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ABSTRACT

SPACE TIME ADAPTIVE PROCESSING FOR AIRBORNE RADAR.

Name: Dontharaju, Sreeveena
University of Dayton, 2001

Advisor: Dr. Krishna M. Pasala

The theory of STAP has been developed to a sufficient extent that we can now 

look into look into implementing these processors for real time target detection. The 

optimal theoretical performance may not be met due to a variety of in-homogeneities 

present in the secondary data used to calculate the interference covariance matrix. Two 

such in-homogeneities, the internal clutter motion and the presence of a mover have been 

investigated in this report. The effect of the received signal having a finite bandwidth has 

also been investigated. It is seen that there is degradation in filter performance due to a 

loss in SINR leading to an increased MDV and an increase in the interference sub-space. 

These factors must be a kept in mind when the processor is implemented.
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Chapter I

INTRODUCTION

1.1: Purpose

The purpose of the present study is to examine Space Time Adaptive Processing 

(STAP) in the context of Airborne radar for the detection of both airborne and ground 

moving targets. The detection of these targets is complicated by the presence of clutter 

and also jammers in addition to the usual receiver noise. Typically, the power of the 

clutter and jamming signals are much higher than that of the target signals. Of late, there 

is a considerable interest in space-based radar to monitor targets on the ground. The 

geometry of the space-based radar is such that vast swaths of land are illuminated giving 

rise to a very large clutter signal power. One way to reduce this clutter power is to 

increase the range resolution of the radar by increasing the signal bandwidth. Also, there 

has been a considerable interest in airborne radars that are capable of target identification. 

These radars also require high range resolution and hence signal bandwidth. Extensive 

studies conducted so far have clearly demonstrated that STAP filters have great potential 

for suppressing clutter and jamming signals and provide significant sub clutter visibility 

making it possible to detect even slow ground moving targets. However, much of this 

research has been carried out using idealized models. For example, clutter environment is 

assumed to be homogeneous. The secondary clutter data vectors used to estimate the



interference covariance matrix are obtained from this assumed homogeneous clutter 

environment. In practice, though, the clutter is more often inhomogeneous than 

homogeneous. Also, the STAP modeling is based on the assumption that the signal is 

narrowband. Thus, the actual performance obtained from STAP may fall short of the 

predicted theoretical optimums. In the present study, we consider the effect of two 

different kinds of inhomogeneity of clutter that is often present in practice. These are the 

inhomogeneity due to internal clutter motion and the presence of a “mover” in secondary 

data. In addition, the effect of bandwidth is also considered. It is shown that even when 

signal bandwidth is less than 1%, there is a significant effect on the performance of the

STAP filter.

1.2: Background

Before STAP came into vogue, clutter filters based on temporal filtering were 

used in both stationary and airborne pulse Doppler MTI radar [1]. The pulse Doppler 

radar exploited the difference between the target and the clutter velocities and the 

corresponding Doppler shifts to detect moving targets. These filters operating on a pulse- 

to-pulse basis provide a notch at zero Doppler frequency. Low Doppler targets, that are 

targets with low relative radial velocity, are buried in the clutter bandwidth and are 

cancelled by the filter along with the clutter and are hard to detect. These filters are 

exclusively temporal in nature and hence are helpless in the presence of jamming. The 

concept of adaptive antenna arrays has been developed to detect signals in the presence of 

jamming both in the context of radar and communication systems. The theory of adaptive 

antenna arrays is now well developed and the books by Widrow [ 2], Monzingo and



Miller [3], Hudson [4], and Compton[5] are excellent sources. Adaptive arrays achieve 

the suppression of the jammer by carrying out spatial filtering rather than temporal 

filtering. One of the first approaches to space-time filtering was the displaced phase 

center antenna (DPCA) concept [6]. The DPCA is a side looking arrangement and is non 

adaptive in nature. Space time adaptive processing combines both temporal and spatial 

filtering to achieve the suppression of both clutter and jamming signals. In addition, 

STAP makes possible sub-clutter visibility. The first significant work detailing the theory 

of STAP was reported by Brennan and Reed [7]. Klemm [8]-[l 1] carried out a number of 

investigations in this area and much of his work is now summarized in his book [12], A 

number of authors have made significant contributions [13]-[18] developing the concept 

of STAP to the point where STAP based radars have become practical. Ward [19] 

presents a comprehensive account of various STAP algorithms including the partially 

adaptive algorithms. Under practical operating conditions, it may not be possible to 

realize the theoretical optimum performance predicted for STAP. Barile et al [20] have 

examined some of these limitations. More recently, research in the area of STAP is 

concentrating on overcoming the issues that make its practical realization difficult [16]. 

Paucity of sufficient sample support [21], inhomogeneity of the data [22], effect of 

mutual coupling between antenna elements [23] etc., are examples of difficulties to be 

overcome before STAP realizes its full potential.
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1.3: Overview

The following investigation seeks to assess the performance of STAP filters in the 

presence of heterogeneous clutter such as internal clutter motion. Most models of STAP 

have ignored the effect of signal bandwidth. In the present investigation the clutter

covariance matrix is modified to account for finite non-zero bandwidth and is used to

compute the optimum weight vector and also the signal to interference noise ratio. 

Chapter-2 develops the signal models for the target, clutter, jamming and thermal noise 

signals and also the STAP architecture. Only fully adaptive architecture is considered 

here. Chapter-3 considers performance of STAP in the presence of non-homogeneous 

clutter. The losses in SINR due to ICM and the presence of movers in the secondary data 

are presented here. Chapter-4 presents the effect of bandwidth. It is shown that even for 

bandwidths less than 1%, the clutter notch is significantly widened resulting in the 

increase of the minimum detectable velocity.
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CHAPTER II

THEORY OF STAP

2.1: Introduction

In this chapter a model is developed for the signals received by airborne pulsed- 

Doppler radar. The received signals will contain a component due to receiver noise and 

may contain components due to both the desired targets and undesired interference. This 

interference could be jamming, clutter or both. Also developed is the general architecture 

and assumptions behind the theory of Space Time Adaptive Processing (STAP) with 

specific attention devoted to the ‘Fully Adaptive STAP’ case. The concept of signal-to- 

interference-plus-noise ratio is presented and developed for the fully adaptive STAP 

model. Finally a frequency domain analysis achieved by unitary transformations is

carried out.

2.2: Signal Model

The radar utilizes an array antenna with an independent receiver channel behind 

each element. The received signals have interference components due to both jamming 

and clutter. The clutter is the most complicated of the signal components.
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2.2.1: Radar System Description

The specific structure of the signals received by the radar depends upon the 

geometry used and is described here. The radar is carried by airborne platform at the

height ha above ground and is moving with a speed va. The coordinate system is shown

in Figure 1. Note that the co-ordinate system shown is not the standard spherical

coordinate system. A unit vector pointing in the direction (4>, 0) is given by

£(0,0) = kxx + ky + kzz = cosQsinty x + cosQcosty + sinQ z (2.1)

A plane wave traveling in the direction k given by,

w(0,0,t) = uoe~jk rej0JI

= uoe~jk^e~jkyye~JkzZej<a (2.2)

We will limit ourselves to the case of a uniformly spaced linear array consisting of N 

elements. The array is taken to lie along the x-axis and the position of the nth element is 

given by,

rn = ndx , where d is the inter-element spacing.

The radar may be forward looking or side looking according to whether va is

perpendicular to the array axis or parallel to the array axis.
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2.2.1.1: The data cube

The radar transmits a coherent burst of M pulses at a constant PRF, fr. A pulse of 

duration Tp corresponding to a bandwidth of B is assumed. A down converter, matched 

filter and A/D converters follow each of the elements as shown in Figure 2.

Figure 2. Processing for each array element channel

For each PRI, L time samples are collected. Each time sample corresponds to a particular 

range. Thus, during each coherent pulse interval (CPI) the data collected consists of MNL 

complex base band samples. This ‘data cube’ may be visualized as shown in Figure 3.

Figure 3. The Radar CPI Data Cube
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Let m, n and 1 be indices corresponding to element, pulse and range. Let xm< be the

spatial snapshot corresponding to the m,h pulse and the 1th range. Then the data 

corresponding to the 1th range gate may be arranged in the form of a (N x M) matrix as,

Xl — [*<,., > Xl.l .............

This data also may be arranged in the form of a vector

i//;=vec(x;) =[x0(,x1(,............ (2-3)

2.2.1.2: The detection problem

Let ipu represent the data vector at any specific range in the absence of target at

that range. Let v, represent the known response of an unit amplitude target. Let ip

represent the observed space-time snapshot at the range of interest. This observed signal 

vector corresponds to one of the two hypotheses, viz.

ip = ip u Ho: Target absent

= a,v, + ipu Hi: Target present (2.4)

Detection consists of making a decision between one of these two hypotheses.

2.2.2: Target Signal:

A target can be defined as a moving point scatterer that has to be detected. The 

target is modeled as a point target with the co-ordinates, Rt, the target range, <j>t, the 

azimuth and, 0t, the elevation moving with a relative radial velocity vt. The transmitted

waveform is given by

?(/) =

9



Where u(t) = 'un(t-mT ) (2.5)

Figure 4. Pulse waveform.

The pulses are taken to be of unit energy, i.e.,

J|«/0|2dr = l (2.6)
o

The energy in the transmitted waveform is given by M. | at |2

2.2.2.1: The received signal

The output of the n* element is a scaled and delayed version of the transmitted 

waveform and is given by,

5„(0 = a/:jvu(t-Tn)eJ2”(f°+f'*'-^

O O ____________ O _____________  O
12 n N

Figure 5. Antenna Array Elements.

Note that the frequency of the received signal is different from the transmitted signal due

2v
to Doppler shift and is given by f0 + ft where ft = —-

The time delay Tn is given by,

/?, + R.I J ,/J
=----------c

10



Rt,n = R, -^,,0,).^

c
_ 2R | 4(tU 

c c
= *,+<

(2.7)

-fc(0,,0,),rn
c

is the relative delay measured from the phase reference to the n

element. For the present geometry,

■ _ - kty^O^jidx
c

———cosdr sin</>,
c

(2.8)

Note that T, » xn and u(t -xn) ~ u(t - T,) with this approximation,

?„ (r) = areivu(t-x,

= a rejvu(t-x,)e j2Kfo' e j2^e~J2^T" e~j2^T"
= a reivu(t-x,)ej2^'eW e-M«, e-j2^,r,e-j2^,rn■

- arejv (e~j2^oT-e~j2^'T' )u(t-x, )ej1^e22^''e~i2^aT" e~j2Kf,x"

Since foxn'» ftxn', e l2^J" may be neglected.

Also, -2^f0Tn'= 2^f0 — cos6, sin0( = 2tt—cos#, sin0, 
c Ao

Defining —cost), sin0, = ,the spatial frequency, -2itfoxn'= n27T7?,.
Ao

The received signal is now given by

s„ (r) = arej2v"u(t-x, )ej2^ej2^ejn2’T')'

After down shifting

5„(r) = 5„(r)e>2^

= areyVlM(r-T,)e>2<'e>n2,rf-

(2.9)

(2.10)
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2.2.2.2: Output of matched filter

The impulse response of the matched filter is given byh(t) = up(-t). Then the

output of the matched filter is given by (-t). The matched filter output

*„(0 = s„ (0*«p(-0

= jsn(y)up(v-t)dv

“ A/—1

= jarejv/' [^up(y-mTr -Tt)].ej2^vej2n^'u*p(v -t)dv
_o© m=Q

M-l °°

= '^areiv'elln™' ]up(v-mTr -T,).u*p(v-t)ej2!tf,vdv.
m=0 _oo

Consider the integral

jup(y-mTr -Tt)u*p(y -t)ej2^,vdv.

With the substitution v' = v - mTr - T,, the integral becomes

- {t - mT, _ Ti})ej2’*,V'dV 

= ,x(t~mTr —T,,ft)

Where /(t,/) = ]up(y')up(y-{t-mTr-T,})ej2^v'dv

X(r,f) is the ambiguity function. Note that x (0,0) = 1

M-\

xn(t) = ae^ej2^' ^ejnM'ejm2^ .X(t-mrr -T„ft) (2.11)
m=0

Now considering only the samples corresponding to the range gate whose delay is T,, for 

the mth pulse.

12



1 2 m

Figure 6. Samples, in the range gate of interest

= T,+mrr

fm = t, + mrr,m = 0,l,......M -1

Since f, « — ,/(0,/f) = 1, and 
T_

x = xn (tm) = a e^emeMT'

Defining the normalized Doppler, G7f = ftTr,

x = a ejnM' .e^2^'nm l

The general form of the signal received is given by

xnm = a,eJnM' ,eim2n(S- n = 0,1,2,.... N-l (2.12)

m = 0,1,2,.... M-l

The amplitude a, is related to the SNR and can be deduced from it using the radar

equation. The SNR per element, per pulse is given by

, = P,G,Tpg^a,
' ^N0LsR,4

(2.13)

Where No is the noise power per unit BW. The average target power is now given by,

Avg_target_power= £(|o:,| ) = cr2£, (2.14)

13



2.2.23: Expression for %,

where xm is the spatial snapshot for the mth pulse.

x0,m

=■

a,e7“-.l 
a,eJm2’aa' .einW‘

ejm2nB}, ejn2n^,

(X g-''"2*®' gA2(V-l)l>,

(2.15)

Where a($,) = [1, eJjr2’3',....ein2{N 1)l5' ] js the spatial steering vector Thus,

x, = l%0;*i;...........
= a, ); );......... )]
= ajl;e*2®';e'*2-2®';............. ®

By the definition of Kronecker product

A ® B = [a(m, ri) x B]

X, = a,b(GJl)®a(#l) = a,v,

Where

(2.16)

(2.17)]

and v, = &(G7r) ® g(#,)

v, (GJ,, #,) is called the steering vector.

14



2.2.3: Noise

The noise that we consider here is the internally generated noise and not the 

external sky noise. The following assumptions are made about this noise signal:

• The noise is independent from channel to channel.

• The correlation time of the noise signal is much less than the pulse repetition 

interval (PRI). Thus noise signal is de-correlated from pulse to pulse.

These two assumptions result in:

Hence a2 is the average noise power.

Thus, the noise signal at any element and sampled during a pulse is correlated with itself 

and de-correlated with the noise signal at any other pulse or element. The correlation 

matrix corresponding to the noise signal is therefore,

(2.18)

2.2.4: Jamming

In this section, expressions are derived for the jamming contribution to a space- 

time snapshot vector and its co-variance matrix. Only the barrage noise jammers are 

considered for the analysis.

15



2.2.4.1: Assumptions

The following assumptions are made about the jamming signal.

• The jammer is on at all times. Hence jamming signal is present in all range

bins.

• The correlation time of the jamming signal is taken to be much greater than 

the time it takes the signal to propagate across the array. Thus, the jamming 

signal at the two (spatial) extremes of the array, are not de-correlated. Such is 

the case with the target signal or indeed any narrow band signal. Note that, as 

the bandwidth of the signal is increased, the correlation time is decreased and 

becomes comparable to the transit time of the signal across the array. Thus the 

assumption implies that the jamming signal is “narrow band”.

2.2.4.2: Expression for % .

We can define a spatial steering vector corresponding to a jammer arriving

from The correlation time of the signal is taken to be much smaller than the

PRI. As a result, the jamming signal is de-correlated from pulse to pulse, much like a 

thermal noise signal. Thus, the barrage noise signal is like a narrowband (target like) 

signal spatially and wideband (noise like) signal temporally.

Let aj be the spatial steering vector corresponding to (0;,^y).

Then jL = [aoa;...... .................... ;am5;]

where, =[a0;a,;.....am;....... ;aM_,]is a (random) vector, containing jammer

amplitudes from pulse to pulse.

16



••• A,,m2 and £[«,«/] = o2^Im ,£. being the JNR.

From the structure of /. , we can express it as,

/,.=«. ®5. (2.19)

2.2.4.3: Expression forRj

The jammer space-time covariance matrix is then,

Rj=e[XjXjH]

= E[(aj®aJ)(ajH ®5/)]

= £[(«.a/)®(5;a/)] (22Q)

= E[aJdjH]®[ajajH]

= a2^jIM®{ajajH}

where <X>; = cr <^.(5^. ) is the jammer spatial covariance matrix.

In the case of multiple jamming signals,

a>y=^»+C)>2+......+

= <T +<7 ^j2^j2^j2 +........ "*"<7 (2.21)

Where Ay = [ajl,aj2,........ ,ay7] and

^j = diag[(72^jl,(J2^j2,....... for jammers that are completely independent of

each other. Else j represents the source covariance matrix of the j jammers.

If rank(^ j) = J, corresponding to the case when no two jammers are coherent,
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rank^R^ = rank(JM ®<X>7) = M xrank(Q?J') = MJ (2.22)

Note that, even though the size of Rj is MN x MN, its rank equals MJ, which can be

much smaller than MN.

2.2.5: Clutter

2.2.5.1: Clutter Model

We discuss here a simple clutter model. Our goal is to understand the distribution 

of clutter in range, angle and time or equivalently in range, spatially frequency and 

Doppler. Consider the model as shown in Figure 7.
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Corresponding to a depression angle, Qc there is a range Rc that defines a clutter ring on

the ground. The entire signal scattered by the ground in this ring maps to a single range

c
bin corresponding to the range Rc. When the maximum un-ambiguous range, Ru =----

is greater than the range to horizon, there is only one clutter ring on the ground 

corresponding to each range. If not, (that is if the distance to horizon is less than Ru),

then the clutter is range ambiguous and in any range bin, clutter may be due to more than

one clutter ring.

Let there be Nr clutter rings.

Let R, = Rc+ (i -1)R„ be the range corresponding to the ith ambiguous range.

Let 0, = 6C (Rt) be the depression angle corresponding to Ri and be the grazing angle.

Then,

0 — -Sin -i

Xc = ~Sin'

Rc +ha(ha+2ge)
2RC (ae +ha)

Rc2 ~ha(ha +2ae) 
2Rcae

- -Sin -i

= —Sin -i

/?. ha 
2a. 2a.

2a. 2a.

(2.23)

With ae = —re, re being the earth’s radius.

Let Rh be the range to horizon. Then,

R„ = yfaj'a+ha “ yl2(1eha (2.25)
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2.2.5.2: Expression for %c

The clutter signal from each clutter ring is modeled as the superposition of a 

sufficiently large number, Nc, of independent clutter sources distributed evenly in 

azimuth. Let the azimuth associated with the kth cell of the ith ring be <|)ik.

Then the normalized spatial frequency associated with this clutter patch is given by

= = ^_cos0_ sin 
A A)

The Doppler frequency corresponding to this clutter patch is given by,

A =
2/s(0,,0,J.va

For va = vax, fc = ~cosOi sin </>ik

The normalized Doppler frequency is given by,

2v T
= A?, =-^cos0(. Sin0lt 

Ao

Then space-time steering vector is defined by,

vik = b(Qik)®a(&ik)

(2.26)

(2.27)

(2.28)

(2.29)

Then, the space-time signal vector %cik from this clutter patch may be obtained by

treating it as a point scatterer (akin to the target we dealt with) and is given by,

Zc,* =«,*vit(0/,A) (2-30)

The signal vector from the whole clutter ring is given by,

(2-3!)

20



The clutter from all the ambiguous ranges is given by

N, Nr N,' * r “j r ' c
Xc=Zzc.,- = LJM (2.32)

a k is the random amplitude of the signal from the ik,h patch. We assume that the clutter

is Gaussian distributed and the clutter in patch (ik) is independent of clutter from patch 

(jl). That is,

The amplitudes aik depend upon the reflectivity model of the area under consideration

and is given by,

0ik = ao (#.■ ’ )x patcharea
patcharea = (R: • A0)(z\7?5ec/,)

One simple model for the ground reflectivity is the constant gamma model. According to

this model,

<70 = rSinyJc

Where T depends upon the terrain. The clutter to noise ratio is given by,

ik <W3n0lsr?
(2.33)

And the clutter from each patch is given by,

f(l«J2)=<^
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2.2.5.3: Expression for Rc:

r,=e[x,x:}
<234>

1 k j I

i k j 1

Since E(aika*,) = a2Qik 8^8^

Let us consider again the expression,

i k

= ZZCT^W*) ® ) ® a(vik)]" (2.35)
i k

- ZMW», W»)" ] ®[5(v„ )S(v„)” ]
i k

Let us consider the expression again. Rc is the weighted sum of the outer products vikv" .

There are Nc x Nr patches. Rc may be expressed as

flc=[Vc][Z]^c]W (2.36)

Where, [Vc] = [Vn,Vr,.... V1/Vc,V2I,V22,.... is a (MN) x (NrNc) matrix

and Q ] is a diagonal matrix corresponding to the clutter power from NcNr patches. That

is,

[Z] = ® ^!ao([<311’<312’-"<31Wc’-"(3/Vrl’-"4NrJVc])
c

2.2.5.4: Clutter Ridges

Consider the disposition of clutter in angle-Doppler space for a given range in 

relation to the signals from a target and jammer. The signal from the target is not
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distributed in range and is a single point in the angle-Doppler space. The jamming signal 

is distributed in range occurring at all ranges but in the angle-Doppler space is limited to 

a line corresponding to a particular angle but distributed in Doppler. Clutter is distributed 

in range and for a given range distributed in both angle and Doppler. However, clutter is

not smeared over the entire angle-Doppler space but limited to regions called clutter

ridges. The geometry of those ridges depends upon the configuration of the radar. It is 

this mapping of jamming and clutter to distinct and separate regions in angle-Doppler

space that leads to successful interference suppression via two-dimensional filtering. We

will consider the configuration of the side looking radar.

The normalized spatial frequency is given by

k(Qc,<l)c').d d .v =---- ---------= — cos 6r sin ri
Aq ^-0

The normalized Doppler frequency is given by

OTc=(2fc(6>c’0c)-Va).rr
A)

.(2*(gc.W)r
Ao (2.37)

A)
Trcosdc sin0c

A = P A d

2v 7"1 v T
where = ——- = 0 r = no of inter element spacing traveled by radar in one PRI.

d d/2

In the #c vs G7C plane, the relationship <77 c = /A is a straight line with slope = p. We will

consider this for several values of p. Note that the highest spatial frequency is equal to
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—. Hence the minimum spatial frequency must be 2.^-. The corresponding sampling

A Aperiod, the inter element spacing is . Thus we will take the spacing d = . Then

2vaTr _ 4vTr 
d " An

(2.38)

2v
Also note that the largest Doppler frequency is —-. Thus the sampling frequency must 

An

be at least
An

A)

T
r 4va
4vT 
—— < 1

An

Figures 8a, 8b and 8c show the clutter ridges obtained for different values of p. For P = 1, 

the Doppler is just full and there is no Doppler ambiguity. P=2.67 corresponds to under 

sampling leading to Doppler ambiguity. PRF is not high enough. A typical 3-D sketch of 

clutter is shown in the Figure 9. The main beam is steered to (p = 90°. The extent of 

clutter in the spatial frequency, Doppler frequency space also depends upon the range. 

Note that each depression angle corresponds to a specific range; 0=0 corresponds to a

7Tlarge range and 0 = — corresponds to shorter ranges.
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1/2

-1/2 0 1/2

Figure 8a. Clutter Ridge, p=l

____________

-1/2 0 1/2
-------------------------------------------------►

Figure 8b. Clutter Ridge, P=0.5

----------------------------------------------------►

Figure 8c. Clutter Ridge, P=2.67
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t Power

Main lobe clutter

1/2
-1/2

Figure 9. 3-D view of clutter

Clutter Ridge

2 2 c

Hence for larger ranges, Qc ~ 0,#c = -^sin<pc clutter fills the entire ridge. But for shorter 

ranges 0c ~ 0, clutter fills only part of the ridge.

2.2.5.3: Structure and Rank of the clutter covariance matrix

The clutter covariance matrix is defined by

x is the spatial snapshot corresponding to the pth pulse. Therefore,

x,
RC=E{ :H 

1 ’ (2.39)
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*c(l)..........*C(M-1)

*c(0)....... Rc(M-2)

7?c (-(Af -1)0) *c(0)

Rc(p) = E[xmx"+p] is the cross-convergence of two spatial snapshots in time by pTr.

Thus Rc is an MxM block matrix with each block being NxN. The pqth elements of this 

matrix corresponds to correlation between two signals corresponding to [n(p),m(p)] and 

[n(q),m(q)], where

n(p) = modulo(p,N), n(q) = modulo(q.N)

and m(p) = floor( —), m(q) = floor( —)
n n

The clutter signal from patch ik sampled at n(p) and m(p) is given by,

Similarly the clutter signal from the same patch ik but sampled at n(q) and m(q) is given 

by

The correlation between these two samples is given by

E[c( a* e^n(p)~n(9^2’r’f‘l eJ^m(p) m(9)J2,ra,‘l‘ ]

This term gives the correlation between these two different samples form a single patch. 

The total correlation is obtained by summing the contributions from all the patches. That

is

P4

Nr Nc

XX (2.40)
i=l k=\
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Note that each of the blocks of matrices Rc(p) is Toeplitz and in addition, the matrix Rc 

itself is block Toeplitz.

Under certain conditions, the clutter covariance matrix has an especially simple structure 

and its rank is much less than the size of the matrix. Let us consider the flowing special

code.

• The radar is a side looking array

• [3 = = 1, with d = —and T = —
2 4vo

• The clutter ridge is defined by G7C = 0c

The general structure of Rc is given by

R =

R,.(0) =

.(0) Rc(l)-. .....Rc(M-n]

(-1) Rc(0).... .....RC(M-1)

.(-(M-l).. ...... Rc(0)

«o «,....
a_, a0.... ....

a-N-i....... ...xx0

and

a, = E[x(p,r)x* (p + i,l)]

where = )(££ a ,keJ‘p"'2^ ) (2.41)
i k i k

= ^a2^e'K‘'"‘ '- = 0,l,2....W-l
i k

at are the correlations at tap 1 between the array elements. To be specific, let us consider

the example of N=3 and M=3
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£cd) = £[x(O)xd)"]

= £{
^(0) 
x,(0) 
x2 (0)

k(l)<(l)ij(l)l

£c(0) contains elements £[x(/?,0)x*(p+ z'),0)]for i -0,l,...2V-l

Let us consider £[x(/?,0)x* (p + z'),l)]

= E[C^Ya^jp2^k XZZ .e~ji2^)
i k i k

= YY°2^^j2^‘k 1 = O’1’2-^ -1
( k

Similarly £[x(p,0)x* (p + z),2)] = a,_2

Putting the entire Rc together,

On observation it can be noted that, Row 1,5 and 9 are identical. Rows 2 and 6 are 

identical and Row 4 and 8 are identical. Thus the rank is 5 even though the size of the

matrix is 9x9.

More generally the rank is equal to N+M-l.

R
Re<® RC(X) £,(2) 
/?"(!) £c(0) £,.(1) 
£t"(2) £"d) ^.(0)
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«0 a, a2 
a_t a0 a, 
a_2 a_, a0 

a, a2 a, '

ao ai ai 
«-l «0

a0 «I
«_2 an
a_, a_2 a_t 

a0 a, a2 
a., a0 a, 
a_2 a., a0

a_2 a., a() 
a_3 a_2 a_, 
a_4 a_3 a_,

«-! a0 «i 
a_2 a_[ a() 
a, a_2 a_,

a2 a, a4 
a, a2 a2

«0 ai a2

a, a2 a3 
cr„ a, a, 
a_, a0 a,

a0 at a2 

a-\ au «i 
a_2 a., a„

2.3: Space Time Processing

In the presence of strong clutter and interference environment, it is difficult to 

detect weak moving targets. Typically ground based radars separate the signal returned 

by the target from the clutter by making use of the Doppler frequency shift induced by 

virtue of the motion of the target. In the case of airborne radar, the echoes from the target

are a function of both angle and frequency.

A space-time processor provides temporal filtering of the radar return at each 

(spatial) element of the antenna array. The received data can thus be resolved into an 

angular spectrum, which is a function of Doppler frequency. For clutter with no relative 

motion with respect to the ground, the return is proportional to the Doppler shift induced 

by the motion of the radar platform. The Doppler spectrum of all the clutter signals from 

a range ring will lie on single clutter ridge in the angle Doppler domain. Since moving 

targets have no defined relationship between their Doppler returns and direction relative 

to the radar, the target contributions will lie away from this clutter ridge and can be 

distinguished from the clutter.
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To implement STAP, requires sampling the radar returns at each element over 

several pulse repetition intervals. The output of this processor is a linear combination or 

weighted sum of the input samples. These weights are computed to reflect the signal 

interference environment. In the subsequent sections, the STAP algorithm (method of 

forming these weights) is explained and the fully adaptive STAP is introduced. Finally 

SINR, which is used as a performance metric, is explained.

2.3.1 General STAP architecture

As explained in section 2.2.1.1, with the radar geometry we have used, the data 

available to the space-time processor is in the form of a data cube with data from M 

pulses over N elements and L range gates. The processor generates an output for each 

range gate by combining the returns from the MN samples. A general block diagram of 

the space-time processor is shown in Figure 10. The processor can be described as an 

MxN weight vector whose output is computed as the inner product of this weight and the 

radar return for that range of interest.

z = wH% (2.42)

These weights have to be formed such that there is a gain on the target data, but nulls are 

formed for the interference data. Since both the target and interference signals (clutter, 

jammers etc) are not known before hand, these weights have to be formed on the basis of 

the data we get from the radar returns.
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Figure 10: General block diagram of a STAP processor.

In the figure, the data from the range gate of interest is termed the target data. This is the 

data from the different pulses at each of the array elements. The processor can be divided

into 3 sub-components as described below.

1. Training strategy: Here an estimate of the interference is formed on the basis of 

the CPI data. The data from several range bins adjacent to the one of interest is

used. The PRI and instantaneous bandwidth are also taken into consideration. The

output of this stage is a training data, which is then used for weight computation. 

Since the interference scenario is changing constantly, the training data has to be

constantly updated.

2. Weight computation: A set of algorithms is applied to the training data from the 

output of the previous stage to get the weight vectors. This is the most 

computationally intensive part of the algorithm. New weight vectors have to be
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computed for each set of training data. The first set of algorithms termed the 

'simple matrix inversion' are used to compute the weight vector from the inverse 

of the data co-variance matrix or more generally by performing an inverse 

transform by Q-R decomposition of the training data co-variance matrix. The next 

set is termed 'subspace projection'. Here an estimate of the interference subspace 

is obtained by Eigen analysis or simple value de-composition of the training data. 

This is then projected orthogonal to the desired response to calculate the weights. 

This causes the interference to be nulled by the weight vector.

3. Weight application-, is the place where the output is computed by the computation 

of the inner product of the data and the weight vector from the previous stage. 

Each set of weights is applied to a particular training data from the different range 

gates. Here again the PRF and instantaneous bandwidth, which determine the 

computational complexity.

The processor output is compared to a threshold level for the detection of a target. The 

ability of constant false alarm rate (CFAR) is usually incorporated into the weight

computations.

2.3.2: Fully Adaptive STAP:

Here the output is computed by the application of a separate weight for each element 

and pulse. Therefore the size of the weight vector is MN. Let $,,G7, and a, represent the

target angle, Doppler and amplitude.

X = a, v, + where Xu = Zc + Z; + Z„the interference. (2.43)

An optimum space-time filter can be computed as
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(2.44)w = R~'v,

where RU is the correlation matrix formed by Rv = ]. This weight vector has

the characteristics of

• Maximum SINR (explained in the next section)

• Maximum probability of detection

• High side lobes in both Doppler and angle for detection of side lobe targets. 

The block diagram for fully adaptive STAP is shown in Figure 11. Fully adaptive STAP 

requires the solution of an MN dimensional system of equations, which in tum is 

dependant on array length and the CPI. Because of this, real time computation is not 

possible. This helps as a baseline against which other methods can be computed.

◄---------------- N Elements ►

z = w x

Figure 11. Fully Adaptive STAP
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2.3.3 STAP Performance Metrics

Developed below are two performance metrics, which are used to compare STAP 

algorithms.

2.3.3.1: Adapted Patterns

The response of the weight vector as a function of angle and Doppler is called the 

adapted pattern which is computed as

Pw(i?,GJ)=|m'"v(#,G7)|2 (2.45)

This is usually computed as the Fourier transform of the weight vector if the PRI is a 

constant. This pattern shows nulls in the direction of interference and high gain at the 

target Doppler and angle. Figure 12 shows the adapted pattern for fully optimum STAP 

which was developed previously. The vertical grooves show the nulls at jammer azimuths 

and the diagonal null represents the clutter ridge.

Normalised STAP Pattern

aln(Aslmuth)

Power (dB) O

-20

-40

-80

-80

-100

-120

-140

-180

I
I

Figure 12. Pattern Output for fully adaptive STAP
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2.3.3.2: Signal to Interference plus Noise ratio (SINR):

The signal component in the output can be expressed as 

z, = a,wHvt, and the noise component as

4 =^HXU (2.46)

The SINR is computed as the ratio of the powers of these two components.

P. fitlz.ll

Substituting the optimum weight vector as w = Ru 'v,

SINR= ° V' - , Simplifying-1.(R;lvt)H RU(R>,)

SINR at a single angle and Doppler is

Computing v, (G7) as a function of target Doppler, the optimum SINR is given by

SINRO =<72^tvl(GJ)R~'vl(tU) (2.47)

Signal to Interference Noise Ratio

Figure 13. SINR for fully adaptive STAP
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2.4 Frequency domain analysis

2.4.1 Unitary transformations

Let F be the unitary transformation. The signal vector in the range bin of interest, / is

given by

X=a,vt + xu

After transformation, the signal vector becomes,

X = FX = a,Fv, +

The optimum weight vector is given by wopt = R~xvt where v, = Fv, and

Ru =E[XuXu]
= E[FxuX^Fh] = FRuFh

■^opl =(FRltFHrlFv, =FRu'FhFv, = FR;'v,
(2.48)

2.4.1.1 Filter output

y = wHX=atwHx,+wHxu 
ys = atwHv, 

yu = ™“xu
Ps = £[| yj2] = £[| a, |2]. | wHv, |2= Ft | w"v, |2= <t2£ | wHv, |2

p» = £[| yu I2] = E[wHxuXu^] = wHRuw
cr2£, | vv"v, |2SINR =

wH R,.w

Noting that w = Fw,vl = Fv,andRu = FRUFH,

SINR =
o2$,\wHFHFvt\2 
wH Fh (FRuFh )Fw

(2.49)
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Since FH F = I,

SINR =
wH R.w

(2.50)

But -<J— L—' ' — is the expression for SINR computed in the space-time domain. Thus
wH R.w

SINR is invariant to unitary transformation.

2.4.1.2 Computational Aspects of SINR

Since we are interested in computing SINR as a function of Doppler, v, must be

computed for several values of the Doppler.

Let vhmat = [v, ,v, 2........... .v, J

= A-'[vmv,.2............ .v,L] = [A’1v,1A“1vf 2.............

Consider w'^v,^, = [A’'v(>1A"‘v(i2. A_1Vu]v,,b

v,W2A-*
k.,vIt2,..... vr.J

V/jA-'v^.v/IA-V,,,..... .v,,A-vlL

v,H2 A , v " A-'vl<2 ..... .v " A ~'vt'L
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Now examine the diagonal term, say the pth term v," A lvtp. The signal power 

corresponding to the p'h term is given by

<72£, I |2= I (A~'v,<p)Hvhp

1^,, I2

Thus the diagonal terms can be used to compute the numerator of the SINR. That is 

neum_f = psit* (diag(wstm *Vt,mtu).*diag(wsmi *v, J) (2.51)

v«A-‘

v,w2A-'

v^A-1

Let us consider w”.Rw,smi smi

Ru[A~^hl,A~lvl2........A-'viL]

v^A^R.A^v,^ x , , x

x .v^A-'R.A-1^, , x

a- ,

As before, it is the diagonal term of the product w"miRuwsmi that is of interest. Note that,

Ru must be the true theoretical expression.

i.e.Ru=FRuF" (2.52)

Let the two dimensional unitary transformation between V (k, 1) and U (m, n) i.e,

V(k,l) <r> U(m,n) be defined as o < k < M - 1

0 < / < JV - 1

0 < m < A/ - 1
39
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\M \ N m=0n=0 

i i A/-1AZ-1

\M yjN m=0n=0
(2.53)

_ .2* .2* 
WM =e'’M-,WN = e’N

Define the following matrices

V = V(k, l),k = 0,1,....M -1; Z = 0,1,.... N -1

U= t/(zn,«),m = 0,l,....M-l;« = 0,l,.... N-1

F„ =F„(k,m) =

F„ = FN(l,n) = -f==W* 

y/N

V (k, 1) may be expressed as

M-l 1 N-l 1

V(k,l) =
m=0 M n-Q N N

0<k<M-l 
0<l<N-\ 
0<m<M -1 
0<n<N-l

(2.54)

N-l
Let U (m,l) = V u(m,n)—

yjNn=Q

Since FN is symmetric, FN(l,ri) = FN(n,l)

N-l
U (m, Z) = £ u(m’ n)FN

n=0

U(m,l) = UFN

M-l 1 _
V(^) = j * lCt/(zn,Z) = fmu=fmufn

V=FmUFn

Pre-multiplying by F" and post multiplying by F" , 
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pHvpH - pH p IJP PH - J Ul =UrMVrN rM rMUrNrN 1MU1N U

Therefore the forward and inverse transforms are given by

V= F UF

TJ = pHvpH

If the matrices are column ordered into vectors,

v = Fu and « = FHv , where F = FN ® FM

If the matrices are row ordered into vectors,

v = Fu and u = FHv , where F = FM ® FN

2.4.1.4: Results

(2.55)

(2.56)

Figurel4: SINR plots with and without Unitary Transformation.
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CHAPTER III

Heterogeneity of Sample Support

3.1: Introduction

It is demonstrated in the last section that, significant suppression of the clutter and 

jamming interferences can be obtained by the two-dimensional filtering, effected by 

STAP. These results are, however, derived under the assumption that there is sufficient 

sample support available to accurately estimate the interference covariance matrix. 

Brennan and Reed [7] have shown that twice as many secondary data vectors as the size

of the correlation matrix are needed to limit the estimation losses to about 3 dB. The

secondary data vectors are derived from the range bins adjacent to the range bin under

test with the implicit assumption that this interference is statistically similar to the

interference present in the range bin where the target is present. That is, it is assumed that

the clutter is homogeneously distributed in range. This may, often, not be the case. In a

recent publication [11] Melvin has presented an asymptotic analysis of the loss in SINR

due to a variety of factors that are responsible for the inhomogeneity of the secondary

data. While this analysis provides a bound on the loss in performance, it does not suggest

any means to ameliorate the problem. One possible way to minimize the loss in

performance is to minimize the number of the secondary data vectors required. It has

been demonstrated that it is possible to obtain near ideal performance with the number of 
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secondary vectors being no more than twice the dimension of the interference subspace

rather than twice the number of the correlation matrix size. It is far easier to assume that

the clutter is homogeneous over a smaller region than a larger region. Thus, eigen 

analysis of the interference covariance matrix is important in the performance of STAP.

In this chapter we carry out simulation studies to study two different kinds of 

inhomogeneity. These are the intrinsic clutter motion and the presence of a target like 

“mover” in the secondary data used to estimate the interference covariance matrix.

3.2: Intrinsic Clutter Motion

In the clutter model presented in the last chapter, it is assumed that the clutter 

signal from each patch is correlated from pulse to pulse. It is this pulse-to-pulse 

correlation that makes it possible to effect its cancellation. However, there are many 

practical situations where a certain amount of de-correlation from pulse to pulse of the 

clutter signal from each patch takes place. Ocean waves are a good example of this 

phenomenon. From pulse to pulse, each patch of the ocean is not exactly the same, 

especially so on a windy day. Cutter from a grassy field on a windy day also exhibits 

significant “ Internal Clutter Motion” (ICM). In the absence of the internal clutter motion, 

the correlation width of the clutter signal is large and its temporal bandwidth is narrow. 

Thus, the width of the clutter ridge in the angle-Doppler space is small when there is no 

ICM present. When there is ICM present, the clutter interference spreads over into the 

rest of the angle-Doppler space from the normally narrow clutter ridge. This phenomenon 

of broadening Doppler spectrum makes the clutter cancellation considerably more

difficult.
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The effect of ICM may be summarized as follows:

• Because of the Doppler broadening, the clutter notch widens. As a result, the 

minimum detectable velocity increases. This is the most significant consequence of

ICM

• The dimension of the interference subspace increases significantly as a result of ICM.

3.2.1: Theory

In the absence of ICM, the amplitude of clutter from each patch is taken to be 

invariant from pulse to pulse, in effect giving rise to zero Doppler bandwidth. That is, the 

Doppler from each clutter patch is induced by the platform motion and the disposition of 

the clutter patch with respect to the platform. To account for ICM, these amplitudes are 

no longer consider invariant but fluctuate with a given auto correlation function. This 

auto correlation function is typically taken to be a Gaussian function parameterized by 

the “ spectral standard deviation” which in turn is related to the “velocity standard 

deviation” associated with the ICM. The details of the theoretical development follow: 

From Equation (2.30) the echo from the kth clutter patch is

/c =at(h(G7j®a(vJ (3.1)

A vector ak can represent the fluctuations as depicted below instead of a single scalar, 

where the term ak m represents amplitude from the kth scatterer for m!h PRI.

&k = [<**,0 ’®*,1 ’.........

Therefore the clutter echo now becomes
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Xc = («* (3.2)

The temporal autocorrelation of the fluctuations is Gaussian using the assumption that the 

Doppler spectrum is Gaussian and can be modeled as

y(m) = E{al+ma;} = cr2^ exp{--^^m2} (3.3)

where is the clutter CNR from Eqn xx and kc is the spectral standard deviation which

can be expressed as

<7 4ttzcc = —-— where ovis the velocity standard deviation. (3.4)
2-o

F* — 5)
= Toeplitz(/C (0);......;/c (M -1)}

is the covariance matrix of the fluctuations for the kth patch. The space-time co-variance 

matrix for a single clutter patch including ICM now is

Rc =^k(rk °t>kbk)®akak

For Nc clutter sources, now

(3.6)
4=1

3.2,2: Results

The velocity standard deviation is changed over a range of values from 0.01 to 0.3. Using 

the model described above, the clutter covariance matrix and the corresponding weight

vector are determined and used to SINR, filter pattern and the filter output. The

distribution of the Eigen values are also computed in each case. The increase in the

interference subspace size is clearly indicated (see figure-15). Associated with the change 

45



in the Eigen distribution is the widening of the clutter notch (see figure-16) that results in 

the increase of the minimum detectable velocity.

FigurelS: Eigen plots with different values of ICM 

Figure 17 and Figure 18 show the filter output and the filter pattern for different levels of 

ICM. While the filter patterns do not change substantially with the level of ICM, the filter 

output changes significantly, showing the spreading of clutter interference into the angle- 

Doppler space. It is this spreading that is responsible for the adverse effects of the ICM.
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Figure 17a: Filter Output with ICM=0

Power (dB)
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NormaHzad STAP Pattern Power (dB)

Figure 18c: Filter Pattern with ICM=0.3

3.3: Mover

The optimum weight vector is computed using the inverse of the interference 

covariance matrix. The secondary data vectors used to estimate the interference

covariance matrix must not, therefore, contain any target signal or target signal like 

signal. When the target of interest is a ground-moving target it is likely that the secondary 

data vectors drawn from the adjacent range rings contain a moving target whose velocity 

is similar to that of the target. A weight vector computed using such a secondary data set 

leads to a STAP filter that not only cancels clutter, but in addition results in unwanted 

signal cancellation as well. The amount of cancellation depends upon the degree of 

coupling that exists between the target and the “mover” that is present in the secondary
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data. The degree of coupling depends upon the Doppler and the azimuth of the target and 

the mover being close to each other. When there is strong coupling, significant loss in 

SINR takes place and filter and the radar become desensitized. The Stronger the echo 

from the mover, the greater is the loss in SINR. A simulation-based study of this 

phenomenon is presented here. A mover is modeled as a point target and is injected into a

secondary clutter data vector at a given azimuth with specified Doppler. It is shown here 

that as the target Doppler approaches the mover Doppler, SINR degradation takes place.

The extent of SINR degradation depends upon the azimuth of the mover in relation to 

that of the target Doppler.

3.3.1: Theory:

The mover can be modeled as a point scatterer in any of the clutter patches and 

behaves similar to the target. Let us consider a mover with the co-ordinates Rmvr, azimuth

(pmvr, and 0mvr its elevation moving with a radial velocity vmvr. Using an analysis similar to

that of the target, the signal returned can be computed as,

(3.7)

where xm is the spatial snapshot for the mth pulse.
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A

Km
a gjx26,„r

—
q gjx^n^mvr

XN-\.m

xin=a,.eJm2Ka-.a^mvr)

Where a(#miT) = [1,eJ’'2')“r,'r,....zA2(A,_l),’'"‘T] is the spatial steering vector Thus,

xmvr =[*0;*p........... ;*«->]
= a„Ivr[5(^vr);e>’2flI»-5(^vr);.........-e*™-""
= amvr [1; e*”"; ej’c2M-;............-e^-  ̂j ® [5(t>... }]

By the definition of Kronecker product

A ® B = [a(m, n) x B]

7 = a b(GJ ) = a vA mvr mvr mvr ' mvr / '~mvr r mvr

where

Wn,J = [l;e mvr ■ . j2(M-\)Jca,„vr5 €

and v,mr = b({Bmvr)®a(&mvr) is the steering vector.

The signal vector from the clutter patch in which this mover is positioned using Equation

2.30, now becomes

Xc.ik =aikvik(0i,(pik)+XmVr (3-8)

The total clutter is computed as before from Equation 2.32

Nr Nc

%c = ik and the clutter co-variance matrix is derived as (3.9)
i=i *=i

Rc=E[XcX^} (3-10)
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3.3.2: Results

To carry out this simulation study, the following parameters are used: N=16 and M=18. 

The target is present at 0° azimuth and the normalized target Doppler is varied from -0.5 

to 0.5. The normalized Doppler of the mover is taken to be 0.23. Two different mover

azimuth locations at tp=O° and <p=2° are considered. Note that the null-to-null beam width

for this configuration is about 4°. Figure 19 and 20 show that as the target Doppler 

approaches the mover Doppler there is a loss in SINR and also that the greater the mover 

strength, the greater the loss. Note that the SINR loss is more significant when the mover 

is at (p=0° than when the mover is at (p=2°. Indeed, when the mover is more than a beam 

width away from the target there is little coupling between the target and the mover and

hence there is little effect on SINR.
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Mover Doppler=0.23, Phi=0.
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Figure 20: SINR with different Mover to Target amplitude ratio,
Mover Doppler=0.23, Phi=2.
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Figure 21a: Filter output, Mover to Target amplitude ratio =0dB
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Figure 21b: Filter output, Mover to Target amplitude ratio =5dB
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Figure 22b: Filter pattern, Mover to Target amplitude ratio=5dB
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CHAPTER IV

Broad-Band STAP

4.1 Introduction

Increasingly, radars are expected to provide more and more information about the 

target. The high range resolution radar (HRR) is one such example. It is expected to 

identify the target rather than simply detect the target. Such complex tasks require the 

radar to have wide bandwidth, on the order of 5% or so. Typical surveillance radars are 

usually considered to be narrowband with bandwidths on the order of 1% or less. The 

effect of bandwidth on the performance of adaptive antennas has been considered, for 

example by Compton[5], The effect of bandwidth on STAP has received relatively little 

consideration but lately there is increasing interest in this direction [24]-[28], We 

consider here the performance of STAP when signal bandwidth is taken into account.

It is demonstrated here that finite bandwidth has a significant and adverse effect 

on the ability of the STAP filter to suppress interference. Signal bandwidth gives rise to

interference bandwidth as well and cancellation of the interference with non-zero

bandwidth is a more challenging task. It is shown here that even for signal bandwidths

less than 1% the SINR performance is adversely affected and in particular, the clutter

ridge is widened. This widening of the clutter ridge results in the minimum detectable

velocity to be higher than that predicted by the optimum STAP filter for the zero

bandwidth case. It is shown that the rank of the clutter covariance matrix increases. Such 
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increase in the interference subspace size has implications in the design of partially 

adaptive algorithms and also in determining the minimum sample support requirements.

4.2. Theory:

The conventional signal modeling used in STAP does not take into account finite 

bandwidth of the signal. The principal effect of finite signal bandwidth is in increasing 

the bandwidth of the interference from the clutter as well. The covariance matrix of cutter

Rc, is given by,

Rc =2£(^a2)viUvikk (4.1)

Here Nr is the number of range ambiguities and Nc is the number of clutter patches in a 

range ring. (s,kcr2) is the average power of clutter interference from the ildh patch. vik is 

the Space-Time steering vector corresponding to the itfh patch. The space-time steering 

vector is defined by,

v(t?,G7) = 6(GJ)®a(t?)
*(0) = [l,«'!”;......

and = ......

The spatial frequency, r), and the normalized Doppler are given by

r) = —cos0sin0 = f0— cosOsin^ 

cj = k = ^Ll.=^Lk
fr V fr C fr

Here fr is the pulse repetition frequency, v is the relative radial velocity and fo is the 

center frequency of the signal. To account for the effect of bandwidth, the definition of

the clutter covariance matrix is defined as

(4.2)
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, /o+»/2
Jv/.

(4.3)
/0-«/2

This is best implemented by carrying out the integration for each element of the matrix 

and the details of such a process are given below.

The (p,q}A element of the clutter covariance matrix, R< for a narrow-band signal is given 

by

Nr Nc

(4.4)

Let

(=i *=i

n(p)-n(q) = rr, n(p) = modulo(p,7V); n(q) = modulo(<7, N)

m(p)-m(q) = m; m(p) = floorA;
N

/n(?) = /toorP-) 
N

Then

Nr Nc
[^b,=LZ<r!'5»e'2”,’*e'j2nmGJik (4.5)

/=! *=i

For a signal with non-zero bandwidth, the definition for spatial frequency is modified to 

reflect its change with frequency and is given below.

d fd
Ojk = — cos 9C sin <(>ik =—cos 9C sin 0ik

S c

nik=2^.-
(4.6)

Note that t)jk is now a function of frequency but the definition of normalized Doppler

continues to be based on the center frequency.
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i /o+?'2 Nr Nc 

D f„-B/2 <=• *=•

, /<,+*'2
=V7'2*^ - Jej2^df

i k & f„-B/2

1 - - d.
= LZ<T2^72,,”a’i‘5 \el2m^fdf\ =-cosflfsin^

i k fa-BI2

j2m#ilf
/0+«/2

I k b
f„-B/2

i? ryntn.. 1 1_ V Y<T2Z x^'2™®* 1 1 r j2m^(f0+B/2)-2-2-<T«»e S;2rof.T,1 J
i k

=ZZcT2^e
j2tma>tk J_ej2mi)itfl) 2 j SUl B)

B j2mi$ik

= Y Y <7 e>2iaf®* sin[;pH?afl]
ik * rin$ikB

( k

Be, =YYRc^B,ik (4.7)
i k

where,

rR 1 _ sin[nnOitB] 
L B.ik |,q - «rcnf>ikB (4.8)

and @ indicates the Hadamard matrix product.

4.3 Results:

With the covariance matrix for finite bandwidth, as defined in Section-4.2, the optimum

weight vector is computed in the usual fashion and is given by

Ww=Ri»1. <4-9>
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Note that the steering vector, v,, used here corresponds to the expected target Doppler

and angle at the center frequency. Whether the steering vector should be modified or not 

to account for the finite bandwidth is an interesting question to be considered. The SINR 

is computed in the usual fashion for two different values of clutter to noise ratio and are 

shown below in Figure 27. For all the computations presented here, only the side looking 

radar configuration has been considered. The number of elements in the array is 16 and 

the number of pulses in the coherent processing interval is 18. The radar center frequency

is 450 MHz.

Figure 27a: Effect of bandwidth on SINR. SNR= 10 dB,CNR=47.
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SINR plots with dflsrsrt values of BW

Figure 27b: Effect of bandwidth on SINR. SNR= 10 dB, CNR=37

These results clearly show that even relatively small bandwidths have an adverse impact 

on the clutter cancellation capability of the STAP filter. Also, it may be noted that the 

clutter to noise ratio also has an impact on the ability of the filter to cancel the clutter.

The clutter notch is significantly widened resulting in a loss in the ability to detect slow 

moving targets; that is, the minimum detectable velocity is increased. The reason for the 

loss in performance lies in the increase in the clutter bandwidth when the signal 

bandwidth increases. The interference from each clutter patch, emanating from a given 

azimuth angle at the array, appears as an extended source because of non -zero bandwidth.
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Eigen ptot* with different values of BW

Figure 28: The effect of bandwidth on the clutter eigenspectrum

This effect serves to raise the rank of the clutter covariance matrix. Figures 28 

shows the clutter eigenspectra for CNR=47 dB. The significant increase in the size of the 

interference subspace is quite evident and is responsible for the loss in the filter 

performance. It may be noted that the low rank nature of the clutter covariance matrix for 

the zero bandwidth case is taken advantage of to design a number of partially adaptive 

algorithms that require less degrees of freedom but at the same time yield a filter 

performance close to that of the fully adaptive case. It appears that the finite signal 

bandwidth makes it that much harder to attain good performance with the partially 

adaptive algorithms.

It is instructive to examine the STAP filter pattern and output to gain further 

insight into the loss in performance. Figure 29a, 29b and 29c show the filter output for
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CNR=37 dB and a normalized target Doppler of 0.25 for three different bandwidths 

corresponding to 0%, 0.2% and 1%. It can be seen clearly that there is increasing 

amounts of interference in the filter output as the bandwidth is increased resulting in the

SINR loss.

-1 -0 8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1
si n( Azimuth)

Figure 29a: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=0%
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29b: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=0.5%
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Figure 29c: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=1%
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Figures 30a, 30b and 30c show the STAP patterns for the same case as considered for the 

filter output shown earlier. Deterioration of the patterns, in the form of increasing 

sidelobe levels, for increasing bandwidth is quite evident.
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Figure 30a: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=0%
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Figure 30b: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0,25. BW=0.5%
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Figure 31c: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=1%
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As the target Doppler gets closer to the clutter ridge, the ability of the filter to suppress 

interference is further compromised and can be seen clearly by examining the filter 

outputs and patterns for different bandwidths. For the sake of completeness, these outputs 

and patterns are given in figures 31 and 32 for a normalized target Doppler of 0.1.
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Figure 31a: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=0%
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Normaltaed Output of STAP Filter In dB Power (<IB)
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Figure 31b: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=0J%
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Figure 31c: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=1% 
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Figure 32a: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=0%
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Figure 32c: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=1%

As a further exercise, the jammers used in the earlier simulations were removed and a 

similar set of results was obtained. The original configuration of a side looking radar was

retained.
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SINR plot* with different value* of BW

Figure 33: Effect of bandwidth on SINR, SNR=10dB, CNR=47,Without Jammers.

Figure 34: Effect of Bandwidth on SINR, SNR=10dB, CNR=37, Without Jammers.
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We obtain similar results showing the adverse impact on the clutter cancellation 

capability of the filter. Figures 33 and 34 also show that the clutter to noise ratio has an 

impact on the filter capability. Figure 35 shows the clutter eigenspectra for CNR = 47 

which depicts the increase in the size of the interference subspace.

Figure 35: Effect of bandwidth on clutter eigenspectrum. No Jammer scenario.

The STAP filter output and patterns are next shown. As is evident from the figures, as we 

increase the bandwidth, the interference is of a greater degree as compared to a similar 

scenario with Jammers included. The STAP patterns also show a similar deterioration for 

increasing bandwidth.
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Figures 36a, 36b and 36c show the filter output for CNR = 47dB and a target Doppler of 

0.25 for three different bandwidths corresponding to 0%, 0.5% and 1%. Figures 37a, 37b 

and 37c show the STAP patterns for the same case.

Normallaed Output of STAP Filter in dB Power (dB)

Figure 36a: Filter output. CNR=47 dB and SNR=10dB. Target Doppier=0.25. BW=0%
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Figure 36b: Filter output. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=0.5%
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Figure 37c: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.25. BW=1 %

The same set of figures with CNR = 47dB, target Doppler of 0.1 is shown in Figures 38

and 39.
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Figure 38a: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=0%

83



NermaUsd Outpid a* STAP FHIar in dB Power (dB)

-10

0.5

0.4

0 3

02

£ 01

1 0 
J-0 1 

-0.2

-0.3

-0.4

-OS
-OS -o« os-0.4 -0.2 O 0.2 0.4

sfeXAxhnuth)
OS

-18

- -20

-25

-30

-35

-40

=10dB. Target Doppler=0.1. BW=03%Figure 38b: Filter pattern. CNR=47 dB and SNR

0.5

0.4

0.2

K 0.1

-0.1

-0.2

-0.3

-0,4

-0.5
-0 8 -0.6 -0 4 -0 2 0 0 2

«ln(Azimuth)
0 4 0 8 0.8 1

Power (dB)
0

-5

-10

-15

-20

-25

-30

-35

-40

Figure 38c: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=1%

84



Narmataad STAR Rattan, Power (dB)
0

-1 -0.8 -0.9 -0.4 -0.2 0 0.2 0.4 0.8 0.8 1
•HXAdmuth)

Figure 39a: filter pattern. CNR=47 dB and SNR=10dB. Target DopplersO.l. BW=0%

NavmatoBtt STAP Pattern

-1 -0.8 -0 6 -0 4 -0.2 0 0.2 0 4 O • 0.1 1
sirKAttmuth)

Power (ttB)

Figure 39b: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=03%

85



Normalized STAP Pattern Power (<IB)
0

-20

No
rm

al
iz

ed
 D

op
pl

er
0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
-OS 0.4 -0.2 0 0.2 

sin( Azimuth)
0.8

-40

-60

-SO

-100

-o.e

Figure 39c: Filter pattern. CNR=47 dB and SNR=10dB. Target Doppler=0.1. BW=1%

86



CHAPTER V

CONCLUDING REMARKS

The theoretical development of STAP to suppress interference is now well 

established. The challenges lie in making STAP a practical reality. Designing a processor 

that is fast enough that it has the computational throughput necessary to implement the 

complex computations of STAP in real time is one such important challenge. In addition, 

a practical implementation of STAP requires an estimate of the interference covariance 

matrix. This requires the existence of a sufficient sample support that is homogeneous. In 

practice, the sample support may neither be sufficient nor homogenous. We have 

examined here two specific ways the sample support is heterogeneous and their 

consequences. Both ICM and “movers” in their own different ways adversely impact the 

STAP performance. The heterogeneity forces the designer to come up with algorithms 

that require fewer degrees of freedom and/or more efficient methods of covariance matrix

estimation.

We also considered here the effect of finite non-zero bandwidth on the

performance of STAP filters. Conventional STAP analyses, for instance, as in [9], in

effect consider the bandwidth to be essentially zero. Usually, signal bandwidths less than

1% are taken to be “narrow band”. It is shown here that finite bandwidth has a significant

and adverse effect on the ability of the STAP filter to suppress interference. Signal 

87



bandwidth gives rise to interference bandwidth as well and cancellation of the broadband 

interference is a more challenging task than interference of zero bandwidth. It is shown 

here that even for signal bandwidths less than 1% the SINR performance is adversely 

affected and in particular, the clutter ridge is widened. This widening of the clutter ridge 

results in the minimum detectable velocity to be higher than that predicted by the 

optimum STAP filter for the zero bandwidth case. The interference arriving from each 

clutter patch appears to the adaptive array as an extended source (in angle) and as a result

the rank of the clutter covariance matrix increases. Such increase in the interference

subspace size has implications in the design of partially adaptive algorithms and also in 

determining the minimum sample support requirements. Two possible approaches come 

to mind to mitigate the effect of non-zero bandwidth. It would be interesting to consider 

incorporating true time delay line beam forming into the STAP architecture to overcome 

the dispersive effects of bandwidth across the array. A second approach might be the use 

of fast time taps in addition to the slow time taps that are normal part of the STAP 

architecture. Yet another approach is sub-band based architecture for STAP.
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