676 research outputs found

    Optimization of Home Mortgage Mover Predictive Model Applying Geo-Spatial Analysis and Machine Learning Techniques

    Get PDF
    In the last decade digital innovations and online banking services have significantly changed customers banking preferences and behaviour. Banking industry is going through the changes and developments in the provision of banking services that are affecting the structure and the organization of the bank network. However, private home loan, referred as Home Mortgage hereinafter, continue to remain among the products, that customers prefer to have personal interaction about with professional advisors prior making the decision to apply for the loan with financial institution

    Improving Mobility and Safety in Traditional and Intelligent Transportation Systems Using Computational and Mathematical Modeling

    Get PDF
    In traditional transportation systems, park-and-ride (P&R) facilities have been introduced to mitigate the congestion problems and improve mobility. This study in the second chapter, develops a framework that integrates a demand model and an optimization model to study the optimal placement of P&R facilities. The results suggest that the optimal placement of P&R facilities has the potential to improve network performance, and reduce emission and vehicle kilometer traveled. In intelligent transportation systems, autonomous vehicles are expected to bring smart mobility to transportation systems, reduce traffic congestion, and improve safety of drivers and passengers by eliminating human errors. The safe operation of these vehicles highly depends on the data they receive from their external and on-board sensors. Autonomous vehicles like other cyber-physical systems are subject to cyberattacks and may be affected by faulty sensors. The consequent anomalous data can risk the safe operation of autonomous vehicles and may even lead to fatal crashes. Hence, in the third chapter, we develop an unsupervised/semi-supervised machine learning approach to address this gap. Specifically, this approach incorporates an additional autoencoder module into a generative adversarial network, which enables effective learning of the distribution of non-anomalous data. We term our approach GAN-enabled autoencoder for anomaly detection (GAAD). We evaluate the proposed approach using the Lyft Level 5 dataset and demonstrate its superior performance compared to state-of-the-art benchmarks. The prediction of a safe collision-free trajectory is probably the most important factor preventing the full adoption of autonomous vehicles in a public road. Despite recent advancements in motion prediction utilizing machine learning approaches for autonomous driving, the field is still in its early stages and necessitates further development of more effective methods to accurately estimate the future states of surrounding agents. Hence, in the fourth chapter, we introduce a novel deep learning approach for detecting the future trajectory of surrounding vehicles using a high-resolution semantic map and aerial imagery. Our proposed approach leverages integrated spatial and temporal learning to predict future motion. We assess the efficacy of our proposed approach on the Lyft Level 5 prediction dataset and achieve a comparable performance on various motion prediction metrics

    Efficient Information Dissemination in Vehicular Networks with Privacy Protection

    Get PDF
    Vehicular ad hoc network (VANET) is a key component of intelligent transportation System (ITS). In VANETs, vehicles and roadside units exchange information for the purpose of navigation, safe driving, entertainment and so on. The high mobility of vehicles makes efficient and private communications in VANETs a big challenge. Improving the performance of information dissemination while protecting data privacy is studied in this research. Meet-Table based information dissemination method is first proposed, so as to improve the information dissemination, and to efficiently distribute information via utilizing roadside units, Cloud Computing, and Fog Computing. A clustering algorithm is proposed as well, to improve the stability for self-organized cluster-based dissemination in VANETs on highways. Then, fuzzy neural networks are used to improve the stability and security of routing protocols, AODV, and design a novel protocol, GSS-AODV. To further protect data privacy, a multi-antenna based information protection approach for vehicle-to-vehicle(V2V) communications is also proposed

    Understanding Factors Affecting Arterial Reliability Performance Metrics

    Get PDF
    In recent years, the importance of travel time reliability has become equally important as average travel time. However, the majority focus of travel time research is average travel time or travel time reliability on freeways. In addition, the identification of specific factors (i.e., peak hours, nighttime hours, etc.) and their effects on average travel time and travel time variability are often unknown. The current study addresses these two issues through a travel time-based study on urban arterials. Using travel times collected via Bluetooth data, a series of analyses are conducted to understand factors affecting reliability metrics on urban arterials. Analyses include outlier detection, a detailed descriptive analysis of select corridors, median travel time analysis, assessment of travel time reliability metrics recommended by the Federal Highway Administration (FHWA), and a bivariate Tobit model. Results show that day of the week, time of day, and holidays have varying effects on average travel time, travel time reliability, and travel time variability. Results also show that evening peak hours have the greatest effects in regards to increasing travel time, nighttime hours have the greatest effects in regards to decreasing travel time, and directionality plays a vital role in all travel time-related metrics

    Level of service criteria of urban walking environment in indian context using cluster analysis

    Get PDF
    To know how well roadways accommodate pedestrian travel or how they are pedestrian friendly it becomes necessary to assess the walking conditions. It would also help evaluating and prioritizing the needs of existing roadways for sidewalk construction. Estimation of Pedestrian Level of Service (PLOS) is the most common approach to assess the quality of operations of pedestrian facilities. The focus of this study is to identify and access the suitable methodology to evaluate PLOS for off-street pedestrian facilities in Indian context. Defining the level of service criteria for urban off-streets pedestrian facilities are basically classification problems. Cluster analysis is found to be the most suitable technique for solving these classification problems. Cluster analysis groups object based on the information found in the data describing their relationships. K-means, Hierarchical Agglomerative Clustering (HAC), Fuzzy c-means (FCM), Self Organizing MAP (SOM) in Artificial Neural Network (ANN), Affinity Propagation (AP) and Genetic Algorithm Fuzzy (GA Fuzzy) clustering are the six methods are those employed to define PLOS criteria in this study. Four parameters such as pedestrian space, flow rate, speed and volume to capacity (v/c) ratio are considered to classify PLOS categories of off-street pedestrian facilities. And from the analysis six LOS categories i.e. A, B, C, D, E and F which are having different ranges of the four parameters are defined. From the study it found that pedestrian faces a good level of service of “A”, “B” and “C” are more often than at poor levels of service of “D”, “E” and “F”. From all the six clustering methods K-means is found to be the most suitable one to classify PLOS in Indian context

    Transportation data analysis. Advances in data mining and uncertainty treatment

    Get PDF
    2010/2011Nello studio dei sistemi di trasporto l’acquisizione e l’utilizzo di informazioni corrette e aggiornate sullo stato dei sistemi rappresentano da sempre elementi di centrale importanza per la produzione di analisi adeguate ed affidabili. Sfortunatamente in molti ambiti applicativi le informazioni disponibili per le analisi sono invece spesso carenti o di bassa qualità, e il loro utilizzo si traduce in risultati affetti da elevata incertezza e talvolta di dubbia validità. I processi di evoluzione tecnologica che interessano campi quali l’informatica, l’elettronica e le telecomunicazioni stanno rendendo progressivamente più semplice e conveniente l’acquisizione di rilevanti quantità di dati di interesse per le analisi trasportistiche, sia tradizionalmente raccolti per studi trasportistici (ad esempio dati di traffico rilevati su tronchi stradali) sia non direttamente connessi ad un uso trasportistico (ad esempio segnali Bluetooth e GPS provenienti da dispositivi di telefonia mobile). Tuttavia in molti casi l’ampia disponibilità di dati, soprattutto nel secondo caso, non si traduce in immediata spendibilità applicativa. I dati sono infatti spesso disomogenei dal punto di vista informativo, caratterizzati da una qualità non necessariamente elevata e spesso richiedono onerosi processi di verifica e validazione. In questi particolari contesti l’applicazione di tecniche di Data Mining può dimostrarsi una soluzione indubbiamente vantaggiosa. Esse infatti, per loro intrinseca natura, rendono possibile la gestione efficace di grandi quantità di dati e la produzione di risultati sempre più robusti all’aumentare delle dimensioni della base di dati disponibile. Sulla base di queste considerazioni questo lavoro di tesi si è concentrato in primo luogo su un’attenta revisione delle più consolidate tecniche di Data Mining, individuando gli ambiti applicativi, nel campo dei trasporti, in cui esse possono rappresentare dei validi strumenti di analisi. Con il termine Data Mining si fa riferimento al processo di estrazione dell’informazione presente in un certo insieme di dati, finalizzato ad individuare relazioni “nascoste” nei dati stessi o comunque a sintetizzare in modalità nuove la visione su di essi. Esso rappresenta una parte di un più ampio processo di estrazione della conoscenza, che inizia con un’accurata selezione e trasformazione dei dati disponibili (come detto i dati sottoposti a “mining” sono spesso raccolti con altri obiettivi) e si conclude con un’attenta interpretazione e valutazione dei risultati. Uno schema di classificazione generalmente accettato suddivide le tecniche di Data Mining in sei categorie in rapporto alla funzione considerata: stima (reti neurali, modelli di regressione, alberi decisionali), previsione (reti neurali, alberi decisionali), classificazione (k-nearest neighbour, alberi decisionali, reti neurali), raggruppamento (tecniche di clustering, Self-Organising-Maps), associazione (regole di associazione) e descrizione (regole di associazione, clustering, alberi decisionali). Nel presentare un quadro d’insieme dell’ampia letteratura esistente in materia, uno specifico rilievo è stato dato alle più consolidate tecniche di classificazione, raggruppamento e associazione, in quanto maggiormente impiegate nei diversi contesti applicativi. Successivamente è stato tracciato uno stato dell’arte per ciò che attiene le applicazioni in ambito trasportistico. In tal senso la revisione dei lavori prodotti ha evidenziato la notevole flessibilità d’uso di queste tecniche e la loro crescente diffusione applicativa. Molti sono infatti i filoni di ricerca che hanno beneficiato di queste tecniche innovative; tra questi nel lavoro di tesi si sono evidenziati alcuni tra i più interessanti: la previsione a breve termine dei flussi di traffico da dati storici o in real-time (traffic forecasting), l’identificazione e la quantificazione dei fattori che influenzano i fenomeni di incidentalità, l’analisi di sistemi di gestione delle pavimentazioni stradali e di sistemi di monitoraggio del traffico. La seconda parte della tesi si è invece focalizzata su un’applicazione delle tecniche di Data Mining allo studio del funzionamento di un sistema viario, attraverso una revisione critica della Procedura FHWA (Federal Highway Administration) per il monitoraggio del traffico stradale. La scelta di questo filone di ricerca è data dal fatto che la raccolta di informazioni sui volumi di traffico è un aspetto rilevante nell’attività di pianificazione dei trasporti (ambito stradale), quale componente significativa del processo conoscitivo. D’altra parte i costi legati alla gestione dei sistemi di monitoraggio, sia per attrezzature che per personale, richiedono una crescente attenzione alla loro progettazione, al fine di ottenere la massima qualità dei risultati. Negli Stati Uniti la FHWA definisce periodicamente alcune linee guida per migliorare questi aspetti attraverso la Traffic Monitoring Guide (2001) e ha raggiunto progressivamente un ruolo di riferimento per altre agenzie dello stesso tipo in altre parti del mondo, Italia compresa. Tale procedura è basata sull’uso congiunto di rilievi di diversa durata (rilievi in continuo con strumenti fissi e rilievi di breve durata con apparecchiature portatili) ed è finalizzata principalmente alla stima del Traffico Giornaliero Medio Annuo (Annual Average Daily Traffic, AADT). L’analisi della letteratura esistente ha individuato la lacuna principale della procedura FHWA nella determinazione dei gruppi tipologici di strade sulla base dei profili temporali di traffico e nell’assegnazione delle sezioni monitorate con rilievi di breve durata a questi gruppi. L’approccio elaborato si è pertanto posto l’obiettivo di migliorare la procedura relativamente a questi due aspetti rilevanti. Per trattare l’esistenza di situazioni di incerta attribuzione di una sezione stradale ad un certo gruppo tipologico, specie quando non è semplice fornire una chiara definizione in termini trasportistici (ad esempio strada “pendolare” o “turistica”), sono state adottate tecniche di Fuzzy Clustering, garantendo un’opportuna trattazione formale del problema. Per quanto concerne il secondo aspetto, le sezioni non monitorate in continuo vengono inserite nel gruppo tipologico più simile rispetto ai profili temporali di traffico osservati. Per effettuare l’assegnazione di queste sezioni ai gruppi tipologici, l’approccio proposto ha utilizzato una Rete Neurale Artificiale, opportunamente progettata per mantenere l’incertezza presente nella fase di creazione dei gruppi fino alla fine del processo. L’output della rete è infatti rappresentato dall’insieme delle probabilità di appartenenza del rilievo di breve durata ai diversi gruppi tipologici ed è interpretato utilizzando la teoria di Dempster-Shafer. Le misure di incertezza associate all’output (indici di non-specificità e discordanza) permettono di descrivere sinteticamente la qualità dell’informazione disponibile. L’approccio proposto è stato implementato considerando i dati di monitoraggio provenienti dal programma SITRA (Sistema Informativo TRAsporti) della Provincia di Venezia. Rispetto all’ambito applicativo di interesse è stata verificata la validità dell’approccio, confrontando i risultati ottenuti nella stima dell’AADT con precedenti approcci proposti in letteratura. L’analisi comparativa dei risultati ha permesso di rilevare una migliore accuratezza delle stime e soprattutto la possibilità, assente nei precedenti approcci, di evidenziare eventuali carenze informative (dovute all’esiguo numero di dati) e la necessità di procedere con ulteriori rilievi di traffico. I risultati positivi ottenuti in questa fase sperimentale hanno permesso di avviare il progetto per la realizzazione di uno strumento software di immediata spendibilità applicativaIn the study of transportation systems, the collection and the use of correct information of the state of the system represent a central point for the development of reliable and proper analyses. Unfortunately in many application fields information is generally obtained using limited, scarce and low-quality data and their use produces results affected by high uncertainty and in some cases low validity. Technological evolution processes which interest different fields, including Information Technology, electronics and telecommunications make easier and less expensive the collection of large amount of data which can be used in transportation analyses. These data include traditional information gathered in transportation studies (e.g. traffic volumes in a given road section) and new kind of data, not directly connected to transportation needs (i.e. Bluetooth and GPS data from mobile phones). However in many cases, in particular for the latter case, this large amount of data cannot be directly applied to transportation problems. Generally there are low-quality, non-homogeneous data, which need time consuming verification and validation process to be used. Data Mining techniques can represent an effective solution to treat data in these particular contexts since they are designed to manage large amount of data producing results whose quality increases as the amount of data increases. Based on these facts, this thesis first presents a review of the most well-established Data Mining techniques, identifying application contexts in transportation field for which they can represent useful analysis tools. Data mining can be defined as the process of exploration and analysis which aims to discover meaningful patterns and ‘’hidden’’ rules in the set of data under analysis. Data Mining could be considered a step of a more general Knowledge Discovery in Databases Process, which begins with selection, pre-processing and transformation of data (“mined” data are generally collected for reasons different from the analysis) and is completed with the interpretation and evaluation of results. A classification scheme generally accepted identifies six categories of DM techniques, which are related to the objective one would achieve from the analysis: estimation (neural networks, regression models, decision trees), prediction (neural networks, decision trees), classification (k-nearest neighbor, decision trees, neural networks), clustering (clustering techniques, Self-Organizing-Maps), affinity grouping or association (association rules) and profiling (association rules). In the review of the wide literature concerning Data Mining methods, particular attention has been devoted to the well-established technique of clustering, classification and association, since they are the most applied in different application contexts. The literature review process has been further extended to Data Mining applications in the transportation field. This review highlights the great flexibility of use of these techniques and the increasing number of applications. Many research topics have taken advantages of these innovative tools and some of them are presented due to their interest: short-term traffic flow forecasting from historical and real-time data, identification and quantification of factor risks in accident analysis, analysis of pavement management systems and traffic monitoring systems. The second part of the thesis has focused on the application of Data Mining techniques to road system analysis, through a critical review of U.S. Federal Highway Administration (FHWA) traffic monitoring approach. The choice of this topic is due to the fact that traffic monitoring activities represent a relevant aspect of highway planning activities, as a part of the knowledge process. However data collection activities produce relevant management costs, both for equipment and personnel, therefore monitoring programs need to be designed with attention to obtain the maximum quality of results. In the U.S.A., the Federal Highway Administration (FHWA) provides guidance for improving these aspects by way of its Traffic Monitoring Guide (TMG) (FHWA, 2001), which has a reference role for other similar agencies in the world. The FHWA procedure is based on two types of counts (short duration counts taken with portable traffic counters and continuous counts taken with fixed counters) and has the main objective of determine the Annual Average Daily Traffic (AADT). Critical review of literature on this topic has pointed out that the most critical aspects of this procedure are the definition of road groups based on traffic flow patterns and the assignment of a section to a road group using short counts. The proposed approach has been designed to solve both issues. The first issue is related to situations for which road section could belong to more than one road group, and the groups cannot be easily defined in transportation terms, (e.g. “commuter road”, “recreational road”). The proposed approach introduces Fuzzy Clustering techniques, which adopt an analytical framework consistent with this kind of uncertainty. Concerning the second issue, road sections monitored with short counts are assigned to the road group with more similar traffic patterns. In the proposed approach an Artificial Neural Network is implemented to assign short counts to roads groups. The Neural network is specifically designed to maintain the uncertainty related to the definition of road groups until the end of the estimation process. In fact the output of the Neural Network are the probabilities that the a specific short counts belongs to the road groups. These probabilities are interpreted using the Dempster-Shafer theory; measures of uncertainty related to the output (indices of non-specificity and discord) provide an assessment of the quality of information in a synthetic manner. The proposed approach have been implement on a case study, using traffic data from SITRA (Sistema Informativo TRAsporti) monitoring program of the Province of Venice. In this specific context the approach has been validated and the results obtained (AADT estimates) from the proposed method have been compared with those obtained by two approaches proposed in previous studies. The comparative analysis highlights that the proposed approach increases the accuracy of estimates and gives indication of the quality of assignment (depending on sample size) and suggests the need for additional data collection. The positive results obtained in the experimental phase of the research have led to the design of a software tool to be used in next future in real world applications.XXIV Ciclo198

    Novel Neural Network Applications to Mode Choice in Transportation: Estimating Value of Travel Time and Modelling Psycho-Attitudinal Factors

    Get PDF
    Whenever researchers wish to study the behaviour of individuals choosing among a set of alternatives, they usually rely on models based on the random utility theory, which postulates that the single individuals modify their behaviour so that they can maximise of their utility. These models, often identified as discrete choice models (DCMs), usually require the definition of the utilities for each alternative, by first identifying the variables influencing the decisions. Traditionally, DCMs focused on observable variables and treated users as optimizing tools with predetermined needs. However, such an approach is in contrast with the results from studies in social sciences which show that choice behaviour can be influenced by psychological factors such as attitudes and preferences. Recently there have been formulations of DCMs which include latent constructs for capturing the impact of subjective factors. These are called hybrid choice models or integrated choice and latent variable models (ICLV). However, DCMs are not exempt from issues, like, the fact that researchers have to choose the variables to include and their relations to define the utilities. This is probably one of the reasons which has recently lead to an influx of numerous studies using machine learning (ML) methods to study mode choice, in which researchers tried to find alternative methods to analyse travellers’ choice behaviour. A ML algorithm is any generic method that uses the data itself to understand and build a model, improving its performance the more it is allowed to learn. This means they do not require any a priori input or hypotheses on the structure and nature of the relationships between the several variables used as its inputs. ML models are usually considered black-box methods, but whenever researchers felt the need for interpretability of ML results, they tried to find alternative ways to use ML methods, like building them by using some a priori knowledge to induce specific constrains. Some researchers also transformed the outputs of ML algorithms so that they could be interpreted from an economic point of view, or built hybrid ML-DCM models. The object of this thesis is that of investigating the benefits and the disadvantages deriving from adopting either DCMs or ML methods to study the phenomenon of mode choice in transportation. The strongest feature of DCMs is the fact that they produce very precise and descriptive results, allowing for a thorough interpretation of their outputs. On the other hand, ML models offer a substantial benefit by being truly data-driven methods and thus learning most relations from the data itself. As a first contribution, we tested an alternative method for calculating the value of travel time (VTT) through the results of ML algorithms. VTT is a very informative parameter to consider, since the time consumed by individuals whenever they need to travel normally represents an undesirable factor, thus they are usually willing to exchange their money to reduce travel times. The method proposed is independent from the mode-choice functions, so it can be applied to econometric models and ML methods equally, if they allow the estimation of individual level probabilities. Another contribution of this thesis is a neural network (NN) for the estimation of choice models with latent variables as an alternative to DCMs. This issue arose from wanting to include in ML models not only level of service variables of the alternatives, and socio-economic attributes of the individuals, but also psycho-attitudinal indicators, to better describe the influence of psychological factors on choice behaviour. The results were estimated by using two different datasets. Since NN results are dependent on the values of their hyper-parameters and on their initialization, several NNs were estimated by using different hyper-parameters to find the optimal values, which were used to verify the stability of the results with different initializations

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data
    corecore