The increasing interest in renewable energy, particularly in wind, has given
rise to the necessity of accurate models for the generation of good synthetic
wind speed data. Markov chains are often used with this purpose but better
models are needed to reproduce the statistical properties of wind speed data.
We downloaded a database, freely available from the web, in which are included
wind speed data taken from L.S.I. -Lastem station (Italy) and sampled every 10
minutes. With the aim of reproducing the statistical properties of this data we
propose the use of three semi-Markov models. We generate synthetic time series
for wind speed by means of Monte Carlo simulations. The time lagged
autocorrelation is then used to compare statistical properties of the proposed
models with those of real data and also with a synthetic time series generated
though a simple Markov chain.Comment: accepted for publication on Physica