61 research outputs found

    Wideband data-independent beamforming for subarrays

    Get PDF
    The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element.As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At the element level, we show that designing a narrowband beam w.r.t. a centre frequency of wideband operation is suboptimal,and suggest an optimisation technique that can yield sufficiently accurate gain over a frequency band of interest for an arbitrary look direction, which however comes at the cost of reduced aperture efficiency, as well as significantly increased sidelobes. We also suggest an adaptive method to enhance the frequency characteristic of a partial wideband array design, by utilising subarrays pointing in different directions in different frequency bands - resolved by means of a filter bank - to adaptively suppress undesired components in the beam patterns of the subarrays. Finally, the thesis proposes a novel array design approach obtained by rotational tiling of subarrays such that the overall array aperture is densely constructed from the same geometric subarray by rotation and translation only. Since the grating lobes of differently oriented subarrays do not necessarily align, an effective grating lobe attenuation w.r.t. the main beam is achieved. Based on a review of findings from geometry,a number of designs are highlight and transformed into numerical examples, and the theoretically expected grating lobe suppression is compared to uniformly spaced arrays.Supported by a number of models and simulations, the thesis thus suggests various numerical and hardware design techniques, mainly the addition of tap-delay-line per subarray and some added processing overhead, that can help to construct a large partial wideband array close in wideband performance to currently existing hardware.The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element.As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At the element level, we show that designing a narrowband beam w.r.t. a centre frequency of wideband operation is suboptimal,and suggest an optimisation technique that can yield sufficiently accurate gain over a frequency band of interest for an arbitrary look direction, which however comes at the cost of reduced aperture efficiency, as well as significantly increased sidelobes. We also suggest an adaptive method to enhance the frequency characteristic of a partial wideband array design, by utilising subarrays pointing in different directions in different frequency bands - resolved by means of a filter bank - to adaptively suppress undesired components in the beam patterns of the subarrays. Finally, the thesis proposes a novel array design approach obtained by rotational tiling of subarrays such that the overall array aperture is densely constructed from the same geometric subarray by rotation and translation only. Since the grating lobes of differently oriented subarrays do not necessarily align, an effective grating lobe attenuation w.r.t. the main beam is achieved. Based on a review of findings from geometry,a number of designs are highlight and transformed into numerical examples, and the theoretically expected grating lobe suppression is compared to uniformly spaced arrays.Supported by a number of models and simulations, the thesis thus suggests various numerical and hardware design techniques, mainly the addition of tap-delay-line per subarray and some added processing overhead, that can help to construct a large partial wideband array close in wideband performance to currently existing hardware

    Radio astronomical imaging in the presence of strong radio interference

    Get PDF
    Radio-astronomical observations are increasingly contaminated by interference, and suppression techniques become essential. A powerful candidate for interference mitigation is adaptive spatial filtering. We study the effect of spatial filtering techniques on radio astronomical imaging. Current deconvolution procedures such as CLEAN are shown to be unsuitable to spatially filtered data, and the necessary corrections are derived. To that end, we reformulate the imaging (deconvolution/calibration) process as a sequential estimation of the locations of astronomical sources. This not only leads to an extended CLEAN algorithm, the formulation also allows to insert other array signal processing techniques for direction finding, and gives estimates of the expected image quality and the amount of interference suppression that can be achieved. Finally, a maximum likelihood procedure for the imaging is derived, and an approximate ML image formation technique is proposed to overcome the computational burden involved. Some of the effects of the new algorithms are shown in simulated images. Keywords: Radio astronomy, synthesis imaging, parametric imaging, interference mitigation, spatial filtering, maximum likelihood, minimum variance, CLEAN.Comment: 27 pages, 7 figures. Paper with higher resolution color figures at http://cobalt.et.tudelft.nl/~leshem/postscripts/leshem/imaging.ps.g

    Space time adaptive processing for airborne radar

    Get PDF

    Multipath smearing suppression for synthetic aperture radar images of harbor scenes

    Get PDF
    Due to the periodic and non-periodic variations in the sea surface, smearing is caused by the multiple paths between the sea surface and man-made objects in synthetic aperture radar images of harbor areas. This smearing can cover the real targets and lead to false alarms. To derive the relationship between the motion of the sea surface and blurring in synthetic aperture radar images, a sway signal model is established, and the Doppler spectrum of the sea surface is found to undulate for well-focused targets with different shapes. Based on this finding, a subaperture combined detection algorithm based on an inverse coherence factor filter is developed to separate the unwanted pixels from the resultant synthetic aperture radar image. An energy balance is used to suppress interference and maintain the resolution of the real scene. The algorithm can be automatically applied to synthetic aperture radar images. The experimental results with TerraSAR-X spotlight mode data show that this method can effectively detect and mitigate the effects of time-varying multipath phenomena

    Journal of Telecommunications and Information Technology, 2005, nr 2

    Get PDF

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Temperature aware power optimization for multicore floating-point units

    Full text link

    High-resolution sinusoidal analysis for resolving harmonic collisions in music audio signal processing

    Get PDF
    Many music signals can largely be considered an additive combination of multiple sources, such as musical instruments or voice. If the musical sources are pitched instruments, the spectra they produce are predominantly harmonic, and are thus well suited to an additive sinusoidal model. However, due to resolution limits inherent in time-frequency analyses, when the harmonics of multiple sources occupy equivalent time-frequency regions, their individual properties are additively combined in the time-frequency representation of the mixed signal. Any such time-frequency point in a mixture where multiple harmonics overlap produces a single observation from which the contributions owed to each of the individual harmonics cannot be trivially deduced. These overlaps are referred to as overlapping partials or harmonic collisions. If one wishes to infer some information about individual sources in music mixtures, the information carried in regions where collided harmonics exist becomes unreliable due to interference from other sources. This interference has ramifications in a variety of music signal processing applications such as multiple fundamental frequency estimation, source separation, and instrumentation identification. This thesis addresses harmonic collisions in music signal processing applications. As a solution to the harmonic collision problem, a class of signal subspace-based high-resolution sinusoidal parameter estimators is explored. Specifically, the direct matrix pencil method, or equivalently, the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) method, is used with the goal of producing estimates of the salient parameters of individual harmonics that occupy equivalent time-frequency regions. This estimation method is adapted here to be applicable to time-varying signals such as musical audio. While high-resolution methods have been previously explored in the context of music signal processing, previous work has not addressed whether or not such methods truly produce high-resolution sinusoidal parameter estimates in real-world music audio signals. Therefore, this thesis answers the question of whether high-resolution sinusoidal parameter estimators are really high-resolution for real music signals. This work directly explores the capabilities of this form of sinusoidal parameter estimation to resolve collided harmonics. The capabilities of this analysis method are also explored in the context of music signal processing applications. Potential benefits of high-resolution sinusoidal analysis are examined in experiments involving multiple fundamental frequency estimation and audio source separation. This work shows that there are indeed benefits to high-resolution sinusoidal analysis in music signal processing applications, especially when compared to methods that produce sinusoidal parameter estimates based on more traditional time-frequency representations. The benefits of this form of sinusoidal analysis are made most evident in multiple fundamental frequency estimation applications, where substantial performance gains are seen. High-resolution analysis in the context of computational auditory scene analysis-based source separation shows similar performance to existing comparable methods
    corecore