and fuses with the principle of the area under the curve for RUL 

calculation. To this end, the area of the breaking region of the failure model is 

fitted with a probabilistic distribution function (i.e. normal distribution 

function). In addition, MCS is utilised in the algorithm to generate the 

calculation area up until the threshold value to approximate the IGBT’s RUL. 

Overall, the IGBT degeneration model is built based on IGBT failure mechanism 

and degradation characterisation. The stochastic approach and MCS are used to 

calculate the area under the estimated degradation phases and the precursor 

parameter, collector-emitter voltage (VCE), is integrated to develop the 

prognostics algorithm for predicting the IGBT’s RUL. Comparison with the 

results of RUL prediction is shown in Table ‎5-3 and Table ‎5-4 which show that 

for all four samples, the first samples present significantly small RMSE and 
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large RA values. The implementation of the developed prognostics framework 

could be applied to provide advance warning of failures, thereby preventing 

costly power electronic system downtime and failures. The TDNN failure model 

can perform much more efficiently when it fuses with the statistical approach for 

failure RUL prediction results in some IGBTs. The combined model in this 

chapter is only based on the normal distribution, established and implemented 

in IGBT RUL prediction [100]. The next chapter will present the radically novel 

prognostics model for IGBT which the prognostics model can be generalised in a 

per-unit form. Then, its features are adjusted depending on the application, 

working condition, and dynamic of changes. 
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6 6 IGBT Knowledge-Based 

 Prognostics Model 

 

There is a need for an efficient prognostics algorithm that is embeddable 

and able to improve on the current prognostics models. A positive aspect of this 

approach is that the IGBT failure model developed using fuzzy logic adapts 

prognostics model with the fuzzy nature of failure mechanisms. Actually, this 

method is like an adaptive neuro-fuzzy inference system (ANFIS). Current state-

of-the-art prognostics algorithms, notably those based on Markov probabilistic 

models, are computationally-intensive and not applicable to real-time embedded 

applications. Creating a real-time prognostics tool to predict degradation in 

power electronic modules in their working environment is an importunate 

request for predicting reliability and life consumption from various consumers of 

power electronic modules [14]. Fuzzy logic and neural networks are knowledge-

based techniques that are frequently employed for forecasting. In general for 

power electronics, prognostics methods require sufficient reliable data, such as 

current, voltage and temperature, to develop a precise model to determine RUL 

based on the historic health information of the power electronic module. 

However, in the fuzzy approach due to make use of uncertainty, and calibrates 

vagueness to create a more robust model at low computational cost. 

In this chapter, the IGBT failure model is used to generate run-to-failure 

data in different testing conditions. The data set has the similar fashion to power 

cycling ageing test data. In fact, electrical parameters, such as VCE and junction 

temperature (Tj) during its operation, are monitored as precursor parameters. 

Modelling prognostics based on fuzzy sets which are constructed by input 

membership function pass through the input layer and real life estimation can 

be seen as an output layer. This also is connected by output membership 
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functions. Fuzzy knowledge enables the model to acquire expert knowledge from 

degradation profiles that ultimately use back propagation to minimise the 

estimation error of the failure parameter. ANFIS can be assigned as a 

knowledge-based model and has the advantages of the fuzzy logic (FL) and 

artificial neural network (ANN). Attention is focused on using time series data in 

the form of a history of time interval data as input which is being adapted with a 

dynamic notion of the input variables. In the proposed ANFIS prognosis model, 

the dynamic of each defect’s phase is presented in failure trend to demonstrate 

the development of the failure over time. The detailed of the early stage of the 

deterioration of the component and the environmental loading conditions are 

monitored and considered to be used as the inputs to determine failure process. 

And then, they are employed to determine the remaining useful life of the power 

electronic module in lifetime models [13].  

The method is proposed in such a way that by combining the operational 

working condition and the on-state collector-emitter voltage can adjust the model 

to be scalable and generated the weighed data which fit in degradation pattern. 

This has been constructed using a per-unit approach which quantifies explicitly 

the variation in usage conditions. The proposed method illustrates based on soft 

computing method (ANFIS) which has used a fusion of per-unit of failure data 

and its conditions to estimate the lifetime of in-service power electronic module. 

 

6.1 Operational Scalable Prognostics Approach 

A per-unit model/system [137] has been proposed to express the system 

quantities as fractions of a defined base unit quantity, for instance in power 

system analysis, engineering economic analysis, estimating cost models, etc. It is 

a simple but useful approach in which RUL estimation is made for a single unit 

that is a per-unit prognostics model. Then, the total RUL estimation is presented 

in percentage instead of actual RUL values. However, to improve the accuracy of 

prognostics while the operation condition is changed, the prognostics model 
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partitions the total RUL estimation into the number of segments. Each segment 

is developed based on degradation patterns under specific working conditions. 

Then, ANFIS is utilised and trained to recognise how component/system 

degradation is changed from one pattern to another while working conditions are 

changed. We believe that the ISHM system will greatly benefit by a per-unit 

prognostics model in which degradations under different working conditions are 

characterised into patterns useful for natural computing-based pattern 

recognition. The advantage of this approach is that it will enable RUL to be 

estimated while working conditions are also changed in the real-time process. 

However, RUL is presented as life percentage rather than actual values. 

The various techniques to conduct accelerated ageing tests under different 

working/operational conditions, such as thermal cycling, power cycling, and 

electro-thermal cycling, are presented in [138]. It is worth mentioning that an 

additional step known as feature extraction is also an important initial step 

which involves investigating what signals should be monitored to allow 

prognostics to be successfully developed based on the features extracted from 

those signals. The damage model created is then used for obtaining the initial 

threshold (Th) under normal operating conditions, ideal RUL (IR), and a 

prognostics model. Suppose the system has been monitored by a number of 

measurement points through its life period collected inside a validation/test 

profile. RUL estimation is a process to sweep measurement points from the first 

to the last point, and for each particular point, estimate when degradation in the 

system is progressed to the threshold level (Th) where the system is aged enough 

to be known as a damaged system. Then, RUL at the measurement point is 

accounted as the numbers of iterations (also known as Cycle Time, CT) that need 

to be performed from the chosen measurement point (mp) to the point that the 

damaged state propagates to the threshold (Th). The RUL of systems is  

expressed with lower and upper confidence levels accounted. For instance, 

Figure ‎6-1 presents IR, estimated RUL, 10% and 90% confidence levels when the 

system is under normal operating conditions (presented by index n, IRn). The life 
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of the system is assumed to be ended under normal working conditions where 

Thn crosses the IRn representing EOL.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6-1 Normal working condition [139] 

It is still challenging to consider effects of all various working conditions to 

accurately estimate RUL. As working conditions vary during the system’s 

lifetime, degradation is processed at different rates so that the threshold (Th) 

may occur at different points (CTs) (Figure ‎6-2). In comparison with Figure ‎6-1 

that presents estimated RUL continues to decrease under normal working 

conditions, the estimated RUL (Figure ‎6-2) progresses random decrease and 

increase depended on the changes in the working conditions. However, the 

trends of both RUL in Figure ‎6-1 and Figure ‎6-2 are life reduction toward EOL 

and 0. The next section describes the estimation of RUL under variable working 
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conditions using natural computation. Figure ‎6-2 expresses what maximum life 

expectancy at each working condition is, and how RUL is reduced as systems 

perform under different working conditions. The threshold is the point at which 

the system gets to EOL that is a specific percentage of its overall lifetime. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6-2 Variable working condition [139] 

 

6.2 ANFIS Prognostics Model using Per-Unit Approach 

Consider a single component so that its degradation model can be 

expressed using a number of parameters under specific operating conditions 

declared by the second set of parameters; for instance, the voltage across the 

IGBT as a parameter of the degradation model and temperature as working 

conditions. Figure ‎6-3 presents an ANFIS model as a black box that can be used 
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for building a per-unit prognostics model by defining base values of the per-unit 

model when the component is under normal operating conditions. Then, per-unit 

quantities are calculated by dividing the actual value of any parameter (under 

any operating condition) by its specific base value. For instance, the per-unit 

value of parameter X(t) that has a base value Xbase is calculated as Xpu(t) 

=X(t)/Xbase. Table ‎6-1 provides base and per-unit quantities for an IGBT 

component. All based values are accounted for the component under normal 

operating conditions. 

 

 

 

 

 

 

 

 

Figure ‎6-3 ANFIS-based per-unit prognostics technique [139] 

 

Table ‎6-1 Per-Unit Quantities [139] 

Base Description Per-Unit 

Sbase Switch power loss Spu(t)=Swc(t)/Sbase 

Vbase Vce_sat* Vpu(t)=Vwc(t)/Vbase 

Ibase Ic_sat** Ipu(t)Iwc(t)/Ibase 

Thbas

e 
Threshold Thpu(t)=Thwc(t)/Thbase 

Tbase Temperature Tpu(t)=Twc(t)/Tbase 

CT Cycle time CTpu(t)=CTwc(t)/CTbase 

*Vce_sat: Collector-emitter saturation voltage 
**Ic_sat: Collector saturation current 
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As presented in Table ‎6-1, there is also a base value and per-unit 

parameter for CT so that the prognostics model fits the life of the component 

under any operating condition (OC) within the same window. This unifies the 

created prognostics model for any application under any OC and stress. Hence, 

the degradation model is formulated in per-unit form by Equation (35) [139]: 

 

Dpu(CTpu,ocpu) = f (CTpu,ocpu) / max(Dbase)     (35) 

 

where D is the actual parameter used to develop the degradation model; OC = {0, 

±1, ±2, …} refers to the operating condition for OC = 0 under normal operating 

conditions, OC > 0 when the conditions worsen, and OC < 0 when conditions are 

modified; f refers to the function of the degradation model under condition OC; 

and max is the maximum function. And also, max is applied on D representing D 

as a normalised parameter with a maximum value of the degradation model 

under normal OC. If points of EOL for different operating conditions are located 

on the vertical line as shown in Figure ‎6-2, then the ideal RUL (IRpu) is obtained 

from Equation (36). It develops IRpu as a line equation for each OC [139]. 

 

IRpu(CTpu) = EOL (1+(CTpu-Thpu)/(CTnpu-Thpu))    (36) 

 

where IRpu is the ideal RUL in per-unit form, EOL is a constant value of end of 

life, CTnpu=max(CTn/CTbase) is per-unit of cycle time under normal operation 

conditions equal to one. This approach divides the prognostics models into 

segments while each segment is created from the per-unit degradation model, 

and related base values correspond to a specific working condition. Hence, in 

real-time operation, the RUL at each measurement point is estimated by firing 

the right segments of the prognostics model. The fired segment is changed as OC 

varies through the lifetime of the system/component. The ANFIS neuro-fuzzy 
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system in Figure ‎6-3 is trained to recognise working conditions and to fire the 

right segment of the prognostics model that finally results in RUL estimation. To 

train such a neuro-fuzzy RUL estimator, per-unit forms of the damage model and 

RUL under different working conditions are used as inputs, and output 

parameters, respectively. In fact, training patterns are generated by collecting 

Dpu, oc and IRpu in vectors. However, ΔDpu can be also included as an 

additional input variable to improve the accuracy of the ANFIS-based RUL 

estimator by looking to the dynamic of the damage model (Table ‎6-2). 

Table ‎6-2 Training Pattern [139] 

Pattern Input Output 

1 OC1 Dpu1(1) ΔDpu1(1) IRwc1(1) 

2 OC 1 Dpu1(2) ΔDpu1(2) IRwc1(2) 

To be continued to pattern m-1 

m OC1 Dpu1(m) ΔDpu1(m) IRwc1(m) 

m+1 OC2 Dpu2(1) ΔDpu2(1) IRwc2(1) 

m+2 OC2 Dpu2(2) ΔDpu2(2) IRwc2(2) 

To be continued to pattern n-1 

n OC3 Dpu2(n) ΔDpu2(n) IRwc2(n) 

To be continued for all OCk 

 

6.2.1 Characterization of Ageing Data 

Junction temperature, power loss and duty cycle are just some of the 

parameters that are worth considering as the working condition of IGBTs. 

However, in general, it is known that saturated collector-emitter voltage 

(VCE_sat) is measured when the IGBT is switched on. Thus, VCE_sat is dropped to 

its minimum value, and the current through the collector (IC) will be increasing 

and elevates the junction temperature. Depending on the IC, the IGBT may have 

a positive or negative temperature coefficient for VCE_sat so that VCE_sat 

increases at high IC, and it decreases at lower IC with an increase in temperature 

[140]. This means that both the IGBT junction temperature and IC_sat have a 

significant impact on the performance of the IGBT. Hence, VCE_sat is used as a 

degradation parameter, and the temperature is used as an explicit part of the 

model for scaling working condition parameter whereas in this simulation is 



 

129 

performed for a fixed maximum IC_sat. Alternatively, the power loss of the IGBT 

can also be used for accounting both IC_sat and temperature as working 

conditions. However, to reduce complexity, we focus on temperature. Figure ‎6-4 

for instance, IV characteristic may present positive or negative temperature 

coefficient for the VCE_sat and is considered for working condition of IGBT.  Thus, 

it also shows the collector current (IC) in conducting state as a function of the VCE 

at different junction temperatures. It is important to note that operating about 

40A, the conduction losses decrease with increasing temperature. And for higher 

current, the conduction losses increases slightly. In this case, it is considered an 

increase in nominal current and a junction temperature increases from 25°C to 

150°C can be observed. This region is an effective operational lifetime quality for 

the IGBT. We notice that the VCE is relatively higher for high temperatures. 

However, at some point of higher temperature, the mobility of electrons at 

conduction mode is saturated and collision between electrons provokes the on-

state resistance (Ron) becomes higher. [141]. 

It is well understood that due to the ageing of the wire bonds, solder joints 

and die of IGBTs, the short circuit current is decreased while the on-state 

voltage VCE (ON-state) is increased [142]. This will result in an increase in the 

forward resistance of the IGBT. This will also can be correlated with the 

evolution of Al metallization resistance during degradation of IGBT [142]. 

Considering the IGBT as a switch, it has two working modes: on-state is when 

the IGBT is switched on and off-state is when the IGBT is switched off, 

respectively. During the on-state mode, the IGBT’s voltage across the collector-

emitter is dropped down because the channel of the IGBT is saturated; and so, 

its resistor, Ron, is reduced to less than 1 ohm. On the other hand, the IGBT’s 

channel is cut off for an off-state mode that causes the current through the 

collector-emitter of the IGBT to be dropped down to almost 0, meaning Roff is 

highly increased. Due to degradation, the on-state and off-state values of the 

IGBT are changed resulting in changes in Ron and Roff as well. To summarise, any 

degradation caused by thermo-mechanical and electrical stress will result in 

changes in energy losses that increase junction temperature as well as the 
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temperature of wire bonds and solder joints. The accumulation of effects 

resulting from various stresses causes cracks in the die, wires and the overall 

package of the IGBT. This subsequently results in an increase in Ron, VCE (ON-state) 

and power loss of the IGBT that increases thermal stress. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6-4 Example of IV characteristics for IGBT [139] 

6.2.2 Discretisation of Ageing Data 

The previous VCE data sets shown in Figure ‎6-5 have been considered and 

are chosen as precursor parameters in this chapter from the experiment data, 

providing the best degradation indicator to crack propagation leads to wire bond 

lift off in comparison to other measurable parameters [82], [17]. In this regard, 

the IGBT’s power is cycled so that the IGBT’s temperature is kept between 

minimum and maximum limits (Tmin and Tmax, respectively). Through each cycle, 

the IGBT is switched on to increase the temperature from Tmin to Tmax, and then 
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it is switched off to reduce the temperature from Tmin to Tmax. Each iteration is 

known as a cycle time (tcyc = toff + ton) comprising from toff and ton for when the 

IGBT is switched off and on, respectively. Cycle time causes IGBTs to slowly 

develop irregularities, degradations and faults which eventually get to the point 

of malfunction, indicating that the IGBT is damaged. VCE (on-state) and ICE (off-state) 

(including load, the temperature of IGBT and environment as working condition 

parameters) could be known as the best parameters to monitor the IGBT’s 

failure during the first stage.  

 

 

 

 

 

 

 

Figure ‎6-5 Run-to-failure data for five IGBTs of the same type [139] 

The power cycling test is repeated for 22 IGBTs (with 600V/75A), and all 

the monitored parameters including on-state voltage, off-state current, junction 

temperature are saved within the nth degradation profile for the chosen nth IGBT 

under ageing test, 1≤n≤22 and n={1, 2, …, 22}. However, for simplifying the 

process, we proceed with just one set of working conditions, a fixed Tmin, Tmax and 

load. Run-to-failure results of power cycling tests conducted on five samples of 

the same IGBT are shown in Figure ‎6-5. Tests are processed under working 

conditions of Tmin=60°C and Tmax=120°C. The following failure patterns can be 

modelled with Equation (37) [139]: 
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VCE (sat) = ∑i (Pi1 + Pi2 (1-exp ((t-Pi2)/Pi4))     (37) 

where VCE_sat is the collector-emitter saturation voltage of the IGBT, t is the 

time index (when the sample has been taken), Pi1 to Pi4 are parameters which 

define per-unit damage patterns, EOL, Thresholds, and IR; and finally, i={1, 2, 

..., 6} is the number of clusters detected in the IGBT’s failure data using the K-

means and silhouette clustering tools of MATLAB. The spikes in all samples are 

due to solder fatigue stress that appears as an intermittence fault. 

Equation (37) provides specific training information needed to initialize 

the ANFIS network. Then, two IGBT samples from the degradation profile in 

Figure ‎6-5 are used to generate training patterns. The other two samples in 

Figure ‎6-5 are used for validation purposes. Initial VCE_sat either from Equation 

(3) or samples in Figure ‎6-5 create temperature-based derivatives corresponding 

to the working condition in Figure ‎6-4. Using the training pattern in Table ‎6-1, 

inputs are constructed from VCE_sat specified by Equation (37) to initialise the 

ANFIS), and two IGBT degradation profiles from Figure ‎6-5 (used for damage 

model parameters) along with temperature-based IGBT variations given in 

Figure ‎6-4 (used for the working condition of IGBT). Training patterns for the 

output of the ANFIS system are also created using Equation (36). Considering 6 

clusters for each VCE_sat and five different temperatures {40, 60, 80, 100, 120°C} 

create 30 different training patterns. However, to improve the accuracy of the 

ANFIS system, 100 samples at different CTs from each cluster have been taken 

into account. This increases the number of training patterns to 6,000 [139]. 

Both VCE_sat and the junction temperature (TJ) as a working condition 

(WC) or OC are driven by power switching fed to the 𝑖th input sets which 

determines an initial fuzzy set.  

𝐴𝑖
𝑗
, for 𝑖 = 1, 2, 3, 𝐵𝑖

𝑗
 for 𝑖 =  4, 5, 6 and 𝐶𝑖

𝑗
 for 𝑖 = 7, 8, 9 

As, they have associated with the 𝑗th fuzzy rule to stablish fuzzy logic inference 

engine whereas, the output of the inference engine is constructed from real RUL 

(i.e. IRpu). Both the per unit of VCE (i.e. Dpu) and TJ indicate the occurrence of 



 

133 

random events whereas the per unit of ∆VCE (i.e. ΔDpu) is taken into account as a 

dynamic of health states of the model to present crack growth propagation in the 

die-attached solder joint for improving accurate prediction during the lifetime 

calculation process. In the ANFIS structure uses fuzzy Sugeno model reasoning. 

Two initial steps of filtering and classification are required to filter rapid 

changes due to noise and spikes and to eliminate redundant information by 

taking just one sample from each cluster. These steps speed up the process of 

RUL estimation. A solution that also reduces uncertainties is the buffering 

technique [72]. It can be noted in Figure ‎6-6 that the first element of the VCE 

fetches into the FIFO buffer frame and upon second arrival is shifted the next 

part, and will carry on till both partitions of the buffer size (10) are occupied with 

sensory data. This phenomenon is essential to overcome initial aggression of the 

sensory noises. The monitored signals are shifted in the FIFO (First-In First-Out 

stack) one by one, and the mean value of the available data in the FIFO is then 

used for the RUL estimation. FIFO has a fixed storage length, so that shifting a 

new sample to the FIFO will release the sample that had already been shifted 

into the stack at the earliest time. At the same time, ∆VCE is determined from two 

obtained mean values of the first and second buffer size of the VCE variable, and 

the WC data is buffered, as shown in Figure ‎6-6, for the buffer size (10). The 

estimation of RUL system reasoning will be improved by applying FIFO. The 

RUL from such a system is estimated in per-unit form and can be used to 

present the remaining useful life of the system in percentage rather actual 

remaining life time. After noise reduction, all four input variables [143]: 

 

𝑥𝑖={𝑉𝑐𝑒(𝑡), ∆𝑉𝑐𝑒(𝑡 − 1), 𝑊𝑐(𝑡)} 

For i=1, 2, 3 

 

which is assigned to three inputs of the membership functions, low, medium and 

high, as linguistic labels in layer zero, Therefore, sigmoid membership functions 
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are used to calculate the membership grade at each node in layer 1. These 

membership functions μ (0) define by scaling between 0 and 1 how 

representative the local degradation models are for a certain value Vce, as shown 

in the following: 

 

 

 

 

 

 

 

 

 

 

Figure ‎6-6 Structure of the proposed ANFIS model [143] 

𝜇𝐴,𝐵,𝐶(𝑥𝑖)= {𝑙𝑜𝑤𝑥𝑖
, 𝑚𝑒𝑑𝑖𝑢𝑚𝑥𝑖

, ℎ𝑖𝑔ℎ𝑥𝑖
} =

1

1+|
𝑥−𝑐𝑖𝑗

𝑎𝑖𝑗
|

2𝑏𝑖𝑗
 

For i=1, 2, 3; j=1, 2… 27 

 

where 𝜇𝐴,𝐵,𝐶 is the output signal of the layer 1 with respect to the 𝑖th input 

parameter and 𝑗th fuzzy rule, and three premise parameters (𝑎𝑖𝑗,𝑏𝑖𝑗, 𝑐𝑖𝑗) of the 

Sigmoid function are optimised using back propagation via the gradient descent 
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method and changing the shape of the membership function instead of just using 

data to choose parameters [144]. 

{𝜇. 𝐴𝑖
𝑗(𝑥𝑖), 𝜇. 𝐵𝑖

𝑗(𝑥𝑖), 𝜇. 𝐶𝑖
𝑗(𝑥𝑖)}  

At the fourth layer, the T-norm operator performs j=27 fuzzy rules which after 

are required to firing strength of rule. The output of the fuzzy rules at each node 

in layer three will represent the firing strength of the 27 fuzzy rules, for instance 

as follows [143], [145]: 

Rule 1: IF 𝑉𝑐𝑒, ∆𝑉𝑐𝑒 and 𝑊𝑐 are  

              THEN 𝑓1= 𝑑1
1𝑉𝑐𝑒+ 𝑑2

1∆𝑉𝑐𝑒+ 𝑑3
1𝑊𝑐 + 𝑑4

1 

 

THEN 𝑓1= 𝑑1
2𝑉𝑐𝑒+ 𝑑2

2∆𝑉𝑐𝑒+ 𝑑3
2𝑊𝑐 + 𝑑4

2 

 

Then, the rule firing strengths is normalised, which follows as: 

 

𝑊𝑗 = ∏ 𝜇. 𝐴𝑖
𝑗(𝑥𝑖)𝜇. 𝐵𝑖

𝑗(𝑥𝑖)𝜇.

𝑖,𝑗

𝐶𝑖
𝑗
(𝑥𝑖) 

For i=1, 2, 3; j=1, 2… 27 

𝑊̅𝐽 =  
𝑊𝑗

∑ 𝑊𝑗𝑗
 

 

where the normalised firing strengths output is adapted to a node function 𝑊𝑗.̅̅ ̅̅ 𝑓𝑗. 

All incoming signals at single node output are computed as an overall output 

using a Takagi-Sugeno type model. As shown in the following: 

𝑦(𝑡)=∑ 𝑊̅𝐽𝑗 . 𝑓𝑗 
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where 𝑓𝑗 is formulated with consequent parameters {𝑑1
𝑗
, 𝑑2

𝑗
, 𝑑3

𝑗
, 𝑑4

𝑗
} and optimised 

using the least squares method. After the linearisation all input signals, the 

output 𝑦(𝑡) predictor of the ANFIS presents as follows: 

𝑦(𝑡) = ∑ 𝑤̅𝑗𝑗 (𝑑1
𝑗
𝑉𝑐𝑒(𝑡) + 𝑑2

𝑗
∆𝑉𝑐𝑒(𝑡 − 1) + 𝑊𝑐𝑑3

𝑗
 (𝑡) + 𝑑4

𝑗
)    (37) 

j=1, 2, 3…27 

6.3  ANFIS Prognostics Results 

To demonstrate the proposed operational scalable prognostics result, we 

tested the approach based on 4 run-to-failure IGBT test samples, all of which 

have different working conditions. The algorithm was implemented and tested in 

MATLAB. The testing data set used as measurement data is rendered point by 

point to estimate the online RUL. As the results are in per unit; therefore, 

considering EoL for estimation value where IGBT is already damaged for any 

CTpu more than 0.72. The best results of RUL estimation presents from 

validation phase with RMSE of 0.081 as the model performance precision is 

shown in Figure ‎6-7. This figure presents how the RUL of a single IGBT is 

reduced and scalable to track deterioration under different working conditions, 

even though the degradation profile of the IGBT that has been used for 

validation is obtained from ageing accelerated tests under a fixed working 

condition variation of Tmin=60C and Tmax=120C temperatures. With a scalable 

ANFIS prognostics model, the online prediction results retrieved are good 

convergences of the degradation model using reference engine rules that are 

most similar to the degradation pattern. To gain insight into the proposed 

prognostics approach, we shall analyse the results in more detail. Consider the 

light blue (i.e. IRn), green (i.e. IR60), red (i.e. IR80), cyan (IR100) and magenta 

(IR120) lines of the true RUL for all different operating conditions, and the 

estimated RUL. The estimated RUL in the scattered black plot can be observed 

at the beginning of the data rending which has converged to around IRn between 
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0 to 0.14 CTpu in ambient temperature. However, as the temperature rises up to 

60°C, the estimated plot will be expected to close IR60 from 0.14 to 0.25 CTpu 

and the RUL estimation continues around their associated real values as 

observed in Figure ‎6-7. The ANFIS model estimator is converging to its real 

value up to the point where the junction temperature tracks the operating 

condition at different life spans per unit [139]. 

 

 

 

 

 

 

 

 

Figure ‎6-7 Operational scalable RUL estimation using ANFIS-based per-unit 

prognostics model [139] 

In contrast to the scalable ANFIS-based per-unit prognostics model, the 

prediction RMSE value decreases for non-scalable ANFIS based per-unit 

prognostics model as the OC deviates away from one nominal condition to 

another. The estimation is simulated up until the last degradation phase as the 

predefined threshold state. As is noted from  

Figure ‎6-8, the precision of the estimated RUL converges as the scattered 

blue mean prediction plot approaches the black real failure RUL. The RUL 

associated with wide confidence intervals (90% and 10%) are shown by the red 

and green plots respectively, which provide meaningful information for 

maintenance. At the beginning of the RUL simulation, the confidence bound is 
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quite divergent and fluctuated with the mean RUL but as it progresses to the 

device’s EOL, it becomes convergent with the mean and real values. In contrast 

to the ANFIS prognostics model, RUL results for the Gamma probabilistic 

model, as shown in  

Figure ‎6-9, is relatively different from the true RUL with an RMSE of 

0.2520. However, the prediction results progress smoothly towards EoL in 

comparison to the ANFIS results. The RUL estimation of both methods was 

evaluated by comparing the RMSE of the estimated RULs. The results prove 

that the ANFIS model has significantly improved prognostics performance and 

reducing the RMSE value to 0.0176 [17]. 

 

 

 

 

 

 

Figure ‎6-8 RUL estimation using ANFIS-based per-unit prognostics model [143] 

 

 

 

 

 

 

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (Sec)

R
U

L

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Sec)

R
U

L

 

 

Mean

% 90

% 10

Real RUL



 

139 

 

Figure ‎6-9 RUL estimation using Gamma-based per-unit prognostics model [143] 

6.4 Summary  

There are still difficulties in estimating the remaining useful lifetime of 

components while prognostics models are created based on damage parameters 

neglecting changes in the working conditions. This chapter presents a novel 

technique using an ANFIS neuro-fuzzy system that unifies prognostics models 

suitable to be used in different working conditions. This is achieved by creating a 

per-unit prognostics model and transferring components’ features, behaviour 

under different working conditions, and degradation models to the ANFIS 

system. 

It is concluded that the ANFIS model infusion with failure dynamics and 

working conditions enhance prognostics performance. In addition to prognostics 

accuracy, it is important to emphasise that the implemented algorithm is able to 

perform real-time prognostics calculations. In contrast to the current state-of-

the-art prognostics, this chapter presents a lightweight simulation-based 

prognostics approach applicable to on-board embedded applications which we 

aim to do in future research. The results indicate the ANFIS model infusion with 

failure dynamics enhances prognostics performance using the cross-validation 

technique. In addition to prognostics accuracy, it is important to emphasise that 

the implemented algorithm is able to perform real-time prognostics calculations. 

However, the probabilistic model is associated with MCS to generate a random 

large number of degradation paths up until a predefined threshold during 

propagation presents time-consuming RUL calculation. 

The next chapter will present the development of an electro-thermal 

model for estimating junction temperature which used to develop physics-of-

failure for reliability assessment when the failure of an IGBT is emulated in a 

DC-DC power converter. Furthermore, a stress minimisation control strategy 
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has been implemented to reduce the stress condition and increase the lifetime of 

the device in critical situations. 
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7 7 IGBT Physics-of-Failure Prognostics 

Approach and Thermal Stress 

Reduction 

 

Commercial reliability prediction programmes for electrical and electro-

mechanical stress, including Mil-HDBK-217, 217-PLUS, PRISM, Telcordia and 

FIDES, still use traditional reliability prediction methods, [146], [147]. These are 

empirical methods based on statistical data and the average performance of a 

large number of identical products. In essence, these methods account little for 

the mechanisms of complex in-service failures. It is, therefore, not surprising 

that the results obtained from these methods do not always correlate well with 

actual failures in the field. 

Since IGBT power semiconductors are one of the most costly components 

in power electronic converters, it is beneficial to investigate the long-term 

reliability and the sizing of the semiconductors used in power converters. On the 

other hand, due to increased demands for dynamically-controlled safety systems 

from customers, requests for a continuous monitoring system which tracks and 

identifies trends in and sources of component degradations prior to failure has 

been provided. This is because high product availability which is one of the main 

demands of customers could not be fulfilled by conventional maintenance 

strategies, such as corrective and preventive maintenance strategies [148]. 

Therefore, the reliability of these power electronic modules is vital for the 

commercial success of various types of renewable energy sources and 

manufacturers. In addition, it is a prerequisite for the components to be 

available in downtime lifecycles. Certainly, this requirement has put a lot of 

effort into diagnostic and prognostics for efficient maintenance operation through 
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automated tests and verifications [92]. Due to harsh environment conditions, 

particularly in hostile environments such as power conversion applications and 

their operating load conditions, IGBTs will be subject to electro-thermal and 

mechanical stress in situations where the early life stage is rapidly degraded 

[85]. As a result, high reliability becomes an essential issue in power electronic 

modules, which are a significant part in renewable energy applications, such as 

wind turbine farms, biomass and solar panel technologies [109]. On the other 

hand, prevention of power electronic module failure is impossible. Therefore, 

creating real-time early failure prediction and online estimation of remaining 

useful life of used power electronic switches in renewable systems is essential. 

This requires us to tackle challenges in a) decreasing the stress level of 

active switches when they are in their failure region, and b) life extension of 

critical devices. However, to meet these requirements, it is necessary to expand 

knowledge and techniques in the following areas: 

 Critical components 

 Dominant failure 

 Failure stress analysis. 

In comparison with traditional converters, SEPIC has been introduced as 

a suitable candidate for reducing the overall stress of active power switches in 

hard operating conditions [24].Figure ‎7-1: This converter topology is capable of 

operating in both buck and boost modes with a simple control design. This is 

because these new topologies benefit from coupled inductors promising for the 

high-voltage applications at a small demanding duty cycle. As a result, the noise 

and the ripple current that are important factors for any DC-DC converter are 

incredibly reduced [24]. Furthermore, it uses fewer power switches, which as an 

advantage reduces power dissipation, essential in increasing overall reliability.  

However, in spite of key advantages of such converters, the reliability of 

the SEPIC DC-DC converter during the degradation process occurring in the 

switching device (IGBT) have not been well investigated for industrial 
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applications, e.g. PV. The topology of the converter consists of active switches, 

such as an IGBT/MOSFET, and a Schottky diode, and passive devices to regulate 

output voltage from an input voltage that varies from above to below the output 

voltage. The current flowing through various circuit components, when stored 

magnetic energy in inductor L1 during off mode, continues to flow through 

passive device capacitor C1 and discharge through another passive device 

inductor L2 during ON cycle. A capacitor Cin is used to reduce the effect of the 

internal parasitic noise of the input power supply. The passive device inductors 

(L1, L2) and capacitors (C1, C2) with active devices are connected to form the 

power delivery to the output in both off and on modes.  

 

Figure ‎7-1 SEPIC DC-DC converter topology 

The following section will present the testbed design to measure the electrical 

and temperature parameters in real time. 

7.1 Measurement Testbed Set Up 

The SEPIC DC-DC converter has been designed and implemented for the 

testing capability of performing accelerated ageing tests. The proposed test rig is 

designed for the validation of decelerated stress control strategy for power 

electronic switches. The PCB design has adequate space to accommodate gate 

controlled of TO-247 IGBT packages with standard currents capability ranging 

from 1A to 50A. The accelerated ageing test is performed in a standard power 

cycle manner and via a high-tech real-control desk base instrumentation kit (i.e. 

dSPACE, DS1004). In this chapter, a real-time control loop platform for the 

power converter is implemented using a dSPACE DS1104 controller board which 
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has the capability of a discrete controller with a sampling rate 500 KHz. And 

also, used with Real-Time Interface (RTI), it is fully programmable and perfectly 

supports the MATLAB/Simulink function model with the I/O interfaces and to 

configure all I/O to the real hardware design. The electrical and temperature 

signals, such as on state 𝑉𝑐𝑒 and the IGBT base plate, are measured using 

analogue to digital converters (ADCs) with 16-bit resolution, ±10V input range 

and 10KHz signal-to-noise ratio (SNR). Thus, it is recorded in real-time 

according to test condition respectively. In order to measure the temperature of 

the power switch, an LM35 (rated for a full -55°C to 150°C range) mounted 

integrated circuit sensor at the back surface of the baseplate with an electrical 

output proportional to the temperature. The DC-DC converter includes 

measurement capability with a built-in input and output LTS 25-NP current 

sensor 25A. The primary main board was developed to allow hosting four 

converters comparing the PV panel characteristics, the MPPT algorithm and 

ageing for identical switches simultaneously. This hardware allocates 60A 

terminals block of the CAMDEN-CTB77VP range for the input/output power 

connection of the converter block and one terminal also is given for converter’s 

ICs. In addition, it allows hosting five BNC I/O ports which are connected to the 

ADC channels of the dSPACE for the measurement of the I/O voltage and 

current for the converter. Furthermore, as shown in Figure 7-2 sending PWM 

signal command using slave DSP I/O channels with 10 PWM channels and 14 

bits of digital I/O (TTL) to control gate driver (L6388E) of the IGBT/MOSFET for 

switch control. 

There are a few components in power converters which are subject to 

reliability assessment, and ignoring their reliability will increase system 

downtime.  
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Figure ‎7-2 Real-time experimental test rig 

7.2 Dominant Power Electronic Critical Components  

It is widely known that power switches are the most critical components 

subject to thermo-mechanical stresses for any DC-DC converters, including the 

SEPIC converter. The potential of failure of various components used in the 

architecture of converters has been studied in the Military Handbook for 

Reliability of Electronic Equipment, MIL-HDBK-217F, summarised in Table ‎7-1 

[149], [150]. As active switches are the dominant critical components subject to 

failure, this chapter mainly focuses on the reliability of power switches of the 

SEPIC DC-DC converter. 

Table ‎7-1 Critical Components in Power Electronics Applications 

Component Type 

Active Switches IGBT, MOSFET 

Diodes Schottky power diodes 

 

dSPACE, 

(DS1004) 

Main Board 
SEPIC DC-DC Converter 

RL (Load) 
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Capacitors Dry aluminium electrolytic 

capacitors 

In this regard, our experiments demonstrate qualitative thermal 

distribution at the surface of the SEPIC DC-DC converter using an infrared 

Fluke thermal camera shown in Figure ‎7-3. Our experiments have performed 

and corresponded to the input voltage 30V, 3A duty cycle 0.4, and 10-minute 

duration. After the snapshot integration at the surface of the PCB, the mean 

temperature reading is 64°C for the hotspot area detected around the IGBT and 

lower temperature readings for other components. This obviously indicates that 

the IGBT is the critical component when subjects to high thermal cycling during 

its operation. 

 

 

 

 

 

 

 

Figure ‎7-3 Temperature measurement of proposed converter using Fluke thermal 

camera 

Therefore, the reliability of the IGBT needs to be assessed when exposures 

to failure injection in a similar fashion to wire bond joint failure as the dominant 

failure in IGBT packaging. Increasing the junction temperature with high-

temperature change exposure causes die attached solder failure in a short period 

and by long-term exposure to small temperature changes causes wire bond solder 

joint failure. Therefore, each of these failure mechanisms has the different 
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potential of failure rates and model-based failure which increase the cost of 

overall lifetime estimation of the device in service. The current state-of-the-art 

failure mechanisms of power electronic modules (PEMs), notably the dominant 

failure based on packaging failures, is wire bond lift off under cyclic thermal 

loading conditions [84]. 

The difference in thermal expansion coefficients due to different materials 

inside the IGBT packaging introduces thermal stresses in the component [109]. 

In common operating conditions, the power dissipated by the silicon flows 

through multiple layers inside the IGBT until it is dissipated in the base plate by 

natural or forced convection. The solder, connecting the IGBT to the base plane, 

is seen as the weakest link in the assembly due to its high expansion coefficient 

αSn−Ag compared with the rest of the materials. This will introduce cycling shear 

stresses on the solder material, which becomes the most critical issue affecting 

the reliability of the component. 

Because operating temperatures are relatively high compared with the 

melting point of the solder, low temperature creeps deformation occurs in a 

single transient stage, in which the creep rate decreases continuously over time 

[151]. In order to assure the structural integrity of the component, a fatigue 

analysis has been performed as failure stress analysis using two different 

approaches [151]. The following section discusses thermo-mechanical stress in an 

IGBT to present fatigue failure in solder joints. 

7.3 Physics of Solder Failure Mechanisms 

Although the SEPIC DC-DC converter benefits from a number of 

advantages, such as an impedance network at the input of the converter, and 

better shoot through switching state during the switching on mode, it still suffers 

from various failure mechanisms. As already mentioned in the introduction, the 

dominant failures of converters are related to the power switches of converters, 

mainly in wire bonds and solder joints. Obviously, it is wise to mention that 

SEPIC DC-DC converters present better reliability compared to traditional 
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converters as the new topologies involve fewer switches that improve the 

reliability and performance of systems [152]. Additionally, SEPIC DC-DC 

converters are good candidates to regulate the output power to desire value 

according to maximum power point tracking (MPPT). It is a suitable converter to 

characterise the solar panels, curves of short circuit current (𝐼𝑠𝑐) and open circuit 

voltage (𝑉𝑜𝑐) at different environment conditions. It also has the capability of 

changing the duty cycle to operate at each maximum power point. 

Regardless all these positive features of SEPIC converter, the thermal 

stress of the active power switches due to the harsh environment has a direct 

impact on quality of the converter and limits the converter in its nominal 

operating condition. As has been mentioned before, IGBTs are one of the active 

devices in SEPIC DC-DC converters that are subjected to thermo-mechanical 

stresses and nonlinear strains during their operating conditions that affect the 

life prediction of the component. 

In this regard, research conducted in [153] demonstrates a 3D Finite 

Element Analysis (FEA) analysis of the IGBT to understand the solder failure 

mechanism. Following the experimental data presented in Figure ‎7-4, a thermal 

load during an operating cycle is defined by the power dissipated in the silicon 

device, which is around 0.8W during the first 43 seconds. After that, the 

component is cooled down by natural convection with the surrounding air to 

33°C. It is possible to estimate the smaller characteristic length in which is 

expected in temperature variations comparable with its characteristic value 

when uses the lower thermal diffusivity (𝑘 𝜌𝑐⁄ ) value from the materials and the 

characteristic time-scale in the cycle, (see Equation (38)). 

 

𝑙𝑑~√
𝑘

𝜌𝑐
 𝑡𝑐~70 𝑚𝑚        (38) 
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Figure ‎7-4 Temperature profile of the IGBT in one cycle 

Comparing this characteristic length with the dimensions of the studied 

IGBT (𝑙 ≪ 𝑙𝑑), it can be concluded that the temperature of the component, in first 

approximation, is just a function of time. In other words, the junction 

temperature is the same as the base plate temperature and the rest of the 

components. With this assumption, the FEA is reduced simply to the calculation 

of the thermal stresses and strains for the temperature profile presented in 

Figure ‎7-4. 

The SnAg solder material exhibits creep behaviour during its operating 

conditions. It can be modelled by the Garofalo model [154], [155]. In this model, 

the creep rate is described by Equation (39), A being the creep rate coefficient, 

σref the reference creeps stress, n the Garofalo parameter, Q the creep activation 

energy, R the ideal gas constant, T the temperature, sij the deviatoric stress 

tensor, and 𝜎𝑒 the von Mises stress. 

𝛛𝛆𝐢𝐣
ϲ

𝛛𝐭
= 𝐀 {𝐬𝐢𝐧𝐡 (

𝝈𝒆

𝝈𝒓𝒆𝒇
)}

𝐧

𝒆−
𝑸

𝑹𝑻
𝟑

𝟐

𝑺𝒊𝒋

𝝈𝒆
       (39) 

The Morrow energy-based fatigue model (Equation (40)) has been 

implemented. It uses the dissipated creep energy as the damage controlling 
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mechanism. Since creep is an inelastic process, the dissipated energy can be 

calculated by integrating the creep dissipation rate (Equation (39)). The model is 

defined with two constants, the fatigue energy coefficient, Wf ≈ 55E6
J

m3, and the 

fatigue energy exponent, 𝑚 ≈ −0.69. 

ΔWd = Wf(2Nf)
m         (40) 

A difference in elastic and thermal properties introduces thermal stress in 

the component. Although they are not very high, the solder experiences 

significant inelastic strains (see Figure ‎7-5). 

As was expected, the highest strains and stresses occur in the solder 

between the substrate and the base plate (see Figure ‎7-6). This is due to the high 

thermal expansion coefficient of the SnAg, and the accumulated displacement 

from the upper materials. The slightly higher value around the corner comes 

from modelling it as a sharp corner. Nevertheless, the location of the weakest 

point agrees well with the crack path in real applications [153]. 

 

 

 

 

 

 

 

 

 

Figure ‎7-5 Creep strain development in the most critical point of the solder during the 

first 10 cycles  
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Figure ‎7-6 Von Mises stress after 10 cycles (units are Mpa) 

When nonlinear strains are involved, several cycles need to be simulated 

to achieve a stable load cycle. Figure ‎7-7 shows the hysteresis cycle in the critical 

point. 

 

 

 

 

 

 

 

 

Figure ‎7-7 Hysteresis cycle in the critical point of the solder 
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Taking into consideration that the next cycles follow the same trend, with 

lower values of accumulated strain and less energy dissipated, the fatigue 

analysis based on the results presented in the last cycle of Figure ‎7-8 will give a 

conservative fatigue prediction of around 165,000 cycles. 

 

 

 

 

 

 

 

 

Figure ‎7-8 Fatigue life predicted on the dissipated creep energy 

To sum up, the degradation mechanism comes from a crack initiated in 

the solder and leads to increaseD thermal variation (∆T) at the IGBT, which 

again affects the crack growing rate. This will cause more heat to accumulate at 

the die-attached solder, which activates the degradation in the silicone by 

increasing the on-state resistance. 

As such, the collector-emitter on-state resistance (𝑅𝑐𝑒(𝑜𝑛)) exceeds 20% 

above the nominal value which then, the micro crack growth propagates under 

inelastic strain from different load conditions, are shown in Figure ‎7-9. The more 

the solder heats up, the more the solder joint connection is strained which 

results in time series of stresses and strains [156]. 
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Figure ‎7-9 Microcrack propagation at die solder attached 

The lifetime modelling of the IGBT depends on fatigue life models, which 

can be shown as a damage-based model to predict the number of cycles to failure 

of the IGBT.  

The time domain fatigue model development requires analysis on the 

degradation profile is a prerequisite. This will be provided by temperature 

profile, which is given by reading junction to case temperature as it has 

abnormality  happening due to solder fatigue [58]. This conditional monitoring 

parameter capability can intervene in control criticality system to prevent 

system reaches to its catastrophic failure.  

7.4 Motivation of Stress Control 

Using efficient and reliable switches for power converters and inverters is 

crucial for enhancing the safety and reliability of a platform. Generally, power 

converters suffer from failure mechanisms, such as wire bond fatigue, wire bond 

lift up, solder fatigue and loose gate control voltage, which mainly occur in power 
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switches. In this thesis, the junction temperature of the IGBT acting as a power 

switch used in the Impedance-Source DC-DC converter is estimated using an 

electro-thermal model in order to develop an adaptive thermal stress control 

(ATSC). The proposed stress control adjusts the reference input of the PI control 

to extend the life expectancy of the device under the mission. The accuracy of 

results presented using the modified Coffin-Manson law has been used to 

determine the life of the IGBT and the lifetime has been successfully increased 

based on implementing the imperative ATSC and comparing the results with the 

constant reference input of the PID controller. 

There are a number of thermal stress controls for the IGBT that are used 

for minimising temperature variation [157]. These include active thermal 

control. A few review papers have covered the thermal stress control approaches 

for IGBTs. 

In [158], Andresen et al proposed active thermal management which 

limited the output current dependent on the output frequency as the maximum 

junction temperature is quite high for low-output frequencies. 

In [159], Murdock et al implemented a fuzzy region-based controller to 

regulate the mean temperature (Tm) and junction temperature variation (∆Tj). 

This is done by using a proportional-integral-derivative (PID) controller to 

mitigate the switching frequency and load current proportionally to avoid the 

junction temperature rising above 110℃. 

For all the above thermal stress control approaches, the dynamic of the 

stress parameter (e.g. junction temperature estimation) has not been considered.  

In PV applications, a maximum power point tracking algorithm is a 

perquisite to deliver desired maximum power from photovoltaic panels. It will be 

an advance to use a SEPIC DC-DC converter in real-time conditions for this 

purpose. Thus, it is important to use more reliable power switches (e.g. IGBTs) to 

improve the efficiency of photovoltaic applications. Thus, it is necessary to have 
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an accurate and robust CBM technique on board, which has been used for real-

time estimation of lifetime consumption.  

In order to enhance the reliability of SEPIC DC-DC converters, this thesis 

aims to employ a physics-of-failure model of the active switch and implement a 

stress reduction algorithm infusion with a critical control unit. This ultimately 

reduces the power dissipation for improving life cycles. To meet these key 

advantages, this chapter will focus on: 

Reliability assessment by using the Coffin-Manson rule based PoF model, 

which integrates the junction temperature of the device with the model. As a 

precursor parameter for monitoring the health state, the junction temperature is 

derived from an electro-thermal model to extend the lifetime of the IGBT in 

downtime [80].  

Stress minimisation by introducing a radically novel approach for the 

development of an adaptive algorithm control for deceleration of the junction 

temperature stress. It focuses on the degradation data collected from simulation 

failure propagation conducted particularly for the power switch in the PV 

module applications under the degradation process occurring in the packaging 

failure mechanism. 

In order to validate the results of the ATSC, a modified empirical equation 

Coffin-Manson Law is used to calculate the life usage of the device. This will 

ultimately improve design processes in making robust maintenance schedule 

policy and efficient reliability assessment. Furthermore, it will be presenting for 

the life extension of the device. To that end, the junction temperature for the 

IGBT in the SEPIC DC-DC converter needs to be calculated for non-destructive 

reliability assessment.  

7.5 Junction Temperature Calculation 

Since the direct measurement of the IGBT junction temperature is 

impractical, real-time calculation of the junction temperature needs to use an 
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appropriate compact electro-thermal model. This model constructs from the 

thermal parameters (R, C) of the device, which are representing of layers, such 

as the die, solder, substrate, copper, and baseplate in the thermal RC network 

structure based. The RC model of the IGBT considers a Foster circuit for the 

junction to case impedance of the device in Figure ‎7-10. 

 

 

 

 

Figure ‎7-10 Junction temperature estimation 

The transient thermal impedance is expressed in Equation (41) at time t. 

The network can be a 𝑛 number of time constants and thermal resistances [13]. 

 

𝑍𝑗𝑐 =
𝑇𝑗(𝑡)−𝑇𝑐(𝑡)

𝑃
=

∆𝑇𝑗𝑐

𝑃𝑃𝑈𝐿𝑆𝐸
         (41) 

 

The peak junction temperature attained during stationary operation when 

the pulsed power (e.g. power dissipation) flows through the IGBT structure 

where the transient thermal impedance will be the sum of each structure layer 

(see Figure ‎7-11). By means of a coolant system, the reference input temperature 

of the power converter is set to the ambient temperature. The estimation of the 

junction temperature is used as a control parameter to adjust the duty cycle to a 

certain value till the critical temperature cools down under the nominal 

temperature working condition. The junction temperature will rise up in a short 

time as the time-dependent heat diffusion in Equation (42) similar to the electric 

circuit analogue shown in Figure ‎7-12. 
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Figure ‎7-11 IGBT structure layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎7-12 Thermal impedance of the IGBT structure 
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where thermal resistance is defined based on different structure points of the 

IGBT: 

 

 𝑅_𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑗 − 𝑐) is the thermal resistance between the junction and the case 

(baseplate). 

𝑅_𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑐 − 𝑠) is the thermal resistance between the case and the heat sink. 

𝑅_𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑠 − 𝑎) is the thermal resistance between the heat sink and the 

ambient. 

 

𝑇𝑗(𝑡) = 𝑇𝑐 + 𝑃𝑇 . [4𝑡/(𝜋𝑅𝑡ℎ𝐶𝑡ℎ)]1/2       (42) 

 

where 𝑇𝑐 is the reference IGBT’s case temperature and 𝑅𝑡ℎ is the thermal 

resistance of the 𝑖 number of 𝑅𝑡ℎ ( ℃/𝑊𝑚 ) – 𝐶𝑡ℎ( 𝑊𝑎𝑡𝑡. 𝑆𝑒𝑐/℃ ) for each physical 

structure of the IGBT. Furthermore, 𝜏 = 𝑅𝑡ℎ. 𝐶𝑡ℎ presents the thermal time 

constant (sec) of the 𝑖th RC pairs. 

In Equation (42), 𝑃𝑇(𝑊) stands for total power losses of the single device. 

In a SEPIC DC-DC converter, most of energy losses will be in the IGBT 

switching and conduction mode. Therefore, freewheeling diode conduction losses 

are negligible as during turn off switching energy stores in 𝐿2 as shown 

inFigure ‎7-1. In this thesis, the SEPIC DC-DC converter is designed for the mid-

power solar panel application. Therefore, the conduction loss of the device can be 

calculated by using three parameters as expressed: 

1) On-state collector-emitter voltage (𝑉𝑐𝑒𝑜𝑛−𝑠𝑡𝑎𝑡𝑒 ≡  𝑉𝐶𝐸𝑂) 

2) On-state collector current (𝐼𝑐𝑜𝑛−𝑠𝑡𝑎𝑡𝑒 ≡  𝐼𝑐) 

3) Collector-emitter on-state resistance (𝑟𝑐)   
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where the instantaneous conduction losses can be calculated using a series of 

these parameters in Equation (43): 

 

𝑃𝑐𝑡 =  𝑉𝐶𝐸𝑂. 𝐼𝑐(𝑡) + 𝑟𝑐 . 𝐼𝑐(𝑡)2        (43) 

 

The approximation in mid-power application is given as: 

𝑉𝐶𝐸𝑂. 𝐼𝑐(𝑡) > 𝑟𝑐. 𝐼𝑐(𝑡)  

Therefore, the average losses over a period of 𝑇𝑠𝑤 in conduction mode can be 

expressed as: 

𝑃𝑐𝑡 =
1

𝑇𝑠𝑤
∫ 𝑉𝐶𝐸𝑂 . 𝐼𝑐(𝑡)𝑑𝑡

𝑇𝑠𝑤

0
= 𝑉𝐶𝐸𝑂. 𝐼𝑐𝑎𝑣       (44) 

Power losses in the IGBT during off and on switching modes are the 

product of switching energies and the switching frequency (𝑓𝑠𝑤): 

𝑃𝑠𝑤(𝑜𝑛−𝑜𝑓𝑓) = (𝐸𝑜𝑛−𝑚𝑜𝑑𝑒 + 𝐸𝑜𝑓𝑓−𝑚𝑜𝑑𝑒). 𝑓𝑠𝑤     (45) 

where 𝐸𝑜𝑛−𝑚𝑜𝑑𝑒  and 𝐸𝑜𝑓𝑓−𝑚𝑜𝑑𝑒 an energy losses are dependent on the blocking 

voltage and the junction temperature during on and off mode switching, 

respectively. The energy losses for each event are computed considering the 

collector current during the fall-time interval and associated with voltage rise-

time interval. The total power losses in the IGBT are expressed by the sum of the 

conduction and switching losses giving: 

𝑃𝑇 = 𝑃𝐶𝑇 + 𝑃𝑠𝑤(𝑜𝑛−𝑜𝑓𝑓)        (46) 

A real-time numerical simulation was developed to calculate the average 

power loss conduction using a MATLAB look-up table which is dependent on 

certain parameters (e.g.𝑉𝐶𝐸𝑂, 𝐼𝑐, and junction temperatures).  The look-up table is 

consulted at switching action, and can interpolate some conditions which are not 

being given in the data sheet. As an application of the PV, a discrete IGBT with 
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absolute rating 75A-600V (High –Speed V series) is selected to power up the DC 

load. The switching energy 𝐸𝑜𝑓𝑓 and 𝐸𝑜𝑛 losses rise up due to increases of 𝐼𝑐 

(collector current), RG (external gate resistance), 𝑇𝑗 and VCE. During the turn on, 

energy dissipation 𝐸𝑜𝑛 is swiftly increasing with variation of RG. In a contrast the 

turn off energy dissipation 𝐸𝑜𝑓𝑓 has less dependency on changing of RG. However, 

both 𝐸𝑜𝑛 and 𝐸𝑜𝑓𝑓 considerably depend on the variation of 𝐼𝑐 and temperature 

changing, as is expressed in Figure ‎7-13. 

 

 

 

 

 

 

 

 

 

Figure ‎7-13 Typical FGW75N60HD IGBT switching losses 

 

As a result, the method to calculate both 𝐸𝑜𝑓𝑓 and 𝐸𝑜𝑛 equations from 

Figure ‎7-13 for a given maximum acceptable junction temperature 175℃ are the 

outputs switching energy losses in [𝑚𝐽]. 

𝐸𝑜𝑛 = 2.3𝑒 − 7𝐼𝑐
3 + 2.1𝑒 − 4𝐼𝑐

2 + 0.026𝐼𝑐 + 0.1382    (47) 

𝐸𝑜𝑓𝑓 = 2.4𝑒 − 7𝐼𝑐
3 + 2.5𝑒 − 4𝐼𝑐

2 + 0.034𝐼𝑐 + 0.54    (48) 
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The precise switching loss estimation over a PWM switching cycle requires 

looking at the transient power losses over time. To this end, look-up tables 

consider a given operating range of different condition measurements such as DC 

forward blocking voltage, collector current and the junction temperature. The 

conduction loss curves of the IGBT are performed in three index vectors, such as 

collector-emitter current, on state collector-emitter voltage and device at two 

different junction temperatures, which interpolate/extrapolate linearly to get 

certain temperature values in term of intermediate points. The datasheet is 

given characteristics of collector-emitter on-state voltage versus collector current 

at junction temperatures (25℃ and 175℃), which can be used for instantaneous 

conduction power loss calculation, as shown in Figure ‎7-14. The typical curve is 

selected versus gate-emitter 15 volts which in practice IGBT is well triggered 

with this voltage. 

 

 

 

 

 

 

Figure ‎7-14 Typical FGW75N60HD IGBT output characteristics (𝑉𝑐𝑒 − 𝐼𝑐𝑒) vs junction 

temperature (25℃ 𝑎𝑛𝑑 175℃) 

The thermal resistance of the junction to the case has to be minimised by 

manufacturer design to keep the junction temperature of the IGBT within 

specific safe conditions. The junction temperature is calculated for a single IGBT 

(TO 247 packaging) which is manufactured by Fuji Electric and is selected for 

the features of mid-power loss, low switching surge and noise and high reliability 

in DC-DC converters. To enable 𝑇𝑗 calculation, the 𝑅𝑡ℎ(𝑗−𝑐) (0.3℃/𝑊) and 𝜏 (0.1 

Sec) are obtained from the datasheet and effectively 𝐶𝑡ℎ(𝑗−𝑐) (0.33𝑊𝑎𝑡𝑡. 𝑆𝑒𝑐/℃) 
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using 
𝜏

𝑅𝑡ℎ(𝑗−𝑐)
 is calculated. In this thesis, what has been ensured, however, is that 

the maximum junction temperature under the maximum power tracking 

condition does not exceed the safe margin value for 𝑇𝑗=110℃. The total power 

losses (see Figure ‎7-15) are calculated iteratively at the determined junction 

temperature, which initially is approximated at ambient temperature, and after 

a few iterative loops, the accurate 𝑇𝑗 will reach its stationary value (see 

Figure ‎7-16), as shown in Equation (49). 

𝑇𝑗(𝑘) = 𝑃(𝑇𝑗(𝑘−1))[𝑅𝑡ℎ(𝑐−𝑎) + 𝑅𝑡ℎ(𝑗−𝑐)] + 𝑇𝑎     (49) 

where K=1 to n; 𝑇𝑗(0) = 𝑇𝑎 

 

 

 

 

 

 

Figure ‎7-15 Total power loss estimation 

 

 

 

 

 

Figure ‎7-16 Junction temperature estimation 
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The mission profile is dependent on the junction temperature swings (∆𝑇𝑗) 

which must acquire for indication of stress parameter in the lifetime model [160]. 

7.6 Damage Profile Modelling Approach 

The damage profile collection needs to run in real power cycles to test the 

lifetime of the device, which is impractical and requires long ageing test time as 

IGBT life expectancy can last for millions of cycles. Since the novelty of this 

chapter is about extending the lifetime of the SEPIC DC-DC converter by 

decelerating failure mechanisms, the damage profile collection needs to be run in 

real power cycles to test the lifetime of the device. This is quite impractical and 

requires long ageing test time as IGBT life expectancy can last for millions of 

cycles. Hence, in simulating, the failure mode is mainly related to wire bond 

failure has induced in a similar fashion to crack progression at solder joint by 

increasing the on-state resistance from 0.3Ω-0.75Ω. This is the potential of solder 

joint fatigue as an important failure mechanism process in power electronic 

switches The junction temperature increases at 1 sec gradually as a result of 

failure injection, as shown in Figure ‎7-16. In this simulation, the ambient 

temperature is fixed to 24°𝐶 and for given switching frequency 16 KHz. The 

thermal stress fatigue is considered as the damage profile, which is caused by 

cyclic temperature in the solder joint. This phenomenon is susceptible to high-

temperature thermal cycles, which initiate micro crack propagation, and 

incorporates the effect of the contraction and compression going. The elastic 

strain stress law (e.g. the magnitude of thermal cycle ∆T) built up in the solder 

by 𝑛 number of given ∆T over the entire temperature scale. This model 

incorporates a power law (e.g. Arrhenius model) to correspond the fatigue failure 

model, which can be expressed in Equation (50) [59]. 

𝑁𝑓 = 𝑓𝛽 . 𝜆. (∆T)−𝛼 exp [
𝐸

𝐾.𝑇
]        (50) 

where 𝑓 is the frequency of the stress cycle and, 𝛼, 𝛽 are exponent terms as the 

coefficients of the best fit for the model life time. The coefficient 𝛼 which ranges 

from 2 to 3 describes the effect of the severity of the temperature change, 
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whereas 𝜆 is the constant for material properties. the physic terms of the 

exponential part are the Arrhenius effect E, K and T as the activation energy in 

eV, the Boltzmann constant (1.38×10−23 𝐽

𝐾
) and the temperature of failure, 

respectively.  

7.6.1 Exploration of Reliability Using Cycle Counting 

The problem posed by the practical device operation is that the thermal 

cycles are not uniform and that the mean and range change from cycle to cycle, 

i.e. the load cycle effectively imposes a random thermal cycle to the devices. A 

method that may be used to correctly account for the number of cycles of each 

combination of mean and range is applied here to explore the effect of the 

thermal cycling. This is known as rain-flow cycle counting, which was originally 

developed for analysing random stress variations in material fatigue by counting 

the number of complete peak-to-peak cycles experienced. 

The time history of the transient temperature profile, in this case, is 

reduced to a sequence of peaks and troughs. The peaks and troughs are analysed 

in turn, with a rain flow analogy applied to a rotated copy of the history. By 

analysing the peaks first, the temperatures at the peak and the next trough are 

recorded. The analysis moves through the history until the temperature next 

exceeds this peak, where it is interrupted by a flow from an earlier larger peak or 

the history ends. At this point, the cycle terminates. The resulting mean and 

range are, respectively, the average of and the difference between the recorded 

peak and trough. A half cycle is recorded for this combination of mean and range. 

The analysis then moves to the troughs and repeats the analysis, adding up the 

resulting half cycles. Finally, half cycles of opposite sense and the same mean 

and range are added to give whole cycles. The resulting distribution, or rain-flow 

matrix, is the number of observed cycles for each combination of temperature 

mean and range. Although the rain-flow cycle counting method may be used to 

gather information about the spread of the number of cycles observed with 

temperature mean and range, it does not relate to the failure rate of the device. 
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Any method that applies failure estimation to the cycle counting results 

automatically makes assumptions about the failure mechanisms and the 

dependence on the temperature mean and range. This method is increasingly 

used in IGBT lifetime consumed for different spectrum loading conditions (∆T) as 

a stress condition. This is estimated by means of using Miner’s linear cumulative 

damage rule, which states the failure phase as the following condition is met as 

shown in Equation (51) [161]: 

∑
𝑛𝑖

𝑁𝑓(𝑖)

𝑘
𝑖=1 = 1          (51) 

where 𝑖 is index, which varies within the range of the number of loads in a 

spectrum (1 ≤i≤ 𝑘) and 𝑛𝑖 is the number of cycles the IGBT that is exposed to ith 

temperature swing, whereas 𝑁𝑓(𝑖) is the fatigue lifetime for ith load condition. In 

this chapter, the effective stress range can also be identified using the rain-flow 

counting method, which is the most suitable algorithm for counting the stress 

cycle from the fatigue damage profile. 

The cycle counting is presented in Figure ‎7-17 for the IGBT estimated 

junction temperature profile as it is shown in Figure ‎7-16. The numbers of cycles 

are expressed with the temperature swing amplitude. 

 

 

 

 

 

 

Figure ‎7-17 Rain-flow histogram of IGBT junction temperature variations before applied 

stress control  
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The life usage of the IGBT for the mission profile with predominant 

temperature stress swings is given in Table ‎7-2. 

Table ‎7-2 IGBT Lifetime Calculation Results 

Temperature Swings 7.5<∆𝐓℃<11.3 11.3<∆𝐓℃<15 33<∆𝐓℃<37 < 𝟕. 𝟓 

Number of Cycles (𝒏𝒊) 1.5 1 0.5 5000 

Mean Temp ℃ 153 112 63 45 

Number of Cycle to failure (𝑵𝒇(𝒊)) 4.1370e+5 4.8743e+5 6.609e+5 1.7332e+5 

Life Consumed % 3.6258e-4 2.0516e-4 7.5632e-5 2.8849 

Life Consumed after 8 seconds Almost 3% 

 

The percentage lifetime consumed calculation for each thermal cycle stress 

uses Equation (51) to estimate the fraction of total life. Apparently, the total 

IGBT life usage is due to significant thermal variation stress smaller than 7.5 

which significantly have a number of thermal cyclic. To increase the power 

cycling lifetime of the device requires an adaptive algorithm as the thermal 

stress amplitude and the number of cycles to failure proportionally reduce [162], 

[96]. 

7.7 Adaptive Thermal Stress Control 

In this chapter, the stress control algorithm renders to mitigate the 

junction temperature variation, which generates a non-uniform distribution of 

hot spots and thermal stress. This approach assumes that the IGBT is degraded 

as the switching losses relatively increase, and consequently, raises Tj. 

Observing the junction temperature enables the Adaptive Thermal Stress 

Control (ATSC) to adjust the duty cycle (D) when the healthy state of device 

progresses to a degraded state after a one-second simulation run. The duty cycle 

will be reached to 0.36 at the normal operating condition, and after failure 

injection without affecting the adaptive control (see Figure ‎7-18).  
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Figure ‎7-18 Converter duty cycle 

Based on the previous discussion, the junction temperature is affected by 

power losses, which are dependent on the power demands. In order to regulate 

the desired output of the SEPIC DC-DC converter, the output voltage is sensed 

and compared with 𝑉𝑟𝑒𝑓 as the error input through the PID controller to generate 

D which then regulates a pulse width modulation (PWM) with the fix ±15 gate 

voltage (Vg) which supplies the PWM gate signal to each IGBT/MOSFET switch. 

The switching frequency and the gate emitter on-state voltage are given from the 

power switch specification. Under the degradation process, the ratio between the 

on-state duty cycle and the off-state duty cycle can be varied, and thus the power 

allocations. The control strategy is required under the failure propagation where 

the on and off duty cycles will be allocated properly in the ATSC according to the 

severity of the thermal stress, and varied by adjusting 𝑉𝑟𝑒𝑓 from the output 

voltage of the MPPT and the output voltage as a feedback parameter loop 

receiving from the load. Thus, the voltage control loop is composed of a PID 

voltage controller, an output capacitor C2, and a load. The PI controller 

effectively is fed with updated 𝑉𝑟𝑒𝑓 according to the reference junction 

temperature (𝑇𝑗𝑟𝑒𝑓
) as an inner loop which is set to a particular value depending 

on the IGBT characteristics. 
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Generally, a PID controller is utilised to ensure the stability of the duty 

cycle which improves the switching frequency. It is necessary to be used to 

reduce the steady state error in order to improve the system performance. As a 

result, the estimated junction temperature gradient declines for the entire target 

simulation in comparison with 𝑇𝑗𝑟𝑒𝑓
 for the determined eight-second simulation 

performance. This results in improving the converter’s life expectancy in 

downtime by reducing thermal stress and has great impact on DC-DC power 

converters, as shown in Figure ‎7-19. 

A prototype of the SEPIC DC-DC converter has properly designed to verify 

the initially proposed simulation at the same rate power of 1.5[kW], with the 

capability of an output voltage 150[V] and an input voltage of 30-40[V]. Table ‎7-3 

provides the rate of converter’s components parameters details. The converter is 

controlled and simulated via the pulse width modulation (PWM) operation with a 

carrier frequency of 16KHz. 

 

 

 

 

 

 

 

 

Figure ‎7-19 Proposed schematic diagram of sensorless thermal stress reduction control 
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Table ‎7-3 Component Parameters for Proposed SEPIC Converter 

Output power rating 1.5 [kW] fs 16[KHz] 

V1 30-40 [V] V2 150 [V] 

C1 10[μF] C2 1000[μF] 

L1 1[mH] L2 15[mH] 

IGBT FGW75N60HD 

 

The dominant failure mechanism of the IGBT, such as bond wire lift up 

due to solder fatigue progression, is injecting after one second, and it is noted 

that 𝑇𝑗 of the IGBT will rise with slope at 15 and will exceed the defined safe 

margin value (e.g. 125℃), as shown in Figure ‎7-16. The proposed ATSC is 

illustrated in Figure ‎7-20 assumes the thermal stress can be controlled after the 

estimated 𝑇𝑗 reaches 60℃ where the IGBT is in the normal operating region 

corresponding to time before it is subjected to deterioration at around 1 sec. The 

PID control maintains the duty cycle (see Figure ‎7-18) before 𝑇𝑗 rises above 60℃. 

To increase the converter’s lifetime and maintain consistency with the IGBT 

operating in failure conditions, the control region is designed to reduce the 

extreme operating condition from over temperature as the duty cycle was 

regulated between 0.35 and 0.3 (see Figure ‎7-21) which reduces a total of 40℃ for 

𝑇𝑗. In order to intuitively decelerate the temperature rising, the proportional 

slope rate is determine online and accordingly 𝑉𝑟𝑒𝑓 is adapted and tuned with an 

effective switching frequency (𝑓𝑠𝑤) rate 16kHz of the device. 

The PID controller parameters are determined based on conventional PID 

tuners (e.g. Ziegler-Nichols tuning) gain calculated method. The photovoltaic 

panel voltage must track the voltage calculated by the MPPT. The algorithm 

output will be a reference parameter for PID. The PID controller state feedback 

can be described as below: 
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𝑑(𝑡) = 𝐾𝑖 ∫(𝑉𝑟𝑒𝑓 − 𝑉𝑖𝑛)𝑑𝑡 + 𝐾𝑝 (𝑉𝑟𝑒𝑓 − 𝑉𝑖𝑛) + 𝐾𝑑
𝑑(𝑉𝑟𝑒𝑓−𝑉𝑖𝑛)

𝑑𝑡
   (52) 

 

where 𝑉𝑟𝑒𝑓 the output of MPPT algorithm and 𝑉𝑖 is the output of the photovoltaic 

panel. In addition to the two states in the converter, the error is defined as the 

third state of the system. 

 

𝑧 ≡ ∫(𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡)𝑑𝑡         (53) 

 

Therefore, the new state vector would be: 

𝑍 = [
𝑥
𝑧

]          (54) 

 

By combining (53) and (52),  

 

𝑑 = 𝑘𝑖𝑧 − 𝑘𝑝𝐶𝑥 − 𝑘𝑑𝐶𝑥̇ + 𝑘𝑝𝑉𝑟𝑒𝑓       (55) 

𝑑 = −(𝐼 + 𝑘𝑑𝐶𝐵𝑑)−1(𝑘𝑝𝐶 + 𝑘𝑑𝐶𝐴𝑑)𝑥 + (𝐼 + 𝐾𝑑𝐶𝐵𝑑)−1𝑘𝑖𝑧 + (𝐼 + 𝑘𝑑𝐶𝐵𝑑)−1𝑘𝑝𝑉𝑟𝑒𝑓 

           (56) 

 

Therefore, the controller equation which can expressed as state feedback d = KaZ 

is: 

 

𝑑 = (𝐼 + 𝑘𝑑𝐶𝐵𝑑)−1[−(𝑘𝑝𝐶 + 𝑘𝑑𝐶𝐴𝑑) 𝑘𝑖]𝑍 + (𝐼 + 𝑘𝑑𝐶𝐵𝑑)−1𝑘𝑝𝑉𝑟𝑒𝑓   (57) 
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The final representation of the augmented system may be written as: 

 

𝑍̇ = [
𝐴𝑑 0
−𝐶 0

] 𝑍 + [
𝐵𝑑

0
] 𝑑 + [

0
𝐼𝑟𝑒𝑓

]       (58) 

𝑉0 = [𝐶 0]𝑍 

where, 𝑑 = 𝐾𝑎𝑍 

The PID parameter gain is calculated as follows: 

 

[(𝐼 + 𝑘𝑑𝐶𝑧𝐵)−1[−(𝑘𝑝𝐶𝑧 + 𝑘𝑑𝐶𝑧𝐴) 𝑘𝑖]]  ≡ [−0.2108 −0.0021 15.946] 

Then,  

kp = 0.002483   kd = 3.7𝑒 − 6     ki = 75      

 

 

 

 

 

 

Figure ‎7-20 Proposed schematic diagram of adaptive thermal stress reduction control 

algorithm  
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Figure ‎7-21 Regulated duty cycle with the effect of ATSC control implementation 

7.8 Lifetime Extension Results Discussion 

As the slope, rate indicates the estimated junction temperature rises 

above 𝑇𝑗𝑟𝑒𝑓
 at 60℃, the ATSC immediately reduces the junction temperature’s 

slope (see Figure ‎7-23) and clamp the slope at 10. This will be happen by 

adjusting 𝑉𝑟𝑒𝑓 at 150V from MPPT algorithm according to its dynamic response 

value ∆𝑉𝑟𝑒𝑓. However, following the design specification, the output voltage’s 

limitation does not halt under the appropriate value, which distorts the power 

demand, as shown in Figure ‎7-24. 

The adaptive stress control part keeps the temperature below 125℃ that 

allows the IGBT operates in less stress condition until the mission is fulfilled. 

The most efficient part of the proposed control is about loss reduction which 

minimises active power losses, as is shown in Figure ‎7-22. Figure ‎7-23 shows 

that the slope of 𝑇𝑗 is successfully decelerated, wherein the lower limits of the 

output voltage is set based on the minimum acceptable output voltage 

performance as the least limitation of the load demand. Figure ‎7-24 shows the 

minimum constrain requirement has been set to 120V, also is depending on the 

duty cycle, ensuring that the minimum power can be generated from the PV 

module. In addition reduces the risk of failure of the converter from thermal 

stress conditions. Moreover, ATSC has extended the lifetime of the IGBT. 

Furthermore, investigation needs to be performed by applying a rain-flow 
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algorithm to the junction temperature profile for calculating the device lifetime 

usage. Interestingly, the device incredibly consumes less lifetime cycles in the 

form of the inverse-exponentially vs the thermal stress variation amplitude, as 

shown in Figure ‎7-25. 

The life usage of the IGBT for the mission profile after stress control 

applied with predominant temperature stress swings has been calculated and is 

given in Table ‎7-4. 

Table ‎7-4 IGBT Lifetime Extension Calculation Results 

Temperature Swings 2.2<∆𝐓℃<4.5 13.5<∆𝐓℃<15.8 20.4<∆𝐓℃<22.6 <2 

Number of Cycles 2 0.5 0.5 5000 

Mean Temp ℃ 51 102.7 64.3 64.5 

Number of Cycles to 

Failure 
6.5700e+05 1.8921e+06 1.9934e+06 1.5279e+06 

Life Consumed % 3.0442e-06 2.6425e-05 2.5083e-05 0.33 

Life Consumed after 8 

Seconds 
Almost 0.33% 

 

 

 

 

 

 

 

Figure ‎7-22 Total power loss estimation reduction with the effect of ATSC control 

implementation  
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Figure ‎7-23 Junction temperature reduction with the effect of ATSC control 

implementation 

 

 

 

 

 

Figure ‎7-24 Output voltage demand with the effect of ATSC control implementation 

 

 

 

 

 

 

Figure ‎7-25 Rain-flow cycle counting for IGBT junction temperature stress in the PV 

after stress control  
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The results show that the total life consumed by the device using thermal 

stress control is about 0.33% which means the lifetime is extended by 9 times 

This is an extremely high improvement compared with when the duty cycle is 

not a function of thermal stress. Using the proposed control approach has 

succeeded in minimising the temperature swings to less than 2. This will prevent 

the converter from reaching the catastrophic failure region, which reduces 

maintenance costs. 

7.9 Summary  

This chapter successfully presented the development and implementation 

of thermal stress control for IGBTs by using the junction temperature as the 

reference input for the proposed adaptive thermal stress control (ATSC). 

Furthermore, an increasing life expectancy of the device has been proven by 

performing the modified Coffin-Manson Law using the estimated junction 

temperature as a precursor parameter. The calculation of the power losses is 

well presented to be used in an electro-thermal IGBT model for junction 

temperature calculation. According to comparative discussion of the IGBT failure 

mechanism, the IGBT model simulation is propagated with a degradation model 

as function of the on-state resistance (𝑅𝑠(𝑜𝑛−𝑠𝑡𝑎𝑡𝑒)) and the switching frequency 

(𝑓𝑠). This causes the junction temperature (𝑇𝑗) swings rapid. The life usage 

calculation proves that the life relatively is extended by comparing with the 

results of without implementing thermal stress control in simulation and 

experimental test rig.  

It is concluded that the ATSC algorithm is adjusted 𝑉𝑟𝑒𝑓 for PID controller in 

order to minimise the thermal stress. In contrast to the current state-of-the-art 

thermal stress control, this chapter presents an adaptive algorithm based on 

junction temperature variation to decelerate the stress condition, which 

improves the life usage during failure conditions. 

  



 

177 

  



 

178 

 

 

8 8 Conclusions 

 

In power electronics applications, IVHM is a relatively new concept as 

compared to mechanical systems. This is because power electronics fault 

detection has the limitation of monitoring real-time failure mechanism 

degradation. Furthermore, PHM as a part of the IVHM in power electronics 

suffers from the limitation of versatile real-time algorithms to pinpoint a 

condition of the current health state as it requires a light computational process 

to overcome a huge amount of sensory data. Overall, in this thesis, the PHM 

presented in novel designs to address all these issues and improved the 

reliability of the system. This has been tested successfully by implementing new 

control strategy when the system was injected with the failure mode. 

The initial knowledge and techniques needed to develop prognostics for 

IGBT switches have been presented in the literature. This research, on the other 

hand, takes the state of the art forward by the development of prognostics 

policies and roles suitable for increasing the availability of the power electronic 

modules. In this regard, the hypothesis that has been described in the 

introduction is tested using structured metrologies presented in Section 1-4. A 

number of prognostics models has been developed using different techniques, 

following validation steps to investigate their accuracies, efficiencies and 

performances. There is still a lack of knowledge to justify the developed models 

against a particularly successful model. We, however, realise that a physics-

based model is a good reference to validate the performance of other techniques. 

The prognostics implementation policy solution is defined for power electronics 

in the comparison between different prognostics techniques (i.e. data mining, 

expert knowledge and hybrid techniques) which have VCE-on-state as a precursor 

parameter. 
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This is eventually leading us towards the development of knowledge of the 

prognostics on the collected data which the data was manipulated based on 

different ageing process presented as a mandatory requirement for data-driven, 

hybrid and expert knowledge prognostics approach. Additionally, the possibility 

of the implementing of the prognostics model before reaching catastrophic failure 

has been investigated. To conduct this, we scientifically looked at: 

a) Selecting the parameter that indicates the abnormality and 

degradation in the device, 

b) The necessity of classification of the number of health states for the 

degradation profile presented in Chapter 4 as an important part of data-

mining pattern recognition to explicitly from the raw data to be used for 

robust failure model learning and building an efficient prognostics 

algorithm.  

c) Utilising a probabilistic model which has been developed from the 

deterioration phase of the classified data enables the failure model to 

indicate an incipient fault and the current health state. This, in turn, 

provides a better RUL calculation due to the elimination of the model 

uncertainties. 

Experiments conducted by this research demonstrate the following 

strengths: 

a) Uncertainties are improved using a Gamma process that 

comparatively increases the probability of decision-making based on 

prognostics results. 

b) In the model-based approach, it is extremely difficult to 

mathematically model multi-physics failure mechanisms. As a solution, the 

hybrid prognostics model, presented in Chapter 5, learns model 

degradation from the VCE parameter. This technique utilises neural 

networks, such as TDNN, indicating solder fatigue propagates up until 

wire bond lift off failure mechanism, and eventually, short circuits occur in 
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active power switches (IGBTs). As an advantage, the efficiency of the 

prognostics algorithm is improved by consuming less computational power. 

Due to the only dependency on the phase duration rather time step, the 

number of MCS to calculate a mean value for RUL calculation becomes so 

light.  

c) The fusion of the failure model with a novel analytical approach to 

improve prognostics result in accuracy. In the hybrid approach, novel 

prognostics employs the trapezoidal rule using MCS for the area under the 

estimated health state to calculate RUL. The populated uncertainties in 

model prediction are almost removed by deploying this technique. 

d) Prognostics policy and rules are derived from comparisons made on 

different prognostics approaches conducted on power modules. From 

results summarised in Table ‎8-1, it can be realised that: 

i. The Gamma process presents a perfect confidence level that makes 

it more suitable for decision-makers in maintenance strategy. 

However, the accuracy of the results has been slightly sacrificed. 

ii. Normal probabilistic process computationally is very light to be 

embedded in DSP module, but not be recommended for the 

maintainer to decide on confidence bounds. 

iii. The Poisson model does not make a huge difference in result 

precision. However, the results do not have an effective confidence 

bound which not be applicable for decision makers. 

iv. In the data-driven approach, Gamma process is a good candidate 

amongst other probabilities approach for power electronics 

prognostics implementation and has a good potential of challenging 

with the hybrid and expert knowledge in future power electronics.  
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v. The hybrid approach in long term process can be light and 

computationally-reasonable and accurate for future power 

electronics health prediction. 

vi.  Expert knowledge incredibly has improved the accuracy of 

prediction and tracking OC online very well. Furthermore, it is very 

light to be embedded for the power electronics health monitoring 

driver. In addition maintenance, engineer will be benefited from 

well-stablished confidence bounds. 

The physical model is driven from the origin of the failure mechanism 

which has given insightful details of failure phenomena, such as creep and 

fatigue. This will be used for reliability assessment when the life expectancy 

subjected to be extended in critical situations for power converters. 

Table ‎8-1 Prognostics Implementation Policies for Power Electronics Switches (IGBTs) 

Prognostics Models 
Light Algorithm/ 

Less Complexity 

Confidence 

Bounds 
RMSE RA 

Data-Driven 

Poisson 
0.3 ms per 

measurement point 
Narrow 0.254 81.971 

Gamma 0.3 ms Perfect 0.33795 74.542 

Normal 0.2 ms Very narrow 0.016 99.947 

Hybrid 0.9 ms 
Relatively 

narrow 
0.014 99.965 

Expert 

Knowledge 

ANFIS-Based 

per-Unit 
0.7ms Quite good 0.0176 98.832 

Gamma-Based 

per-Unit 
0.4ms Perfect 0.2520 81.98 

Based on these strengths, the results have become more precise compared 

to latest prognostics results as shown in RA evaluation metrics. The model has 

learnt from 22 run-to-failure IGBT samples which have been collected from 

power cycling ageing test. In Chapter 6, the new novel prognostics model 

presented to be scalable and adapted to operating conditions online. This is often 
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difficult and complex for PoF model to be integrated with the scalability of the 

failure conditions. To that end, an adaptive neuro-fuzzy inference system 

(ANFIS) model has been equipped with a scalable factor in the per-unit format in 

order to be able to track how fast the system degrades from normal operating 

conditions. 

The simulation of the prognostics results indicates the estimation value 

almost able to converge to its real RUL. Generally, the per-unit prognostics 

approach has impressed the predictability results. The knowledge of the end of 

life is given in percentage which becomes a more user-friendly decision for the 

maintainer. In this research, we provide a benchmark for prognostics 

implementation in power electronics to contribute policies for the maintenance 

engineer in Table ‎8-1.  

Another key element in IVHM is about minimising stress factors in order to 

reduce unscheduled maintenance. In Chapter 7, the reliability of the SEPIC DC-

DC converter is estimated for dominant components which are more subject to 

thermal stress. The analysis of junction temperature calculation as a source of 

thermal stress has been carried out for the power switch (IGBT). The 

experimental temperature measurement profile has been used for 3D-FEA 

analysis in order to understand how power losses induce failure phenomena, and 

ultimately become solder crack which eventually kills the device. The novel 

stress control strategy is enhanced with the critical control when it is necessary 

to intervene just by adjusting duty cycle in order to reduce power losses. The 

result of the reliability has been recalculated using Coffin-Manson and Miner’s 

rules with the aid of the rain-flow algorithm and proves that lifetime 

consumption has been tremendously reduced. 

8.1 Future Work 

Future work could follow the investigation of the multi-disciplinary 

physics-of-failure model that advances deep learning parameters to correlate a 
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few fundamental failure mechanisms in power electronics devices. This has the 

potential of indication which failure triggers the other, and at what life cycles. 

Furthermore, some future work requires collecting data in combination 

with different accelerated ageing tests and with different load operating 

conditions to improve the robustness of both hybrid and expert knowledge based 

prognostics. Also, several revolutionary works could be persuaded to pattern 

recognition which is about to make similarity search engine that has time series 

damage profile, working condition and life usage. These all can be converted to 

time series matrix of objects. This information when it is necessary retrieves and 

ultimately improves RUL calculation significantly fast. In addition, it is 

enhanced with a tool of diagnostic, therefore, expecting a lot of improvement in 

better decision making with having precise details of failures. 
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