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Abstract

Extensions of the traditional Cox proportional hazard model, concerning the following features

are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and

usual fixed covariate effects, modelling and detection of time–varying covariate effects and nonlinear

functional forms of metrical covariates, and inclusion of frailty components. In this paper, we

develop Bayesian multiplicative hazard rate models for survival and event history data that can

deal with these issues in a flexible and unified framework. Some simpler models, such as piecewise

exponential models with a smoothed baseline hazard, are covered as special cases. Embedded in

the counting process approach, nonparametric estimation of unknown nonlinear functional effects

of time or covariates is based on Bayesian penalized splines. Inference is fully Bayesian and uses

recent MCMC sampling schemes. Smoothing parameters are an integral part of the model and are

estimated automatically. We investigate performance of our approach through simulation studies,

and illustrate it with a real data application.

1 Introduction

Cox’s proportional hazard model is a benchmark method in survival and event history data analysis.

In this model, the hazard rate is assumed as the product

λ(t; v) = λ0(t) exp(γ1v1 + . . . + γrvr) = λ0(t) exp(v′γ). (1)

The baseline hazard rate is unspecified, and, through the exponential link function, the covariates

v = (v1, . . . , vr) act multiplicatively on the hazard rate. To keep notation simple, covariates are

assumed to be time–independent in (1), but extensions to time–dependent covariates are possible
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under usual assumptions. In a number of applications there is a need for extending this basic model

with respect to several aspects, such as simultaneous estimation of baseline hazards and covariate

effects, allowing more flexible nonlinear functional forms for covariates, inclusion of time-varying

effects, thereby dropping the proportional hazard assumption, and incorporation of unobserved

heterogeneity or frailty. Increased flexibility becomes even more important for more complex life

or event history data with recurrent events and multiple states. Various extensions have been sug-

gested to deal with such issues. For example, the piecewise exponential model is a simple approach

for estimating the baseline hazard jointly with covariates, Hastie and Tibshirani (1993) estimate

nonlinear and time–varying covariate effects by smoothing splines via penalized partial likelihood,

and Aalen’s additive model (1989, 1993) focuses on time–varying effects using a martingale ap-

proach. Fahrmeir and Klinger (1998) develop full penalized likelihood inference for event history

analyses, modelling time–varying effects by penalized step functions and/or smoothing splines.

In this paper, we propose nonparametric Bayesian hazard rate models that can deal with these

issues in a flexible and unified framework. Inference uses the information from the full likeli-

hood instead of a partial likelihood in combination with appropriate priors. It contains some

previous approaches as special cases, and extensions to more complex event history data are con-

ceptually easy. For survival data, we reparametrize the baseline hazard rate through exp{f0(t)},

f0(t) = log{λ0(t)}, and we extend model (1) to the nonparametric multiplicative model

λ(t;x, z, v) = exp{η(t;x, z, v)} (2)

with predictor

η(t;x, z, v) = f0(t) +
p∑

j=1

fj(t)zj +
p+q∑

j=p+1

fj(xj) + v′γ. (3)

The function f0(t) is the baseline effect, and a function fj(t) represents a time–varying effect of

the covariate zj , for example the time–varying effect of a therapy. The functions f1(x1), . . . , fq(xq)

are possibly nonlinear effects of metrical covariates x1, . . . , xq, and v′γ is the usual linear part of

the predictor. To account for unobserved heterogeneity or frailty, random intercepts and slopes

can be incorporated in (3). A generalization to models for event history analysis is described in

Section 2. Estimation of the unknown functions is based on penalized spline (P-spline) regression,

introduced by Eilers and Marx (1996), Marx and Eilers (1998) for generalized additive models in
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a frequentist setting. We will use Bayesian versions (Lang and Brezger, 2002) as a basic building

block. Basically, time t is treated in the same way as a metrical covariate x, but the degree

and amount of smoothness may be different. For example, simple random walk priors for the

baseline effect f0(t) in a piecewise exponential model are P-splines of degree zero. Inference is

fully Bayesian and uses the information from the full likelihood, instead of a partial likelihood,

in combination with appropriate priors. Posterior analysis is carried out with computationally

efficient MCMC techniques. Some advantages are: Smoothing parameters are an integral part of

the model and can be estimated jointly with unknown functions and other parameters; predictive

hazard rates and survivor functions can be computed directly from the MCMC output instead

of using plug-in estimates; and no asymptotic approximations or conjectures have to be made.

Inferential procedures have been implemented in C++ as part of BayesX (Brezger, Kneib and

Lang, 2002).

Nonparametric Bayesian survival models have become quite popular in recent years. Ibrahim, Chen

and Sinha (2001) provide a very good introduction and overview. Some previous work deals with

related, special cases of our approach. Joint estimation of the baseline hazard and usual linear

covariate effects in the Cox model has been considered by several authors. Gamerman (1991)

proposes a Gaussian random walk model for log{λ0(t)} in the piecewise exponential model, and

Sinha (1993) suggests a joint Gaussian smoothness prior. Arjas and Gasbarra (1994) introduce a

first order autoregressive gamma model for λ0(t), and Cai, Hyndman and Wand (2002) use a mixed

model representation of linear regression splines to estimate the baseline hazard. Time–varying

effects have been treated within a state space framework by Gamerman (1991) for the piecewise

exponential model, and Fahrmeir (1994), Fahrmeir and Wagenpfeil (1996) for discrete time survival

and competing risks models. In all these approaches, however, covariate effects are assumed to be

of the usual linear form, and are mostly restricted to the important but special case of survival

analysis.

The rest of the paper is organized as follows. In Section 2 we describe models, likelihoods, and

priors for unknown functions and parameters. Inference is outlined in Section 3. Performance

is studied in Section 4 through simulation studies. The application in Section 5 illustrates the

method. The concluding section contains some proposals for future research.
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2 Models, likelihoods and priors

Consider n individuals and let Nhi, for h = 1, ..., k, i = 1, ..., n, denote the individual counting

processes for events of type h, where Nhi(t) is the number of observed type h events experienced

by the ith individual up to time t. We assume that individual intensity processes exist and have

multiplicative structure:

αhi(t) = Yhi(t)λhi{t; zhi(t), xhi(t), vhi(t)} (4)

where Yhi(t) are left–continuous 1-0 processes indicating whether or not individual i is at risk of

experiencing a type h event just before time t. The individual type h hazard or transition rate λhi

in (4) depends on t and on possibly type–specific and time–dependent covariates. As in (3), the

covariate vector zhi(t) is assumed to have time–varying effects, xhi(t) consists of metrical covariates

with possibly nonlinear effects, and vhi(t) comprises covariates with linear effects.

Right censored survival data with lifetimes Ti, independent censoring times Ci, i = 1, ..., n, ob-

served lifetimes ti = min(Ti, Ci), and censoring indicators δi are a special case with h = 1,

Ni(t) = I(Ti ≤ t, δi = 1), Yi(t) = I(ti ≥ t) and λi(t) as in (1) or (2) and (3). The hazard rate

λhi(t) for individual i is assumed to follow a multiplicative model

λhi(t) := λhi(t; zhi(t), xhi(t), vhi(t)) = exp(ηhi(t)), (5)

with the general form of the predictor given by

ηhi(t) = fh
0 (t) +

p∑
j=1

fh
j (t)zhij(t) +

p+q∑
j=p+1

fh
j (xhij(t)) + v′

hi(t)γh. (6)

Here fh
0 (t) = log{λh

0 (t)} is the baseline effect, fh
j (t) are time–varying effects of covariates zhj(t),

fh
j (xhj(t)) is the nonlinear effect of xhj(t), γh is the vector of usual linear fixed effects. As a further

extension, i.i.d. frailty effects and random slopes could be introduced in (6), but we omit this here.

For given predictors η = {ηhi, h = 1, ..., k, i = 1, ..., n}, the likelihood is given by

L(η) =
n∏

i=1

k∏
h=1

∫ ∞

0

λhi(s)dNhi(s) · exp
{
−

∫ ∞

0

Yhi(s)λhi(s)ds

}
. (7)
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For survival data with noninformative right censoring, the likelihood (7) reduces to the well–known

form

L =
n∏

i=1

λi(t)δi · exp
(
−

∫ ti

0

λi(u)du

)

=
n∏

i=1

λi(t)δi · Si(t) , (8)

Note that the first term in (7) is always a sum because Nhi(s) is a step function. Numerical problems

arise in the evaluation of the second integral in (7) and (8). Only if time–varying functions in the

predictor are step functions, this integral also reduces to a sum. A prominent case is the piecewise

exponential model, where the baseline hazard in (1), or (2) and (3) is assumed as a step function,

see also Section 3.

The Bayesian model formulation is completed by assumptions about priors for parameters and

functions. Because the priors do not depend on the type h of events we omit the index h to

simplify notation. For fixed effect parameters γ we assume diffuse priors p(γ) ∝ const. A weakly

informative normal prior would be another choice.

For unknown functions fj , we assume Bayesian P–spline priors as in Lang and Brezger (2002).

Random walk priors, which have been suggested in Fahrmeir and Lang (2001) and may be used

as smoothness priors for the baseline effect and dynamic effects in a piecewise exponential model,

appear as a special case. The basic idea of P-spline regression (Eilers and Marx, 1996) is to

approximate a function fj(x) as a linear combination of B-spline basis functions Bm, i.e.

fj(x) =
Mj∑

m=1

βjmBm(x).

The basis functions Bm are B–splines of degree l defined over a grid of equally spaced knots

xj min = ξ0 < ξ1 < . . . < ξs = xj max, Mj = l + s. The number of knots is moderate, but not

too small, to maintain flexibility, but smoothness of f(x) is encouraged by difference penalties for

neighboring coefficients in the sequence βj = (βj1, . . . , βjMj
)′. The Bayesian analogue are first or

second order random walk smoothness priors

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (9)

with i.i.d. Gaussian errors ujm ∼ N(0, τ2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1) and p(βj2) ∝

const, for initial values. A first order random walk penalizes abrupt jumps βjm − βj,m−1, and a
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second order random walk penalizes deviations from a linear trend. The amount of smoothness or

penalization is controlled by the variance τ2
j , which acts as a smoothness parameter. Note that

B–splines of order l = 0 are 0-1 functions, and fj(x) is a step function with value βjm in interval m.

Then (9) is a random walk smoothness prior for the function values itself. An important special

case are piecewise exponential models with a random walk prior for the log–baseline hazard.

The joint prior of the regression parameters βj is Gaussian and can be easily computed as a product

of conditional densities defined by (9) as

βj | τ2
j ∝ exp

(
− 1

2τ2
j

β′
jKjβj

)
.

The penalty matrix Kj is of the form Kj = D′D, where D is a first or second order difference

matrix. For second order random walks, for example, Kj is given by

Kj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with zero elements outside the second off–diagonals.

The band structure of Kj is very useful for computationally efficient MCMC updating schemes.

A common choice for approximating smooth curves are quadratic or cubic B-splines. Computation-

ally, linear splines are simpler. The simplest choice are B–splines of degree zero, i.e. Bm(x) ≡ 1

over the m-th interval, and Bm(x) ≡ 0 elsewhere. Then f(x) is approximated by a piecewise

constant function, and the function values follow a random walk model as in Fahrmeir and Lang

(2001). This special choice, with time t as covariate, is the easiest way to smooth the baseline in

the piecewise exponential model; moreover the integral in the likelihood (8) reduces to a sum, see

the next section. With P–splines of higher degree, however, estimation of smooth baseline effects
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is improved considerably in terms of MSE’s, see Section 4.

Variances τ2
j follow inverse Gamma priors IG(aj ; bj). The hyperparameters aj , bj are chosen such

that this prior is weakly informative. We routinely use aj = bj = 0.001 as a standard choice. For

moderate to large data sets, results are rather insensitive to choice of aj and bj . For smaller data

sets, a sensitivity analysis is useful.

The Bayesian model specification is completed by assuming that priors p(βj | τ2
j ), j = 0, ..., p + q,

are conditionally independent, and that all priors are mutually independent.

3 Markov chain Monte Carlo inference

In what follows, let β = (β0, ..., βp, βp+1, ..., βp+q)′ denote the vector of all B–spline regression coef-

ficients, γ the vector of fixed effects, and τ2 = (τ2
0 , ..., τ2

p+q) the vector of all variance components.

Full Bayesian inference is based on the entire posterior distribution

p(β, γ, τ2 | data) ∝ L(β, γ, τ2) p(β, γ, τ2).

Due to the (conditional) independence assumptions, the joint prior factorizes into

p(β, γ, τ2) =

⎧⎨⎩
p+q∏
j=0

p(βj | τ2
j )p(τ2

j )

⎫⎬⎭ p(γ),

where the last factor can be omitted for diffuse fixed effect priors.

The likelihood L(β, γ, τ2) is given by inserting (5), (6) into (7) or (8), but the integral requires

integration over all terms depending on survival time t, i.e. terms of the form

∫ ti

0

exp

⎛⎝f0(u) +
p∑

j=1

fj(u)zij(u)

⎞⎠ du,

where fj(t) =
∑

βjmBm(t). Apart from B–splines Bm(t) of degree zero, i.e. random walk models,

and linear B–splines, these integrals are not available in closed form. The first case leads to the

piecewise exponential model: The time axis is divided into a grid

0 = ξ0 < ξ1 < ... < ξt−1 < ξt < ... < ξs = tmax,

and fj(t) is assumed to be a piecewise constant function, i.e.

fj(t) = βjt
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in time interval (ξt−1, ξt], t = 1, ..., s. In this case, the integral reduces to a sum, and, after some

simple calculations, the likelihood can be rewritten in the form of a Poisson–likelihood, with the

predictor ηit containing an additional offset term, see Fahrmeir and Tutz (2001, Section 9.1) or

Ibrahim, Chen and Sinha (2001, Section 3.1) for details.

For linear B–splines, the integrals can still be solved analytically, but expressions are rather messy

and the computational effort is quite high, see Cai et al. (2002, Appendix). Following their

suggestion, we use simple numerical integration in form of the trapezoidal rule for linear B–splines

as well as the commonly used cubic B–splines, where analytical integration is not possible anyway.

Full Bayesian inference via MCMC simulation is based on updating full conditionals of single

parameters or blocks of parameters, given the rest of the data.

For updating the parameters βj , j = p + 1, ..., p + q, which correspond to the time–independent

functions fj(xj), as well as fixed effects γ , we use an MH–algorithm based on iteratively weighted

least squares (IWLS) proposals, developed for fixed and random effects by Gamerman (1997) and

adapted to generalized additive mixed models in Brezger and Lang (2003). Suppose we want to

update βj , with current value βc
j of the chain. Then a new value βp

j is proposed by drawing a

random vector from a (high–dimensional) multivariate Gaussian proposal distribution q(βc
j , β

p
j ),

which is obtained from a quadratic approximation of the log–likelihood by a second order Taylor

expansion with respect to βc
j , in analogy to IWLS iterations in generalized linear models. The

proposed vector βp
j is accepted as the new state of the chain with probability

α(βc
j , β

p
j ) = min

(
1,

p(βp
j | ·)q(βp

j , βc
j )

p(βc
j | ·)q(βc

j , β
p
j )

)

where p(βj | ·) is the full conditional for βj (i.e. the conditional distribution of βj given all other

parameters and the data).

For a fast implementation, we use the fact that the precision matrices of the Gaussian proposal

distributions are banded, so that Cholesky decompositions can be performed efficiently.

For the parameters β0, ..., βp corresponding to the functions f0(t), ..., fp(t) depending on time t,

the IWLS–MH algorithm requires considerably more computational effort, because the integrals

in the log–likelihood as well as first and second derivatives are involved now. Therefore, we adopt

a computationally faster MH–algorithm based on conditional prior proposals first developed by
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Knorr–Held (1999) for state space models and extended for generalized additive mixed models in

Fahrmeir and Lang (2001). It requires only evaluation of the log–likelihood, not of derivatives.

However, draws are not performed for the entire vector βj , but iteratively for blocks of subvectors,

see Fahrmeir and Lang (2001) for details.

The full conditionals for the variance parameters τ2
j are inverse gamma with parameters

a′
j = aj +

1
2
rank(Kj) and b′j = bj +

1
2
β′

jKjβj

and updating can be done by simple Gibbs steps, drawing random numbers directly from the

inverse gamma densities.

For model comparison, we suggest to use the Deviance Information Criterion (DIC) developed

in Spiegelhalter et al. (2002). Let θ = (β, γ) denote the vector of all parameters of interest defining

the predictor η. Then the DIC is based on the Bayesian deviance

D(θ) = −2logL(θ) + 2logL(data), (10)

where L(θ) is the likelihood (7) or (8) of a specific survival or event history model, given η = η(θ),

and L(data) is taken as the likelihood of some saturated model. For a Cox model, where the

baseline hazard λ0(t) is a nuisance parameter, only the effects γ in (1) are the parameters of

interest. In this case, a saturated term for D(θ) can be defined as in Fleming and Harrington

(1991, p.168). In our models, however, the baseline hazard and other nonparametric functions are

parameters of interest. In this case it is not clear what a saturated model should be. Therefore,

we drop the second term in (10), which is of no relevance for model comparison. Based on the

deviance D(θ), Spiegelhalter et al. (2002) define

pD = D(θ) − D(θ)

as the effective number of parameters in the model. Here D(θ) is the posterior mean of the

deviance, and D(θ) is D(θ) evaluated at θ = θ, the posterior mean of the parameters. The

Deviance Information Criterion is then defined as

DIC = D(θ) + pD.

Properties of the DIC have been mainly explored for exponential family regression. With the

piecewise exponential model, which leads to a Poisson–type likelihood, we are still within this

9



framework, but we leave it with more general P–spline priors for functions. To be on the safe

side, we recommend to run models always with piecewise constant functions and alternatively with

B–splines of higher degree, and to compare results. More empirical experience with simulated and

real data has to be gained before making a general recommendation.

4 Simulation studies

We investigate performance through simulation studies for three related survival models. For the

basic Model 1, life times Ti, i = 1, ..., 1000, were generated according to the hazard model

λi(t) = λ0(t) exp(γdi + f2(xi))

= exp
(
log(3t2) − 0.3di + sin(xi)

)
, (11)

In this model, the baseline hazard rate λ0(t) is set to 3t2, which is a Weibull hazard rate, so

that f0(t) = log(3t2). The covariate d is binary, with the di´s randomly drawn from a Bernoulli

B(1; 0.5) distribution, and the covariate x is continuous, with the xi´s randomly drawn from a

uniform U [−3, 3] distribution. Censoring variables Ci, i = 1, ..., 1000, were generated as i. i. d.

draws from a uniform U [0, 5] distribution, resulting in a proportion of 15–20 percent of censored

observations.

Model 2 extends Model 1 to a model with time–varying effect f1(t) = log 5t2

3 of the covariate d,

i.e.,

λi(t) = exp
(

log(3t2) + log

(
5t2

3

)
di + sin(xi)

)
.

Then the hazard rate is of Weibull form for di = 0 as well as for di = 1, and life time Ti can be

generated by drawing randomly from corresponding Weibull distributions. In Model 3, we add

random effects bg, i.i.d. ∼ N(0; 0.52), g = 1, ..., 10, to the basic Model 1, leading to hazard rates

λi(t) = exp
(
log(3t2) − 0.3di + sin(xi) + bgi

)
.

Covariates di and xi, i = 1, ..., 1000, were generated as before.

Keeping the predictor fixed 100 replications {T (r)
i , C

(r)
i , i = 1, ..., 1000} resp. {(t(r)i , δ

(r)
i ), i =

1, ..., 1000}, r = 1, ..., 100 of censored survival times were generated for each simulation study.
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The log–baseline hazard f0(t) and the time–varying effect f1(t) were modelled by second order

random walk priors, corresponding to a piecewise exponential model (with grid length � = 0.1)

and – alternatively – as cubic P–splines, with 20 knots. A cubic P–spline prior with 20 knots was

chosen for f2(x) = sin(x). Hyperparameters of inverse gamma priors for variance components

were set to a = b = 0.001, the standard choice.

For each replication r = 1, ..., 100, we computed the mean square errors

MSEr(fk) =
1

1000

1000∑
i=1

(f̂ (r)
k (t(r)i ) − fk(t(r)i ))2, k = 0, 1

for the log–baseline hazard f0(t) and – for Model 2 – the time–varying effect f1(t), and

MSEr(f2) =
1

1000

1000∑
i=1

(f̂ (r)
2 (xi) − f2(xi))2

for f2(x) = sin(x), where f̂
(r)
k , k = 0, 1, 2, are posterior mean estimates for simulation run r.

For Model 1 and 3, the MSE(γ) was computed in the usual way.

Table 1 summarizes the results, displaying MSE = (
∑100

r=1 MSEr)

100 as well as minrMSEr and

maxrMSEr in each cell.

As was to be expected, the P–spline model has smaller MSE´s for f0 and f1 when compared

to the piecewise exponential model, although the difference is smaller for MSE(f1) of the

time–varying effect f1. Interestingly, the MSE´s for γ = −0.3 and f2(x) are more or less

unaffected by the choice of the smoothness prior for time–varying functions f0(t) and f1(t).

Figures 3–5 in the appendix show some selected posterior mean estimates together with the true

function for the piecewise exponential model and the P–spline model.

5 Application: Long Term Care Insurance

As an illustration, we analyze data on survival time after entering long term care insurance (LTC)

from a German private insurance company. The data was recorded between April 1, 1995, when

compulsory LTC insurance was introduced by the German government, and December 31, 1998.

It contains information on 5603 recipients of benefits from LCT insurance. This data set has

already been analyzed by Czado and Rudolph (2002), and more details on the data set are given
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Model 1 Model 2 Model 3

piecewise MSE(f0) = 0.176 MSE(f0) = 0.183 MSE(f0) = 0.189

exponential minMSE(f0) = 0.044 minMSE(f0) = 0.053 minMSE(f0) = 0.029

model maxMSE(f0) = 0.524 maxMSE(f0) = 0.450 maxMSE(f0) = 0.441

MSE(γ) = 0.005 MSE(f1) = 0.359 MSE(γ) = 0.005

minMSE(γ) = 1.5e−7 minMSE(f1) = 0.095 minMSE(γ) = 8.5e−10

maxMSE(γ) = 0.043 maxMSE(f1) = 0.805 maxMSE(γ) = 0.045

MSE(f2) = 0.007 MSE(f2) = 0.007 MSE(f2) = 0.008

minMSE(f2) = 0.001 minMSE(f2) = 0.0004 minMSE(f2) = 0.001

maxMSE(f2) = 0.025 maxMSE(f2) = 0.025 maxMSE(f2) = 0.026

P–spline MSE(f0) = 0.143 MSE(f0) = 0.151 MSE(f0) = 0.156

model minMSE(f0) = 0.032 minMSE(f0) = 0.037 minMSE(f0) = 0.017

maxMSE(f0) = 0.462 maxMSE(f0) = 0.391 maxMSE(f0) = 0.408

MSE(γ) = 0.005 MSE(f1) = 0.341 MSE(γ) = 0.005

minMSE(γ) = 2e−8 minMSE(f1) = 0.071 minMSE(γ) = 4.5e−9

maxMSE(γ) = 0.043 maxMSE(f1) = 0.753 maxMSE(γ) = 0.045

MSE(f2) = 0.007 MSE(f2) = 0.007 MSE(f2) = 0.008

minMSE(f2) = 0.001 minMSE(f2) = 0.0004 minMSE(f2) = 0.001

maxMSE(f2) = 0.027 maxMSE(f2) = 0.025 maxMSE(f2) = 0.025

Table 1: Summary of MSE´s
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there. In a first step, they analyzed the data with a conventional Cox model. After careful model

diagnosis, they extended it to a model with time–varying effects, which were modelled through 0-1

step functions. Our analysis is based on their final model (3.2), - CR model for short - with results

displayed in their Table 5. The following covariates are included:

age (in years),

sex (1=female, 0=male),

and the time–dependent covariates

nh(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 care in a nursing home at time t

0 care at home

level 2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 care at level 2 at time t

0 else ,

level 3(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 care at level 3 at time t

0 else ,

with level 1(t) as the reference category. The three levels of care (and benefits) are defined as

follows:

Level 1: The LTC–claimant needs at least 90 minutes help per day to manage his/her activities

of daily living (like going to bed, washing, eating),

Level 2: The LTC–claimant needs at least 180 minutes help per day to manage his/her activities

of daily living,

Level 3: The LTC–claimant needs at least 300 minutes help per day to manage his/her activities

of daily living.

About 60 per cent of the observations are right censored.

We apply a Bayesian multiplicative hazard rate model λ(t) = exp(η(t)) with predictor

η(t) = f0(t) + fage(age) + fsex(age)sex + fl2(t)level2(t)

+fl3(t)level3(t) + γ1nh(t) + γ2(sex · nh(t))

+γ3(level2(t) · nh(t)) + γ4(level3(t) · nh(t))
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mean std. dev.

nh 0.775 0.170

sex·nh -0.376 0.108

level2·nh -0.410 0.181

level3·nh -0.722 0.178

Table 2: Posterior mean estimates and standard deviations for the fixed effects

Compared to the CR model we omitted interactions between age and survival time t and between

age and nh(t), which had very small effects. The log–baseline effect f0(t), the main effect fage(age)

of age, the age–dependent effect fsex(age) of sex, and the time–varying effects fl2(t), fl3(t) of levels

2 and 3 were estimated nonparametrically with cubic P–splines with 20 knots.

Results for fixed effects are given in Table 2. Care in a nursing home seems to increase the

hazard rate; a plausible reason for this effect is that individuals in a nursing home are generally

less healthy than individuals who still receive care at home. This main effect decreases for females

and for individuals who receive more care. Figure 2 shows the main effect fage and its interaction

with sex. The main effect of age increases almost linearly, while the interaction with sex is quite

small. The latter is comparable with the fixed effect interaction of CR only for age between 50

and 90 years.

The log–baseline hazard rate f0(t) and the effect fl2(t) of level2(t) in Figure 1 are more or

less time–constant. Note that f0(t) is centered around zero, while fl2(t) ≈ const. = 0.9. The

time–variation in the effect of level2(t) of the CR model cannot be detected. The increased hazard

for level3(t) for smaller t corresponds to a similar finding of the initial CR. Later on, this effect

becomes approximately constant (ca. 1.5). A possible interpretation is that this effect is caused

by individuals which are already in a bad health state and therefore need level 3 care immediately

at the beginning of LCT.

Conclusions

Nonparametric Bayesian hazard rate modeling with P–splines offers a very flexible tool for simul-
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Figure 1: Posterior mean estimates and 95% credible intervals for time–dependent effects: a) log–baseline

effect, b) time–varying effect of level2, c) time–varying effect of level3
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Figure 2: Posterior mean estimates and 95% credible intervals for nonparametric effects: a) main effect

of age, b) effect of sex varying over age
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taneous analysis of baseline hazard rates, time–varying effects and nonlinear effects of metrical

covariates together with usual linear effects of further covariates.

Further research is necessary to investigate DIC as a model comparison tool, in particular

for more complex models of event history analysis. From a computational point of view, further

algorithmic improvements in numerical evaluations of the likelihood are essential to speed up

computation times.
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Figure 3: (log–)baseline effects for the various model specifications; displayed are posterior mean estimates

and 95% credible intervals of run r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100

(solid lines), and the true function (dashed line).

a) p.e.m., Model 1, r=15, MSE=0.159

b) P–spline model, Model 1, r=11, MSE=0.119

c) p.e.m., Model 2, r=5, MSE=0.176

d) P–spline model, Model 2, r=3, MSE=0.141

e) p.e.m., Model 3, r=100, MSE=0.173

f) P–spline model, Model 3, r=81, MSE=0.138
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Figure 4: Nonparametric effects for the various model specifications; displayed are posterior mean

estimates and 95% credible intervals of run r, with r chosen such that MSEr is the median of

MSE1, . . . , MSE100 (solid lines), and the true function (dashed line).

a) p.e.m., Model 1, r=89, MSE=0.006

b) P–spline model, Model 1, r=93, MSE=0.006

c) p.e.m., Model 2, r=50, MSE=0.006

d) P–spline model, Model 2, r=61, MSE=0.006

e) p.e.m., Model 3, r=66, MSE=0.007

f) P–spline model, Model 3, r=34, MSE=0.007
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Figure 5: Time–varying effects of d for Model 2; displayed are posterior mean estimates and 95% credible

intervals of run r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100 (solid lines), and

the true function (dashed line).

a) p.e.m., r=34, MSE=0.349

b) P–spline model, r=34, MSE=0.331
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