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1 INTRODUCTION 

Whenever researchers wish to study the behaviour of individuals challenged by choosing among a set 

of alternatives, they will traditionally rely on models based on the random utility theory (RUM) by 

McFadden, which postulates that the single individuals modify their behaviours so that they can reach 

the maximisation of their utility [1]. These models, often identified as discrete choice models (DCMs), 

usually require the definition of the utilities for each alternative, by first identifying the variables 

influencing the decisions of the individuals. The multinomial logit (MNL) model is the simplest and 

one of the most used choice models, and it is based on the independence of irrelevant alternatives 

(IIA) [2]. While the simplicity of the MNL models can be an advantage (e.g., easier model definition, 

faster results estimation) it also prevents the model from reproducing complex phenomena, such as 

random taste variations, unrestricted substitution patterns, and correlation in unobserved factors over 

time. That is why  researchers tried to expand the MNL modelling framework, and  often resort to 

more advanced models, like the nested logit (NL) model, which allows to account for dependence 

between alternatives [3], the multinomial probit (MNP) model, which assumes that the utility 

functions follow a joint multivariate normal distribution [4], or the mixed logit model, whose 

probabilities are calculated as the integrals of MNL probabilities over a density distribution of 

parameters [5]. 

Traditionally, discrete choice models focused on directly observable variables (i.e., attributes of the 

available alternatives and socioeconomic characteristics of the individuals) and treated users as 

optimizing tools with predetermined desires and needs [6].  However, such an approach is in contrast 

with the results from studies in social sciences which have shown that choice behaviour can also be 

influenced by psychological factors such as affections, attitudes, norms, and preferences [7]. Thus, 

recently there have been more modern formulations of DCMs which include, among their explanatory 

attributes, latent constructs for capturing the impact of subjective factors. These are called hybrid 

choice models (HCM) or integrated choice and latent variable (ICLV) models [8–10]. 

However, even in their most complete and overinclusive definition, DCMs are not exempt from issues, 

like, for example, the fact that researchers have to choose the variables to include in the model and the 

relations to combine them with each other to define the utilities. If this process is not implemented 

with the due precautions and care, to avoid human error as much as possible, it could lead to incorrect 

results and inaccurate interpretations of the phenomena, besides producing unreliable predictions [11]. 
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This is probably one of the reasons which has recently lead to an influx of numerous studies using 

machine learning (ML) methods to study mode choice in the specific field of transportation [12], in 

which researchers have tried to find alternative methods to analyse travellers’ choice behaviour. 

Machine learning models were first introduced with the current nomenclature by Samuel in the 1959, 

who thought of a method to program a computer to play checkers better than its programmer [13], 

even though some concepts had already been theorized in the previous years by McCulloch and Pitts 

(1943) [14], Turing [15], Minsky and Edmonds (1951) [16]. A ML algorithm is any generic method 

that uses the data itself to understand and build a model (it “learns” from the data), improving its 

performance the more it is allowed to learn [17]. This means they do not require any a priori input or 

hypotheses on the structure and nature of the relationships between the several variables used as its 

inputs. 

ML algorithms can either be supervised, when the training data includes a set of labels for all the 

entries, that the learning system associates with the training examples [18]; or unsupervised, when the 

external guidance given by labelled data is missing, and building a model is more complicated [19]. 

The most known supervised ML algorithms are probably Artificial Neural Networks (ANNs), which 

are classifiers that mimic the network structure of the brain [20]. There can be several possible versions 

of ANN structures, but they usually include a number of hidden layers and number of nodes in each 

hidden layer describing the structure of the network [21]. Instead, a widely used unsupervised ML 

algorithm is clustering, which is defined as the issue of finding homogeneous groups (clusters) of data 

points in any given data set. Each cluster is then identified by a region of the multi-dimensional space 

defined by the data [22].  

Other ML classifiers are: Bayesian estimators, a class of algorithms based on Bayes Theorem of 

Conditional Probability [23], that use this premise to identify to which class a feature is more likely 

to belong [24]; Decision Trees (DTs), classifiers which sort the input data into different groups using 

a set of sequential splits using a tree-like structure, where each split of the data leads to the maximum 

reduction in the randomness of the data at that point [25]; Support Vector Machines (SVMs), which 

use a kernel to transform the data into a high-dimensional space, and then find the optimal hyper-plane 

which divides the data into two classes [26]. 

ML models, in their base definition, are usually considered black-box methods, but whenever 

researchers felt the need for interpretability of ML results, they tried to find alternative ways to use 

ML methods [27]. One such method, to make ML algorithms more specific, is that of building them 

by using some a priori knowledge to induce a specific constrain on the measure to be inferred [28]. 
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Some researchers also either transformed the outputs of machine learning algorithms so that they could 

be interpreted from an economic point of view [29–31], or built hybrid ML-DCM versions so that the 

results of their models could be interpreted like those of discrete choice models [32–35]. 

The object of this thesis is that of investigating the benefits and the disadvantages deriving from 

adopting either discrete choice models or machine learning methods to study the phenomenon of mode 

choice in transportation. The strongest feature of DCMs is the fact that, since they are based on 

behavioural theories and statistical methods, they produce very precise and descriptive results, 

allowing for a thorough interpretation of their outputs. This is probably an undisputable advantage 

they hold over ML algorithms, which often struggle to produce such informative results. On the other 

hand, ML models offer a substantial benefit by being truly data-driven methods and thus learning most 

relations from the data itself. As a matter of fact, DCMs, in the case where the base behaviour 

assumptions used to build the models are partially or completely incorrect, might lead to not only 

inaccurate but also misleading results. This should not happen with ML models, since they are built 

considering less restricting initial conditions. 

To this end, we started our work by conducting a literature review of the state of the art of choice 

modelling in transportation, with a general outline of the various existing ML algorithms, and an up-

to-date review of the applications of ML to choice modelling in transportation. From this literature 

review, a series of issues were identified, for which additional research would be benefitting to the 

improve this field of studies. First, there is a shortage of studies trying to extrapolate interpretable 

information (e.g., elasticities, value of travel time, effects of latent variables) from ML models. Also, 

there is a lack of studies comparing this kind of results obtained by using different datasets. Finally, 

few studies still consider among latent variables in the specifications of ML algorithms, and even less 

use psycho-attitudinal indicators among their inputs. 

As a first contribution, we tested an alternative method for calculating the value of travel time (VTT) 

through the results of machine learning algorithms. VTT is a very informative parameter to be 

considered, since the value that people place on saving total travel time is one of the most important 

indices that can be inferred [36]. As a matter of fact, the time consumed by individuals whenever they 

need to travel (with any mode or vehicle) normally represents an undesirable factor, thus they are 

usually willing to exchange their money to reduce travel times [37]. Obtaining VTT through pure ML 

methods is an argument which has been studied by few researchers [30, 38]. The method here proposed 

is independent from the mode-choice functions, so it can be applied to econometric models and ML 

methods equally, if they allow the estimation of individual level probabilities.  
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Then, another contribution of this thesis is an alternative ML method for the estimation of choice 

models with latent variables as an alternative to discrete choice models. This issue arose from wanting 

to include in ML models not only level of service variables of the alternatives, and socio-economic 

attributes of the individuals, but also psycho-attitudinal indicators, to better describe the influence of 

psychological factors on choice behaviour, not unlike it happens in ICLV models. There have also 

been some attempts at producing latent variable ML models [35, 39, 40], however these were limited 

to only using the socio-economic attributes of the individuals to build the latent factors. 

The results were estimated by employing two different datasets. The first dataset (Swissmetro), which 

was only used to estimate the VTT, comes from a stated preference survey conducted in Switzerland 

in 1998. The second one, used in both implementations, was collected with a revealed preference 

survey conducted in 2019-2020 in Cagliari (Italy). Since neural networks results are dependent on 

both the values of their hyper-parameters and on their initialization, in all the applications several NNs 

were estimated by trying different sets of hyper-parameters to find the optimal values, and then those 

values were used to verify the stability of the results with different random initializations. 

The thesis is organized as follows: the first part (Chapter 2) contains the literature review. In Chapter 

3 we present the alternative method for calculating the value of travel time (VTT) through the results 

of machine learning algorithms. In Chapter 4, the method for the estimation of choice models with 

latent variables as an alternative to discrete choice models is described. Finally, Chapter 5 shows the 

conclusions reached, with the discussion of the results obtained from application of the two different 

ML frameworks. 
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2 LITERATURE REVIEW 

2.1 Machine learning algorithms 

This section will give an overview of the main categories of machine learning algorithms currently 

available. The following list just wants to give a general picture of the state of the art rather than an 

exhaustive one, also considering the fact that this research field is constantly evolving, and new 

findings are commonly found in the most up-to-date literature. 

2.1.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) represent a family of classifiers which mimic the network 

structure of the brain [20]. There are several possible versions of ANN structures for dealing with 

many different input data types (e.g. images, time-series, natural language, etc.), but mode choice 

applications usually rely on the Feed-Forward Neural Network (FFNN) (also known as the Multi-

Layer Perceptron (MLP)) [12]. A FFNN consists of multiple layers of nodes (also called neurons), 

which include:  

• an input layer, which passes the values of the features to the network; 

• any number of hidden intermediate layers; 

• an output layer, which returns the values predicted by the whole network. 

The number of nodes in the input and output layers is fixed by the number of features and classes in 

the data respectively. The number of hidden layers and number of nodes in each hidden layer are 

hyper-parameters which describe the structure of the network [21]. Each node needs an activation 

function, which determines the output of that node from the weighted sum of its inputs.  

There are many possible activation functions used in practice, including linear, sigmoid, tanh, softmax, 

rectified linear unit (ReLU), and exponential linear unit (ELU) [36]. The output values of the ANN go 

through a softmax function to generate classification probabilities and the weights for each link in the 

network are fitted to the input data. Each time the model sees all the data once is defined as an epoch. 

The number of epochs can be limited to regularise the model and limit overfitting issues. In a fully 

connected network, every node in one layer is linked to every node in the next layer. Further 

regularisation can be applied using the “dropout” hyper-parameter, which specifies a portion of the 

neurons to be dropped randomly from the network for each batch of data [37]. 
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2.1.2 Bayesian Algorithms 

The Bayesian estimators are a class of algorithms based on Bayes Theorem of Conditional Probability 

[23], and use this premise to identify to which class a feature is more likely to belong. Among them, 

Naïve Bayes classifiers assume a great level of simplification by considering that all features are 

independent from each other, but at the same time they are show remarkably good results in practice, 

often comparable to those of much more sophisticated techniques [24]. Bayesian Network classifiers, 

instead, are representations of probability distributions that generalize the naive Bayesian classifier. 

They are built as directed graphs that allow to represent the joint probability distribution over a set of 

random variables. Each vertex in the graph corresponds to a random variable, while the edges 

represent direct correlations between those variables [38]. 

2.1.3 Clustering 

The clustering problem is basically defined as the issue of finding homogeneous groups of data points 

in any given data set. Each of these groups is then called a cluster, which be defined as a region of the 

multi-dimensional space defined by the data in which the density of objects is locally higher than in 

other regions. The simplest form of clustering is partitional clustering which aims at partitioning a 

given data set into disjoint clusters so that specific clustering criteria are optimized [22]. Among the 

many clustering algorithms, the most used are perhaps k-means clustering, a simple procedure which 

allows to obtain a set of partitions which are reasonably efficient in the sense of within-class variance 

[39]; and hierarchical clustering [40], which starts with a separate cluster for each of the distinct points 

of the dataset, for then agglomerating the two closest clusters (according to a chosen metric) 

sequentially until all the points belong to one hierarchically constructed cluster [41]. 

2.1.4 Decision Trees 

Decision Trees (DTs) (also known as Classification and Regression Trees - CARTs) are classifiers 

which sort the input data into different groups using a set of sequential splits using a tree-like structure. 

Most commonly, Decision Trees are fitted using recursive binary splits, where each split of the data 

is chosen so that it leads to the maximum possible reduction in the randomness of the data at that point. 

The metrics which are generally used to measure how much the data are shuffled, are Gini impurity 

and entropy. To calculate a split, each possible binary split (the value for the data is less/greater than 

a certain threshold value) is tested for each feature. The split point which leads to the greatest reduction 

in the impurity or entropy (across all features) of the data is then selected, resulting in two new child 

nodes. The same procedure is then applied recursively to each child node, until a stopping condition 

(set when choosing the hyper-parameters of the algorithm) is met.  
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For example, setting a value for the maximum depth of the tree specifies the maximum number of 

sequential splits which can be encountered along a path from the first node; setting the minimum leaf 

size specifies the minimum number of data points that each child node must include after a split in 

order for the same split to happen; setting a minimum split size specifies instead the minimum number 

of samples a node must include before a split for that split to be considered possible at that node [25]. 

2.1.5 Support Vector Machines 

The Support Vector Machine (SVM) algorithm uses a kernel to transform the data into a high-

dimensional space. The algorithm then finds the optimal decision surface (or hyper-plane) in the 

transformed space which divides the data into two classes. For linearly separable data (within the 

transformed space), the optimal hyperplane exactly divides the data without any misclassification 

while also maximising the possible margin. The margin is, by definition, the perpendicular distance 

between the hyperplane and the nearest data points (these data points are called support vectors). 

Instead, for complex, real-world examples, the input data are usually not linearly separable, even 

within the transformed space. There needs to exist a balance between the width of the hyperplane and 

the number of misclassifications of the training data and this is controlled by using a regularisation 

parameter (C). A higher value of C corresponds to a higher importance given to the misclassified 

points (higher variance), while a lower value of C will give more importance to the width of the 

hyperplane (higher bias). While Support Vector Machines are inherently binary classifiers, they can 

also be used for multiclass classification using either a one-vs-rest or one-vs-one strategy. SVMs 

output a continuous score for each prediction, which can be interpreted as the confidence of the 

classification [26]. There are several specifications of the kernels which can be used to transform the 

data, including linear (i.e. no transformation), polynomial or Radial Basis Function (RBF) (Gaussian 

or exponential) [42]. 

2.1.6 Ensemble Learning 

Ensemble Learning (EL) (or Ensemble Methods) combines several individual predictive models 

(called estimators) in an ensemble to improve the quality of predictions compared to the results of 

single estimators. This result is based on the fact that, provided the errors of the estimators can be 

considered independent (i.e. the learners are uncorrelated), and the individual models are more likely 

to be right than wrong, then combining them in an ensemble reduces their individual uncertainty [43]. 

Many meta-algorithms that can combine estimators exist. There are some algorithms which train 

estimators on the data in parallel, e.g. Bootstrap Aggregating (Bagging) [44] and Random Forest (RF) 
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[45], as well as algorithms where the single weak learners are estimated sequentially, e.g. AdaBoost 

[46] and Gradient Boosting (GB) [47]. 

DTs are the most used estimators for Ensemble Learning, but they also usually present high variances, 

making them unstable (a small variation in the input results in large differences in the output). 

Although this also means that it is relatively easy to train uncorrelated DTs compared to more stable 

classifiers. Also, DTs are algorithmically simple to fit and obtain predictions from, meaning that large 

ensembles of DTs can be fit and predicted in a reasonable amount of time. For ensembles of discrete 

classifiers, probability-like values can be obtained by calculating the proportions of each class 

prediction across the estimators in the ensemble. For Gradient Boosting Decision Trees (GBDT), the 

DTs in the ensemble are trained to output discrete regression values. These values are then passed 

through a softmax function to output choice probabilities. One of the main hyper-parameters of EL 

algorithms is the number of estimators in the ensemble. In parallel approaches, this number must be 

specified, while for sequential approaches a stopping criterion can be applied based on out-of-sample 

predictive performance (not unlike the number of epochs in ANNs) [12]. 

2.1.7 Prior domain knowledge 

Machine learning algorithms can usually be seen as general-purpose tools, which “learn” from the 

data without using any assumptions about the possible relations existing between the different 

variables, doing so also independently from the very nature of the data itself. A more specific and 

specialized class of algorithms can be built by relying upon a priori domain knowledge to constrain 

the concept to be inferred [28]. As a matter of fact, the training dataset samples are usually unable to 

fully describe the dynamics to be simulated in a way to enable the use of ML models alone. Supporting 

a ML model with prior domain knowledge on the specific field to which the data belongs can be 

thought of as filling the gaps in the same observed data with the knowledge of the internal functioning 

of the system. This approach often leads to a reduction of the size of the search space during training, 

simplifying the whole process [48]. The models thus become “physically consistent”, in the sense that 

they gain a sufficient grounding in physical principles (reached by the use of physical laws or empirical 

algorithms) [49]. 

2.2 Choice modelling in transportation 

The most common theoretical construct for building discrete choice models in transportation is the 

random utility theory (RUM) by McFadden, which postulates that the decision makers (single 

individuals) base their behaviour on the maximisation of their utility. The modeler cannot however 

fully observe the decision maker’s utility, but only some attributes (e.g., transport alternative 
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characteristics, personal preferences, sociodemographic levels) can be known. Therefore, the modeler 

has to assume that the utility is composed by an observed part (Vqi, function of the known attributes) 

and a random residual part (εqi), which explains the influence of all unobserved factors [1]. 

The multinomial logit (MNL) model is the simplest and one of the most used choice models. The logit 

model is obtained by assuming that each εqi is an independently, identically distributed extreme value, 

and that the choice probability for alternative i and individual q is given by the relation                         

𝑃𝑞𝑖 = 𝑒
𝑉𝑞𝑖 ∑ 𝑒𝑉𝑞𝑗𝑗⁄ . The multinomial logit model is based on the independence of irrelevant 

alternatives (IIA), meaning that the relative probability of choosing one alternative over another is 

independent from the other alternatives [2, 50]. 

To overcome the IIA limitation, a class of models known as generalized extreme value (GEV) models 

was developed by McFadden (1978). The nested logit (NL) model is one of the more commonly used 

models in this class. The idea behind a nested logit is to divide the choice set into nests of alternatives, 

in such a way that for any two alternatives that are in the same nest, the ratio of probabilities is 

independent of the attributes or existence of all other alternatives and for any two alternatives in 

different nests, the ratio of probabilities can depend on the attributes of other alternatives in the two 

nests [3, 51]. 

An alternative solution to overcome the limits of IIA is to use the multinomial probit (MNP) 

framework. The MNP model assumes that the utility functions follow a joint multivariate normal 

distribution with zero mean and arbitrary covariance matrix. This means that the variances may be 

different, and the error terms may be correlated in any fashion, and probit models can allow any pattern 

of substitution and handle panel data. The only limitation of probit models is that the normal 

distribution assumption for model parameters might be inappropriate in some situations and can lead 

to issues in results interpretation. This can however be solved by using a Generalized Multinomial 

Probit model with truncated normal random parameters [4, 52, 53].  

The issues of IIA can also be resolved by using a heteroscedastic extreme value model, which allows 

a more flexible structure among alternatives than nested logit model, while also requiring a much 

lower computational burden than the multinomial probit model. The heteroscedastic extreme value 

model allows the amount of stochasticity of the utility of alternatives to differ. That is, it allows 

different variances on the random components across alternatives, which is likely to occur when the 

variance of an unobserved variable that affects choice is different for different alternatives [54]. 
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The mixed logit model is a generalization of the standard logit model and can approximate any random 

utility model to various degree of accuracy. Mixed logit choice probabilities are calculated as the 

integrals of multinomial logit probabilities over a density distribution of parameters that can vary 

randomly across individuals [5]. 

Many transportation applications involve the assessment of influences on a choice amongst ordered 

discrete alternatives, like situations where respondents are asked to provide ratings, ordered opinions 

or in general any categorical preference. Although these response data are discrete, use of standard or 

nested multinomial discrete models is not a proper way to model data of an ordered nature. To address 

the problem of ordered discrete data, ordered probability models have been developed. An ordered-

response model postulates the presence of a latent continuous variable for each individual q. [55, 56]  

A limitation of the standard ordered probit / logit is that it is based on the assumption that the thresholds 

between categories are the same for every individual in the sample. This can lead to biased and 

inconsistent estimates of the effect of variables. Instead, models in the class of generalized ordered 

probit/logit (also known as hierarchical ordered probit/logit) allows different thresholds to be specified 

based on the variables, meaning they can also be different between categories [56, 57]. 

A multivariate ordered-response framework can be used to account for possible within-outcome 

correlations. A multivariate ordered response model assumes the presence of a set of multivariate 

continuous latent variables whose partitioning maps into the observed set of ordered outcomes. Such 

a system allows to use a general covariance matrix for the underlying latent variables, which can also 

mean that there exists a flexible correlation between the observed ordered outcomes [56–58]. 

Microeconomic theory tends to consider decision makers as rational actors constantly evaluating the 

costs and benefits associated with any choice, with the aim of maximizing their personal utility. 

Traditional discrete choice models focus their analysis on observable variables, such as the attributes 

of the alternative and socioeconomic characteristics of the individual, and treat users / consumers as 

optimizing tools with predetermined desires and needs [6].  However, such an approach clashes with 

the findings from studies in social sciences which have shown that choice behaviour can also be 

influenced by psychological factors such as affections, attitudes, norms, and preferences [7]. Only 

recently models of disaggregate decision-making which include latent constructs for capturing the 

impact of subjective factors on choice process have started to be considered. These models are called 

hybrid choice models (HCM) or integrated choice and latent variable (ICLV) models [8, 9]. 
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In the general formulation of the ICLV model, there are two distinct components: a latent variable 

model and a discrete choice model. The latent variable model is in turn composed of a set of structural 

equations, describing the latent variables in terms of observable variables, and a set of measurement 

equations, linking the latent variable to indicators. Since latent constructs cannot be observed, the 

analyst obtains information about them from indicators, i.e., observed responses to questions of a 

survey. By integrating discrete choice and latent variable models, the latent variables can be seen as 

explanatory variables included in the utilities of choice alternatives [10]. 

The recent increase in quantity and quality of measurement tools and technologies capable of 

recording enormous amounts of data (big data), has allowed the production of datasets often 

characterized by complex interdependent structures (multivariate mixed data). Bhat proposed a 

different way of treating mixed data by using a Generalized Heterogeneous Data Model (GHDM). 

This model is an evolution of the Integrated Choice and Latent Variable models able to handle mixed 

types of dependent variables (nominal, ordered, continuous, count) by representing the covariance 

relationships among them through a reduced number of latent factors. GHDM models consist of two 

components: a latent variable structural equation model (SEM), and a latent variable measurement 

equation model (MEM). In the SEM, latent variables relevant to the outcomes of the MEM are 

hypothesized, based on theoretical psychological considerations and earlier qualitative/quantitative 

studies. In the MEM, endogenous variables are described as functions of latent variables and 

exogenous variables [59]. 

2.3 Machine learning applications for mode choice in transportation 

Several examples of successful applications of machine learning algorithms for modelling mode 

choice in transportation are available in the literature. To improve clarity and readability, the following 

analysis is split by considering the main techniques studied by the researchers in their papers. 

Additional information on these examples, including the year of the studies, sample sizes, data sources, 

and territorial contexts  where the data was collected, is reported in additional tables placed after each 

paragraph (from Table 1 to Table 6). 

2.3.1 Bayesian Algorithms, Decision Trees, and Support Vector Machines 

Van Middlekoop et al. [60] tried to show that tourists do not necessarily maximize their utility in 

selecting a travel mode and their choice behaviour is context dependent. They used a DT-like 

algorithm (specifically CHAID - chi-squared automatic interaction detection), and their results 

indicated how the proposed methodology can be applied successfully to better understand choice 

behaviour.  



 

12 

 

Zhang and Xie [61] applied for the first time a SVM to travel mode choice modelling and compared 

it with a MNL model and an ANN. The SVM performed better than the other two models in predicting 

choices. The overall fitting performance of the ANN was the best, but at the same time its prediction 

performance was the worst. All three models could produce good predictions for modes with few 

observations.  

Zenina and Borisov [62] investigated the performance of mode choice analysis with different 

classification methods - DT, discriminant analysis and MNL. They initially found 67% - 78% of 

correctly classified instances using DTs, but, after additional data pre-processing, they managed to 

improve this result reaching a percentage of correctly classified instances of 80% - 92%, which was 

better than the other methods analysed. 

Ma [63] tried capturing the non-linear causal effects of related determinants on individuals’ mode 

choice behaviour by using a rule-based approach based on Bayesian Networks. The results were 

compared with a MNL, and they found that the performance of the two approaches showed similar 

corrected prediction rates. 

Pitombo et al. [64] applied a two-step method to estimate mode choice, first using a DT to select the 

attributes which most influenced mode choice, then comparing the performance of the DT with a MNL 

and applying an Ordinary Kriging to predict the mode choice. The DT showed its effectiveness since 

its comparison with the MNL indicated that the variables chosen by both the methods are the same, 

with the advantages of the straightforward application of DTs. 

Tang et al. [65] used a series of DTs to explore the underlying rules of travellers’ switching decisions 

between two modes under a proposed framework of dynamic mode searching and switching and 

compared the results with (unspecified) logit models. The DTs they built were able to correctly classify 

the minority mode with a high overall prediction accuracy. In many cases DTs outperformed logit 

models in both individual prediction level and aggregate prediction level. 

Semanjski et al. [66] developed an SVM-based model to predict future mobility behaviour from 

crowdsourced data collected through a dedicated smartphone app. The SVM model had a success rate 

of 82% in forecasting the mode of transportation to be used for the next trip. 

Brathwaite et al. [67] began bridging the gap between machine learning methods and economic 

theories of human decision making by providing a microeconomic framework for interpreting a 

Bayesian DT and testing this method on an application of bicycle mode choice. The proposed DT was 
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more than 1,000 times more likely to be closer to the application true data-generating process than a 

MNL model and provided forecasts consistent with observed mode share. 

Ma et al. [68] modelled commuters’ travel mode choice by using a two-stage procedure, first drawing 

relevant prior partial relationships between variables, and using them as structure constraints in a 

structure learning task of Bayesian Networks, then using a model averaging approach to obtain a 

statistically sound Bayesian Network. The methodology proved to be a valuable supplemental 

analytical tool to conventional travel choice forecast models to identify impacts of providing more 

information about key variables. 

Ding et al. [69] applied a gradient boosting DT to examine the influences on commute mode choice 

of commuting programs and built-environment characteristics at both residential and workplace 

locations. The model was able to predict a large influence of built environment on car mode choice. 

The lack of a benchmark or comparison with other models does not allow to comment on the model 

overall performance. 

Zhu et al. [70] proposed a new modelling approach that utilizes a mixed Bayesian Network (BN) for 

travel decision inference. One mono-dimensional BN, two bi-dimensional BNs, one DT and two 

nested logit models were developed for comparison. The results indicated that bi-dimensional BNs 

had a more stable performance in the testing dataset than the mono-dimensional BN. The 

bidimensional BN approach gave better accuracy than the DT and the NL models, especially for small 

probability alternatives. 

Jing et al. [71] analysed the travel selection behaviour of Chinese high-speed train passengers by using 

Support Vector Machine, Nested Logit models, and Multinomial Logit models. The SVM resulted the 

most accurate, followed by the NL. 

Pirra and Diana [72] proposed a new approach based on SVM for recognizing travel mode choice 

patterns. Although they discovered that the resulting accuracy was not comparable to that of a “good” 

model, they also realized SVM could give a first approximation in case studies were large amounts of 

data need to be processed quickly and heuristic solutions are acceptable. 
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Table 1. Details for the literature regarding Bayesian Algorithms, Decision Trees, and Support Vector Machines 

Authors 

Y
ea

r 

Data source 
Territorial 

context 

Van Middelkoop, 

Borgers, and 

Timmermans [60] 

2
0

0
3
 3,562 observations 

Vacation behaviour, sociodemographic, and vacation-related 

variables of a panel representative of the Dutch population. 

Netherlands 

Zhang and Xie [61] 

2
0

0
8
 5,029 observations 

Home-to-work commute trip records, sociodemographic 

information, attributes of each travel mode, land use, and other 

related data. 

San Francisco 

(USA) 

Zenina and Borisov [62] 

2
0

1
1
 7,171 (500) observations  

Personal interviews which collected information on socioeconomic 

and demographic variables, travel characteristics, and travel 

influence conditions. 

Not available 

Ma [63] 

2
0

1
5
 7,235 observations 

Mobility survey of cross border workers in the Greater Region of 

Luxembourg. 

Luxembourg 

Pitombo, Salgueiro, Da 

Costa, and Isler [64] 2
0

1
5
 2,791 observations 

Household interview from an Origin–Destination and data from the 

water supply database used to obtain the geographical coordinates. 

São Carlos 

(Brazil) 

Tang, Xiong, and Zhang 

[65] 2
0

1
5
 72,536 observations 

Data set that has been geocoded and includes household data, person 

data, vehicle data and daily trip data. 

Washington DC 

(USA) 

Semanjski, Lopez, and 

Gautama [66] 2
0

1
6
 17,040 observations 

Data on mobility behaviour collected using an Android smartphone 

application over four months. 

Flemish-Brabant 

province 

(Belgium) 

Brathwaite, Vij, and 

Walker [67] 2
0

1
7
 1,015 observations 

Household Travel Survey from California with observations 

representing home to work or school commute tours. 

Oakland, 

Berkeley, San 

Francisco (USA) 

Ma, Chow and Xu [68] 

2
0

1
7
 5,040 observations 

Mobility survey of the cross-border workers in Luxembourg, 

containing one-day travel diaries with related spatial and socio-

demographic information, among other variables. 

Luxembourg 

Ding, Cao, and Wang 

[69] 2
0

1
8
 6,392 observations 

Regional household travel survey which includes socio-economic 

and demographic characteristics, and work-related attributes. 

Washington DC 

(USA) 

Zhu, Chen, Xiong, and 

Zhang [70] 2
0

1
8
 5,213 observations 

Travel diaries that documented the activities of all household 

members on an assigned day and detailed information including 

household, person, vehicle and trip information.  

Washington, 

Baltimore (USA) 

Jing Liu, Zhang, and Su 

[71] 2
0

1
9
 857 observations 

Questionnaire distributed every day for 1 week, from 8:00 a.m. to 

8:00 p.m., to passengers travelling between two places from Beijing 

South Railway Station. 

Beijing (China) 

Pirra and Diana [72] 

2
0

1
9
 39,167 observations 

National Household Travel Survey which provides information on 

daily trips in the United States, whose data was improved with 

interviews gathered in New York State. 

New York State 

(USA) 

2.3.2 Neural Networks 

Perez and Pietrzyk [73] were among the first researchers to suggest that ANNs should be tested for 

mode choice.  

Raju et al. [74] studied the applicability of an ANN for modelling modal choice, using a relatively 

small dataset (535 observations) from a household survey in Guwahati (India). They managed to 
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demonstrate how the ANN was capable of accurately (85%) capturing the patterns in the learning 

process, even though these results were obtained by simplifying the data and considering only two 

modes. However, this study opened the path for many future developments and improvements.  

Subba et al. [75] explored the use of an ANN for mode choice modelling and compared it to a MNL, 

finding the performance of the former to be much superior both in calibration and in prediction.  

Hensher and Ton [76] also analysed the merits of ANNs by comparing their predictive capability and 

those of nested logit models in the context of commuter mode choice. However, they found no clear 

indication of which one of the two approaches was better.  

Cantarella and de Luca [77] tried showing that ANNs can be an effective tool for travel demand 

analysis, introducing a new architecture which included one extra layer for perceived utility. Their 

results showed that the proposed ANN model was feasible, and the most performing ANN could be 

considered as a good approximation of the best devisable choice model.  

Cantarella and de Luca [78] also described the application of ANNs (specifically a multilayer 

feedforward ANN) to support travel demand analysis, showing that they can be applied to analyse 

transportation mode choice. They then compared them with various RUMs (dogit, MNL, CNL), and 

the obtained results showed that ANNs turned out to be rather effective and they may outperform 

RUMs when the values of mode shares are quite similar.  

Chalumuri at al. [79] validated and compared mode choice models based on Logit and ANNs for 

work, education and other-purposes trips. From the comparison of the results, it can be concluded that 

the models were comparable and considered to be consistent in predicting the choice behaviour. 

However, it should be noted that they only considered a simple Logit model, which might result in an 

over-simplification of the representation, since more advanced and reliable models were available. 

Zhao et al. [80] applied a probabilistic ANN for travel mode choice modelling. They found the ANN 

to be valid in structure simplification and excellent in training time reduction, and its prediction results 

have proved to be more accurate than those of DCMs. 

Yin and Guan [81] established a traffic mode choice model based on a back-propagation ANN and 

verified the model by using data from a travel survey of residents in Jinan City (China). The result 

showed that the model had a very good practicality and could be utilized for predicting resident trips 

mode choice. 
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Gao et al. [82] used a MNL model to demonstrate that transit network layout has significant effect on 

resident mode choice. Based on parameter estimation, the factors affecting mode choice were further 

screened and then regarded as the input data to a back propagation ANN for training and forecasting, 

to further confirm their findings. 

Omrani et al. [83] used an evidential ANN (ENN) to support management decision making and to 

build predictions under uncertainty related to changes in people’s behaviour, in the economic context, 

or in the environment and policy. The rates of successful prediction obtained by the ENN and several 

alternative ANN approaches were compared by cross-validation. The results showed that the 

performance of the ENN supported its use as an alternative procedure for modelling travel mode 

choice. 

Omrani [84] used two different ANN specifications (multiple layer perceptron and radial basis 

function), MNL and SVMs for predicting travel mode of individuals. They then compared the rates of 

success for predicting the travel mode choice using cross-validation techniques. They found the 

average probability of correct assessment of SVM and MNL was higher, however the ANNs had 

slightly better performance. 

Hussain et al. [85] compared two mode choice models, MNL and ANN, with the purpose of evaluating 

the accuracy levels in the predictability in each model. In both terms of predictability and validation, 

the ANN exceeded the MNL results. 

Assi et al. [86] made a comparison between the efficiency and robustness of the Logit regression 

model and a multilayer perceptron ANN to predict and explain the mode choice behaviour of high 

school students. The results guaranteed that ANNs will perform better when it comes to understanding 

the predictive power of their mode choice behaviour. 

Golshani et al. [87] compared the performance of MNLs with the performance of ANNs in the 

contexts of trip departure time and mode choice behaviour. The ANN model outperformed the 

statistical models in terms of implementation burden and prediction accuracy (87% and 64% of correct 

predictions, respectively). 

Lee et al. [88] investigated the capabilities of four types of ANN model (backpropagation, radial basis 

function, probabilistic, clustered probabilistic) and compared their prediction performance with a 

conventional MNL for mode choice problems. The cross-validation results revealed that the four 

ANNs achieve better prediction accuracies (around 80%) than the MNL (around 70%), with the 

clustered probabilistic ANN showing the highest performance. 
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Minal and Sekhar [89] modelled the mode choice of commuters using two discrete choice model 

(MNL and nested logit) and a non-conventional machine learning method (ANN). A comparative 

evaluation of the results showed that the model developed by using an ANN is the superior of the three 

due to higher accuracy and better exploratory power. 

Aschwanden et al. [90] presented a novel ANN-based modelling technique capable of predicting 

transportation mode distribution from georeferenced trips and satellite images. The ANN was able to 

identify the urban patterns that are more conducive for different modes of transportation, despite the 

limited information density provided by satellite images. 

Ma and Zhang [91] proposed a deep ANNs with entity embeddings to jointly learn meaningful 

representations of categorical variables and accurate travel mode predictions. The entity embedding 

technique turned out to be good for enhancing the prediction performance and it could boost the 

performances of DT-based models. 

Wang et al. [29] demonstrated the use of behavioural knowledge for the design of a deep ANN 

architecture with alternative-specific utility functions (ASU-DNN), improving both the predictive 

power and interpretability. The results demonstrated how behavioural knowledge can function as an 

effective domain-knowledge-based regularization method, and how it could improve the power of 

ANNs in choice analysis. 

Wang et al. [30] provided an empirical method of numerically extracting from ANN results valuable 

economic information such as choice probability, probability derivatives (or elasticities), and marginal 

rates of substitution such as value of travel time. ANN-based choice models generated reasonable 

economic information at the aggregate level. They resulted in roughly S-shaped choice probability 

curves and inverse bell-shaped probability derivatives. 

Zhang et al. [92] proposed a deep ANN framework for traffic mode choice in which a local-connected 

layer extracted a utility specification from the data, and then, a fully connected layer augmented 

feature representation. The first local-connected hidden layer partially replaced the manual utility 

specification and the second fully connected hidden layer enabled the model to eliminate the IIA 

problem. 

Buijs et al. [93] investigated an approach where the travellers’ transportation mode was predicted 

through an ANN trained on choice sets and user specific attributes inferred from data of the 

Amsterdam metropolitan area. The models showed better results when predicting the choice of mode 

for trips taking place on the same network as the training data. 
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Li et al. [94] conducted a comparative analysis of regression-based multinomial models and ANN 

models in intercity travel mode choices. MNL and Bayesian multinomial logit (BMNL) were 

compared with the radial basis function (RBF) and multilayer perceptron (MLP). The MLP performed 

best in terms of predictive accuracy. 

Van Cranenburgh and Kouwenhoven [95] proposed a novel ANN-based method to derive the VTT 

distribution without making assumptions about the shape of the distribution or the error terms. The 

method was both tested on a series of data derived from Monte Carlo experiments and applied to data 

from the 2009 Norwegian VTT study. The results were then validated by comparing them to those of 

discrete choice models and nonparametric methods, showing very promising results. 

Table 2. Details for the literature regarding Neural Networks (part 1 of 2) 

Authors 

Y
ea

r 

Data source 
Territorial 

context 

Perez and Pietrzyk [73] 

1
9

9
5
 ~27,000 observations 

Data were collected from several thousand companies, some of which 

had implemented strategies to increase their average vehicle ridership. 

Los Angeles 

(USA) 

Raju, Sikdar, and 

Dhingra [74] 1
9

9
6
 535 observations 

Socioeconomic and travel-related information about the trip-makers 

from household survey data, transport network data. 

Guwahati  

(India) 

Subba Rao, Sikdar, 

Krishna Rao, and 

Dhingra [75] 

1
9

9
8
 4,335 observations 

Details of access legs of work trips, socio-economic characteristics 

of the traveller, system characteristics of the alternatives. 

Mumbai  

(India) 

Hensher and Ton [76] 

2
0

0
0
 801 observations 

Data from a stated choice experiment examining the potential 

impacts of transport policy instruments on reductions in greenhouse 

gas emissions. 

Sydney, 

Melbourne 

(Australia) 

Cantarella and de Luca 

[77] 2
0

0
3
 2,808 observations 

Journeys of students towards the country-side location of the 

University of Salerno from outside the city of Salerno, obtained by 

interviews at parking locations. 

Salerno  

(Italy) 

Cantarella and De Luca 

[78] 2
0

0
5
 1,067 + 2,350 observations 

Journeys in the central area of the Veneto Region, and extra-urban 

journeys of students towards the University of Salerno, which LoS 

attributes were computed through transportation network models. 

Veneto, Salerno 

(Italy) 

Chalumuri, Errampalli, 

Bujangan, and Subamay 

[79] 

2
0

0
9
 1045 + 1018 observations  

Home-interview surveys collecting the choice behaviour of the 

commuters for the journeys to different purposes namely work, 

education and other purposes. 

Visakhapatnam, 

Nagpur  

(India) 

Zhao, Shao, Li, Dong, 

and Liu [80] 2
0

1
0
 967 observations  

Resident trip survey along a certain suburban railway line in Beijing, 

covering respondents’ travel information, which describes the 

characteristics of both traffic mode and traveller. 

Beijing  

(China) 

Yin and Guan [81] 

2
0

1
1
 

1,007 observations  

Residents travel surveys. 

Jinan City 

(China) 

Gao, Zhao, Zhuge, 

Zhang, and McCormack 

[82] 

2
0

1
3
 650 observations  

A household survey including mode choice, individual 

characteristics and travel features, city features, transportation 

policies. 

Baoding  

(China) 
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Table 3. Details for the literature regarding Neural Networks (part 2 of 2) 

Omrani, Charif, Gerber, 

Awasthi, and Trigano 

[83] 

2
0

1
3
 9,500 observations  

Data from a Socioeconomic Panel Survey containing individuals’ 

characteristics, transportation mode specifications, and data related 

to places of work and residence. 

Luxembourg 

Omrani [84] 

2
0

1
5
 3670 observations  

Data from a socio-economic panel from a sample of households 

from the resident population in Luxembourg. 

Luxembourg 

Hussain, Mohammed, 

Salman, and Borhan [85] 2
0

1
7
 620 observations 

A survey carried out in Baghdad in four areas with higher percentage 

of the population and noticeable employment of private cars. 

Baghdad  

(Iraq) 

Assi, Nahiduzzaman, 

Ratrout, and Aldosary 

[86] 

2
0

1
8
 597 observations 

Questionnaire designed to collect information from parents about the 

mode choice behaviour of their children, including trip 

characteristics and household details. 

Khobar  

(Saudi Arabia) 

Golshani, Shabanpour, 

Mahmoudifard, Derrible, 

and Mohammadian [87] 

2
0

1
8
 9,450 observations 

Travel Tracker Survey containing trip information as well as 

household and individual level sociodemographic characteristics and 

activity-related variables. 

Chicago  

(USA) 

Lee, Derrible, and Pereira 

[88] 2
0

1
8
 4,746 observations 

Travel Tracker Survey containing trip information as well as 

household and individual level sociodemographic characteristics and 

activity-related variables. 

Chicago  

(USA) 

Minal and Sekhar [89] 

2
0

1
8
 94 observations 

An online survey conducted in the month of February 2013 towards 

the population of Delhi. 

Delhi  

(India) 

Aschwanden, Wijnands, 

Thompson, Nice, Zhao, 

and Stevenson [90] 

2
0

1
9
 63,365 observations 

Two data sets: georeferenced trips from the Victorian Integrated 

Survey of Travel and Activity and satellite images from Google 

Maps. 

State of Victoria 

(Australia) 

Ma and Zhang [91] 

2
0

2
0
 81,086 observations 

Traffic mode survey dataset which combines individual records of 

the London Travel Demand Survey with corresponding travel 

trajectory for all travel choices. 

London  

(UK) 

Wang Mo, and Zhao [29] 

2
0

2
0
 8, 418 + 2, 929 observations 

An online survey data collected in Singapore with the aid of a 

professional survey company and a public dataset containing data 

about a stated preference survey in Netherlands. 

Singapore; 

Netherlands 

Wang, Wang, and Zhao 

[30] 2
0

2
0
 8,418 observations 

Stated preference survey conducted in Singapore, with questions 

about home and working locations, current travel mode, and seven 

choice scenarios varying by availability and attributes. 

Singapore 

Zhang, Ji, Wang, and 

Yang [92] 2
0

2
0
 1,000,000 observations 

Data from the public transportation system, taxi orders, and 

anonymous navigation users of Beijing, comprising the travels from 

a bus, subway, taxi, and private car. 

Beijing  

(China) 

Buijs, Koch, and 

Dugundji [93] 2
0

2
1
 106,647 observations 

GPS data is collected during three time periods spanning about one 

month each and generated alternatives for each user. 

Amsterdam 

(Netherlands) 

Li, Wang, Wu, Chen, 

Zhou [94] 2
0

2
1
 985 observations 

Questionnaires collected in Xi’an in addition to the travel distances 

calculated by Baidu Maps using the real route between the cities of 

origin and destination. 

Xi’an  

(China) 

Van Cranenburgh and 

Kouwenhoven [95] 2
0

2
1
 52,488 observations 

Norwegian 2009 VTT data set, in which the actual observed choices, 

were replaced with synthetically generated choices. 

Norway 
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2.3.3 Ensemble Methods 

Biagioni et al. [96] developed a novel adaptation of data-mining methods through the use of ensemble 

classifiers (based either on DTs or Naïve Bayes classifiers). By defining the notion of an “anchor 

mode” as the mode selected on the first trip of a tour, this ensemble was trained with and without 

knowledge of the anchor mode. The results of the ensemble were then compared to other machine 

learning classifiers and MNL. The ensemble achieved a high level of accuracy, precision, and recall, 

outperforming MNL.  

Rasouli and Timmermans [97] explored the idea of replacing a single representation with an ensemble 

of models using DTs and investigated whether the use of a model ensemble would reduce errors and 

uncertainty in predicting transport mode decisions. They found that predictive success tends to 

increase when increasing ensemble size (20 or more DTs), and that the feature importance also varied 

based on ensemble size. 

Ermagun et al. [98] jointly modelled decisions on escorting children and modes of transport by using 

a RF, and a nested logit model. They found the RF significantly outperformed the nested logit, with a 

62% prediction accuracy for the former compared with 38% for the latter, Also, the RF model 

performed better in all categories but private cars, for which the accuracy of the two models was 

similar. 

Sekhar et al. [99] modelled the mode choice behaviour of commuters in Delhi by considering a 

DT-based RF, and then compared it to a MNL. The RF model was superior, with higher prediction 

accuracy (98%) than the MNL models (77%). 

Brondeel et al. [100] developed a simulation to evaluate the impact on physical activity of the transport 

mode shifts anticipated in a Urban Mobility Plan, using a simulation method based on RF models. 

Wang and Ross [101] explored the application of an extreme gradient boosting (XGB) model based 

on DTs to travel mode choice modelling and compared the results with a MNL model. The 

performance of the XGB model exceeded that of the MNL not only in predicting the choices of all 

modes together, but also for every individual mode. 

Chang et al. [102] employed a data fusion model based on a stacking strategy and proposed a hybrid 

model of the unsupervised Denoising Autoencoder (DAE) combined with a supervised RF to improve 

the prediction accuracy of mode choice. Compared with traditional MNLs, RF improved the 

classification accuracy by 27%. The DAE combined with the RF could better model the travel mode 

choice behaviour using a three-stage architecture. 
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Chapleau et al. [103] employed a RF to characterize the use of eight different travel modes observed 

in two consecutive household travel surveys. The RF produced a higher correct prediction rate and a 

lower total error rate than MNL, despite the simplicity of the input data structure. In addition, the 

application of the RF to a larger and independently collected dataset demonstrated its robustness. 

Cheng et al. [104] proposed a robust RF method to analyse travel mode choices and examined the 

prediction capability and model interpretability. A comparison between the RF, SVM, AdaBoost and 

MNL showed how RF and SVM are the best models in prediction accuracy. However, RF is more 

computationally efficient than SVM because it takes less time to train the model. 

Lee et al. [105] applied a gradient boosting machine (GBM) to develop a choice model on three choice 

alternatives related to autonomous vehicles, based on stated preference survey data, which also 

included attitudinal statements from respondents. The prediction performance of GBM was evaluated 

by conducting a 5-fold cross-validation and showed around 80% accuracy. 

Li et al. [106] set up a model with a RF for the travel mode choice of passengers after an urban rail 

transit system was put into use, to find out the impact of different travel features. The RF algorithm 

could analyse the importance of passenger travel features and reached a prediction accuracy of 95.9% 

when travel cost was taken into consideration. 

Ceccato et al. [107] evaluated substitution rates of car-sharing against private cars and public transport 

using a RF classifier and a Binomial Logit model. Binomial Logit and RF had similar predictive 

powers, however only RF provided a deep understanding of the effect of explanatory variables. 

Kim [108] proposed an interpretable ML approach to improve their interpretability concerning travel 

mode choice modelling. XGB was applied and it outperformed other ML models when considering 

variable importance, variable interaction, and accumulated local effects. 
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Table 4. Details for the literature regarding Ensemble Methods 

Authors 

Y
ea

r 

Data source 
Territorial 

context 

Biagioni, Szczurek, 

Nelson, and 

Mohammadian [96] 

2
0

0
8
 116,666 observations 

Activity-based dataset consisting of one-day and two-day activity 

diaries, complete with socio-demographic and trip-based attributes. 

Chicago  

(USA) 

Rasouli and Timmermans 

[97] 2
0

1
4
 1,446 observations  

Trip-diary with details about activities, in addition to individual and 

household sociodemographic characteristics. 

Netherlands 

Ermagun, Rashidi, and 

Lari [98] 2
0

1
5
 4,700 observations  

Characteristics of the built environmental, the transportation system, 

students’ trips, and socioeconomic of households. 

Tehran  

(Iran) 

Sekhar, Minal, and 

Madhu [99] 2
0

1
6
 5,000 observations 

Travel behaviour data has been collected through predesigned 

questionnaire. 

Delhi  

(India) 

Brondeel, Kestens, and 

Chaix [100] 2
0

1
7
 82,084 observations 

Transport behaviour and accelerometer data collected for a study in 

Ile-de-France. 

Ile-de-France 

(France) 

Wang and Ross [101] 

2
0

1
8
 51,910 observations 

Household travel survey data collected in the Delaware Valley 

region, including trip records, travel mode and income levels. 

Delaware  

(USA) 

Chang, Wu, Liu, Yan, 

Sun, and Qu [102] 2
0

1
9
 52,265 observations 

Travel diary survey data containing trip specific data, socio-

economic data about the participants and information on households. 

Germany 

Chapleau, Gaudette, and 

Spurr [103] 2
0

1
9
 72,180 + 86,836 observations 

Household travel surveys which measured household attributes, 

individual characteristics and trip attributes. 

Montreal 

(Canada) 

Cheng, Chen, De Vos, 

Lai, and Witlox [104] 2
0

1
9
 7,276 observations 

Household surveys conducted to get resident’s travel information 

and their socio-demographics, combined with information on the 

built environment. 

Nanjing  

(China) 

Lee, Mulrow, Haboucha, 

Derrible, and Shiftan 

[105] 

2
0

1
9
 4260 observations 

Data from a survey given only to individuals who currently drive a 

car for their daily commute to work or school, designed to 

investigate individuals’ likelihood of choosing their future vehicle. 

Israel; 

North America 

Li, Gao, Zhang, and Liao 

[106] 2
0

2
0
 733,734  observations 

IC card data of the bus and rail transit which includes IC card 

identification, transaction date, boarding and alighting time and 

stops/stations, and latitude and longitude information. 

Xiamen 

(China) 

Ceccato, Chicco, and 

Diana [107] 2
0

2
1
 

1,050 + 200 observations 

Stated-preference travel survey and revealed-preference survey. 

Turin  

(Italy) 

Kim [108] 

2
0

2
1
 172,889 observations 

NHTS dataset from Seoul, which includes individual travel diaries 

that recorded every daily trip taken. 

Seoul  

(South Korea) 

2.3.4 Several Algorithms 

Xie at al. [109] investigated the capabilities and performance of DTs and ANNs for work travel mode 

choice modelling, comparing them to a traditional MNL model. The comparative evaluation showed 

that the two machine learning models had slightly better prediction capabilities than the MNL, and 

that the NN outperformed the other two models.  

Shukla et al. [110] proposed a novel data-driven methodology to address some issues identified in 

DCMs using ANNs and DTs combined with fuzzy datasets. The results from the various analysis they 
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conducted suggested that the use of fuzzy sets and a tour-based model for mode choice achieved high 

performances. However, they decreased the value of their findings by not including a comparison with 

DCM, since they explicitly expressed their aim was to address some of the issues of such models. 

Hagenauer and Helbich [111] compared the predictive performance of MNL and several machine 

learning classifiers (Naïve Bayes, SVM, ANN, Boosting, Bagging, RF) for travel mode choice 

analysis and addressed the importance of different variables and how they related to different travel 

modes. Among the investigated classifiers, the RF produced the most accurate predictions, while the 

performance of MNL was low. 

Lindner et al. [112] compared the performance of an ANN and a DT with a binary logit in a 

multicollinear study case for the estimation of motorized travel mode choice. They found that DTs 

and ANNs can overcome the disadvantages of the more traditional model, especially the constraint of 

a multicollinear database, and these approaches can also construct a robust non-continuous model 

from the patterns of the entire sample. 

Assi et al. [113] compared the effectiveness, robustness, and convergence of extreme learning machine 

(ELM), SVM, and multi-layer perceptron ANN to predict school-goers mode choice behaviour. Both 

ELM and ANN outperformed the SVM technique in terms of training and testing accuracies. The 

SVM technique was more computationally expensive, while the ELM was the best one in terms of 

computational expense. 

Richards and Zill [114] examined several machine learning methods (ANN, RF, Gradient Boosting) 

to model mode choice decisions and compared the results to a well calibrated nested logit model. All 

the models performed well regarding both individual level predictive accuracy and the aggregate mode 

share. The best performing model was gradient boosting with a mean predictive accuracy of 90%. 

Zhao et al. [115] provided a comparison between machine learning methods (Naïve Bayes, DT, 

Boosting, Bagging, RF, ANN) and MNL for travel mode choice modelling and evaluated the two 

approaches on the stated-preference survey data for a new type of transit system. The RF model was 

the best machine learning model, and it significantly outperformed the MNL both at individual and 

aggregate levels. 

Zhou et al. [116] applied several machine learning techniques (stochastic gradient descent, k-nearest 

neighbour, DT, SVM, Naïve Bayes, AdaBoost, Bagging, RF, Extra Trees, Gradient Boosting, ANN) 

to simulate the means of transport based on environmental and temporal factors to model travel 

choices between bike-sharing and taxi. The performance of multi-layer ANN did not surpass that of 
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classical non-linear models (e.g., RF), and within ANNs, a deep ANN only increased the prediction 

accuracy by a marginal rate. 

Aghaabbasi et al. [117] investigated the factors that motivate the adoption and the usage frequency of 

ride-sourcing among students in a public university using RF and Bayesian Network analysis. The 

predictors with the highest importance from the RF results were included as predictors of the Bayesian 

Network. 

Liang et al. [118] presented three methods including a MNL model, a RF and SVM to estimate 

household travel mode. The accuracies of the three methods stabilized when increasing the sample 

size, but only up to a certain limit. The accuracies of MNL, RF and SVM were all around 70%, and 

the results of the RF were consistent with those of the MNL. 

Koushik et al. [119] reviewed the activity-travel behaviour literature that employs Machine Learning 

(ML) techniques for empirical analysis and modelling, like SVMs, DTs, ANNs, Bayes Classifiers, and 

Ensemble Learners. The review found that most of the studies identify the lack of interpretability as a 

serious shortcoming in ML techniques. 

Hillel et al. [12] conducted a systematic review of machine learning methodologies for modelling 

passenger mode choice and identified and quantified the prevalence of methodological limitations in 

previous studies. The limitations identified in the review highlighted the need for a deeper 

understanding of the methodologies used for ML modelling of choice behaviour. 

Wang et al.[120] provided a generalizable empirical benchmark by comparing 105 between machine 

learning and discrete choice model classifiers from 12 model families (Logit, deep ANNs, 

discriminant analysis, Bayesian Models, SVMs, K nearest neighbours, DTs, generalized linear 

models, Gaussian process, RFs, bagging, and boosting) and evaluating both prediction accuracy and 

computational efficiency of each model. They found that ensemble methods (boosting, bagging, and 

RFs) and deep ANN achieved the highest predictive performance, but at a relatively high 

computational cost. Random forests were the most computationally efficient, balancing between 

prediction and computation. 
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Table 5. Details for the literature regarding Several Algorithms 

Authors 

Y
ea

r 

Data 
Territorial 

context 

Xie, Lu, and Parkany 

[109] 2
0

0
3
 4,746 observations 

Two-day travel diary and detailed individual and household 

sociodemographic data three data sets reflecting household, person, 

and trip, characteristics. 

San Francisco 

(USA) 

Shukla, Ma, 

Denagamage, and Huynh 

[110] 

2
0

1
3
 100,000 observations  

Household travel survey data including details of each of the trips that 

each person in a household makes over 24 hours on a day, socio-

demographic attributes of households and of individuals. 

Sydney 

(Australia) 

Hagenauer and Helbich 

[111] 2
0

1
7
 230,608 (100,000) observations 

Individual travel diaries in which participants were asked to record 

every trip over the course of six days, in addition to socio-economic 

data about the participants as well as information on households. 

Netherlands 

Lindner, Pitombo, and 

Cunha [112] 2
0

1
7
 18,733 observations 

Disaggregate data referring to the Origin/ Destination Survey carried 

out in 2007 by the São Paulo Metropolitan Company. 

São Paulo 

(Brazil) 

Assi, Shafiullah, 

Nahiduzzaman, and 

Mansoor [113] 

2
0

1
9
 1,484 observations 

Questionnaires distributed to students and collected on the next day, 

designed to gather information about the present mode choice, and 

trip and household characteristics. 

Khobar, Dhahran 

(Saudi Arabia) 

Richards and Zill [114] 

2
0

1
9
 150,000 observations 

Dataset comprised of all trips completed on a particular day recorded 

by selected households. 

Melbourne 

(Australia) 

Zhao, Yan, and Van 

Hentenryck [167] 2
0

1
9
 8,141 observations 

Stated-preference survey completed by the faculty, staff, and students 

at the University of Michigan. 

Michigan  

(USA) 

Zhou, Wang, and Li 

[116] 2
0

1
9
 10+ Millions? (30,000) observations 

Dataset including both trip data and station information for bike 

sharing. Dataset including trip information including taxi fare for 

taxis. Data regarding the built environment. 

Chicago  

(USA) 

Aghaabbasi, Shekari, 

Shah, Olakunle, 

Armaghani, Moeinaddini 

[117] 

2
0

2
0
 358 observations  

A survey conducted among the students of the Universiti Teknologi 

Malaysia in the second-largest public university campus in Malaysia. 

Skudai 

(Malaysia) 

Liang, Xu, Grant-Muller, 

and Mussone [118] 2
0

2
0
 101,053 observations 

A survey based on households, which involved vehicle drivers and 

users of public transport around the city of Milan. 

Milan  

(Italy) 

Wang, Mo, Hess, Zhao 

[120] 2
0

2
1
 100,000 observations 

A national household travel survey collected in the United States, a  

travel demand survey collected in London, and a stated preference 

survey collected in in Singapore. 

USA; 

London (UK); 

Singapore 

2.3.5 “Hybrid” Methods 

All the works reported in this section are related to studies which tried to find methods to incorporate 

both classic discrete mode choice modelling and machine learning algorithms, hence why the name 

“hybrid” methods was chosen for the section. 

Gazder and Ratrout [121] investigated the use of Logit-ANN based ensembles in mode choice 

modelling for different numbers of transportation modes and predictor variables. The results of the 

proposed method were compared to several other ANN models, and the Logit-ANN models gave 
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better prediction than other models in almost all situations. The ensemble also showed high accuracies 

for overall as well as individual mode predictions for all multinomial problems. 

Sifringer at al. [122] brought the predictive strength of neural networks to the field of DCMs by 

matching the mathematical derivation of the multinomial logit model to its neural network equivalent. 

They added a term arising from a dense neural network in the utility function, using all discarded 

features from the original DCM model as input to the NN. This greatly increased the predictive 

strength of the model, and they highlighted how this NN-derived term fits very well in DCM theory 

when relating it to a random utility term. 

Arkoudi et al. [32] proposed an approach that combines theory and data-driven choice models using 

Neural Networks. They use continuous vector representations (embeddings) for encoding categorical 

or discrete explanatory variables with a focus on interpretability, by associating each of the 

embeddings’ dimensions to a choice alternative. Their models preserved interpretability of the utility 

coefficients for all the input variables despite being based on ANN principles, and their results 

delivered state-of-the-art predictive performance, outperforming existing ANN-based models while 

drastically reducing the number of parameters. 

Sfeir et al. [123] presented a Latent Class Choice Model with a flexible class membership, by 

formulating the latent classes using Gaussian-Bernoulli mixture models. They derived an Expectation-

Maximization algorithm is derived for the estimation and compared their model to traditional discrete 

choice models based on parameter signs, values of time, and goodness-of-fit. Their results showed an 

improvement in the overall performance of latent class choice models by providing better out-of-

sample predication accuracy in addition to better representations of heterogeneity without weakening 

the behavioural and economic interpretability of the choice models. 

Wong and Farooq [33] proposed a Residual Logit (ResLogit) model formulation which integrated a 

Deep Neural Network architecture into a multinomial logit model. Their approach extended the 

systematic utility function to incorporate non-linear cross-effects using a series of residual layers. The 

model structure accounted for cross-effects, choice heterogeneity and other effects in a non-linear 

manner. Their findings showed that the ResLogit approach significantly outperformed multi-layer 

perceptron models while providing similar interpretability as a MNL model. 

Han et al. [34, 124] formulated a model consists of two modules: a neural network (TasteNet) that 

learns taste parameters as flexible functions of individual characteristics; and a multinomial logit 

(MNL) model with utility functions defined with expert knowledge. The taste parameters learned by 
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the NN are fed into the choice model and link the two modules. Moreover, they required estimates of 

behaviour indicators to be realistic at the disaggregated level. They showed that, on the publicly 

available Swissmetro dataset, their TasteNet-MNL outperformed the predictability of both 

multinomial logit and Mixed Logit model. 

Sfeir et al. [35] presented a Gaussian Process – Latent Class Choice Model to integrate a non-

parametric class of probabilistic machine learning within discrete choice models with the aim of 

improving the discrete representations of unobserved heterogeneity. The model would assign 

individuals to behaviourally homogeneous clusters and simultaneously estimate class-specific choice 

models by relying on random utility models. Results showed that their approach allows for a more 

complex and flexible representation of heterogeneity and improves both in-sample fit and out-of-

sample predictive power. 

Table 6. Details for the literature regarding “Hybrid” Methods 

Authors 

Y
ea

r 

Data 
Territorial 

context 

Gazder and Ratrout 

[121] 2
0

1
5
 654 observations  

Passenger travel between Khobar-Dammam metropolitan area and 

Kingdom of Bahrain. 

Khobar-Damma, 

Bahrain  

(Saudi Arabia) 

Sifringer, Lurkin, and 

Alahi [122] 2
0

1
8
 10,728 observations 

A stated preference survey on transport modes, in which each 

individual informed of his choice in transportation for various trips 

including car, train or the innovative Swissmetro project. 

Switzerland 

Arkoudi, Azevedo, and 

Pereira [32] 2
0

2
1
 10,728 + 14,550 observations 

A stated preference survey on transport modes from the Swissmetro 

project, and a subset of the Danish National Travel Survey. 

Switzerland; 

Denmark 

Sfeir, Abou-Zeid, 

Rodrigues, Pereira, and 

Kaysi [123] 

2
0

2
1
 81,086 + 2,600 observations 

A dataset combining trip diaries of the London Travel Demand Survey 

with alternatives extracted from Google, and a dataset from a stated 

preferences commuting survey collected in Beirut. 

London (UK); 

Beirut (Lebanon) 

Wong and Farooq [33] 

2
0

2
1
 60,365 observations 

MTL Trajet dataset collected from the user’s smartphone by using a 

mobile application during a travel survey. 

Montreal 

(Canada) 

Han, Pereira, 

Ben-Akiva, and Zegras 

[34, 124] 

2
0

2
2
 14,000 + 10,692 observations 

A synthetic dataset generated with an underlying logit model, and a 

stated preference survey on transport modes from the Swissmetro 

project. 

Switzerland 

Sfeir, Rodrigues, and 

Abou-Zeid [35] 2
0

2
2
 2,600 observations 

A dataset from a stated preferences commuting survey collected at 

the American University of Beirut. 

Beirut (Lebanon) 
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3 USING ARTIFICIAL NEURAL NETWORKS TO ESTIMATE THE 

VALUE OF TRAVEL TIME IN THE CONTEXT OF MODE CHOICE 

MODELLING 

3.1 Introduction 

In our work we propose an alternative method for calculating the value of travel time through the 

results of machine learning algorithms. We compare different methodologies, so that we could safely 

say that the soundness of our methodology is validated by the estimation of more classical models and 

by the use of different databases containing real-life data obtained from travel surveys. 

Recently, an increasing number of applications of machine learning (ML) algorithms to choice 

modelling in transportation have been tested as an alternative to the traditional discrete choice models 

based on econometric theory. The higher flexibility of ML methods, which generally require no pre-

assumptions regarding the mathematical formulation of the underlying relations between the variables 

playing different roles in explaining a certain phenomenon, is one of the strongest factors affecting 

this recently developed interest in their possible use in this field of study. 

However, ML methods, at least in their purest form, can be considered as black-box methods, which 

is a far from ideal aspect for an analyst wishing to obtain meaningful information from their outputs. 

To overcome this inherent limit, some researchers have tried to find alternative ways to use such 

methods, by either opportunely transforming the outputs of machine learning algorithms so that they 

can be interpreted from an economic point of view [29–31], or by building modified hybrid versions 

of them in such a manner that their results can be interpreted in the same way analysts are used to do 

with classic discrete choice models [32–35]. While obtaining coefficients with their associated 

statistical significance is practically unfeasible by using machine learning methods, it is instead 

possible to extrapolate values regarding elasticities and marginal effects of the considered variables, 

to compare them to those obtained by specifying and estimating econometric models. Some studies 

have already proven the validity of these methods [30, 95]  

One interesting element to analyse is the value of travel time (VTT), since it is a very informative 

parameter to be considered when analysing the results of choice models in transportation, and when 

evaluating possible policy implications. In fact, the value that people place on saving total travel time 

is one of the most important indices that can be inferred [125]. As a matter of fact, since travel 

generates a derived demand, the time people need to dedicate to their trips is effectively sacrificed, as 

most people would rather invest this time by doing more desired activities at home, at work or 
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anywhere else. Thus, the time consumed because of the need to travel (walking, waiting or riding a 

vehicle) normally represents an undesirable circumstance for most individuals, and, therefore, they 

are willing to exchange another good (in this case, their money) in order to reduce their travel time, 

and the VTT represent the amount they are willing to pay to reduce their travel time by one unit of 

time [126]. Understanding the VTT would allow decision-makers to act by introducing policies aimed 

at reducing the amount of time wasted when making a trip or improving the conditions in which trips 

are made, and this additional benefits should be accounted among those produced of public 

investments [127]. 

To date, the argument of obtaining VTT through ML methods has been studied by few researchers 

[30, 95], so there is still much to be found out and discussed. The method we propose is independent 

from the shape and formulation of the mode-choice functions, so it can be applied to both econometric 

models and ML methods, given the output allows the estimation of individual level mode-choice 

probabilities. Such a method was necessary because ML methods do not have a mathematical 

formulation of the utility, hence it not possible to calculate derivatives, needed to calculate the values 

for elasticities and marginal effects using their correct definition. Instead, we chose to approximate 

the infinitesimal formulation (which uses the derivatives) with a ratio of finite differences. This 

method of calculating marginal effects for ML methods, proposed by Zhao et al. [31], as far as we 

know, has not yet been applied to compute the value of travel time. 

We applied this method to machine learning methods and then we compared the results with those of 

some econometric models. In particular, we specified and estimated a multinomial logit and a mixed 

logit as discrete choice models, while for the machine learning part we constructed a particular 

specification of a neural network which considers “alternative specific utility functions”, inspired by 

the work of Wang et al. [29]. 

To test the validity of our methodology we also employed two different datasets. The first dataset 

contains 7,021 observations, collected through a stated preference survey conducted in Switzerland in 

1998 among commuters traveling between St. Gallen and Geneva and considers as a dependent 

variable the choice to commute by train, Swissmetro (an innovative mag-lev underground system) or 

car. The second one has instead 2,873 observations and it was collected through a revealed preference 

survey conducted in 2019-2020 in the metropolitan area of Cagliari (Italy) among a sample of 

commuters among students, university staff, and public employees. In this case the dependent variable 

was the choice to commute by using one of the following means of transport: car, public transport, 
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and walking. Both datasets also contain personal and socio-economic characteristics of each 

individual. 

For all the models we split the datasets in a training and testing set, we then estimated the final results 

using the testing set only. Since neural networks are highly sensitive to the values of their hyper-

parameters, we estimated several different models which used different sets of hyper-parameters 

selected from specific ranges in order to find the optimal calibration values. 

Regarding the main outputs, we mainly focused on two dimensions: the first, which was the focus of 

this analysis, is the value of travel time for both car and public transport alternatives; second, we 

compared direct- and cross-elasticities for several key level of service variables, in order to verify that 

our neural network is working correctly and is producing consistent and reliable results. 

3.2 Methodology 

Generally speaking, the level of utility that a decision maker n receives from choosing an alternative 

j can be defined as 𝑈𝑛𝑗. However, researchers cannot observe this utility directly, but rather they obtain 

information regarding one or more aspects 𝒙𝑛𝑗 which are supposed to influence the utility. Hence, 

they can only reproduce a representative utility 𝑉𝑛𝑗 = 𝑓(𝒙𝑛𝑗), and there exists a relation between the 

two in the form of 𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗. 𝜀𝑛𝑗 is a random error component which captures the effects of 

all the elements which influence 𝑈𝑛𝑗 but are not included in 𝑉𝑛𝑗. 

In transportation economic theory, the value of travel time (VTT) is defined as the marginal rate of 

substitution of the travel cost for the travel time of the same alternative [128], i.e. the VTT is equivalent 

to the marginal utility of travel time 𝑀𝑈𝑛𝑗𝑇 over the marginal utility of the cost 𝑀𝑈𝑛𝑗𝐶: 

𝑉𝑇𝑇𝑛𝑗 =
𝑀𝑈𝑛𝑗𝑇

𝑀𝑈𝑛𝑗𝐶
= 

𝜕𝑉𝑛𝑗
𝜕𝑇𝑛𝑗
𝜕𝑉𝑛𝑗
𝜕𝐶𝑛𝑗

 (1) 

where 𝑇𝑛𝑗 and 𝐶𝑛𝑗 are respectively the travel time and cost associated to alternative j by individual n. 

However, machine learning algorithms, and neural networks more specifically, do not usually allow 

to estimate the utilities as straightforwardly as we can with discrete choice models, so it would be also 

not be possible to obtain a value for the marginal utilities. Since in our NN architecture we obtain 

probabilities as the output of the model, a relationship between the derivatives of utilities and choice 

probabilities is needed if we desire to apply relation (1). It is possible to demonstrate [2] that the 

following relation (2) is true in the case of a multinomial logit: 
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𝜕𝑃𝑛𝑗

𝜕𝑥𝑛𝑗
=
𝜕𝑉𝑛𝑗

𝜕𝑥𝑛𝑗
𝑃𝑛𝑗(1 − 𝑃𝑛𝑗) (2) 

If we combine equations 1 and 2, we obtain the relation we were looking for, which directly connects 

the VTT of individual n for alternative j to the derivatives of the choice probabilities w.r.t. (with 

respect to) travel time and cost: 

𝜕𝑉𝑛𝑗
𝜕𝑇𝑛𝑗
𝜕𝑉𝑛𝑗
𝜕𝐶𝑛𝑗

=

𝜕𝑉𝑛𝑗
𝜕𝑇𝑛𝑗
𝜕𝑉𝑛𝑗
𝜕𝐶𝑛𝑗

∙
𝑃𝑛𝑗(1 − 𝑃𝑛𝑗)

𝑃𝑛𝑗(1 − 𝑃𝑛𝑗)
=

𝜕𝑉𝑛𝑗
𝜕𝑇𝑛𝑗

𝑃𝑛𝑗(1 − 𝑃𝑛𝑗)

𝜕𝑉𝑛𝑗
𝜕𝐶𝑛𝑗

𝑃𝑛𝑗(1 − 𝑃𝑛𝑗)

=

𝜕𝑃𝑛𝑗
𝜕𝑇𝑛𝑗
𝜕𝑃𝑛𝑗
𝜕𝐶𝑛𝑗

= 𝑉𝑇𝑇𝑛𝑗 (3) 

In order to validate the results obtained through the neural networks, we needed some benchmarks 

values to verify if our proposed models are working correctly. We chose to use logit models, since 

they represent the most often used tool to model choice behaviour in transportation. The first model 

we used is the multinomial logit (MNL) model, which is the simplest and most commonly used among 

the choice models [2]. Logit models are obtained by assuming that each random error component 𝜀𝑛𝑗 

is an independently, identically distributed extreme value. In these models, the utility perceived by 

individual n for alternative j is specified as a linear combination of observed variables 𝒙𝑛𝑗 which uses 

a set of parameters 𝜷 to represent the individuals’ tastes: 

𝑉𝑛𝑗 = 𝜷𝒙𝑛𝑗 (4) 

Then, the choice probability for alternative j and individual n takes the form of a softmax function 

[129]:  

𝑃𝑛𝑗 =
𝑒𝑉𝑛𝑗

∑ 𝑒𝑉𝑛𝑖𝑖
 (5) 

The multinomial logit model satisfies the axiom of the independence of irrelevant alternatives (IIA), 

meaning that the relative probability of choosing one alternative over another is independent from the 

other alternatives [2, 50]. The second reference is the mixed logit model (MXL), which is a 

generalization of the standard logit, for which the utility for individual n and alternative j is: 

𝑉𝑛𝑗(𝝎) = 𝜷𝝎𝒙𝑛𝑗 ,            𝜷𝝎~𝑓(𝝎)  (6) 

where the coefficients 𝜷𝝎 follow a distribution 𝑓() with parameters 𝝎, and the probabilities of the 

model are calculated as the integrals of multinomial logit probabilities over the density distribution of 

the parameters, that can vary randomly across individuals [5]: 
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𝑃𝑛𝑗 = ∫𝐿𝑛𝑗(𝝎)𝑓(𝝎)𝑑(𝝎) , 𝐿𝑛𝑗(𝝎) =
𝑒𝑉𝑛𝑗(𝝎)

∑ 𝑒𝑉𝑛𝑖(𝝎)𝑖
 (7) 

The model approach we are proposing is based instead on a neural network architecture. Artificial 

Neural Networks (NNs) are a family of classifiers which mimic the network structure of the brain 

[20]. Several versions of NN structures can be found in the literature, but mode choice applications 

usually rely on the Feed-Forward Neural Network (FFNN) [12]. A FFNN consists of multiple layers 

of nodes, including an input layer (which passes the values of the attributes to the network), any 

number of hidden intermediate layers, and an output layer, which returns the predicted values.  

NNs can be easily applied to choice analysis, especially if a softmax activation function is applied at 

the output layer. In this case, the utilities are represented by the output of last intermediate hidden 

layer, and the value for alternative j and individual n is: 

𝑉𝑛𝑗 = (𝑔𝑀
𝑗
∘ 𝑔𝑀−1 ∘ … ∘ 𝑔2 ∘ 𝑔1)(𝒙𝑛𝑗) (8) 

where g𝑘(𝒙𝑛𝑗) is the transformation applied at the k-th hidden layer, and g𝑀
j

 is the one of the last 

layers. 

To build our NN we took inspiration from the study of Wang et al. [29], who designed a deep NN 

architecture with alternative-specific utility functions (ASU-DNN), which improve both the predictive 

power and interpretability. Their architecture reduces the complexity compared to a fully connected 

neural network, by stacking K subnetworks (where K is the number of alternatives), in which each 

subnetwork receives as its inputs only the alternative-specific attributes and the individual-specific 

ones. The structure they identified is shown in Figure 1, where it is clear how, after considering only 

the alternative-specific variables (X_k) in the first M1 layers, they include the individual-level 

attributes (Z) in the remaining M2 hidden layers. The activation function they used in the hidden layers 

is obtained by using a linear combination and a rectified linear unit (ReLU) [130]. 

We modified this architecture to be closer to the model specification of a logit, and because we found 

out that by making such changes, we found overall better results. First of all, we changed the activation 

function of the middle layers to a simple linear combination, dropping ReLU altogether since it often 

led to conflicting results. Second, we decided to use both alternative-specific and individual-level 

attributes from the beginning, skipping the first M1 layers used in the ASU-DNN. Third, we 

differentiated the sub-set of socio-demographic variables based on the alternative, and, most 

importantly, we included them only in K-1 alternatives to reproduce the modelling structure used in 
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logits. Finally, we put aside the concept of “deep” NN, since we usually found more consistent results, 

mainly when observing the signs of the elasticities, when considering a “shallower” architecture, with 

few layers at maximum. The NN architecture we are proposing is represented in Figure 2. L0 represents 

the first hidden layer, which is always present, while Lm represents the set of all M optional hidden 

layers. Note that, since the NN architecture we are using is based on the structure of a MNL model, 

we can safely assume that the formulas for the computations of disaggregate indicators (i.e., 

derivatives and thus elasticities) which can be used for the latter can be considered to be still valid for 

the former. 

 

Figure 1. Alternative specific deep NN by Wang et al. [29] 

 

Figure 2. Proposed neural network architecture. 



 

34 

 

However, since a NN does not provide an analytical form of the probabilities, which would be 

necessary to calculate the derivatives, we had to approximate the exact formula for this indicator with 

another quantity which would be comfortably obtainable by using the available outputs, for both logit 

and NN models. Hence, we moved from the infinitesimal field of the derivatives to a finite difference 

one, by estimating two different values for the probability, and then using the relation:  

𝜕𝑃(𝒙𝑛)

𝜕𝑍𝑛
≅
𝑃(𝒙𝑛 + ∆𝑍𝑛)𝑗 − 𝑃(𝒙𝑛)𝑗

∆𝑍𝑛
 (9) 

in which 𝑃(𝒙𝑛)𝑗 is the probability obtained with the original data, while 𝑃(𝒙𝑛 + ∆𝑍𝑛)𝑗 is the 

probability in the case where the variable with respect to which we wanted to derive (𝑍𝑛) was increased 

by a given factor 𝑞 > 0, i.e. 𝑍𝑛
∗ = 𝑍𝑛 + 𝑞𝑍𝑛 = 𝑍𝑛 + ∆𝑍𝑛. The same reasoning was used to obtain 

values for the elasticities, since they would also need the computation of derivatives of the probability. 

In our case, we chose the value 𝑞 = 0.01, so that elasticities could be correctly interpreted as the 

variation in the percentage of the choice probability when the considered variable increases by 1%. 

Table 7 shows a comparison of the approximate finite difference formulation compared to the correct 

one, for both elasticities and value of travel time. Notice that in this case a single value is obtained by 

averaging the values obtained from all individuals. 

Table 7. Comparison between correct formulas and discrete approximations for elasticities and VTT 

Indicator Correct formulation Finite difference approximation 

Elasticity 

(variable Z, 

alternative j) 

1

𝑁
∑{

𝜕𝑃(𝒙𝑛)𝑖𝑗

𝜕𝑍𝑛
∙

𝑍𝑛
𝑃(𝒙𝑛)𝑖𝑗

}

𝑁

𝑛=1

 
1

𝑁
∑{

𝑃(𝒙𝑛 + ∆𝑍𝑛)𝑗 − 𝑃(𝒙𝑛)𝑗

∆𝑍𝑛
∙

𝑍𝑛
𝑃(𝒙𝑛)𝑗

}

𝑁

𝑛=1

 

Value of 

Travel Time 

(alternative j) 

1

𝑁
∑

{
 

 
𝜕𝑃(𝒙𝑛)𝑗
𝜕𝑇𝑛𝑗

𝜕𝑃(𝒙𝑛)𝑗
𝜕𝐶𝑛𝑗 }

 

 𝑁

𝑛=1

 
1

𝑁
∑

{
 

 
𝑃(𝒙𝒏 + ∆𝑇𝑛𝑗)𝑗 − 𝑃(𝒙𝒏)𝑗

∆𝑇𝑛𝑗
𝑃(𝒙𝒏 + ∆𝐶𝑛𝑗)𝑗 − 𝑃(𝒙𝒏)𝑗

∆𝐶𝑛𝑗 }
 

 𝑁

𝑛=1

 

 

3.3 Data analysis 

3.3.1 Swissmetro 

The first dataset we used to estimate the results of our models is the Swissmetro dataset. The 

Swissmetro data comes from a two-stage interview which intercepted 442 respondents approached on 

the train between St. Gallen and Geneva during March 1998. An initial interview was needed to get 

information about the trip, and it was followed by an SP experiment based on that trip. Nine stated-

choice situations were generated for each respondent, offering as alternatives rail, Swissmetro and car. 
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Each alternative was described by their travel time, cost and headway if relevant. Following that, 

several relevant licence plates were recorded during September 1997 at Zürich, Bern and Geneva, and 

the owners of these cars were sent a survey-pack, which asked them about the trip and enquired about 

their willingness to participate in a second survey. A total of 770 people completed the survey and 

participated in a SP survey, which was generated using the same approach which had been used for 

the rail interviews. For more details on the data collection procedure, see the work from Bierlaire et 

al. [131].  

From the total sample of 10,728 observations, we used some filters to obtain a sub-sample more 

suitable for our purpose. We removed all those individuals for which age and/or income were not 

known, we excluded those which had a yearly subscription (since their cost for train and Swissmetro 

was expressed as the annual total and would have led to an overestimation of the VTT), and finally 

we removed some outliers based on the ratio of travel time and cost. Our final dataset contains 7,021 

observations, and Table 8 shows the analysis of the data therein contained.  Regarding mode choice, 

almost 58% chose the new alternative, 36.5% the car and the remaining the train. All observations had 

all modes available, 46% travelled without luggage, 53% had a single item, and less than 1% had two 

or more. 

Table 8. Data analysis – Swissmetro database 

Categorical variables 

  N %    N % 

Total sample  7,021   Age ≤ 24 y.o. 126 1.79% 

Choice Train 404 5.75%   > 24 - ≤ 39 y.o. 2,029 28.90% 

 Swissmetro 4,056 57.77%   > 39 - ≤ 54 y.o. 2,848 40.56% 

 Car 2,561 36.48%   > 54 - ≤ 65 y.o. 1,532 21.82% 

Availability Train 7,021 100%   > 65 y.o. 486 6.92% 

 Swissmetro 7,021 100%  Income < 50,000 993 14.14% 

 Car 7,021 100%  [CHF/year] 50,000 - 100,000 2,921 41.60% 

Luggage None 3,242 46.18%   > 100,000 3,107 44.25% 

 One 3,727 53.08%  Gender Male 5,719 81.46% 

 Several 52 0.74%   Female 1,302 18.54% 
         

Continuous variables      

  Avg. St. Dev.      

Travel time  Train 184.38 78.6286      

[min] Swissmetro 97.16 58.3361      

 Car 154.67 78.7397      

Cost [CHF] Train 89.27 50.4818      

 Swissmetro 107.56 61.0139      

 Car 96.90 45.8759      

Headway [min] Train 70.17 37.4871      

 Swissmetro 20.09 8.1923      
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Most of the respondents (91.3%) are between 24 and 65 years old, with roughly 40% of the sample 

aged between 39 and 54. The majority of the respondents (86%) declared an income of 50,000 

CHF/year or more, with 44% declaring incomes higher than 100,000 CHF/year, while just 14% of 

them earned under 50,000 CHF/year. The sample is heavily skewed towards the male population 

(81.5%), since only 18.5% of the respondents were female. The average travel time with train shows 

how it is the slower of the three alternatives, with slightly more than 3 hours per trip, Swissmetro was 

the faster with 97 minutes, while car was in between (154 minutes). In contrast, Swissmetro was also 

the most expensive choice, with an average of 107.56 CHF/trip, followed by car (97 CHF/trip) and 

then train (90 CHF/trip), even though the differences are less noticeable when compared to travel time. 

Finally, Swissmetro also provides lower waiting times, with an average headway of 20 minutes, 

compared to the 70 minutes of the train alternative. 

3.3.2 Svolta Cagliari 

The second dataset we used is the Svolta Cagliari dataset, which was collected starting from 2019 

during an experimental programme lead by the government of the city of Cagliari (Italy), in 

collaboration with the University of Cagliari. The aim of the program was that of intercepting 

commuters which frequently visit the city of Cagliari, mainly for working or studying, to find possible 

ways of convincing them to change their travel behaviour towards more sustainable means of 

transport. An online survey was distributed either by means of direct contact via e-mail, or by placing 

advertisements, both physically (with billboards spread in the city and onboard public transport 

vehicles, and posters placed in buildings frequented by university students and staff, and offices used 

by public administration employees) and digitally (banners on institutional websites of public 

administrations and public transport operators, on websites of the local news outlets, and social 

media). The original text of the survey (in Italian) is shown in Appendix A. The complete 

questionnaires were over 4,000, but we analysed a sub-sample of the people which travelled by either 

car, public transport (PT) or walking, and had at least two of these alternative available. The 

availability for each alternative were defined as: 

• car: the individuals possess a driver licence, and they have access to at least one car in their 

household; 

• public transport: the distance from the bus stop /station in 2 km or less from the individuals’ 

home, and the headway associated with the transport service is 30 minutes at maximum; 

• walking: the distance on foot must be 5 km or less, and the path must not use any extra-urban 

road or infrastructure. 
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The final dataset, described in Table 9, is composed by 2,873 observations. Modal choice is split in 

52% car, 38% public transport and 10% walking, and availability of car and PT for work-trips is very 

high, 86% and 94% respectively, while only 44% of the respondents could walk to their workplace. 

Almost everyone possesses a driving licence (96%) and most of them also own a car (86%), but less 

than half the respondents own a bike (49%). Regarding where their residence is located, most of them 

(62%) live inside the city of Cagliari, the rest lives either in the surrounding metropolitan area (28%) 

or somewhere else on the island (10%). Most of the respondents fall in the age ranges of 18 to 30 years 

old and 40 to 60 years old, which are represented by almost equivalent portions of the sample (39.6%), 

while 30 to 40 years old are 15% and just over 6% are over 60 years old. The gender ratio is almost 

evenly split, with a slightly higher percentage of females (54.5%) compared to males (45.5%). The 

majority of the respondents were public employees (50%), 41% were university students (working 

towards a degree or a Ph.D.), 5.5% were employers, and the remaining were composed by people 

which were unemployed or retired. 45% of the respondents possess at least a high-school diploma, 

and 51% have a university education, with 16.5% having a Ph.D.  

A considerable portion of the sample (38%) declared earning 1,000 €/month or less (to be expected, 

considering the number of students), 45% had an income between 1,000 and 2,000 €/month, and 18% 

earned more than 2,000 €/month. When analysing the composition of the household, we observed an 

average number of members of around 3, less than half of the families have children, and even less 

under 10 years old. On average, each household possesses 1.8 cars. 

The average number of work / study related trips across the sample is 220 per year. Most of the 

respondents (83.5%) declared they did not stop during the trip they described, while 16.5% stopped at 

least once along the route. 44% of the respondents left their home in the 7:30-8:29 AM time slot, 

followed by the 8:30-9:29 AM one with 29%. 12.4% started their trip early in the morning (earlier 

than 7:30 AM), and 8% between 9:30 and 12:29 PM, while the remaining 7% departed later in the 

day. 

The analysis of the level of service variables, for each alternative, is made with reference to only those 

individuals which have that alternative available. On average, the proposed car trips lasted 16.1 

minutes, with a generalized cost of 1.80 €/trip. For those who actually chose to travel by car, the 

duration was 15.9 minutes instead, and the cost 1.93 €/trip, while for those who did not use cars, 16.3 

minutes at 2.14 €/trip. The walking trips averaged a duration of 29.0 minutes, but times were definitely 

shorter for those who actually walked (18.5 minutes) and longer for those who did not (32.1 minutes). 
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Table 9. Data analysis – Svolta Cagliari database 

Categorical variables 

  N %    N % 

Total sample  2,873   Age ≥ 18 - ≤ 30 y.o. 1,138 39.61% 

Choice Car 1,484 51.65%   > 30 - ≤ 40 y.o. 418 14.55% 

 Public transport 1,093 38.04%   > 40 - ≤ 60 y.o. 1,136 39.54% 

 Walking 296 10.30%   > 60 y.o. 181 6.30% 

Availability Car 2,470 85.97%  Gender Male 1,308 45.53% 

 Public transport 2,716 94.54%   Female 1,565 54.47% 

 Walking 1,272 44.27%  Occupation Employee 1,433 49.88% 

Driving licence  2,758 96.00%   Student 1,043 36.30% 

Owns a car  2,458 85.56%   Employer 157 5.46% 

Owns a bicycle  1,409 49.04%   Ph.D. 131 4.56% 

Departure time 5:30 - 7:29 AM 357 12.43%   Unemployed 42 1.46% 

 7:30 - 8:29 AM 1,255 43.68%   Retired 35 1.22% 

 8:30 - 9:29 AM 835 29.06%   Student-worker 24 0.84% 

 9:30 AM - 12:29 PM 229 7.97%   Homemaker 8 0.28% 

 12:30 - 14:29 PM 54 1.88%  Education Up to middle school 69 2.40% 

 14:30 - 16:59 PM 94 3.27%   High school 1,283 44.66% 

 17:00 - 19:29 PM 37 1.29%   Specialization 52 1.81% 

 19:30 - 22:00 PM 12 0.42%   Degree 994 34.60% 

Trip stops Yes 475 16.53%   Ph.D. 475 16.53% 

 No 2,398 83.47%  Income ≤ 500 799 27.81% 

House location Cagliari city 1,790 62.30%  [€/month] > 500 - ≤ 1,000 284 9.89% 

 Metropolitan area 806 28.05%   > 1,000 - ≤ 1,500 661 23.01% 

 South Sardinia 260 9.05%   > 1,500 - ≤ 2,000 623 21.68% 

 Other 17 0.59%   > 2,000 - ≤ 3,000 294 10.23% 

      > 3,000 212 7.38% 
 

Continuous variables 

  Avg. St. Dev.    Avg. St. Dev. 

Household Nr. of members 3.08 1.2729  Trips / year  220.52 76.6193 

 Nr. of children 0.48 0.8455      

 Nr. of children < 10y.o. 0.18 0.4819      

 Nr. of cars 1.79 0.8206      
 

Level of service variables 

  
Alternative is available Alternative is chosen 

Alternative is not chosen  

(if available) 

  Avg. St. Dev. Avg. St. Dev. Avg. St. Dev. 

Car Travel time [min] 16.07 11.6289 15.91 9.8216 16.32 13.9154 

 Cost [€] 2.01 2.5300 1.93 2.0985 2.14 3.0637 

Public transport Travel time [min] 23.94 20.1651 24.12 22.9273 23.83 18.0751 

 Cost [€] 1.04 0.8876 1.08 1.0445 1.02 0.7633 

 Walk time [min] 9.29 5.4052 8.90 5.2243 9.56 5.5093 

 Wait time [min] 3.81 1.4479 3.82 1.4083 3.80 1.4745 

 Headway [min] 2.94 5.4068 2.64 6.2397 3.14 4.7558 

 Transfers 0.40 0.6032 0.33 0.5966 0.44 0.6034 

Walking Travel time [min] 28.95 13.7168 18.49 9.8892 32.12 13.1288 
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Public transport trips lasted 23.9 minutes on average (in-vehicle time), with a cost of 1.04 €/trip, and these 

values are basically the same whether the individuals actually used PT (24.1 minutes at the cost of 1.08 €/trip) 

or if they used other means of transport (23.8 minutes and 1.02 €/trip). It is actually interesting to observe how 

the average values are slightly higher for those who used public transport for their trips. The average walking 

time to get to the closest bus stop/station is 9.3 minutes (8.9 minutes if PT was the chosen alternative, 9.6 

minutes otherwise), the waiting time is 3.8 minutes (in any case) and the headway is 2.9 minutes (2.6 minutes 

if chose, 3.1 otherwise). The average number of transfers for each trip is 0.4, meaning that less than half of them 

included a change of vehicle/line (0.3 for those who actually chose public transport, 0.4 for the others). 

3.4 Model specification 

3.4.1 Variable selection 

To test all the models equally, the same set of variables had to be used on all of them. This however required a 

reliable method to select the variables we wanted to use. Since logit models allow to recognize which attributes 

can be more useful than others, by means of statistical significance (t-stats and p-values), while also being 

sensible to the set of variables used for estimation, we chose to select the variables based on the results of a 

multinomial logit, in which variables were removed one by one until all of their associated parameters were 

statistically significant. This in turn allowed us to get the results from logit models in the best possible 

conditions, thus giving them an “advantage” when comparing the values of the outputs. This also means that, if 

the NN results are comparable to the ones obtained from the logits, then we can safely assume they stand on 

equal footing to a MNL estimated in optimal conditions. We applied the same method to both datasets, and the 

selected variables are shown in Table 10 and Table 11, along with the robust t-test values associated with the 

corresponding parameters. All these results were obtained by using PythonBiogeme [132]. 

Table 10. Variables used for the Swissmetro dataset with their MNL parameters and their statistical significance 

Variable name Value Robust t-test  Variable name Value Robust t-test 

Train attributes    Swissmetro attributes   

Time -0.013 -8.41  ASC 0.145 0.56 

Cost -0.025 -9.94  Time -0.011 -7.58 

Headway -0.008 -4.86  Cost -0.016 -18.30 

Car attributes    Headway -0.013 -3.69 

ASC -0.413 -1.62  Seats 0.808 5.51 

Time -0.015 -9.06  Luggage = 1 -0.288 -4.70 

Cost -0.010 -6.60  Luggage > 1 -1.160 -2.50 

Luggage > 1 -1.440 -2.82  Gender = Male 0.647 4.50 

Gender = Male 0.659 4.48  Age >39 / ≤54 -0.485 -2.99 

Age >39 / ≤54 -0.425 -2.55  Age >54 / ≤65 -1.110 -6.50 

Age >54 / ≤65 -0.868 -4.88  Age >65 -1.330 -6.03 

Age >65 -0.664 -3.02  Income >50k / ≤100k 0.412 2.55 

Income >50k / ≤100k 0.476 2.86  Income >100k 0.851 4.63 

Income >100k 0.634 3.34     
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Table 11. Variables used for the Svolta Cagliari dataset with their MNL parameters and their statistical significance 

Variable name Value Robust t-test  Variable name Value Robust t-test 

PT attributes    Car attributes   

ASC 2.510 5.92  Time -0.046 -2.44 

Time -0.029 -4.75  Cost -0.162 -1.87 

Cost -0.207 -1.81  Walking attributes   

Dep. time 8:30-9:29 -0.310 -2.50  ASC 3.990 8.85 

Stop = yes 0.892 5.75  Time -0.137 -11.47 

Age >30 / ≤40 -0.711 -3.82  Owns a car = yes -2.150 -5.82 

Age >40 / ≤60 -0.365 -2.05     

Gender = Male -0.390 -2.78     

Occup. = Employee -0.956 -6.18     

Nr. of HH children -0.708 -6.45     

Nr. of HH members 0.220 3.86     

Owns a car = yes -2.500 -7.88     

 

3.4.2 Hyperparameter calibration 

NN models are not identifiable, because the empirical risk minimization (ERM) is non-convex with high 

dimensionality, so their training is very sensitive to the initialization [133, 134]. This also means that, with 

different initializations, a NN model can end at a local minimum rather than at the global optimum [135, 136]. 

This issue does not arise in classical MNL models, because their ERM models is globally convex [137]. This 

non-identification problem ultimately means that each training of a specific NN can lead to very different results, 

even when considering the same hyperparameters and training sample. To try and reduce this issue, we 

calibrated the hyperparameters of the NN models by trained the same model and estimate the results several 

times, systematically changing one of the hyperparameters while keeping the others fixed. In particular, we 

focused on the number of epochs to be used, the number M of additional hidden layers, and the number of 

hidden nodes to be used in each of the subnetworks (see section 4.2 Methodology). Table 12 shows the definitive 

values considered during the estimation of the final results. For additional information on the results that we 

analysed to get to these values, refer to Appendix B. It is worth of notice how, as we hinted earlier, the number 

of additional hidden layer is zero, meaning we only have the initial L0 hidden layer, and so we found the best 

results by not using a “deep” NN architecture. The neural network models were estimated using the PyTorch 

library for Python [138]. 

Table 12. Hyperparameters sets for both datasets 

DATASET N. epochs N. additional hidden layers N. hidden nodes 

Swissmetro 200 0 30 

Svolta Cagliari 1,000 0 50 
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3.5 Results 

In the following we show the results we obtained by training a total of 100 NN models for each dataset, using 

the hyperparameters in Table 12, and a training set which included 80% of the original dataset. The results were 

then obtained by predicting the desired indicators (log-likelihood, elasticities, and value of travel time) using 

the trained model and the testing set (20% of the data). While obtaining the value of travel time was the main 

goal of this study, we also decide to show some of the direct elasticities, to demonstrate how our model is 

working correctly in every aspect and not only when estimating some of the possible indicators. 

3.5.1 Swissmetro 

Table 13 shows a comparison for all the direct- and cross-elasticities obtained by observing the change in 

probability caused by the variation of alternative-specific level of service variables we considered from the 

Swissmetro database. Since we wanted to use these indicators as a benchmark, to check the correct operation of 

the models, we limited ourselves to these elasticities because the microeconomic theory can help us recognize 

the correct signs (negative for direct and positive for cross-elasticities), and we thus overlooked the one we 

could have obtained by also using the socio-economic variables, whose interpretation is less direct. We 

compared the values we extracted from the neural network models (NN) for all indicators, with those obtained 

through a multinomial logit model (MNL) and a mixed logit model (MXL) estimated with the same set of 

variables. The first notable result is that all signs are consistent with the microeconomic theory, i.e., all direct 

elasticities are negative, while all cross-elasticities are positive. Regarding the single values, we will analyse 

them based on the corresponding variable: 

• Train travel time: we can see how the direct elasticity produced basically the same value for NN and 

MNL (-2.30) and a lower absolute value for MXL (-1.39), while cross elasticities values are very close 

for all models (~0.11-0.12). 

• Train cost: the pattern is basically the same we observed for Train travel time, since we found very 

close values for the direct elasticities for NN (-2.25) and MNL (-2.22), and a lower effect for the MXL 

(-1.74), while cross-elasticities showed similar values across all models (~0.08-0.09). 

• Swissmetro travel time: in this case, direct elasticities produced quite similar values for all models, but  

MXL results (-0.58) are still distinct from the ones we had with NN and MXL (-0.52 and -0.49 

respectively); however, this time we observed more variability in the cross-elasticities, since, although 

the ones concerning the train alternative were very close to each other (~0.58-0.59), the ones relative 

to car obtain through the MXL were higher (0.90) compared to the ones we got from NN and MNL 

(0.59). 
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• Swissmetro cost: for this variable, while direct elasticities were quite close for all models, the values are 

all distinguishable, with -0.87 for the NN -0.81 for the MNL, and -0.95 for the MXL; for this attribute, 

we also had some variability in the cross-elasticities, with the ones of MNL and NN still close to each 

other (0.97-0.98 for both train and car), while those for MXL were lower for train (0.81) and higher 

for car (1.11). 

• Car travel time: in this case, we noticed a clear difference for the fact that now direct elasticities were 

similar for both logits (-1.56 for MNL and -1.57 for MXL) and slightly higher in absolute value for the 

NN (-1.69); cross-elasticities are also distinct, with 0.89 for NN, 0.78 for MNL, and 0.61 (train) and 

1.07 (Swissmetro) for MXL. 

• Car cost: lastly, this variable showed a pattern similar to the one we saw for car travel time, with 

elasticities in general being different for all models; direct elasticities are -0.55 (NN), 0.65 (MNL) and 

-0.61 (MXL), cross-elasticities are 0.31 (NN), 0.34 (MNL) and 0.21-0.33 (MXL, for train and 

Swissmetro respectively). 

Table 13. Elasticities comparison of MNL, MXL, NN for the Swissmetro dataset 

Variable Model Train Swissmetro Car 

Train 

travel time 

MNL -2.3063 0.1098 0.1098 

MXL -1.3879 0.1225 0.1102 

NN -2.2934 0.1129 0.1129 

Train cost 

MNL -2.2187 0.0918 0.0918 

MXL -1.7393 0.0860 0.0759 

NN -2.2466 0.0959 0.0959 

Swissmetro 

travel time 

MNL 0.5970 -0.4915 0.5970 

MXL 0.5802 -0.5893 0.9049 

NN 0.5961 -0.5186 0.5960 

Swissmetro 

cost 

MNL 0.9731 -0.8125 0.9731 

MXL 0.8132 -0.9517 1.1100 

NN 0.9837 -0.8675 0.9837 

Car travel 

time 

MNL 0.7797 0.7797 -1.5605 

MXL 0.6114 1.0759 -1.5740 

NN 0.8922 0.8926 -1.6876 

Car cost 

MNL 0.3380 0.3380 -0.6489 

MXL 0.2071 0.3316 -0.6113 

NN 0.3087 0.3088 -0.5549 
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Figure 3 shows the main results we obtained with all the 100 models trained with the Swissmetro dataset. In 

order to make sure that different initializations were not an issue (see Paragraph 3.4.2), we mainly focused on 

the distribution produced by the different indicators, to see if there were any noticeable differences between the 

several runs. However, for the Swissmetro database at least, we could not observe any relevant phenomenon, 

since for all the direct elasticities and VTTs the distribution was practically uniform. As a comparison, we also 

represented in the same graphs the value obtained with MNL and MXL. Overall, the analysis of the elasticities 

demonstrates how the NN we are using can replicate the behaviour of a logit model, especially an MNL. This 

further consolidates our belief that a NN model can be successfully used to extract econometric indicators, at 

least when using this particular database. 

Considering all the results, using our neural network we obtained very similar values to those of a multinomial 

logit (the only exception seems to be the VTT for the car alternative), while in general there were noticeable 

differences with the mixed logit. This means that, as concerns the Swissmetro dataset, the performance of the 

NN we used confirms the fact that this model can be safely used as an alternative to a MNL, especially if the 

main interest of the analysis is that of observing a series of econometric indicators. 

Table 14. Values of travel time and log-likelihood comparison of MNL, MXL, NN for the Swissmetro dataset 

Model Log-likelihood 
VTT Train 

[CHF/h] 

VTT Swissmetro 

[CHF/h] 

VTT Car 

[CHF/h] 

MNL -975.8644 30.7799 40.8705 90.6126 

MXL -944.1914 86.0602 50.1155 134.4626 

NN -978.0179 30.1923 40.3676 114.4333 
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(a) elasticity of train choice probability w.r.t. train cost; (b) elasticity of train choice probability w.r.t. train travel time; (c) elasticity 

of Swissmetro choice probability w.r.t. Swissmetro cost; (d) elasticity of Swissmetro choice probability w.r.t. Swissmetro travel time; 

(e) elasticity of car choice probability w.r.t. car cost; (f) elasticity of car choice probability w.r.t. car travel time; (g) value of travel 

time for the train alternative; (h) value of travel time for the Swissmetro alternative; (i) value of travel time for the car alternative; 

(j) log-likelihood 

Figure 3. Neural network results for the Swissmetro Dataset 
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3.5.2 Svolta Cagliari 

To further confirm the results we obtained with the Swissmetro dataset, we had to use a different source of data 

to try and obtain similar outcomes. The Svolta Cagliari dataset is quite different from the former, since it was 

collected in a different territorial context (southern Italy vs. Switzerland) and later in time (2019 vs. 1998), a 

different survey methodology was used (revealed preferences vs. stated preferences), and finally it is relatively 

smaller in size (2,873 vs. 7,021 observations). 

Table 15 shows the comparison for all the direct- and cross-elasticities obtained by observing the change in 

probability caused by the variation of alternative-specific level of service variables from the Svolta Cagliari 

dataset. We again compared the values obtained with the NN models for all indicators, with those we got from 

a MNL and a MXL estimated with the same set of variables. We notice also in this case how all the signs we 

obtained are consistent with the microeconomic theory, i.e., all direct elasticities are negative, while all cross-

elasticities are positive. Like we did in the previous case values, we are going to analyse them based on the 

corresponding variable: 

• Car travel time: we observed some variability in the elasticities we computed with the three models, 

since the direct elasticities are lowest absolute value (-0.23) for the NN, followed by the MNL (-0.28) 

and finally highest (-0.34) for MXL; the cross elasticities follow a similar pattern, with those for the 

mode PT being 0.34 (NN), 0.45 (MNL), and 0.57 (MXL), and those for walking 0.14 (NN), 0.23 

(MNL), and 0.34 (MXL). 

• Car cost: the elasticity values we obtained are all similar among the three models, the direct ones are 

all between -0.12 and -0.13, the cross-elasticities for PT are 0.17 (NN), 0.19 (MNL), and 0.21 (MXL), 

while those for walking are 0.04 (NN), 0.06 (MNL), and 0.07 (MXL). 

• PT travel time: in this case we observed a pattern similar to the one we had for Car travel time, with the 

NN producing the lowest absolute values (-0.65 for the direct elasticity, 0.37 and 0.26 for the cross-

elasticities for car and walking respectively), MNL in the middle (in the same order, -0.68, 0.43, and 

0.32), and MXL returning the highest elasticities (-0.76, 0.53, and 0.50). 

• PT cost: this variable lead to a pattern in the elasticities similar to those we saw in many cases for the 

Swissmetro dataset, since we obtained very close values with both NN and MNL, and slightly higher 

ones with MXL; more specifically, direct elasticities are -0.13 for NN/MNL and -0.19 for MXL, cross-

elasticities for car 0.08 for NN/MNL and 0.11 for MXL, and cross-elasticities for walking are -0.07 for 

NN/MNL and 0.11 for MXL. 

• Walking travel time: in this final case, direct elasticities are quite close for all the models, -3.41 for NN, 

-3.52 for MNL, and -3.72 for MXL; cross elasticities are instead very different for the NN, since they 



 

46 

 

are 0.22 for car (compared to 0.50-0.53 for the logits) and 0.29 for PT (vs. 0.56-0.59 for MNL and 

MXL). 

Figure 4 shows the main results we obtained with the 100 models trained with the Svolta Cagliari dataset. Like 

we previously said for the Swissmetro dataset, we focused on the distribution produced by the different 

indicators, to see if there were any differences between the several different initializations. Also in this case, we 

represented the value obtained with MNL and MXL in the same graph, and ultimately the distribution was 

practically uniform for all the direct elasticities and VTTs. Like we found in the case of the Swissmetro dataset, 

the distributions for all the direct elasticities and the VTTs do not drift too much from the average values. Also 

in this case, we compared the NN results graphically with those obtained with the MNL and MXL. These results 

further confirm the fact that NNs ca be employed to estimate econometric indicators. 

Finally, Table 16 shows the log-likelihood and value of travel time results for all three models. While the NN 

showed again the worst performance in terms of fit, with a log-likelihood of -342.62, the other two models 

ended up with a value not too far off (-340.29 and -339.89), and, ultimately, we can consider them equally 

standing. Values of travel time for car are quite similar, NN predicted the lowest value at 14.50 €/h, then we 

have MNL with 16.92 €/h, and the highest value was the one given by MXL, 19.67 €/h. The VTT for PT showed 

even closer values, even though here the lowest value was the one from MXL (7.33 €/h), followed by the NN 

(7.69 €/h) and finally by MNL (8.25 €/h). 

Table 15. Elasticities comparison of MNL, MXL, NN for the Svolta Cagliari dataset 

Variable Model Car PT Walking 

Car travel 

time 

MNL -0.2826 0.4467 0.2328 

MXL -0.3449 0.5710 0.3453 

NN -0.2342 0.3390 0.1411 

Car cost 

MNL -0.1300 0.1952 0.0564 

MXL -0.1275 0.2073 0.0722 

NN -0.1259 0.1732 0.0398 

PT travel 

time 

MNL 0.4355 -0.6834 0.3171 

MXL 0.5329 -0.7591 0.5059 

NN 0.3691 -0.6492 0.2650 

PT cost 

MNL 0.0855 -0.1268 0.0720 

MXL 0.1138 -0.1874 0.1180 

NN 0.0777 -0.1295 0.0644 

Walking 

travel 

time 

MNL 0.5003 0.5621 -3.5203 

MXL 0.5336 0.5884 -3.7208 

NN 0.2216 0.2907 -3.4128 
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(h) 

 

(a) elasticity of car choice probability w.r.t. car cost; (b) elasticity of car choice probability w.r.t. car travel time; (c) elasticity of 

PT choice probability w.r.t. PT cost; (d) elasticity of PT choice probability w.r.t. PT travel time; (e) elasticity of walking choice 

probability w.r.t. walking travel time; (f) log-likelihood; (g) value of travel time for the car alternative; (h)value of travel time for 

the PT alternative 

Figure 4. Neural network results for the Svolta Cagliari Dataset  
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Table 16. Values of travel time and log-likelihood comparison of MNL, MXL, NN for the Svolta Cagliari dataset 

Model Log-likelihood VTT Car VTT PT 

MNL -340.2924 16.9176 8.2491 

MXL -339.8868 19.6699 7.3316 

NN -342.6181 14.4973 7.6898 

 

Once again, even if in this case there are some differences, we can certainly state that our NN model is able to 

mimic the behaviour of a MNL model. Accounting for all these results, other than the ones we previously 

obtained with Swissmetro, and considering again the major differences in the two datasets we previously listed, 

we can safely assume that this neural network is a valid alternative to a multinomial logit, especially when the 

main target of the analysis is that of observing econometric indicators, like elasticities and value of travel time. 
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4 A NOVEL APPLICATION OF PSYCHO-ATTITUDINAL VARIABLES TO 

NEURAL NETWORK FOR CHOICE MODELLING IN 

TRANSPORTATION 

4.1 Introduction 

Traditional discrete choice models, such as multinomial logit and probit, focus only on directly 

observable variables, like the attributes of the alternatives and the socioeconomic characteristics of 

the individuals [6].  However results from recent studies in social sciences have shown that choice 

behaviour can also be influenced by factors like attitudes, perceptions, norms, intentions, habits, etc. 

[7]. More recent formulations of DCMs include, among their explanatory attributes, latent constructs 

for capturing the impact of such subjective factors. These are usually called hybrid choice models or 

integrated choice and latent variable (ICLV) models [8–10]. This class of models have recently gained 

exposure because of an increasing interest in including latent constructs to capture the effects of 

subjective aspects to better reproduce the choice process. Their applications include but are not limited 

to the analysis of travel mode choice [139–142], and the processes of modelling the choices of route, 

departure time, vehicle, fuel, and so on [59, 143–146], but also to analyse the effects of soft measures 

in nudging individuals towards more sustainable means of transportation [147–149]. 

In general ML algorithms offer a higher flexibility compared to DCMs, since they require less 

restrictive pre-assumptions on the relations between different variables, which are considered as 

explanatory for a given phenomenon. At the same time, ML methods are usually black-box methods, 

which do not allow to extrapolate much information from their outputs, which is instead one of the 

aims of choice modelling in transportation [27]. To go around this issue, there have already been some 

attempts in the literature to estimate values for the elasticities and marginal effects connected to a 

specific variable, to compare them to the results obtained by using similar econometric models, and 

to have a way of interpreting the outputs of a machine learning model. Some existing studies have 

already proven the reliability of such procedures [30, 95]. 

We wanted to also include, among the inputs of our models, psycho-attitudinal indicators, to further 

differentiate the individuals based on their attitudes, intention, perceptions, and so on. Since ICLV 

models can be very complex, especially when the number of latent variables considered increases, the 

specification of each component of the model can be tedious and potentially lead to mistakes from the 

modeller. ML models could represent a valid alternative, as they do not require researchers to define 
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every detail, since they are data-driven methods and, by definition, they “learn” from the data itself 

how the phenomenon has developed. 

Although there have already been some attempts at producing machine learning models which 

considered latent variables [35, 123, 150], these studies are characterized by some limits, in the sense 

that they estimate latent factors on the basis of the socio-economic attributes of the individuals, without 

taking into account any additional information coming from psycho-attitudinal indicators, whose 

value originates from specifically engineered questionnaires. 

Given the above discussion, in the current chapter we propose an alternative method employing 

machine learning algorithms for the development of discrete choice models with latent variables to 

reproduce the phenomenon of mode choice in transportation. Unlike previous models relying on 

machine learning algorithms, this new model would allow us to use latent variables connected to a 

series of attitudinal indicators. We thus built anew the same sub-modules which constitute the ICLV 

model, namely a module to estimate the values of the latent variables, one to integrate the information 

of the attitudinal indicators through a series of measurement equations, and finally the proper choice 

model. To build the measurement equations module, we used the already existing Consistent Rank 

Logits (CORAL) implementation developed by Cao et al. [151] and publicly available. 

We used this framework to build three different models with different combination of latent variables, 

and we compared the results to an equivalent version of a more classical ICLV model. We tried to 

validate our results by using a database containing real data obtained from a revealed preference travel 

survey conducted among a sample of workers and university students in the metropolitan area of 

Cagliari in 2019. The dependent variable of our model is the choice to commute by using either car, 

public transport, or walking. The dataset contains level of service indicators for each alternative, 

personal and socio-economic characteristics of each individual, and lastly psycho-sociological 

variables competing to individuals’ attitudes, intentions and perceptions towards the use of sustainable 

transport modes. 

We used 80% of the data to train the models, and the remaining 20% as a testing set and to estimate 

the final values for each indicator. Since neural networks results are dependent on both the values of 

their hyper-parameters and on their initialization, we estimated several of them by considering 

different sets of hyper-parameters to find the optimal values, and then we used those values to verify 

the stability of the results with different random initializations. 
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Regarding the outputs, we focused on two aspects: the first, direct and cross-elasticities relative to the 

level of service variables of the different modal alternatives, to verify the neural network is working 

as expected, according to the microeconomic theory; the second, a series of pseudo-elasticities [152] 

connected to the latent variables through the socio-economic attributes used to define them, to measure 

their effects on the choice probabilities for the different alternatives and compare the results, in terms 

of impact of psychological variables on choice probabilities, of classical ICLV model and the proposed 

model. 

4.2 Methodology 

The level of utility that a decision maker n receives from choosing an alternative j can be defined as 

𝑈𝑛𝑗. However, researchers cannot observe this utility directly, but rather they observe one or more 

aspects 𝒙𝑛𝑗 which are supposed to influence the utility. Hence, we can only obtain a value for a 

representative utility 𝑉𝑛𝑗 = 𝑓(𝒙𝑛𝑗), and there exists a relation between the two in the form of 𝑈𝑛𝑗 =

 𝑉𝑛𝑗 + 𝜀𝑛𝑗, where 𝜀𝑛𝑗 is a random error component which captures the effects of all the unobserved 

elements influencing 𝑈𝑛𝑗. 

The simplest econometric model used to represent choice behaviour is the multinomial logit (MNL) 

model, which is based on the independence of irrelevant alternatives (IIA), meaning that the relative 

probability of choosing one alternative over another is independent from the other alternatives [2, 50]. 

A MNL model is obtained by assuming that the random error components 𝜀𝑛𝑗 are independently, 

identically distributed extreme values. The utility perceived by individual n for alternative j is a linear 

combination of observed variables 𝒙𝑛𝑗 which are combined by using the parameters 𝜷 to represent 

the tastes of the individuals: 

𝑉𝑛𝑗 = 𝜷𝒙𝑛𝑗 (10) 

The choice probability for alternative j and individual n takes then the form: 

𝑃𝑛𝑗 =
𝑒𝑉𝑛𝑗

∑ 𝑒𝑉𝑛𝑗𝑗

 (11) 

MNL models, like many other even more complex models, are based on microeconomic theory, which 

tended to consider decision makers as rational self-interested actors engaged in a process of evaluation 

of both costs and benefits associated with a particular choice, trying to maximize their personal well-

being (i.e., utility) given a set of constraints determined by the market. Traditionally, discrete choice 

models have focused on observable variables, such as product attributes and socioeconomic 
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characteristics of the individuals, and treated consumers as optimizing black boxes with predetermined 

wants and needs is at odds [153]. However, a deeper understanding of the determinants characterizing 

mode choice is essential to successfully design environmentally sustainable transport solutions in line 

with the preferences of different people [154]. Modal choice can be seen as the decision process that 

leads an individual to choose a specific travel alternative among the different ones available to them. 

This process can happen both consciously and unconsciously, and its analysis needs to consider a wide 

range of tools and factors from different disciplines (economy, sociology, geography and psychology) 

[155]. Socio-economic indicators (e.g., age, gender, education level, occupation, income, household 

composition, car ownership), spatial characteristics of the environment (e.g., density, diversity, 

proximity to infrastructures and services, parking availability), and trip attributes (e.g., motivation, 

distance, travel time, travel cost, departure time, number of stops) have seen a widespread use in the 

history of choice modelling. However, an approach which considers only these variables, is in direct 

contrast with the findings in the field of social sciences, which have demonstrated how choice 

behaviour is also influenced by psychological factors [7]. Thus, in more recent approaches, the 

inclusion of socio-psychological and attitudinal indicators has allowed researchers specify a new kind 

of model, which can take into consideration more personal factors, such as experience, lifestyle 

choices, habits and perceptions [155]. These models of disaggregate decision-making, which include 

latent constructs for capturing the impact of subjective factors on choice processes, are called hybrid 

choice models (HCM) or integrated choice and latent variable (ICLV) models. They were originally 

proposed by McFadden [8] and Train et al. [9], but they only became popular much later following 

the work of Ben-Akiva et al. [10], with an increasing number of researchers adopting these models in 

transportation and travel mode choice [139–142]. 

4.2.1 The ICLV model 

The general formulation of the ICLV needs two main components: a latent variable model and a 

discrete choice model, as represented in Figure 5. The latent variable model is composed by a set of 

structural equations, which describe the latent variables (e.g., attitudes, perceptions) in terms of 

observable characteristics of the individuals, and a group of measurement equations that link the latent 

variable to the observed indicators (obtained from responses to questions of a survey). By 

simultaneously integrating both the discrete choice model and the latent variable model, the latent 

variables can be interpreted as additional explanatory variables included in the utilities of choice 

alternatives.  
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The latent variable model requires the specification of the distribution of the latent variable given the 

explanatory variables. For example, for any individual q: 

𝑥𝑞
∗ = ℎ(𝒙𝑞; 𝝀) + 𝜔𝑞 , 𝜔𝑞~𝐷(0, 𝛴𝜔) (12) 

 

Figure 5. Framework for the Integrated Choice Latent Variable model by Ben-Akiva et al. [10] 

where 𝒙𝑞 is a vector of explanatory variables, 𝝀 is a vector of the parameters to be estimated and 𝜔𝑞 

is the random error term distributed with variance Σ𝜔. 

The latent variable model requires the specification of the distribution of the latent variable given the 

explanatory variables. For example, for any individual q: 

𝑥𝑞
∗ = ℎ(𝒙𝑞; 𝝀) + 𝜔𝑞 , 𝜔𝑞~𝐷(0, 𝛴𝜔) (13) 

where 𝒙𝑞 is a vector of explanatory variables, 𝝀 is a vector of the parameters to be estimated and 𝜔𝑞 

is the random error term distributed with variance Σ𝜔. The most common specification for the function 

ℎ is linear: 

ℎ(𝒙; 𝝀) = 𝜆0 +∑𝜆𝑘

𝐾

𝑘=1

𝑥𝑘 (14) 

For the discrete choice sub-model, the utilities can be defined as: 

𝑈𝑞 = 𝑉(𝒙𝑞 , 𝒙𝑞
∗ ; 𝜷) + 𝜀𝑞 , 𝜀𝑞~𝐷(0, 𝛴𝜀) (15) 

where 𝜷 is a vector of the parameters to be estimated and 𝜀𝑞 is the error term distributed with variance 

Σ𝜀. The latent variable model also requires the distribution of the indicators’ conditional on the values 

of the latent variables: 
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𝐼𝑞 = 𝑚(𝒙𝑞 , 𝒙𝑞
∗ ; 𝜶) + 𝜐𝑞 , 𝜐𝑞~𝐷(0, 𝛴𝜐) (16) 

where 𝐼𝑞  is the reported value, , 𝒙𝑞
∗

 is the vector containing the latent variables, 𝒙𝑞  is a vector of 

explanatory variables, 𝜶 is a vector of parameters and 𝜐𝑞  is the random error distributed with 

variance Σ𝜐. The measurement equation of the discrete choice model is defined by a dummy variable 

𝑦𝑖 that assumes the value one if the chosen alternative has the highest utility among all the available 

alternatives, and zero otherwise: 

𝑦𝑖 = {
1  𝑖𝑓 𝑈𝑖 = 𝑚𝑎𝑥𝑗{𝑈𝑗}

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 (17) 

If no latent variables were considered, the probability function for the choice of alternative i would be: 

𝑃𝑖(𝒚|𝒙; 𝜷, 𝜮𝜀) (18) 

The choice model can take several different forms, e.g., mixed logit, nested logit, probit, ordered 

probit, ordered logit. In a modelling framework which includes latent variables, if the error 

components 𝜀 and 𝜔 are independent, the probability function is obtained by integrating the choice 

model over the distribution of the latent constructs: 

𝑃𝑖(𝒚|𝒙; 𝜷, 𝝀, 𝜮𝜀 , 𝜮𝜔) = ∫ 𝑃𝑖(𝒚|𝒙, 𝒙
∗; 𝜷, 𝜮𝜀)

𝒙∗
𝑔(𝒙∗|𝒙; 𝝀, 𝜮𝜔)𝑑𝒙

∗ (19) 

which is an integral in M dimensions, where M is the number of latent variables in 𝒙∗, while 𝑔 is the 

density function of the latent variable.  

Then, the indicators can be introduced to improve the accuracy of the estimates of the structural 

parameters. Assuming that all the error components (𝜀, 𝜔, 𝜐) are independent, the joint probability of 

observing variables 𝒚 and 𝑰 is: 

𝑃𝑖(𝒚, 𝑰|𝒙; 𝜶, 𝜷, 𝝀, 𝜮𝜀 , 𝜮𝜐, 𝜮𝜔) = ∫ 𝑃𝑖(𝒚|𝒙, 𝒙
∗; 𝜷, 𝜮𝜀)𝑓(𝑰|𝒙, 𝒙

∗; 𝜶, 𝜮𝜐)
𝒙∗

𝑔(𝒙∗|𝒙; 𝝀, 𝜮𝜔)𝑑𝒙
∗ (20) 

The first term of the integrand corresponds to the choice model, the second term and the third term to 

the measurement equation and structural equation from the latent variable model respectively. Finally, 

to estimate the unknown parameters of the ICLV model, since the full integrand function is usually 

very complex, exact integration is not possible, and numerical integration needs to be implemented. 

The simulated log likelihood, which will be maximized, takes the form:  
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∑∑𝛿𝑞𝑖𝑙𝑛[𝑃𝑞𝑖(𝒚, 𝑰|𝒙; 𝜶, 𝜷, 𝝀, 𝜮𝜀, 𝜮𝜐, 𝜮𝜔)]

𝑁

𝑖=1

𝑄

𝑞=1

 (21) 

where Q is the total number of individuals, N is the set of alternatives, and 𝛿𝑞𝑖 is a dummy factor 

which is equal to 1 if individual q chooses alternative i, and 0 otherwise. 

4.2.2 Using neural networks to reproduce the ICLV framework 

The new model we are proposing is based instead on a Feed-Forward Neural Network [12] which tries 

to reproduce the same structure of the ICLV model. Like the hybrid choice model, the structure of the 

complete neural network can be split in different modules which correspond to a particular function. 

The general framework of the NN model we wanted to test is shown in Figure 6.  

The first module is the one whose purpose is modelling the latent variables (leftmost side in Figure 

6). This module takes as input a set of socioeconomic variables ZLk, which might differ based on the 

latent variable considered, and a set of independent random error components sampled from a given 

distribution, ωk, for each of the latent variables we want to build. This module than proceeds to use a 

neural network for each desired latent variable to generate a linear combination of its inputs through 

a series of hidden layers, and finally outputs a vector containing the estimated latent variables. This 

vector will be then used as one of the inputs of the following modules.  

The choice model module (upper right in Figure 6) is basically an analogue of the neural network 

choice model we used to estimate the value of travel time (see Paragraph 3.2). The main difference is 

that, in this case, among the inputs of the model, other than trip characteristics (Xk) and socioeconomic 

individual attributes (Zk), we have the latent variables outputted by the previous model (LV). These 

inputs go through a series of linear combination neural networks (one for each choice alternative) to 

produce the alternative specific utility. Finally, the choice probabilities are calculated by using a 

softmax activation function in the last layer, which leads to the simulation of a negative log likelihood 

loss. To be similar to the ICLV, the latent variables were introduced in the formulation of the utilities 

of K-1 alternatives instead of all of them. 

Finally, the ordered logit module (lower right in Figure 6) takes only the latent variables (LV) as its 

inputs, and, after a linear combination, uses them as the input of a particular layer structure (CORAL 

– consistent rank logits), which was developed by Cao et al. [151] to apply ordinal regression using 

deep neural networks. First of all, given a dataset of ordered observations included in a range of 1 to 

K (e.g., Likert scale responses like in our case), this layer extends the labels into 𝐾 − 1 binary labels 
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𝑦𝑖
(1)
, … , 𝑦𝑖

(𝐾−1)
, such that the generic label 𝑦𝑖

(𝑘)
∈ {0,1} indicates whether 𝑦𝑖 is higher than 𝑘, i.e., 

𝑦𝑖
(𝑘)

= 1 𝑖𝑓 𝑦𝑖 > 𝑘. Using these extended binary labels, the layer trains a single NN with binary 

classifiers in the output layer. The outputs of the CORAL layer (𝜃1, … , 𝜃𝐾 ) are then used to estimate 

the CORAL loss function: 

−∑∑ 𝜆(𝑘)[𝑙𝑛 (𝜎(𝜃𝑘)𝑦𝑞
(𝑘)
+ 𝑙𝑛 (1 − 𝜎(𝜃𝑘))(1 − 𝑦𝑞

(𝑘)
)]

𝐾−1

𝑘=1

𝑄

𝑞=1

 (22) 

where σ(𝜃𝑘) represents the logistic sigmoid function: 

𝜎(𝜃𝑘) =
1

1 + 𝑒−𝜃𝑘
 (23) 

and 𝜆(𝑘) > 0  denotes the weight of the loss associated with the k-th classifier, which could be used in 

the case when some of the classifiers may be less robust or harder to optimize (we assumed 𝜆(𝑘) = 1 

in all cases). Finally, all the losses (one for the choice model module, and K from the ordered model 

module) were combined in a single global loss function, which had to be minimized through back-

propagation. To emulate the integration happening in the ICLV model, we calculated the inputs of the 

loss functions for every draw ω(r) from the distribution of random parameters, and we obtained the 

Montecarlo integral approximation [156] by averaging them. 

4.2.3 Disaggregate indicators 

Regarding the results of the models, we first analysed, to use them as a benchmark to verify the correct 

behaviour of the models, some elasticities derived by a variation of the level of service variables 

associated with each travel alternative, obtained by applying the formula (see also Paragraph 3.2): 

1

𝑁
∑{

𝑃(𝒙𝑛 + ∆𝑍𝑛)𝑗 − 𝑃(𝒙𝑛)𝑗

∆𝑍𝑛
∙

𝑍𝑛
𝑃(𝒙𝑛)𝑗

}

𝑁

𝑛=1

 (24) 

where 𝑃(𝒙𝑛)𝑗 is the probability of choosing alternative j, 𝒙𝑛 is a vector containing all the explanatory 

variables, 𝑍𝑛 ∈ 𝒙𝑛 is the variable for which we are interested in calculating the elasticity, and N is the 

size of the sample.  

We also evaluated the effects of the latent variables on the choice probabilities by computing a set of 

pseudo-elasticities [152], which are estimated with the simple relation: 

1

𝑁
∑{𝑃(𝒙𝑛 + ∆𝑍𝑛)𝑗 − 𝑃(𝒙𝑛)𝑗}

𝑁

𝑛=1

 (25) 
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Figure 6. Proposed neural network architecture to emulate an ICLV model. 

 

These represent the absolute (as opposed to the relative one used in the elasticities) variation in the 

probability when a variable represented by discrete quantities changes its value. In our case, 𝑍𝑛 

represents the socio-economic variables we used to build the latent variables. We only evaluated the 

indirect effects of such variations, by only considering the new value when estimating the value of the 

latent variable, but not when calculating the utilities associated with the alternatives. All the variables 

we used when building our latent variables (see Table 19) were dummy variables, with the exception 

of Age and Nr. of cars. For the dummy variables we obtained the pseudo-elasticities by estimating the 

probabilities in the case where each variable assumed value zero for all individuals, while for Nr. of 

cars we increased its value by 1 unit for every household, and Age was increased instead so that 

everyone was hypothesised to be 5 years older. 
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4.3 Data analysis 

The dataset we used (Svolta Cagliari) was collected in 2019-2020 during an experimental programme 

lead by the government of the metropolitan city of Cagliari (Italy), in collaboration with the University 

of Cagliari. The aim of the program was that of finding possible ways of convincing frequent 

commuters to change their travel behaviour towards more sustainable means of transport. An online 

survey was distributed among the population of interest, and it ultimately led to over 4,000 complete 

questionnaires, although we analysed a sub-sample of the people which travelled by car, PT or 

walking, and had at least two of these alternative available. 

The dataset is composed of 2,873 observations and it is the same used in the chapter in which we 

compared methods of obtaining the value of travel time (see Paragraph 3.3.2). However, since we 

were interested in using psycho-attitudinal indicators in our models, we also had to include some 

additional observations for each individual, pertaining to some questions aimed at investigating 

individuals’ attitudes, intentions and perceptions. Table 17 contains an analysis of these variables, and 

it shows the item proposed in the online questionnaire (or rather, the closest English translation since 

the survey was originally in Italian, as shown in Appendix A). Each of the items required a the 

respondent to choose among a 5-options Likert scale [157] (1 = strongly disagree, 2 = somewhat 

disagree, 3 = neither agree nor disagree, 4 = somewhat agree, 5 = strongly agree), for several different 

topics, mostly connected to sustainable means of transport. 

The first group of items regarded the individuals’ intentions to use sustainable transport modes / not 

use their car in the following days [158]. The average response on the first item During the next two 

weeks I intend to use sustainable transport modes instead of the car (alone) was 3.36 out of 5, with 

most people answering 5 (28%) and 4 (24%). Regarding the second item in this group, During the 

next two weeks I intend to use a private car, we observed an average of 2.67 out of 5, and the most 

popular responses were 1 (27%) and 2 (26%). The last intention-related item, I am interested in using 

sustainable transport modes during the next two weeks, had a relatively higher average response (3.97 

out of 5), and almost half (46%) of the respondents chose option 5. These responses together depict a 

scenario in which most respondents manifested their intention to use sustainable alternatives, while at 

the same time not giving up on their cars. 

The second group was instead composed of those items aimed at analysing the perceived behavioural 

control (PBC) concerning sustainable transport modes [159, 160]. The first item was It would be easy 

for me to use sustainable transport modes, and the average response was 3.16 out of 5. The most 

common responses were 4 (24.5%) and 5 (24.2%). The responses to the second one, I am certain I can  
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Table 17. Analysis of the responses to the psycho-attitudinal survey questions 

Questionnaire item Name Avg. 1 2 3 4 5 

During the next two weeks I intend to use 

sustainable transport modes instead of the car 

(alone). 

Int1 3.36 14.9% 13.9% 19.6% 23.7% 27.9% 

During the next two weeks I intend to use a 

private car. 
Int2 2.67 25.7% 27.1% 18.9% 11.5% 16.8% 

I am interested in using sustainable transport 

modes during the next two weeks. 
Int3 3.97 5.1% 5.7% 22.5% 20.4% 46.4% 

It would be easy for me to use sustainable 

transport modes. 
PBC1 3.16 18.4% 19.7% 13.2% 24.5% 24.2% 

I am certain I can use sustainable transport 

modes during the next week. 
PBC2 3.32 19.7% 15.1% 12.5% 18.6% 34.1% 

Using sustainable transport modes is possible 

for me. 
PBC3 3.73 9.8% 14.5% 14.0% 16.4% 45.4% 

To me, using sustainable transport modes 

instead of a private car is USEFUL. 
Att1 4.16 3.3% 5.1% 10.3% 34.8% 46.5% 

To me, using sustainable transport modes 

instead of a private car is (or would be) 

PLEASANT. 

Att2 3.55 8.1% 12.7% 21.1% 32.2% 25.9% 

To me, using sustainable transport modes 

instead of a private car is RIGHTEOUS. 
Att3 4.26 1.3% 2.4% 13.4% 35.2% 47.7% 

Most people I know think I should use 

sustainable transport modes instead of a 

private car. 

NoS1 2.64 23.0% 20.5% 33.2% 16.3% 7.0% 

Most people I know use sustainable transport 

modes instead of a private car. 
NoS2 2.33 29.2% 34.4% 17.0% 13.0% 6.3% 

I feel a moral obligation to use sustainable 

transport modes regardless of what everybody 

else does. 

NoM1 3.52 8.7% 9.9% 26.6% 30.2% 24.7% 

1 = strongly disagree, 2 = somewhat disagree, 3 = neither agree nor disagree, 4 = somewhat agree, 5 = strongly agree 

use sustainable transport modes during the next week, produced an average of 3.32 out of 5, and more 

than a third of the sample (34%) answered 5. The third PBC item was Using sustainable transport 

modes is possible for me, and the average response was 3.73 out of 5, while the most chosen option 

was still 5 (45%). Overall, this groups shows how the respondents perceived sustainable alternative as 

a possible option for their trip, but this option is perceived as always feasible. 

Another group included those items which analysed the respondents’ personal attitudes towards the 

use of sustainable transport modes [161]. The first of this group was To me, using sustainable transport 

modes instead of a private car is USEFUL, the average was 4.16 out of 5 and most responses were 

either 5 (46%) or 4 (35%). The second attitudinal item, To me, using sustainable transport modes 

instead of a private car is (or would be) PLEASANT, gave an average response of 3.55 out of 5. The 

most chosen option was 4 (32%), followed by 5 (26%). The last item of this group was To me, using 
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sustainable transport modes instead of a private car is RIGHTEOUS, the average response was 4.26 

out of 5, with the most chosen options being 5 (48%) and 4 (35%). This group expresses the fact that, 

although most people feel that using sustainable alternatives would be the most correct choice, it would 

not also necessarily be the most desirable. The final group of items included all those questions 

pertaining social norms and moral norms linked to the use of sustainable transport alternatives [162]. 

The first item was Most people I know think I should use sustainable transport modes instead of a 

private car. The average response was 2.64 out of 5, and most respondents chose options 3 (33%) and 

1 (23%). The second normative question, Most people I know use sustainable transport modes instead 

of a private car, produced an average of 2.33 out of 5, with the most frequent answer being 2 (34%) 

and 1 (29%). The third item, which was also the only moral norm one, was I feel a moral obligation 

to use sustainable transport modes regardless of what everybody else does, and its average was 3.52 

out of 5. The most chosen option was 4 (30%), closely followed by 3 (27%) and 5 (25%). These items 

might be interpreted with the fact that most people do not feel highly pressured by their peers to use 

sustainable transport modes, but rather their choice would be guided by their own belief that these 

alternatives are the most moral choice. 

To identify the latent variables we wanted to build by using these psycho-attitudinal items collected 

from the survey, we used factor analysis [163]. To measure sample adequacy of the different 

constructs, we used the Kaiser-Meyer-Olkin test (KMO) [164]. Since the questions were already based 

on underlying behavioural theories exploratory factor analysis was unnecessary, so we directly 

performed a confirmatory factor analysis, by keeping together the items concerning the same (or 

similar) behavioural aspects, i.e., intentions, PBC, attitudes, and norms. The first latent variable (LV1) 

is thus Intentions to use sustainable transport modes (KMO = 0.652), the second one (LV2) Perceived 

behavioural control for sustainable transport modes (KMO = 0.732), the third latent construct is 

(LV3) Attitude towards sustainable transport modes (KMO = 0.674), and the fourth and final one 

(LV4) Behavioural norm (KMO = 0.564). This means that the KMO for LV4 is below the threshold 

value (0.6) for it to be considered reliable. The main results of the factor analysis are shown in Table 

18, where we show the factor loadings for each survey item and the Cronbach’s alpha [165] for each 

latent variable. The value of the alpha is acceptable (≥ 0.7 [166]) for all the latent factors, except for, 

once again, LV4, which will be thus excluded. Ultimately, we also chose to consider just two latent 

variables in the models, and we opted for LV1 and LV2 based on values of the Cronbach’s alphas. 
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Table 18. Confirmatory factor analysis for the psycho-attitudinal indicators 

Latent factor Variables Loadings Cronbach’s alpha 

LV1 – Intentions to use sustainable 

transport modes 

Int1 0.898 

0.7781 Int2 0.756 

Int3 0.561 

LV2 – Perceived behavioural control 

for sustainable transport modes 

PBC1 0.878 

0.8914 PBC2 0.913 

PBC3 0.778 

LV3 – Attitude towards sustainable 

transport modes 

Att1 0.691 

0.7058 Att2 0.612 

Att3 0.741 

LV4 – Behavioural norm 

NoS1 0.764 

0.5005 NoS2 0.473 

NoM1 0.316 

 

4.4 Model specification 

Like we did in the case of the value of travel time estimation, we had to define which variables to use 

in the models (see Paragraph 3.4.1). In this case, we also decided to estimate an ICLV model 

beforehand to verify that the variables we chose did not generate any issues during the estimation. 

Then we used the same variables when defining the inputs of the neural networks, so that the 

econometric information we were going to extract would have been comparable directly. Since we 

had two latent variables to use, we also decided to produce different models based on the variable 

considered. We thus built three different models, one each for LV1 and LV2, and another one in which 

both latent variables were considered. The parameters associated with the variables, and the 

corresponding t-stats we obtained by estimating the three models are shown in Table 19. All the results 

were obtained by using PythonBiogeme [132]. 

Once again, since neural networks are generally non-identifiable (see Paragraph 3.2), we tried to 

mitigate the risks of obtaining skewed results by identifying the ideal set of hyperparameters to use in 

our final models. To do so, we trained several neural networks, modifying one hyperparameter at a 

time and analysing the effects this change had on the results. In particular, this time we focused on the 

number of epochs the model would run for, the number of hidden nodes in the NNs composing the 

choice model, and the number of hidden nodes in the linear combination layer preceding the CORAL 

layer. We chose to keep the number of hidden layers as low as possible, i.e., one in the choice model, 

two in the ordered models (one for linear combination and one for CORAL), to keep the model as 

simple as possible and because we also saw in our previous experiments (Paragraph 3.4.2) that 

additional layers usually lead to worse results. For each hyperparameter, we then chose, among those 

we tested, the lowest value for which the results seemed to stabilise around an average value. 
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Table 19. Modelling results obtained with PythonBiogeme for the ICLV models 

  Model 1 (LV1) Model 2 (LV2) Model 3 (LV1+LV2) 

  Variable name Value Rob. t-test Value Rob. t-test Value Rob. t-test 

Car 

attributes 

Cost -0.222 -1.93 -0.223 -1.70 -0.236 -1.88 

Time -0.033 -1.12 -0.052 -1.74 -0.036 -1.18 

PT 

attributes 

ASC -0.297 -0.39 -1.240 -1.56 -2.070 -2.56 

Cost -0.160 -1.08 -0.265 -1.65 -0.153 -0.99 

 Time -0.019 -2.54 -0.029 -3.91 -0.024 -3.25 

 Age -0.155 -1.50 -0.319 -3.24 -0.190 -1.82 

 Gender = male -0.450 -2.51 0.006 0.03 -0.145 -0.80 

 Presence of children -0.087 -0.74 -0.178 -1.39 -0.040 -0.31 

 Owns a car -2.720 -5.13 -1.670 -3.21 -1.900 -3.49 

 Student 1.430 5.15 1.490 5.41 1.420 5.04 

 House in Cagliari city -0.525 -2.35 -0.081 -0.36 -0.581 -2.53 

 Nr. of cars -0.357 -3.12 -0.411 -3.44 -0.315 -2.67 

 LV1 (PBC) 0.836 10.54 - - 0.528 8.18 

 LV2 (Intention) - - 0.908 9.56 0.547 7.62 

Walking 

attributes 

ASC -1.850 -1.13 -2.450 -1.36 -3.430 -2.06 

Time -0.136 -9.74 -0.140 -10.13 -0.137 -9.74 

 Age 0.256 1.92 0.064 0.48 0.225 1.58 

 Gender = male -0.237 -0.96 0.193 0.81 -0.014 -0.06 

 Presence of children 0.189 1.14 0.127 0.74 0.227 1.28 

 Owns a car -2.410 -4.22 -1.450 -2.57 -1.720 -2.89 

 Student 0.796 2.05 0.896 2.30 0.819 2.04 

 House in Cagliari city 1.080 0.92 1.890 1.43 1.120 1.03 

 Nr. of cars -0.177 -1.09 -0.238 -1.36 -0.136 -0.80 

 LV1 (PBC) 0.864 8.62 - - 0.608 7.05 

 LV2 (Intention) - - 0.836 7.66 0.447 5.07 

Ordered 

models 

Delta1 PBC1 2.640 18.33 - - 2.700 17.47 

Delta2 PBC1 1.560 15.79 - - 1.590 15.28 

 ASC PBC2 -0.440 -2.59 - - -0.372 -2.33 

 Beta PBC2 1.350 9.65 - - 1.240 9.40 

 Delta1 PBC2 2.570 12.63 - - 2.440 12.94 

 Delta2 PBC2 2.000 12.08 - - 1.880 12.30 

 ASC PBC3 1.540 14.60 - - 1.550 14.70 

 Beta PBC3 0.670 15.03 - - 0.653 14.05 

 Delta1 PBC3 1.910 16.91 - - 1.900 16.84 

 Delta2 PBC3 1.350 17.53 - - 1.350 17.43 

 Delta1 Int1 - - 1.990 13.17 1.880 12.61 

 Delta2 Int1 - - 2.160 15.02 2.030 13.89 

 ASC Int2 - - -1.420 -8.92 -1.550 -7.47 

 Beta Int2 - - 0.895 9.37 1.000 7.46 

 Delta1 Int2 - - 2.680 19.46 2.760 16.01 

 Delta2 Int2 - - 2.020 17.57 2.080 14.91 

 ASC Int3 - - 2.040 19.91 2.010 19.42 

 Beta Int3 - - 0.364 12.13 0.393 11.83 

 Delta1 Int3 - - 0.939 12.11 0.939 12.11 

 Delta2 Int3 - - 1.750 22.81 1.750 22.66 

LV1 

(PBC) 

ASC 7.340 11.65 - - 7.430 11.31 

Age -0.333 -3.58 - - -0.334 -3.52 

 Gender = male 0.037 0.21 - - 0.092 0.48 

 Graduate -0.408 -2.12 - - -0.417 -2.00 

 Presence of children -0.489 -4.31 - - -0.500 -4.13 

 Owns a car -2.100 -6.73 - - -2.280 -6.28 

 Student 1.330 4.44 - - 1.280 4.15 

 House in Cagliari city 2.150 10.00 - - 2.150 9.41 

 Nr. of cars -0.784 -6.43 - - -0.711 -5.74 

 Dep. Time 8:30-9:29 AM -0.367 -2.06 - - -0.356 -1.84 

 Sigma 3.610 18.26 - - 3.710 17.11 

LV2 

(Intention) 

ASC - - 7.540 12.440 7.080 11.57 

Gender = male - - -0.566 -3.510 -0.539 -3.54 

 Presence of children - - -0.451 -4.640 -0.385 -4.08 

 Owns a car - - -3.370 -9.250 -3.200 -8.76 

 Student - - 1.590 7.190 1.530 7.05 

 House in Cagliari city - - 1.300 6.900 1.150 6.40 

 Nr. of cars - - -0.654 -5.530 -0.588 -5.12 

  Sigma - - 3.260 13.040 3.030 11.72 



 

63 

 

Table 20 shows the definitive values considered during the estimation of the final results. For 

additional information on the results that we analysed to get to these values, see Appendix C. Keep in 

mind that we only performed the analysis only using one model (the one which considers only LV1), 

and we assumed the same results could be extended to the other models. The neural network models 

were estimated using the PyTorch library for Python [138]. 

Table 20. Hyperparameters sets for all models 

N. epochs 
N. hidden nodes 

(choice model) 

N. hidden nodes 

(latent model) 

1000 200 20 

 

4.5 Results 

In the following pages we are going to show the results we obtained by using our neural network 

architecture and compare them to the ones we got with Biogeme for the ICLV. We trained a total of 

30 NNs for each model specification by using 80% of the dataset. We then observed the trend of some 

benchmark indicators (i.e., direct elasticities for the level of service variables and log-likelihood) 

estimated using a 20% testing set to check if they were stable and compared them with the values 

obtained by using the corresponding ICLV. As we said previously, we first analysed, as a benchmark, 

the elasticities with respect to the level of service variables, and then the pseudo-elasticities associated 

with the latent variables. 

4.5.1 Model 1 - LV1 (PBC) 

Figure 7 shows the benchmark results for the neural network trying to reproduce the ICLV with only 

one latent variable (LV1 - PBC). As expected, most graphs show a regular trend, even if the values 

are quite different from those that we obtained with the ICLV. The most regular values are those of 

the elasticities for alternative car w.r.t. travel cost, for alternative PT w.r.t. travel cost, and for walking 

w.r.t. travel time (even if the values for the latter are probably the furthest ones from those of the 

ICLV). Elasticities w.r.t travel time for both car and PT present a wider range of values, but they still 

can be considered regular, and their values do not show extreme differences compared to the ICLV 

results. The log-likelihood was higher than the one we obtained for the ICLV for all NNs, so we 

achieved an overall slightly better level of fit. 

Table 21 shows instead all the direct- and cross-elasticities for all modes and all alternatives for both 

our neural network (NN) and the ICLV, generated by a positive variation in the level of services 

variables. The values for the NN were obtained by averaging those we got from the 30 different models 

we trained.  
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(a) (b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

(a) elasticity of car choice probability w.r.t. car travel time; (b) elasticity of car choice probability w.r.t. car cost; (c) 

elasticity of PT choice probability w.r.t. PT travel time; (d) elasticity of PT choice probability w.r.t. PT cost; (e) elasticity 

of walking choice probability w.r.t. walking travel time; (f) log-likelihood 

Figure 7. Neural network benchmark results for Model 1 (LV1) 

 

Table 21. Elasticities for level of service variables with Model 1 (LV1) 

Variable Model Car PT Walking 

Car cost 
NN -0.159 0.230 0.023 

ICLV -0.088 0.134 0.035 

Car travel time 
NN -0.042 0.064 0.012 

ICLV -0.101 0.160 0.076 

PT cost 
NN 0.082 -0.143 0.036 

ICLV 0.034 -0.055 0.073 

PT travel time 
NN 0.148 -0.272 0.056 

ICLV 0.151 -0.241 0.286 

Walking travel time 
NN 0.089 0.126 -0.717 

ICLV 0.226 0.689 -3.205 
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We should first notice how all the signs we obtained are consistent with the microeconomic theory, 

i.e., all direct elasticities are negative, while all cross-elasticities are positive, so we found no problems 

at least in the regard. We will now analyse them by grouping them based on the corresponding variable 

affecting the choice probability: 

• Car cost: the direct elasticity for the NN (-0.16) is roughly double of that given by the ICLV 

(-0.09), and a similar pattern can be seen in the cross-elasticities for the PT alternative (0.23 

for the NN and 0.13 for ICLV), while the cross-elasticity for the walking alternative is lower 

for the NN (0.02 vs. 0.035); both models however are giving an overall similar information, 

that is, the demand show very low elasticity towards variation of the travel costs of the 

alternative car; 

• Car travel time: in this case, instead, the values estimated with the NN are much lower than 

those obtained with the ICLV, since the direct elasticities are -0.04 (NN) and -0.10 (ICLV), 

while the cross elasticity for PT is 0.06 for the NN and 0.16 for the ICLV, and the ones for 

walking are 0.01 (NN) and 0.08 (ICLV); it is thus clear that, also in this case, the two 

modelling framework agree in the fact that the probability of choosing any of the three 

alternatives is relatively inelastic towards variations of car travel time; 

• PT cost: like in the case of car cost, we get values twice as big for the NN compared to the 

ICLV, with cross elasticities for car being 0.08 (NN) and 0.03 (ICLV), although in this case 

the direct elasticity is almost triple for the NN (-0.14 vs. 0.06); also for this variable, NN 

results are lower for walking, since the cross-elasticity is 0.04 for the NN and 0.07 for the 

ICLV model; once again, despite some differences, both models describe a scenario in which 

the demand behaves inelastically when introducing changes in the cost sustained to use PT; 

• PT travel time: contrary to previous cases, NN and ICLV gave us very similar results for direct 

elasticities (-0.27 and -0.24 respectively) and cross-elasticities for alternative car (0.15 in both 

cases), however the alternative walking is still an exception, since the value we obtained with 

the NN is 0.06, and the one of the ICLV is much higher (0.29); nonetheless, both models are 

still agreeing in the fact that the choice probabilities are inelastic towards variations of the 

travel time for the PT alternative 

• Walking travel time: finally, these last elasticities present probably the most striking 

differences among all these results; as a matter of fact, while the values for the car alternative 

cross-elasticity are relatively low, 0.09 for the NN and 0.23 for the ICLV, we can already see 

a problem for PT, whose cross-elasticities are 0.13 (NN) and 0.69 (ICLV) and describe thus 

a different phenomenon, with the ICLV coming closer to an elastic behaviour; but the direct  
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elasticities are even more discordant, since the NN gave us a value of -0.72 (still lower than 

1) and the ICLV -3.20 instead, which would mean the NN is severely underestimating the 

effects of a variation in the travel time when compared to the results given by the ICLV. 

Table 22 finally shows the pseudo-elasticities, describing the effects of variations of the latent variable 

LV1 (PBC) on the choice probabilities of the three alternative means of transport. We again compare 

the results of the ICLV model to those of the neural network, whose values were obtained again by 

averaging those we got from the 30 different models we trained. In this case, there are no 

microeconomic theories which can tell us exactly if a positive or negative sign is correct or not 

beforehand, so we cannot comment on that aspect. We will again analyse the pseudo-elasticities by 

grouping them based on the corresponding modified variable. 

• Age: for an increase of 5 years in the age of the sample, regarding the car alternative, both 

models predict very similar outcomes, that is an increase between 1.0% (NN) and 1.2% 

(ICLV) in the probabilities; a similar result is shown for PT, even though the values are more 

spread out, with  -1.4% for NN and -0.9% for ICLV; walking performs inconsistently instead, 

since the NN predicted a positive value (0.3%) and the ICLV a negative one (-0.4%), however, 

since they are both relatively low values, we could assume this happens because they are 

fluctuating around zero; 

Table 22. Pseudo-elasticities for LV1 with Model 1 (LV1) 

Variable Model Car PT Walking 

Age 
NN 1.00% -1.37% 0.35% 

ICLV 1.20% -0.90% -0.40% 

Gender = male 
NN 0.57% -0.71% 0.20% 

ICLV 0.10% -0.10% 0.10% 

Graduate 
NN -1.60% 2.09% -0.51% 

ICLV -1.70% 1.20% 0.60% 

Presence of children 
NN -1.13% 1.43% -0.30% 

ICLV -1.50% 1.00% 0.70% 

Owns a car 
NN -15.80% 18.74% -2.94% 

ICLV -15.80% 11.70% 5.10% 

Student 
NN 3.65% -5.36% 1.72% 

ICLV 3.50% -2.90% -0.60% 

Dep. Time 8:30-9:29 AM 
NN -1.10% 1.46% -0.33% 

ICLV -1.20% 0.80% 0.40% 

House in Cagliari city 
NN 5.51% -10.26% 4.75% 

ICLV 9.20% -6.00% -4.80% 

Nr. of cars 
NN 4.61% -6.37% 1.76% 

ICLV 5.70% -4.20% -1.90% 
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• Gender = male: in the case in which all the sample is composed by females, both models 

predict very small difference compared to the actual situation, since for car we have 0.6% 

(NN) and 0.1% (ICLV), for PT -0.7% (NN) and -0.1%(ICLV), and for walking 0.2% (NN) 

and 0.1% (ICLV); 

• Graduate: if everyone in the sample lacked an higher education level, we would see some 

shifts in the modal split, since both models predict a decrease in the probability of choosing 

the car (-1.6% for NN and -1.7% for ICLV) and an increase in the use of public transport 

(2.1% for NN and 1.2% for ICLV); however, the models disagree again in their predictions 

for the alternative walking, since the NN says there would be a decrease (-0.5%) and the ICLV 

foresees an increase (0.6%), but we could again reconduct this discrepancy to the fact they are 

both very close to zero; 

• Presence of children: should none of the households include children among their members, 

the models predict a decrease in the probabilities of choosing the car alternative (-1.1% 

and -1.5% for NN and ICLV respectively) and an increase in those of using PT (1.4% and 

1.0%); once again we got contradicting results for walking (-0.3% for the NN and 0.7% for 

the ICLV), so the same comments we made for previous variables are still valid; 

• Owns a car: if no one among the respondents in the testing set owned a car, according to the 

models we would see significant changes in the modal split; as one would probably expect, 

the probability of choosing car as a means of transport sharply declines (-15.8% for both 

models), while at the same time PT becomes much more popular ( 18.7% for the NN, 11.7% 

for the ICLV); however, in this case the discrepancy in the outputs for the walking alternative 

becomes very evident, since the NN predicts a decrease in this option (-2.9%) while the ICLV 

shows a significant increase (5.1%), and in this case we cannot assume a fluctuation in the 

values (like we did for previous variables) since they are quite different from zero; 

• Student: in the case when none of the individuals were students, both NN and ICLV state that 

the car alternative would see an increase in its choice probability (3.6% and 3.5%), while 

public transport would decrease by -5.4% for the NN and -2.9% for the ICLV; while less 

pronounced than in the case of car ownership, the issue of opposing signs for walking is still 

present, with NN predicting a 1.7% increase and ICLV a -0.6% decrease; 

• Dep. Time 8:30-9:29 AM: if everyone decided to leave their house outside of the peak-hour 

starting at 8:30 AM, we could observe a slight decrease in the use of cars (-1.1% for NN and 

-1.2% for ICLV) and an increase of the probability to choose PT as a means of traveling (1.5% 
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and 0.8%); the outcomes predicted for walking are still opposite to each other (-0.3% for NN 

and 0.4% for ICLV), but we can consider them negligible like in previous cases; 

• House in Cagliari city: were all the people living outside of the city of Cagliari, and thus 

further away from their workplace (or university in the case of students), both models predict 

an increase in the use of cars, quantified in 5.5% for the NN and 9.2% for the ICLV; they also 

show there would be a significant change in the use of public transport, -10.3% according to 

the NN and -6.0% for the ICLV; the results for walking are once again contradictory, with the 

NN predicting an increase of 4.7% and the ICLV a decrease of -4.8%, and since they are not 

negligible we cannot say with certainty which of the two models is closer to the real outcome; 

• Nr. of cars: if everyone had one more car at their disposal in their household, both models, 

quite unsurprisingly, predict an increase in the probability of choosing car as a means of 

transport (4.6% for the NN and 5.7% for the ICLV model), and a decrease in the use of public 

transport (-6.4% and -4.2%); also in this last case, the predicted outcomes for walking show 

a discrepancy, since the NN says there would be an increase (1.8%) and ICLV instead shows 

a decrease (-1.9%), and regretfully we cannot disregard them. 

In general, we can conclude that the neural network performs comparably to the ICLV, with the 

exception of the pseudo-elasticities for the walking alternative, which seem to be interpreting the 

inverse phenomenon. Also, we cannot affirm which of the two models is reproducing more closely 

the real outcomes generated by changes in the socio-economic variables we use to define the latent 

variable, and in the worst-case scenario we could also have to consider that both are making wrong 

predictions. One possible explanation of these discrepancies is that, while both models were 

theoretically defined following the same logic, it is possible that using different optimization 

algorithms, we could end up with a different laten variable interpretation in each modelling 

framework. Thus, the latent variables would be representing different aspects and should be 

interpreted differently, making it difficult to compare them. 

4.5.2 Model 2 – LV2 (Intentions) 

Figure 8 shows the benchmark results for the neural network models following the ICLV structure 

and using the latent variable LV2 (Intentions). Also in this case, most of the graphs show regular 

patterns, with the predicted values being very close to their average. The same comments we made for 

Model 1 (Paragraph 4.5.1) can be extended to these graphs, since the elasticities for alternative car 

and cost, for PT and cost, and for walking and time kept their almost constant trend, while the others 
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(car and time, PT and time) present a wider range of values. The average log-likelihood of the NNs is 

still slightly higher than the one we got from the ICLV models. 

 

 

 

Table 23 shows the direct- and cross-elasticities we obtained by using the Model 2 specification with 

the NN and the ICLV, when a variation is introduced in the level of services variables. The values we 

obtained are very close to those we got in the case of Model 1 (Table 14), and they still maintain the 

same relations, so the comments we previously made are still valid. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

(a) elasticity of car choice probability w.r.t. car travel time; (b) elasticity of car choice probability w.r.t. car cost; (c) 

elasticity of PT choice probability w.r.t. PT travel time; (d) elasticity of PT choice probability w.r.t. PT cost; (e) elasticity 

of walking choice probability w.r.t. walking travel time; (f) log-likelihood 

Figure 8. Neural network benchmark results for Model 2 (LV2) 
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Table 23. Elasticities for level of service variables with Model 2 (LV2) 

Variable Model Car PT Walking 

Car cost 
NN -0.161 0.234 0.024 

ICLV -0.090 0.137 0.041 

Car travel time 
NN -0.044 0.066 0.012 

ICLV -0.165 0.255 0.139 

PT cost 
NN 0.078 -0.136 0.034 

ICLV 0.057 -0.092 0.117 

PT travel time 
NN 0.160 -0.295 0.060 

ICLV 0.233 -0.378 0.426 

Walking travel time 
NN 0.092 0.131 -0.754 

ICLV 0.287 0.723 -3.341 

Table 24 shows the values associated with the pseudo-elasticities which predict the effects on the 

choice probabilities caused by variations in the latent variable LV2 (Intentions), generated in turn by 

a change in the socio-economic variables we used to define LV2. We compare the results of the ICLV 

model to those we obtained by averaging the results from 30 different neural network models we 

trained with the same hyperparameters but different initializations. Again, there are no microeconomic 

theories to give us any hint to know beforehand if the results we obtained are correct or not, and we 

will limit ourselves to a comparison, and analyse the pseudo-elasticities considering each socio-

economic variable one at a time. 

• Gender = male: if we hypothesise everyone in our sample was an individual of female gender, 

the models predict that the probability of using the car alternative would decrease, but while 

the NN shows a very limited change (-0.3%), the ICLV says instead the variation would be 

much higher (-2.1%); the prediction for the walking alternative has the two model mostly 

agreeing (0.6% for NN and 0.7% for ICLV), but public transport generated some issues (not 

unlike the ones we encountered for model 1 and walking – Paragraph 4.5.1), since the NN 

predicts a small decrease (-0.3%), while the ICLV says the probability would increase by a 

relatively larger amount (1.5%); 
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• Presence of children: in the case where no children were present in the households of the 

respondents, the models behave very similarly to the case of the previous variable; as a matter 

of fact, for the car alternative the NN says there would be a -0.31% decrease, and the ICLV 

predicts one of -1.5%; for walking we have a ~0.5% increase for both models, and once again 

we encounter a discrepancy for PT, since the NN predicts a very small decrease (-0.2%) and 

the ICLV model an increase of 1.1%; 

Table 24. Pseudo-elasticities for LV2 with Model 2 (LV2) 

Variable Model Car PT Walking 

Gender = male 
NN -0.32% -0.26% 0.58% 

ICLV -2.09% 1.54% 0.69% 

Presence of children 
NN -0.31% -0.16% 0.47% 

ICLV -1.49% 1.10% 0.49% 

Owns a car 
NN -4.99% -2.73% 7.72% 

ICLV -27.18% 21.29% 6.57% 

Student 
NN 0.27% 0.76% -1.04% 

ICLV 4.63% -4.02% -0.32% 

House in Cagliari city 
NN 1.09% 1.35% -2.44% 

ICLV 6.26% -4.43% -2.50% 

Nr. of cars 
NN 0.69% 0.85% -1.53% 

ICLV 5.17% -4.03% -1.29% 

• Owns a car: if no one in our sample owned a car, the two models predict very different 

scenarios, at least for the car alternative, for which the NN predict a decrease in its use 

of -5.0% while the decrease predicted by the ICLV is much larger (-27.2%), and for the PT 

alternative, whose variations are not only very different in value (the NN result is almost ten 

times smaller than the one from the ICLV model), but also in sign (-2.7% for NN and 21.3% 

for ICLV); walking is an exception, since the values from the two models are very similar, 

7.7% for the NN and 6.6% for the ICLV; 

• Student: supposing that no one among the individuals was a student, we can observe that the 

NN predicts an increase of 0.3% and the ICLV model one of 4.6% for the probability of 

choosing car as a mean of transport; the choice of walking would decrease by -1.0% according 

to the NN and by -0.3% for the ICLV; public transport keeps giving conflicting results, with 

the NN predicting a small increase (0.8%) and the ICLV model saying the share for this mode 

would decrease by -4.0%; 

• House in Cagliari city: if no one lived in the city of Cagliari, but in the surrounding areas, the 

NN says we would observe an increase of 1.1% in the use of car and the ICLV instead one of 

6.3%, while walking would decrease by similar amounts for both models (-2.4% for the NN 
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and -2.5% for the ICLV model); once again, the models disagree for the PT alternative, since 

NN predict an increase of 1.4% and the ICLV a decrease of -4.4%; 

• Nr. of cars: in the case where every household had one more car at their disposal, the NN says 

we would have an increase of 0.7% in the use of cars, and the ICLV predicts an increase of 

5.2% instead; both NN and ICLV foresee a decrease in the use of walking for daily trips 

(-1.5% and -1.3% respectively), but even for this last variable we analysed, the models show 

contradictory result for the predictions regarding the PT alternative, with the NN showing an 

increase of 0.9% and the ICLV model saying there would be a decrease of -4.0%. 

Overall, these results do not allow us to affirm with confidence that our NN model is performing 

correctly. While it generally gives similar results to the ICLV model when observing those relative to 

the walking alternative, the same cannot be said for car and PT. For the first one, most results of the 

neural network are much lower in value than those we obtained with the ICLV, and for the second 

they also show different signs, thus picturing a very different phenomenon. In this case, unlike we 

could for Model 1, since the values are significantly distant from zero, we cannot conscientiously use 

the justification of their value fluctuating.  

On the other side, it is also possible that the ICLV model could be overestimating some of the results, 

since some of them assume quite extreme values (e.g., those for the variable owns a car). But, without 

any other elements to give proper justifications for our results, we have to assume that our neural 

network in not working completely correctly when using the latent variable LV2 associated with the 

intentions to use sustainable means of transport. 

4.5.3 Model 3 - LV1 (PBC) and LV2 (Intentions) 

Table 25 shows all the direct- and cross-elasticities generated with Model 3 (both NN and ICLV) by 

considering variations in the level of services variables. Like it happened with Model 2, even if the 

values we obtained are slightly different, they follow the same patterns we observed in Model 1 (Table 

21), meaning all the same comments are valid once again. 

Table 25. Elasticities for level of service variables with Model 3 (LV1 + LV2)  

Variable Model Car PT Walking 

Car cost 
NN -0.161 0.233 0.024 

ICLV -0.102 0.170 0.046 

Car travel time 
NN -0.041 0.062 0.011 

ICLV -0.122 0.210 0.101 

PT cost 
NN 0.080 -0.139 0.035 

ICLV 0.036 -0.059 0.066 
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PT travel time 
NN 0.153 -0.282 0.057 

ICLV 0.206 -0.354 0.339 

Walking travel time 
NN 0.090 0.128 -0.722 

ICLV 0.251 0.661 -3.254 

 

 

 

Figure 9 shows instead the pattern of the benchmark indicators we obtained with the neural network 

which considers both LV1 (PBC) and LV2 (Intentions), compared to those deriving from the 

corresponding ICLV model. The elasticities follow the same trends we already saw in both Model 1 

(Paragraph 4.5.1) and Model 2 (Paragraph 4.5.2), so no further comments are needed. The log-

likelihood for all NNs was higher than the one we got with the ICLV model, meaning we reached a 

higher level of fit. 
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(d) 

 

 
(e) 

 
(f) 

 

(a) elasticity of car choice probability w.r.t. car travel time; (b) elasticity of car choice probability w.r.t. car cost; (c) 

elasticity of PT choice probability w.r.t. PT travel time; (d) elasticity of PT choice probability w.r.t. PT cost; (e) elasticity 

of walking choice probability w.r.t. walking travel time; (f) log-likelihood 
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Figure 9. Neural network results benchmark for Model 3 (LV1 + LV2) 

 

Table 26 shows the pseudo-elasticities which describe the effects of variations of the latent variable 

LV1 (PBC) on the choice probabilities of the three alternatives, obtained both with our neural network 

models and the ICLV model. Like we did for Model 1 already, we will proceed by analysing the 

pseudo-elasticities associated with each socio-economic variable we used to build LV1. 

• Age: if every person in our sample was 5 years older, the probability of choosing the car 

alternative would increase by 0.6% according to the NN and by 0.8% for the ICLV, and 

similarly the use of public transport would decrease by -0.7% (NN ) and -0.5% (ICLV); but 

while the models agree on these two modes, they predict different result for walking, with the 

NN saying there would be an increase (0.2%) and the ICLV model a decrease (-0.4%); 

• Gender = male: in the case where none of the individuals were male, the changes in the choice 

probability would be very low for all alternatives, according to both models; 0.3% (NN) or 

0.3% (ICLV) for the alternative car,  -0.4% (NN) or -0.1% (ICLV) for public transport, and 

0.1% (NN) or -0.2% (ICLV) for walking; although the values for walking show different 

signs, they are very close to zero so the sign might not actually be significant; 

• Graduate: if no one in the sample achieved at least an university degree, the NN predicts a 

decrease  of -0.9% in the use of the car, and the ICLV model one of -1.2%; the probability of 

choosing PT for work/study trips would increase by 1.1% (NN) and 0.8% (ICLV), while 

walking would decrease by -0.3% according to the NN and increase by 0.6% for the ICLV, 

thus keeping the trend of contradictory results for the pseudo-elasticities for this mode 

obtained by modifying LV1; 

• Presence of children: if no children were present in the households, the NN shows a decrease 

in the use of car equal to -0.6%, and the ICLV one of -1.0%, while the use of PT would rise 

by 0.8% (NN) or 0.7% (ICLV); once again, even though the values are very low, we got 

conflicting results for walking, since the NN predict a decrease in the choice probability 

(-0.2%) and the ICLV an increase (0.5%); 

• Owns a car: in the case where no one in the sample owned a car, both models predict the 

largest variations in the choice probabilities among all the variables; as a matter of fact, for 

the car alternative, the NN says there would be a decrease of -8.7% and the ICLV one of -

11.6%, while for PT there would be an increase of either 10.3% (NN) or 8.1% (ICLV); 

however, the models still disagree for the alternative walking, since the NN predicts a decrease 

(-1.6%) and the ICLV model an increase (5.0%) 
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• Student: if each individual was not a student, the probability of choosing the car for their work 

trips would increase by 2.0% according to the NN model and by 2.3% for the ICLV, while 

the use of public transport would decrease by -3.0% (NN) and -1.7% (ICLV); regarding the 

walking alternative, the NN predicts an increase of 0.9%, while the ICLV a decrease of -0.7%, 

thus depicting contradicting scenarios once again; 

 

Table 26. Pseudo-elasticities for LV1 with Model 3 (LV1 + LV2) 

Variable Model Car PT Walking 

Age 
NN 0.55% -0.74% 0.19% 

ICLV 0.79% -0.53% -0.37% 

Gender = male 
NN 0.31% -0.41% 0.10% 

ICLV 0.23% -0.13% -0.16% 

Graduate 
NN -0.88% 1.15% -0.27% 

ICLV -1.17% 0.79% 0.55% 

Presence of children 
NN -0.63% 0.79% -0.16% 

ICLV -0.99% 0.66% 0.49% 

Owns a car 
NN -8.74% 10.33% -1.59% 

ICLV -11.62% 8.06% 4.98% 

Student 
NN 2.04% -2.97% 0.93% 

ICLV 2.29% -1.71% -0.74% 

Dep. Time 8:30-9:29 AM 
NN -0.62% 0.81% -0.19% 

ICLV -0.80% 0.55% 0.34% 

House in Cagliari city 
NN 3.11% -5.69% 2.57% 

ICLV 6.39% -3.58% -4.50% 

Nr. of cars 
NN 2.58% -3.53% 0.96% 

ICLV 3.46% -2.35% -1.58% 

 

• Dep. Time 8:30-9:29 AM: in case no one left their house in the peak hour which starts at 8:30 

AM, we would see a slight decrease of the use of the car alternative by -0.6% for the NN and 

-0.8% for the ICLV model; at the same time, the probabilities of using PT would increase by 

0.85 (NN) and 0.6% (ICLV), but walking would be used less according to the NN (-0.2%) and 

more according to the ICLV model (0.3%); 

• House in Cagliari city: if everyone lived outside of the city of Cagliari, the alternative car 

would increase according to both models, by 3.1% for the NN and by 6.4% for the ICLV 

model, while there would be a decrease in the use of public transport, -5.7% for the NN model 

and -3.6% for the ICLV; walking still produces contradictory results, since the NN says the 

probability would increase by 2.6% and the ICLV that it would decrease by -4.5% instead; 
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• Nr. of cars: in the case where the number of cars available in each household would increase 

by one unit, the use of the car alternative would in turn increase by 2.6% according to the NN, 

and by 3.5% for the ICLV model, while at the same time the probability of choosing public 

transport for work and study related trips would decrease by -3.5% (NN) or 2.4% (ICLV); 

even in this last case, the results for walking are not optimal, with the NN predicting an 

increase of 1.0% and the ICLV says the probability would instead decrease by -1.6%. 

We can safely state that the performance of our neural network is very close to the one of the 

corresponding ICLV model, at least for the elasticities obtained for the car and PT alternatives. In 

fact, the pseudo-elasticities for the walking alternative seem to be representing different phenomena, 

which could be related to the different modelling frameworks used in the two specifications, which 

could theoretically lead to latent variables representing different aspects. These results are in line with 

those we got for Model 1 (Paragraph 4.5.1), albeit the values being relatively lower for Model 3. This 

is probably related to the fact that this last model also includes a second latent variable (LV2), meaning 

the latent effects they represent could have been split and distributed between the two latent constructs. 

Table 27 finally shows the values of the pseudo-elasticities we obtained by inducing variations in the 

other latent variable included in Model 3, LV2 (Intentions). We have again compared the values 

obtained with our NN model and those given by the ICLV to analyse the changes in the choice 

probabilities of the three alternatives. We will now consider them based on each socio-economic 

variable which was appropriately modified. 

• Gender = male: supposing that all the individuals in the sample were female, we would see a 

slight increase in the use of walking, ~0.2% for both models, but the results for the other 

alternatives are contradictory; as a matter of fact, the NN says the use of cars would increase 

by 0.3% and the ICLV says it would decrease instead by -1.2%; on the other hand, the NN 

says the use of public transport would decrease by 0.4%, against a predicted increase of 1.0% 

given by the ICLV model; 

• Presence of children: if the households included no children among their members, the models 

agree in the fact that there would be a very slight increase in the use of walking, 0.1% for the 

NN and 0.2% for the ICLV model; however the results for car look far from ideal, with NN 

predicting an increase of 0.2% and the ICLV model saying instead that the probability would 

decrease by -0.7%; similarly, for the PT alternative, the NN says there would be a decrease of 

-0.3%, and the ICLV predicts an increase of 0.6%; 
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• Owns a car: if no one in the sample owned a car, the NN says there would be an increase in 

the use of the car alternative (2.9%), which seems counterintuitive, while the ICLV model 

predicts a decrease of -16.1%, more in line with what an expected result; the models also 

disagree on the probability of choosing PT, with the NN predict a decrease (-4.6%) and the 

ICLV an increase (13.4%); the models however give similar results for walking, the NN 

predicts an increase of 1.8% and the ICLV model one of 2.4%; 

 

Table 27. Pseudo-elasticities for LV2 with Model 3 (LV1 + LV2) 

Variable Model Car PT Walking 

Gender = male 
NN 0.27% -0.42% 0.16% 

ICLV -1.20% 1.00% 0.17% 

Presence of children 
NN 0.17% -0.28% 0.11% 

ICLV -0.71% 0.55% 0.18% 

Owns a car 
NN 2.86% -4.61% 1.75% 

ICLV -16.13% 13.38% 2.37% 

Student 
NN -0.88% 1.29% -0.40% 

ICLV 2.78% -2.62% 0.23% 

House in Cagliari city 
NN -0.90% 1.68% -0.78% 

ICLV 3.28% -2.62% -0.69% 

Nr. of cars 
NN -1.00% 1.48% -0.48% 

ICLV 2.81% -2.36% -0.36% 

 

• Student: in the case where everyone completed their studies already, the NN foresees a 

decrease of -0.9% in the probability of choosing the alternative car, while the ICLV predicts 

an increase of 2.8%; regarding public transport, the NN says there would be an increase of 

1.3% and instead the ICLV model shows a decrease of -2.6%; for the alternative walking, the 

models still contradict each other, since the NN predicts a decrease in its use (-0.4%) and the 

ICLV model an increase of 0.2%; 

• House in Cagliari city: if everyone lived outside of the city of Cagliari, the NN says we would 

notice a decrease in the use of cars, while the ICLV says there would be a 3.3% increase 

instead, and similarly the NN predicts an increase of 1.7% in the probability of using public 

transport while the ICLV model a decrease of -2.6%; although, the models give similar results 

for walking, with -0.8% for the NN and -0.7% for the ICLV; 

• Nr. of cars: in the case where every household acquired an additional car, the NN predicts a 

decrease of -1.0% for the probability of choosing the car alternative, while the ICLV says 

there would be an increase of 2.8%; for PT, the NN predicts an increase of 1.5% and the ICLV 

model a decrease of -2.4%; and finally, for walking, the models agree and both says there 
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would be a decrease in the probability of choosing this mode (-0.5% for NN and -0.4% for the 

ICLV model). 

These results are similar to those we obtained for Model 2 (Paragraph 4.5.2), even if the values are 

relatively lower in this case, again probably because the presence of LV1 in the same model 

redistributed the latent effects among the two factors. However, a major change when compared to 

Model 2 is the fact that the results for the alternative car have switched their signs compared to Model 

2, further increasing the differences between the NN and the ICLV model. 

Everything considered, the results we obtained for Model 3, by considering both latent variables (PBC 

and Intentions) are quite disappointing. While the pseudo-elasticities the NN predicted for the latent 

variable PBC were similar to those we obtained for Model 1, both with the NN and the ICLV model, 

and the ICLV model which included both latent variables, the pseudo-elasticities we obtained by 

inducing changes in LV2 (Intentions) were different both from those of Model 2 (NN and ICLV both) 

and those of the ICLV model with LV1 and LV2. Specifically, the fact that many elasticities changed 

sign, especially compared to the ICLV model (which we should consider as a solid reference), does 

not allow to state that this model is performing as expected, and thus the smaller values compared to 

the one we got with the ICLV are only a secondary issue in this case. 

4.6 Discussion  

Globally, none of the NN models presented significant issues when predicting the direct- and cross-

elasticities connected to the level of service variables, meaning they are working correctly at least in 

the choice modelling module of the whole model. However, with the analysis of the pseudo-

elasticities, the best results we got with a NN model were the ones from Model 1, if we accept the fact 

that some of the values relative to the alternative walking contradicted those given by the homologue 

ICLV (although some of them are so close to zero we could consider them negligible). Model 2 results 

were too different from those of the ICLV model built with LV2, and just the pseudo-elasticities linked 

to the alternative walking gave reasonable results. Finally, while Model 3 worked similarly to Model 

1 when predicting the pseudo-elasticities connected to the first latent variable (PBC), when it came to 

the other one (Intentions) the results were even worse than the ones we obtained with Model 2. These 

results could be likely connected to the latent variables we chose to consider, or perhaps even to the 

fact that we skipped the exploratory factor analysis and used the pre-assumption that the psycho-

attitudinal indicators where already correlated based on the behavioural theory on which their 

definition was based. 
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We will try to interpret some of the results of Model 1 (we will not consider the other two since they 

are considerably worst) from a phenomenological point of view, trying to highlight the benefits or 

disadvantages deriving from using a NN rather than a ICLV model, using Table 22 as a reference. 

Keep in mind that all results are relative to the indirect effects that the socio-economic variable 

achieves through the latent factor and should be independent from the direct effect same variable. 

• Age: both models say that, based on PBC, older people would use the car more than younger 

ones, and we would just slightly underestimate the effects by using the NN; this effect is 

amplified for public transport, since the NN would predict a more (+0.5%) younger people to 

use it, compared to ICLV; according to the NN, older people would walk more, while the 

ICLV predicts the opposite, and this means that a policy aimed at a specific age-range, based 

on the results of the NN, could lead to the opposite outcome for the share of individuals 

traveling on foot, if the ICLV is correct instead;  

• Graduate: both models agree in the fact that people that achieved an higher education use the 

car less than those who did not, and they give basically the same values; public transport is 

used more by people with lower level of education, but the difference predicted by the NN is 

higher (+0.9%) than the one shown by the ICLV; finally, more educated people walk more 

according to the NN, and less for the ICLV; if the outcomes of the ICLV model were correct, 

a policy based on the predictions of the NN would consider an overestimate for public 

transport, and the opposite effect for walking; 

• Owns a car: car ownership has an obvious influence on car use, and this is probably why both 

models say that people who do not own a car also use the car less compared to those who do, 

and they return basically the same value; at the same time, if those same people need to travel, 

they would probably use public transport (especially for medium and long distances), and 

again both models correctly interpret the phenomenon, although the NN says that people who 

do not own a car use public transport 18.7% more compared to those that do own one, while 

the ICLV says this difference is much lower (11.7%, that is 7.0% less); the NN says people 

who do not own a car walk less than those who do, and the ICLV predicted instead the 

opposite; again, if ICLV results were to be true, a policy aimed at reducing the number of cars 

to shift more users towards sustainable transportation modes, would severely overestimate the 

influence of PBC on the use of public transport, and would be completely wrong with regards 

to the effects on walking; 

• House in Cagliari city: the NN predicts that people not living in the city of Cagliari use the 

car less than those that do, which is in fact reasonable considering the destination of most 
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intercepted trips were indeed in the city itself; however, the difference between the two 

population groups, according to the NN is slightly more than half (-4.7%) of the value 

predicted by the ICLV model; at the same time people living further away would use less 

public transport, most of times because of its compatibility with their time constraints, and in 

this case the difference is higher for the NN (+4.3%) compared to the ICLV model; again, for 

walking the NN says living outside the city would increase the trips on foot while the ICLV 

models predicts a decrease, and the difference here is striking since the variation (in a sense 

or the other) would be of almost 5% for both models; this last results from the NN seems not 

plausible, since longer distances would seem to discourage walking even more, thus making 

the predictions of the ICLV seem more realistic; policies based on the PBC effects on choice 

behaviour, even omitting the possible inaccuracies for the use of car and public transport, 

would be very problematic when any prediction relative to walking is involved; 

• Nr. of cars: like the effects of car ownership, the number of car available in the household has 

strong effects on the mode choice; as a matter of fact, people who can have access to more 

cars tend to travel by car more compared to those who have less, and the NN and the ICLV 

produce similar outcomes, even though the NN predicts a lower effect (-1.1%); at the same 

time, with easier access to cars, less people would use public transport, and in this case the 

NN showed that the difference between those who have more cars available and those who 

have less is 2.2% higher compared to the results of the ICLV; once again, results for walking 

are basically opposite, with the NN saying more cars equals to more trips by walking, and the 

ICLV says they would be less; policy aimed at reducing the number. 
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5  CONCLUSIONS 

In this thesis we tried to highlight the benefits of using machine learning models as an alternative to 

discrete choice models when studying choice behaviour in transportation settings. We did so by 

constructing and employing different neural network architectures and comparing their results to 

equivalent discrete choice models. 

At first, an up-to-date literature review of the applications of ML to choice modelling in transportation 

was used to identify some critical issue which could be addressed. This review highlighted how only 

a relatively small number of studies tried obtained interpretable economic information from ML 

models, but also how even less consider psycho-attitudinal indicators when building latent variables 

to represent psychological factors influencing individuals’ choice. 

In Chapter 3 we presented a method for obtaining the value of travel time valid for both DCs and ML 

models. This method was necessary since VTT is considered one of the most important indices that 

can be inferred, and, so far, very few researchers studied this argument in relation to ML methods. We 

compared the results of a neural network, specifically designed to consider separately the utilities of 

the different choice alternatives, with those of a multinomial logit and a mixed logit. 

The first results, obtained with the Swissmetro dataset, showed very close results when comparing 

direct and cross-elasticities with respect to the level of services variables of the alternatives. We then 

compared the VTTs we obtained for each alternative: for the alternative train, the VTT obtained 

through the neural network (30.19 CHF/h) is almost the same of the one resulting from the MNL 

model (30.78 CHF/h), while the one from the MXL model (86.06 CHF/h) is quite different from both. 

A similar pattern was presented for the alternative Swissmetro, even if in this case the value obtained 

with the MXL (50.12 CHF/h), is closer to those of NN (40.37 CHF/h) and MNL (40.87 CHF/h). 

Finally, for the alternative car, the VTT obtained by using the NN (114.43 CHF/h) was valued between 

the one of MNL (90.61 CHF/h) and the one of MXL (134.46 CHF/h). 

When analysing the results obtained with the Svolta Cagliari dataset, once again no discrepancies 

were found in the elasticities for the level of service variables. The VTTs for the alternative car are 

very similar among all the models, the NN predicted the lowest overall value (14.50 €/h), followed by 

the one from MNL (16.92 €/h), with MXL providing the highest value (19.67 €/h). For the alternative 

PT the VTT shows values even closer to each other, even though here the lowest value was the one 
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obtained with the MXL (7.33 €/h), followed by the one from the NN (7.69 €/h) and finally the highest 

was produced by the MNL (8.25 €/h). 

Considering these results, the neural network returned similar values to those of a multinomial logit, 

while in general there were more noticeable differences with the mixed logit results. Since there were 

also no problems in the elasticities, and in particular their signs were consistent with the ones 

suggested by the microeconomic theory, we can confidently state that this NN model is able to mimic 

the behaviour of a MNL model and is thus a valid alternative to discrete choice models. These results 

are also confirmed by the fact that we obtained consistent results with two very different datasets, 

from different territorial contexts (Switzerland and Italy), different years (1998 and 2019), and 

different survey methods (stated preferences and revealed preferences). Since these results prove that 

econometric indicators can be safely extracted from the outputs of a NN models, a carefully 

constructed neural network model could be used in the study of choice model whenever researchers 

might feel uncertain about the definition of the utilities for the alternatives and would prefer having 

the model itself choosing how to combine the variables in the data. 

In Chapter 4, we proposed an alternative ML method, as an alternative to DCMs, for the specification 

and estimation of choice models with latent variables built around psycho-attitudinal indicators. Since 

several studies in social sciences have shown that choice behaviour is influenced by psychological 

factors, and only few studies on ML models have included latent variables, among which only a few 

consider psycho-attitudinal variables obtained with appropriate surveys, we felt the need to improve 

the knowledge in this field of study. We compared the results of a novel architecture of neural network 

which follows the structure of an integrate choice latent variables (ICLV) model with those of a 

classical ICVL model. 

Three different models were estimated, by considering different latent variables: the first one 

(Model 1) only considered a latent variable relative to perceived behavioural control (PBC) of using 

sustainable alternatives; the second one (Model 2) only considered the latent variable relative to the 

intentions of using sustainable modes; the last one (Model 3) considered both latent variables. All 

results were estimated using the Svolta Cagliari dataset which we already used in the VTT estimation, 

only this time we also included some psycho-attitudinal indicators which were not needed in the 

previous study. 

For Model 1, the neural network performs comparably to the ICLV, with the exception for the walking 

alternative, for which the NN seem to be interpreting the inverse phenomenon, even if some of the 

interest values are very close to zero, thus the contradiction could be due to a fluctuation of the values. 
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In Model 2, we have similar results to the ICLV model when observing the pseudo-elasticities relative 

to walking, but the same is not true for neither car nor public transport. For the first one, most results 

of the NN are much lower in value than those of the ICLV, and for the second alternative they also 

show different signs, thus the two models are picturing very different phenomena. Finally, with Model 

3, we obtained values similar to those of Model 1 when considering the PBC latent variable, albeit the 

values being relatively lower (probably for the presence of interactions with the other latent variable), 

but for the second latent variable (Int) we got worse results than the ones of Model 2, since the results 

for the alternative car switched their signs, further increasing the differences between the NN and the 

ICLV model. 

Unlike what happens when we analyse elasticities related to level of service variables, for which the 

microeconomic theory can help us at least recognise when a sign is incorrect, there are no such 

theoretical bases to rely on. We cannot thus affirm which of the two models is closer to the real 

phenomenon, and we can only assume that the differences between the results of the two approaches 

could be connected to the fact that, even though both models were constructed following the same 

logic, the latent variables could end up representing different aspects and should be interpreted 

differently, making it difficult to compare them. 

If one was to use the NN results of the best of the 3 models (Model 1) as a base for policies based on 

perceived behavioural control, while for the most part the outcomes would be in agreement with the 

ICLV model, some of them would see different impacts than expected. This is especially true for 

walking, since often NN and ICLV disagree on the direction of the change when a socio-economic 

variable value is altered. For example, a striking result is the one predicted by the NN model for the 

effects of House in Cagliari city, since the NN predicts that people living outside the city have a higher 

probability to actively commute than those that do, which seems not plausible, since most destination 

of the trips are in the city of Cagliari, and longer distances should discourage walking even more. 

However, the fact that the NN model and the ICLV model produced different results, could also be 

interpreted as a positive outcome of the study, if used correctly. As a matter of fact, this issue could 

lead an analyst to reflect on the advantages of using such different modelling frameworks, instead of 

blindly trusting one of them (e.g., only the ICLV). In fact, if we built only one model and were to 

follow its results to build a transport policy, in the case when these results were unreliable, we would 

be obtaining unexpected results, potentially wasting considerable amounts of public resources. Using 

different models instead, would highlight those aspects for which the results are consistent among the 

different framework results, thus reinforcing the validity of transport policies based on them. 
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If we were to limit our decisions to the best model we identified, i.e., Model 1 which uses only the 

PBC latent variable, and if we also considered only those variables which the NN and the ICLV model 

agreed upon, we could probably define some solid policy implications. Keeping in mind that the 

results obtained represent the latent effects of the socio-economic characteristics, rather than their 

direct effects on the choice probabilities, we could influence the Perceived Behavioural Control 

towards more sustainable means of transport by intervening on those aspects which seemed to have 

the most significant effects in term of elasticities.  

Unsurprisingly, some of the highest elasticities were obtained for variables connected to car 

availability (both Owns a car and Nr. of cars). An intervention aimed at reducing the number of cars 

available in each household would significantly shift travel behaviour from car-use towards public 

transport, but at the same time these results are hardly achievable by simply implementing transport 

policies, even if these include hard and structural measures, some even at a national level (e.g., 

reducing the number parking spaces in the city, implementing congestion charges, removing financial 

incentives for the purchase of new vehicles, increasing taxation on vehicle ownership). 

After these variables, the second most prominent effect was given by the variable House in Cagliari 

city, which is could also be seen as a proxy for the distance between home and workplace. In this case, 

policies could be more easily implemented on two different fronts. First, public transport services 

could be heavily improved to bring their level of service closer to the one perceived by car users, 

mainly by increasing its frequency and capillarity. On the other hand, we could think of reducing the 

distance of the workspaces, whenever possible, by instituting satellite offices in the several 

municipalities surrounding the cities, or by incentivizing working from home, on a voluntary basis for 

the workers, at least for a few days every week. This would severely reduce the use of cars, possibly 

in favour of active modes like walking and cycling. 

Another variable which produced higher values for the elasticities compared to the others is Student, 

which could be also linked to the students’ younger age and lower financial resources. In this case, 

policies should act more on an educational level, and should be implemented in collaboration with 

high schools and universities. Since students are at a point in their lives where they still do not rely 

too much on the use of a car for their travels, it would be easier to convince them that it is possible to 

continue to use more sustainable alternatives even further in their lives. Of course, this would only be 

possible in an environment where the PT system is highly efficient, and if this is not true, these policies 

would need to be also accompanied by policies aimed at improving PT in a short time period. 
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While the results presented in this thesis are promising, they are still sub-optimal, especially for the 

latent variable NN models, so we believe there is room for improvement in future research. First of 

all, new and possibly better results could be obtained by using different datasets. While this is quite 

easy for the VTT estimation models, it is more difficult for the latent variable aspect, since datasets 

containing psycho-attitudinal variables are harder to come by, considering surveys containing such 

questions are rarer since they tend to be more expensive. Another possible research outlet would be 

that of modifying the structure of the NN models, to either resemble other hybrid choice models or to 

be independent completely and define new modelling frameworks altogether.  

A limitation of this study could also be identified in the way we decided to choose which variables to 

include in the models, which was based on the results of a MNL for the VTT study and an ICLV for 

the psycho-attitudinal one. While this allowed to observe optimal results for the econometrics models, 

it could have led to sub-optimal results for the neural networks. A future research outlet could see 

different ways of selecting the variables, one of which could be the choice to not choose at all, using 

all the available non-correlated attributes, and disregarding the statistical significance of the 

parameters obtained from the logit models. Another possibility would be that of using an independent 

method to identify the most important variables, for example using a decision tree or a random forest 

algorithm to obtain the feature importance associated with each variable. 

Lastly, we could also improve the selection of the hyperparameters of the neural network, which we 

decided to limit to a relative low number of values in order to contain the amount of time needed for 

the computation. This aspect could be improved by conducting a larger number of experiments, by 

both expanding the maximum range of values and considering smaller increments to obtain a finer 

distribution, but also by increasing the total number of tests for each hyperparameter. 
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Appendix A  

Descriva cortesemente lo spostamento, con destinazione il proprio posto di lavoro/studio, che effettua 

ABITUALMENTE in un giorno feriale lavorativo 

 

Indichi il Comune e l'indirizzo (via e numero civico) di ORIGINE del suo spostamento 

 

Indichi il Comune e l'indirizzo (via e numero civico) della DESTINAZIONE dello spostamento 

 

Indichi, mediamente, la frequenza con la quale si reca presso il proprio luogo di lavoro/studio 

• Raramente: qualche volta all'anno (indichi nel riquadro sottostante il numero di volte) 

• Talvolta: poche volte al mese (indichi nel riquadro sottostante il numero di volte) 

• Spesso: più volte alla settimana (indichi nel riquadro sottostante il numero di volte) 

 

Indichi in quale fascia oraria inizia lo spostamento 

• 5:30-7:30 

• 7:30-8:30 

• 8:30-9:30 

• 9:30-12:30 

• 12:30-14:30 

• 14:30-17:00 

• 17:00-19:30 

• 19:30-22:00 

 

Con quale mezzo di trasporto arriva presso il proprio luogo di lavoro/studio? 

• Auto, come conducente 

• Auto, come passeggero 

• Trasporto pubblico (autobus, metro, treno, auto + trasporto pubblico, etc.) 

• Moto / ciclomotore 

• Bicicletta / Bike sharing (Cabubi) 

• Piedi 

• Car sharing (Playcar) / Car pooling (condivisione del veicolo con colleghi) 

• Altro 

 

Indichi IN ORDINE DI PREFERENZA le tre modalità di trasporto con le quali effettuerebbe lo spostamento 

con motivazione lavoro/studio. 

• Automobile privata 

• Moto / ciclomotore 

• Trasporto pubblico 

• Mobilità attiva (piedi o bicicletta) 

• Car sharing / Car pooling 

• Auto + trasporto pubblico 

 

Indichi il grado di accordo con le seguenti affermazioni 

(1 = Fortemente in disaccordo 2 = Abbastanza in disaccordo 3 = Né in disaccordo né d’accordo  

4 = Abbastanza d’accordo 5 = Fortemente d'accordo) 

 

 1 2 3 4 5 

La mia scelta di utilizzare il trasporto sostenibile è consapevolmente e 

INTENZIONALMENTE motivata da un desiderio specifico di far del bene 

all'ambiente. 

     

La mia scelta di utilizzare il trasporto sostenibile è INTENZIONALMENTE 

motivata dal fatto che è più conveniente (tempi e costi). 

     

La mia scelta di utilizzare il trasporto sostenibile è INTENZIONALMENTE 

motivata dal fatto che mi consente di fare attività fisica. 

     

La mia scelta di utilizzare il trasporto sostenibile è OBBLIGATA dal fatto che 

non ho alternative. 
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Quali mezzi NON avrebbe potuto utilizzare per effettuare questo spostamento? 

• Auto, come conducente 

• Auto, come passeggero 

• Trasporto pubblico (autobus, metro, treno, auto + trasporto pubblico, etc.) 

• Moto / ciclomotore 

• Bicicletta / Bike sharing (Cabubi) 

• Piedi 

• Car sharing (Playcar) / Car pooling (condivisione del veicolo con colleghi) 

 

Effettua ABITUALMENTE fermate durante lo spostamento? 

• Sì 

• No 

 

Indichi il luogo (Comune e via) dove avviene la fermata, o i luoghi in caso di più fermate. 

 

Sono disponibili, dentro il luogo di lavoro/studio, parcheggi per le biciclette? 

• Sì 

• No 

 

Dove parcheggia l'automobile per recarsi al luogo di lavoro/studio? 

• Parcheggio interno riservato ai dipendenti 

• Parcheggio gratuito su strada per automobili 

• Parcheggio a pagamento su strada/struttura per automobili 

• Parcheggio per moto/ciclomotori 

• Garage privato 

 

Che mezzo utilizza, alla fine dell'orario di lavoro/studio, per andare via? 

• Lo stesso mezzo usato per l'andata 

• Un mezzo diverso da quello usato per l'andata (specificare) 

 

Dove si reca dopo aver lasciato il proprio luogo di lavoro/studio? 

• Casa 

• Altro luogo (indichi Comune e via) 

 

 

 

Descriva l'autovettura utilizzata per il suo spostamento 

Indichi il tipo di auto utilizzata per lo spostamento descritto 

• City car (es. Fiat 500, Smart) 

• Utilitaria (es. Fiat Punto) 

• Compatta (es. VW Golf, Opel Astra) 

• Station Wagon (es. Ford Focus, Fiat Tipo) 

• Berlina sportiva (es. Alfa Romeo Giulia, Mercedes classe C) 

• SUV 

• Van 

 

Indichi il tipo di alimentazione dell'auto 

• Benzina 

• Diesel 

• Gpl 

• Ibrida 

• Elettrica 

 

Indichi quanti km percorre mediamente all'anno in auto 
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Descriva le caratteristiche dello spostamento effettuato con il trasporto pubblico 

Indichi il mezzo o la combinazione di mezzi utilizzati per raggiungere il luogo di lavoro/studio 

• Autobus CTM 

• Autobus extraurbano (CTM o ARST) 

• Metrocagliari 

• Treno 

• Combinato bus + bus 

• Combinato metro + bus 

• Combinato treno + bus 

• Altra combinazione 

 

Come arriva alla fermata di SALITA del mezzo? 

• Piedi 

• Bicicletta 

• Auto come conducente 

• Auto come passeggero 

• Altro 

 

Come arriva dalla fermata di DISCESA al luogo di lavoro/studio? 

• Piedi 

• Bicicletta 

• Auto come passeggero 

• Altro 

 

Indichi la linea di trasporto pubblico che utilizza 

 

Indichi il tipo di biglietto che utilizza 

• CTM - Biglietto ordinario a tempo (90 min) 

• CTM - Biglietto multiplo da 12 corse 

• CTM - Biglietto integrato a tempo (2 ore) 

• CTM - Biglietto integrato giornaliero (24 ore) 

• CTM - Carta integrata settimanale 

• CTM - Abbonamento mensile 

• CTM - Abbonamento annuale 

• ARST - Corsa semplice 

• ARST - Biglietto giornaliero 

• ARST - Carnet 12 corse 

• ARST - Abbonamento settimanale 

• ARST - Abbonamento mensile 

• ARST - Abbonamento annuale 

• Integrato CTM + ARST + Baire 

• Integrato CTM + Trenitalia 

• Altro 
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Nelle prossime domande le verrà chiesta la sua opinione (in termini di livello di accordo o disaccordo su 

determinate affermazioni) riguardo le modalità di trasporto sostenibile. Con trasporto sostenibile si intendono 

quelle modalità di spostamento alternative all'utilizzo dell'automobile privata, come: 

▪ Piedi; 

▪ Bicicletta / Bike sharing (Cabubi); 

▪ Trasporto pubblico (autobus, tram, treno, auto + trasporto pubblico, etc.); 

▪ Car sharing (Playcar) / Car pooling (condivisione del veicolo con colleghi). 

 

Le domande si riferiscono allo spostamento ABITUALE casa - lavoro / casa - studio. 

Indichi il grado di accordo con le seguenti affermazioni  

(1 = Fortemente in disaccordo 2 = Abbastanza in disaccordo 3 = Né in disaccordo né d’accordo  

4 = Abbastanza d’accordo 5 = Fortemente d'accordo) 

 

 1 2 3 4 5 

La maggior parte delle persone che conosco pensano che dovrei utilizzare i 

mezzi di trasporto sostenibile anziché l'auto privata. 

     

La maggior parte delle persone che conosco utilizzano i mezzi di trasporto 

sostenibile invece dell'auto privata. 

     

Mi sento moralmente obbligato ad utilizzare i mezzi di trasporto sostenibile 

indipendentemente da quello che fanno gli altri. 

     

La mia scelta di utilizzare il trasporto sostenibile è OBBLIGATA dal fatto che 

non ho alternative. 

     

Se nelle prossime due settimane UTILIZZERO’ l'auto privata e NON 

UTILIZZERO’ il trasporto sostenibile, penso che potrei sentirmi 

COLPEVOLE. 

     

Se nelle prossime due settimane UTILIZZERO’ il trasporto sostenibile e NON 

UTILIZZERO’ l'auto privata, penso che potrei sentirmi ORGOGLIOSO. 

     

Se nelle prossime due settimane UTILIZZERO’ l'auto privata e NON 

UTILIZZERO’ il trasporto sostenibile, penso che potrei sentirmi 

INDIFFERENTE. 

     

Mi sento personalmente responsabile dei PROBLEMI AMBIENTALI che 

possono derivare dalla scelta del mio modo di trasporto. 

     

Mi sento personalmente responsabile dei problemi legati al TRAFFICO, 

all'OCCUPAZIONE DI SPAZIO PER LA SOSTA, all'INCIDENTALITA' 

STRADALE presenti nella mia città. 

     

Sono consapevole che l'utilizzo dell'automobile produce danni all'ambiente e 

alla salute delle persone. 

     

Sono consapevole che posso contribuire PERSONALMENTE (utilizzando 

meno l'auto per i miei spostamenti) a migliorare l'ambiente. 

     

  

  

Pensando alla città di Cagliari, indichi il grado di accordo con le seguenti affermazioni  

(1 = Fortemente in disaccordo 2 = Abbastanza in disaccordo 3 = Né in disaccordo né d’accordo  

4 = Abbastanza d’accordo 5 = Fortemente d'accordo) 

 

 1 2 3 4 5 

Questa città è parte di me e quindi la rispetto.      

Mi sento a casa in questa città.        

Mi sento completamente parte di questa città e quindi devo contribuire a 

renderla migliore. 

     

  

    

Indichi con quale frequenza ha utilizzato i seguenti mezzi di trasporto per motivazione DIVERSA dallo 

spostamento casa-lavoro/studio     

 

 Mai Qualche 

volta all'anno 

1 - 3 volte al 

mese 

1-4 volte a 

settimana 

5 o più volte 

a settimana 

Piedi      

Bici      

Trasporto pubblico      

Automobile      
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Indichi il grado di accordo con le seguenti affermazioni  

(1 = Fortemente in disaccordo 2 = Abbastanza in disaccordo 3 = Né in disaccordo né d’accordo  

4 = Abbastanza d’accordo 5 = Fortemente d'accordo) 

  

 1 2 3 4 5 

Durante le prossime due settimane intendo utilizzare mezzi di trasporto 

sostenibile al posto dell'auto privata (da solo/a). 

     

Nelle prossime due settimane ho intenzione di utilizzare l’auto privata.      

Non mi interessa utilizzare mezzi di trasporto sostenibile nelle prossime due 

settimane. 

     

Sarebbe facile per me utilizzare il trasporto sostenibile.      

Sono certo di poter utilizzare il trasporto sostenibile nel corso della prossima 

settimana. 

     

Utilizzare il trasporto sostenibile è per me impossibile.      

Per me utilizzare i mezzi di trasporto sostenibile anziché l'auto privata è 

UTILE. 

     

Per me utilizzare i mezzi di trasporto sostenibile anziché l'auto privata è (o 

sarebbe) PIACEVOLE. 

     

Per me utilizzare i mezzi di trasporto sostenibile anziché l'auto privata è 

GIUSTO. 

     

Sarebbe facile per me utilizzare il trasporto sostenibile.      

Sono certo di poter utilizzare il trasporto sostenibile nel corso della prossima 

settimana. 

     

Utilizzare il trasporto sostenibile è per me impossibile.      

     

 

 

INFORMAZIONI PERSONALI 

Indichi la sua età 

 

Genere 

• Maschio 

• Femmina 

 

Qual è la sua occupazione attuale? 

• Studente universitario 

• Specializzando/Dottorando/Assegnista/Borsista 

• Lavoratore dipendente 

• Lavoratore autonomo 

• Casalinga 

• Pensionato 

• Disoccupato 

• Altro 

 

Qual è il suo titolo di studio? 

• Licenza elementare 

• Diploma di scuola media inferiore 

• Diploma di scuola media superiore 

• Specializzazione professionale 

• Titolo Universitario (1-2 livello) 

• Titolo Post-laurea (dottorato, specializzazione, etc.) 

 

Da quante persone è composto il suo nucleo familiare, incluso lei? 

 

Ha figli che vivono nel suo nucleo familiare? 

• No 

• Sì (specifichi il numero) 

 

Indichi il numero di componenti del suo nucleo familiare di età inferiore ai 10 anni 
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Ha la patente? 

• Sì 

• No 

 

Ha una bicicletta di sua proprietà o a sua disposizione (ad es. bici di famiglia) per i suoi spostamenti? 

• Sì 

• No 

 

Ha un'auto di sua proprietà o a sua disposizione (ad es. auto di famiglia) per i suoi spostamenti? 

• Sì 

• No 

 

In totale, di quante auto disponete in famiglia? 

• 0 

• 1 

• 2 

• 3 

• 4 

• 5 o più 

 

Potrebbe indicare in quale fascia di reddito mensile netto INDIVIDUALE si riconosce? 

• Non percepisco reddito 

• Inferiore a 500 € 

• Tra 500 e 1000 € 

• Tra 1000 e 1500 € 

• Tra 1500 e 2000 € 

• Tra 2000 e 3000 € 

• Maggiore di 3000 € 

 

Pur non ricevendo un reddito, indichi qual è il budget mensile (€) di cui dispone per sé: 

 

Quale sistema operativo nel suo smartphone possiede? 

• Android (Samsung, HTC, Huawei, Sony, ...) 

• iOS (iPhone) 

• Windows Phone 

• Altro 

 

Come è venuto a conoscenza del presente questionario? 

• Cartolina dell'indagine 

• Poster dell'indagine 

• Sito web e pagina Facebook dell'indagine 

• Invito via e-mail 

• Siti web istituzionali 

• Social media (Quotidiani, TG, etc.) 

• Passaparola 

• Altro (specifichi nel riquadro sottostante): 
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Appendix B  

  

 

  
Swissmetro – nodes 

 

  

 

  
Swissmetro – layers 
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Swissmetro – epochs 

 

 

 

  

 

 

Svolta Cagliari - nodes 
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Svolta Cagliari - layers 

 

  

 

 

Svolta Cagliari - epochs 
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Appendix C   

 
 

 
 

 

 
 

 
 

  
NN for ICLV – nodes (choice model) 
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NN for ICLV – nodes (latent model) 
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NN for ICLV – epochs 

 

 


