8,689 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    LOCAL POSITIONING SYSTEMS VERSUS STRUCTURAL MONITORING: A REVIEW

    Get PDF
    SUMMARY Structural monitoring and structural health monitoring could take advantage from different devices to record the static or dynamic response of a structure. A positioning system provides displacement information on the location of moving objects, which is assumed to be the basic support to calibrate any structural mechanics model. The global positioning system could provide satisfactory accuracy in absolute displacement measurements. But the requirements of an open area position for the antennas and a roofed room for its data storage and power supply limit its flexibility and its applications. Several efforts are done to extend its field of application. The alternative is local positioning system. Non-contact sensors can be easily installed on existing infrastructure in different locations without changing their properties: several technological approaches have been exploited: laser-based, radar-based, vision-based, etc. In this paper, a number of existing options, together with their performances, are reviewed. Copyright © 2014 John Wiley & Sons, Ltd

    Modeling and Monitoring of the Dynamic Response of Railroad Bridges using Wireless Smart Sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA, carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must conduct and report annual inspection of all the bridges. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.National Science Foundation Grant No. CMS-0600433National Science Foundation Grant No. CMMI-0928886National Science Foundation Grant No. OISE-1107526National Science Foundation Grant No. CMMI- 0724172 (NEESR-SD)Federal Railroad Administration BAA 2010-1 projectOpe

    Analysis of current and potential sensor network technologies and their incorporation as embedded structural system

    Get PDF
    This document provides a brief overview of the actual wireless ad hoc sensor networks technologies and standards available, especially in view of their possible implementation for shipping container protection and monitoring within the framework of the STEC Action aiming at analyzing possible technical solutions to improve the security of the millions of containers moving in and out of Europe. Examples of applications and research projects are reported from the literature to give insights on the possibility of implementation of wireless sensor networks in real world scenarios.JRC.G.5-European laboratory for structural assessmen

    Development of a wireless displacement measurement system using acceleration responses

    Get PDF
    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.open3

    ShakeNet: A portable wireless sensor network for instrumenting large civil structures

    Get PDF
    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software
    corecore