8,835 research outputs found

    Generalized structured additive regression based on Bayesian P-splines

    Get PDF
    Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX

    Testing for Equilibrium Multiplicity in Dynamic Markov Games

    Get PDF
    This paper proposes several statistical tests for finite state Markov games to examine the null hypothesis that the data are generated from a single equilibrium. We formulate tests of (i) the conditional choice probabilities, (ii) the steady-state distribution of states and (iii) the conditional distribution of states conditional on an initial state. In a Monte Carlo study we find that the chi-squared test of the steady-state distribution performs well and has high power even with a small number of markets and time periods. We apply the chi-squared test to the empirical application of Ryan (2012) that analyzes dynamics of the U.S. Portland Cement industry and test if his assumption of single equilibrium is supported by the data

    First and second order semi-Markov chains for wind speed modeling

    Full text link
    The increasing interest in renewable energy, particularly in wind, has given rise to the necessity of accurate models for the generation of good synthetic wind speed data. Markov chains are often used with this purpose but better models are needed to reproduce the statistical properties of wind speed data. We downloaded a database, freely available from the web, in which are included wind speed data taken from L.S.I. -Lastem station (Italy) and sampled every 10 minutes. With the aim of reproducing the statistical properties of this data we propose the use of three semi-Markov models. We generate synthetic time series for wind speed by means of Monte Carlo simulations. The time lagged autocorrelation is then used to compare statistical properties of the proposed models with those of real data and also with a synthetic time series generated though a simple Markov chain.Comment: accepted for publication on Physica

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Nonparametric Bayesian hazard rate models based on penalized splines

    Get PDF
    Extensions of the traditional Cox proportional hazard model, concerning the following features are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and usual fixed covariate effects, modelling and detection of time-varying covariate effects and nonlinear functional forms of metrical covariates, and inclusion of frailty components. In this paper, we develop Bayesian multiplicative hazard rate models for survival and event history data that can deal with these issues in a flexible and unified framework. Some simpler models, such as piecewise exponential models with a smoothed baseline hazard, are covered as special cases. Embedded in the counting process approach, nonparametric estimation of unknown nonlinear functional effects of time or covariates is based on Bayesian penalized splines. Inference is fully Bayesian and uses recent MCMC sampling schemes. Smoothing parameters are an integral part of the model and are estimated automatically. We investigate performance of our approach through simulation studies, and illustrate it with a real data application

    Implementing Loss Distribution Approach for Operational Risk

    Full text link
    To quantify the operational risk capital charge under the current regulatory framework for banking supervision, referred to as Basel II, many banks adopt the Loss Distribution Approach. There are many modeling issues that should be resolved to use the approach in practice. In this paper we review the quantitative methods suggested in literature for implementation of the approach. In particular, the use of the Bayesian inference method that allows to take expert judgement and parameter uncertainty into account, modeling dependence and inclusion of insurance are discussed
    • ā€¦
    corecore