2,983 research outputs found

    Non-ideal iris recognition

    Get PDF
    Of the many biometrics that exist, iris recognition is finding more attention than any other due to its potential for improved accuracy, permanence, and acceptance. Current iris recognition systems operate on frontal view images of good quality. Due to the small area of the iris, user co-operation is required. In this work, a new system capable of processing iris images which are not necessarily in frontal view is described. This overcomes one of the major hurdles with current iris recognition systems and enhances user convenience and accuracy. The proposed system is designed to operate in two steps: (i) preprocessing and estimation of the gaze direction and (ii) processing and encoding of the rotated iris image. Two objective functions are used to estimate the gaze direction. Later, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. Two methods: (i) PCA and (ii) ICA are used for encoding. Three different datasets are used to quantify performance of the proposed non-ideal recognition system

    High-Speed Human Motion Recognition Based on a Motion History Image and an Eigenspace

    Get PDF
    This paper proposes an efficient technique for human motion recognition based on motion history images and an eigenspace technique. In recent years, human motion recognition has become one of the most popular research fields. It is expected to be applied in a security system, man-machine communication, and so on. In the proposed technique, we use two feature images and the eigenspace technique to realize high-speed recognition. An experiment was performed on recognizing six human motions and the results showed satisfactory performance of the technique

    Algorithms for super-resolution of images based on Sparse Representation and Manifolds

    Get PDF
    lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super­ resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Super-resolução de imagens é definido como urna classe de técnicas que melhora a resolução espacial de imagens. Métodos de super-resolução podem ser subdivididos em métodos para urna única imagens e métodos para múltiplas imagens. Esta tese foca no desenvolvimento de algoritmos baseados em teorias matemáticas para problemas de super-resolução de urna única imagem. Com o propósito de estimar urna imagem de saída, nós adotamos urna abordagem mista, ou seja: nós usamos dicionários de patches com restrição de esparsidade (método baseado em aprendizagem) e termos de regularização (método baseado em reconstrução). Embora os métodos existentes sejam eficientes, eles nao levam em consideração a geometria dos dados para: regularizar a solução, clusterizar os dados (dados sao frequentemente clusterizados usando algoritmos com a distancia Euclideana como métrica de dissimilaridade), aprendizado de dicionários (eles sao frequentemente treinados usando PCA ou K-SVD). Portante, os métodos do estado da arte ainda tem algumas deficiencias. Neste trabalho, nós propomos tres métodos originais para superar estas deficiencias. Primeiro, nós desenvolvemos SE-ASDS (um termo de regularização baseado em structure tensor) afim de melhorar a nitidez das bordas das imagens. SE-ASDS alcança resultados muito melhores que os algoritmos do estado da arte. Em seguida, nós propomos os algoritmos AGNN e GOC para determinar um subconjunto de amostras de treinamento a partir das quais um bom modelo local pode ser calculado para reconstruir urna dada amostra de entrada considerando a geometria dos dados. Os métodos AGNN e GOC superamos métodos spectral clustering, soft clustering e os métodos baseados em distancia geodésica na maioria dos casos. Depois, nós propomos o método aSOB que leva em consideração a geometria dos dados e o tamanho do dicionário. O método aSOB supera os métodos PCA e PGA. Finalmente, nós combinamos todos os métodos que propomos em um único algoritmo, a saber, G2SR. Nosso algoritmo G2SR mostra resultados melhores que os métodos do estado da arte em termos de PSRN, SSIM, FSIM e qualidade visual

    Face Recognition Methodologies Using Component Analysis: The Contemporary Affirmation of The Recent Literature

    Get PDF
    This paper explored the contemporary affirmation of the recent literature in the context of face recognition systems, a review motivated by contradictory claims in the literature. This paper shows how the relative performance of recent claims based on methodologies such as PCA and ICA, which are depend on the task statement. It then explores the space of each model acclaimed in recent literature. In the process, this paper verifies the results of many of the face recognition models in the literature, and relates them to each other and to this work

    医用超音波における散乱体分布の高解像かつ高感度な画像化に関する研究

    Get PDF
    Ultrasound imaging as an effective method is widely used in medical diagnosis andNDT (non-destructive testing). In particular, ultrasound imaging plays an important role in medical diagnosis due to its safety, noninvasive, inexpensiveness and real-time compared with other medical imaging techniques. However, in general the ultrasound imaging has more speckles and is low definition than the MRI (magnetic resonance imaging) and X-ray CT (computerized tomography). Therefore, it is important to improve the ultrasound imaging quality. In this study, there are three newproposals. The first is the development of a high sensitivity transducer that utilizes piezoelectric charge directly for FET (field effect transistor) channel control. The second is a proposal of a method for estimating the distribution of small scatterers in living tissue using the empirical Bayes method. The third is a super-resolution imagingmethod of scatterers with strong reflection such as organ boundaries and blood vessel walls. The specific description of each chapter is as follows: Chapter 1: The fundamental characteristics and the main applications of ultrasound are discussed, then the advantages and drawbacks of medical ultrasound are high-lighted. Based on the drawbacks, motivations and objectives of this study are stated. Chapter 2: To overcome disadvantages of medical ultrasound, we advanced our studyin two directions: designing new transducer improves the acquisition modality itself, onthe other hand new signal processing improve the acquired echo data. Therefore, the conventional techniques related to the two directions are reviewed. Chapter 3: For high performance piezoelectric, a structure that enables direct coupling of a PZT (lead zirconate titanate) element to the gate of a MOSFET (metal-oxide semiconductor field-effect transistor) to provide a device called the PZT-FET that acts as an ultrasound receiver was proposed. The experimental analysis of the PZT-FET, in terms of its reception sensitivity, dynamic range and -6 dB reception bandwidth have been investigated. The proposed PZT-FET receiver offers high sensitivity, wide dynamic range performance when compared to the typical ultrasound transducer. Chapter 4: In medical ultrasound imaging, speckle patterns caused by reflection interference from small scatterers in living tissue are often suppressed by various methodologies. However, accurate imaging of small scatterers is important in diagnosis; therefore, we investigated influence of speckle pattern on ultrasound imaging by the empirical Bayesian learning. Since small scatterers are spatially correlated and thereby constitute a microstructure, we assume that scatterers are distributed according to the AR (auto regressive) model with unknown parameters. Under this assumption, the AR parameters are estimated by maximizing the marginal likelihood function, and the scatterers distribution is estimated as a MAP (maximum a posteriori) estimator. The performance of our method is evaluated by simulations and experiments. Through the results, we confirmed that the band limited echo has sufficient information of the AR parameters and the power spectrum of the echoes from the scatterers is properly extrapolated. Chapter 5: The medical ultrasound imaging of strong reflectance scatterers based on the MUSIC algorithm is the main subject of Chapter 5. Previously, we have proposed a super-resolution ultrasound imaging based on multiple TRs (transmissions/receptions) with different carrier frequencies called SCM (super resolution FM-chirp correlation method). In order to reduce the number of required TRs for the SCM, the method has been extended to the SA (synthetic aperture) version called SA-SCM. However, since super-resolution processing is performed for each line data obtained by the RBF (reception beam forming) in the SA-SCM, image discontinuities tend to occur in the lateral direction. Therefore, a new method called SCM-weighted SA is proposed, in this version the SCM is performed on each transducer element, and then the SCM result is used as the weight for RBF. The SCM-weighted SA can generate multiple B-mode images each of which corresponds to each carrier frequency, and the appropriate low frequency images among them have no grating lobes. For a further improvement, instead of simple averaging, the SCM applied to the result of the SCM-weighted SA for all frequencies again, which is called SCM-weighted SA-SCM. We evaluated the effectiveness of all the methods by simulations and experiments. From the results, it can be confirmed that the extension of the SCM framework can help ultrasound imaging reduce grating lobes, perform super-resolution and better SNR(signal-to-noise ratio). Chapter 6: A discussion of the overall content of the thesis as well as suggestions for further development together with the remaining problems are summarized.首都大学東京, 2019-03-25, 博士(工学)首都大学東

    Infrared Image Super-Resolution: Systematic Review, and Future Trends

    Full text link
    Image Super-Resolution (SR) is essential for a wide range of computer vision and image processing tasks. Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning. This survey aims to provide a comprehensive perspective of IR image super-resolution, including its applications, hardware imaging system dilemmas, and taxonomy of image processing methodologies. In addition, the datasets and evaluation metrics in IR image super-resolution tasks are also discussed. Furthermore, the deficiencies in current technologies and possible promising directions for the community to explore are highlighted. To cope with the rapid development in this field, we intend to regularly update the relevant excellent work at \url{https://github.com/yongsongH/Infrared_Image_SR_SurveyComment: Submitted to IEEE TNNL
    corecore