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EFFICIENT INFORMATION DISSEMINATION IN VEHICULAR NETWORKS

WITH PRIVACY PROTECTION

By Xiaolu Cheng

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Wei Cheng, Ph.D.,

Assistant Professor, Department of Computer Science

Vehicular ad hoc network (VANET) is a key component of Intelligent Trans-

portation System (ITS). In VANETs, vehicles and roadside units exchange informa-

tion for the purpose of navigation, safe driving, entertainment and so on. The high

mobility of vehicles makes efficient and private communications in VANETs a big

challenge.

Improving the performance of information dissemination while protecting data

privacy is studied in this research. Meet-Table based information dissemination

method is first proposed, so as to improve the information dissemination, and to

efficiently distribute information via utilizing roadside units, Cloud Computing, and

Fog Computing. A clustering algorithm is proposed as well, to improve the stability

for self-organized cluster-based dissemination in VANETs on highways.

Then, fuzzy neural networks are used to improve the stability and security of

routing protocols, AODV, and design a novel protocol, GSS-AODV. To further protect

data privacy, a multi-antenna based information protection approach for vehicle-to-

ix



vehicle(V2V) communications is also proposed.
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CHAPTER 1

INTRODUCTION

1.1 Background

Intelligent Transportation System (ITS) takes a vital part in Smart Cities. ITS

integrates information technology, data communication technology, electronic sens-

ing technology, electronic control technology, computer processing technology, and

some other advanced technology together into an intelligent transport management

system[1].

ITS can be applied to not only vehicle systems but also railway systems, air trans-

port system sand water transport systems[1]. ITS processes real-time information.

Communication technology is an essential component of ITS.

In vehicular networks, there are two types of communications[2]. Vehicular net-

works enable both vehicle-to-vehicle (V2V) communications and vehicle-to-infrastructure

(V2I) communications. In VANETs, vehicles and the infrastructures, such as Road-

side Units (RSU) and application servers, exchange information for navigation, safe

driving, entertainment and so on. Vehicular networks attract researchers from differ-

ent fields, and massive research efforts have been made.

1.2 Motivation

After reading about three hundreds of papers in different fields of vehicular net-

works, such as application, protocol, architecture, and simulation, I would like to

focus on the problems of data dissemination and network secure, which are the most

fundamental and important parts in vehicular networks. I aim to improve the per-
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formance of data dissemination while protecting information privacy.

Among the data should be sent in vehicular networks, there are many important

messages, such as CRL (Certificate Revocation List) and blacklist information. Unlike

other data such as movies, these messages are very important to a particular group

of vehicles which may encounter the vehicle relevant to the message. A vehicle is not

able to know whom it will pass until they encounter. It may be too late if we wait for

a vehicle requests for the message. If we use an epidemic dissemination method, the

efficiency will be very low. On the other hand, the large quantity and high mobility

of vehicles make the system very difficult to record and analyze the trajectories of

them. To transmit these messages accurately and efficiently to the certain vehicles,

we propose a series of RSU assistant information dissemination schemes.

Currently, communications in VANETs can via both Dedicated Short Range

Communication (DSRC) and mobile cellular networks. To make use of existing mo-

bile cellular networks for data transmissions, many methods are proposed to manage

VANETs. However, if VANETs are fully managed by infrastructures, low efficiency

will be a big issue, while, fully decentralized VANETs must create a lot of overhead.

Grouping the vehicles into clusters and organizing the network by clusters is one

of the most universal and most efficacious ways to solve this problem. Since the

high mobility of vehicles makes VANETs different from other mobile ad hoc networks

(MANETs), the previous cluster-based methods for MANETs may have trouble orga-

nizing VANETs. To achieve the goals of high-speed data transmissions and decreasing

overhead, the clusters should be stable. Therefore, we propose a center-based clus-

tering algorithm to help self-organized VANETs forming stable clusters and decrease

the status change frequency of vehicles.

In networks, routing protocol decides which route the information should be sent

to. Proposing a stable routing algorithm with security policy is essential. We aim

2



to propose a routing protocol which is efficient, secure, and stable in unattended,

harsh environments. Ad hoc On-Demand Distance Vector (AODV) Routing, as a

routing protocol for wireless ad hoc networks, is widely used in VANETs. The original

AODV Routing protocol assumes all nodes are not malicious, that is impractical

for real VANETs. Therefore, we propose a secure and stable AODV named GSS-

AODV, which uses a fuzzy neural network to compute the node information in routing

activities. GSS-AODV uses trust value of the node to evaluate the node security. This

evaluation balances node security with the network environment and node utilization

to prevent malicious node attacks.

To further improve security and protect the privacy of vehicles, we also try to

design a new kind of communication approach between vehicles. In the real world,

vehicles meet each other occasionally. Drivers and passengers may just want to have

a one-time conversation with the temporary neighbors. Users have the requirement

of protecting its privacy. We, therefore, propose an idea of a multi-antenna based

mechanism to protect a vehicle’s real ID during communications.

1.3 Proposed Research

In this dissertation, we introduce proposed mechanisms in Chapter 3 ∼ Chap-

ter 6 and summarize all tasks in Table 1.

In the first part, we focus on efficient information dissemination in Chapter 3

and Chapter 4 with two tasks.

In Task I.1, to improve information dissemination efficiency, we target on design-

ing the data forwarding mechanisms for a special type of data via utilizing roadside

units. Three Meet-Table based information dissemination methods are proposed to

efficiently distribute information to a specified group of vehicles. The proposed data

dissemination schemes are based on Meet-Table, Cloud Computing and Fog Comput-
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ing. We expect it to yield high accuracy and efficiency.

In Task I.2, to improve the performance of communications in vehicular net-

works, we propose a stable clustering algorithm in VANETs on highways. It can send

messages with high speed and low cost. The average frequency for vehicles to change

their cluster status is low. Both the average Cluster Head (CH) lifetime and average

Cluster Member (CM) lifetime are long. A novel cluster forming and Cluster Head

(CH) selecting approach is designed for communications in VANETs on the highway.

The Center-Based Stable Clustering Algorithm can help the vehicular networks to

utilize DSRC resource as well as cellular resource and save the cost of communica-

tions in the whole system. In another word, with the help of Center-Based Stable

Clustering Algorithm, the vehicular networks disseminates data efficiently.

In the second part, we focus on security and privacy protection in VANETs in

Chapter 5 and Chapter 6.

First, to improve security and stability of AODV in VANETs, we proposed a

GSS-AODV Routing protocol in Task II.1. In GSS-AODV, a fuzzy neural network

is employed to compute the node information in routing activities. The stability of

nodes is computed to evaluate links. The link stability and the number of hops are

considered in a balanced way, so a stable path with fewer hops is selected. GSS-AODV

uses trust value of the node to evaluate the node security. The evaluation balances

node security with network environment and node utilization to prevent malicious

node attacks. In routing maintenance processes, GSS-AODV uses genetic simulated

annealing algorithm to optimize the parameters of the fuzzy neural network in real

time to ensure that the calculated stability and trust value of node match the actual

situation.

An idea of the multi-antenna based information privacy protection approach to

protect vehicle privacy in V2V communications is presented in Task II.2. This ap-

4



Table 1. Topic Summary

Task Targeted Problems Proposed Approaches

I.1 Roadside Unit Assistant Based

Dissemination.

To a specified group of vehicles;

New evaluation parameters; With

the help of Meet-Table, Cloud

Computing and Fog Computing.

I.2 Self-Organized Cluster Based

Dissemination.

Center-based clustering algo-

rithm; Stable clusters; Low

overhead.

II.1 Improving Security and Stability

of AODV in VANETs.

A stable routing algorithm with

security policy; With the help of

fuzzy neural networks.

II.2 Privacy Protections in V2V Com-

munication

Without revealing IDs; Utilize

RSS-Ratio.

proach utilizes the dynamic physical level information, RSS-Ratio, as the address for

communications. A discussion on the feasibility of RSS-Ratio-based ID is presented

in this chapter.
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CHAPTER 2

RELATED WORK

This section is organized according to the corresponding related works for my pro-

posed research topics.

2.1 Efficient Information Dissemination in VANETs

As a hybrid network, VANETs consists of three communication domains: in-

vehicle domain, ad-hoc domain, and infrastructure domain[2]. The in-vehicle domain

consists of On Board Unit (OBU) and Application Unit(OA), and is represented with

a vehicle in this paper. The ad-hoc domain consists of vehicles. The infrastructure

domain consists of vehicles and RSUs.

VANETs support many transportation applications to improve safety, efficiency,

convenience, etc.[3]. The major goal of VANETs is to enhance the safety of trans-

portation. To achieve this goal, vehicular networks must collect, process, and dis-

seminate information, such as road conditions, position of the obstacles, speed limits,

and road accidents, etc[3]. With the development of vehicular networks, especially

when self-driving cars really run on the road, security of vehicular networks will be

the key for safe transportation.

Secure vehicular networks require ID authentication, message integrity, commu-

nication confidentiality, guaranteed availability, and access control[4]. To meet these

requirements, many solutions have been proposed. In these solutions, public key cryp-

tography, trust management, blacklist, etc. are employed. Therefore, secure vehicular

networks need to process messages about security in a secure and efficient way. As

6



elsewhere, certificates used in vehicular networks must be revoked in circumstances,

such as compromising or losing of a private key, illegal usage of a certificate, etc. [5].

CA (Certificate Authority) can issue CRL and store it on LDAP (Lightweight

Directory Access Protocol) server for retrieving[6]. A vehicle can also use OCSP (On-

line Certificate Status Protocol) to request CRL[7]. Instead of directly accessing the

Internet, vehicles in vehicular networks often access Internet through infrastructure

domain, so both to retrieve CRL from LDAP server and to request CRL by using

OCSP is not applicable.

Several broadcasting methods have been proposed for information dissemina-

tion, which can be used in vehicular networks. The authors of literature [8] propose

a epidemic information dissemination system. The authors of literature [9] apply this

epidemic information dissemination on vehicular networks and improve its efficiency.

In [10], authors try to propagate CRL in an epidemic fashion. An epidemic method

can distribute CRL to all vehicles with less number of RSUs and spend less time,

but it requires large storage and high communication capacity in vehicular networks.

Epidemic method is not economic. In [11], the authors improve and apply Dynam-

icity Aware Graph Relabelling Systems based on a tree-based topology management

structure to vehicular networks. The Vehicle Infrastructure Integration tries to dis-

tribute CRL to vehicles through RSU broadcasting[12]. This method requires a very

large number of RSUs and high cost.

The epidemic method can distribute CRL to all vehicles with less number of

RSUs and less time, but it requires large storage and communication capacity in

VANETs. Uncontrolled Epidemic may cause flooding storm, so TTL is often used.

For example, TTL is used to restrict the number of message replicas that a node is

allowed to spread[13]. In literature [14], TTL is used to limit the Hop-Tree update

range to avoid over-overlapping of paths. But in VANETs, a large TTL can hardly

7



restrict flooding, while a small TTL will sharply decrease the coverage of messages.

According to the research results in [15] [16] [17], a VANET is a Small world. In

[18], a query processing algorithm that can determine the scope of each query is used

to help a vehicle to avoid returning overwhelmed large amount results. These works

give us a clue to accurately distribute messages in VANETs.

On the other hand, the framework of VANETs is very important. Ref. [19]

proposes a method, named LTE4V2X, to organize vehicular networks. In the cen-

tralized vehicular networks, eNodeB manages vehicles in its coverage and divides

them into clusters. LTE4V2X protocol defines how the self-organized network works.

In LTE4V2X, eNodeB creates clusters which contain the largest number of nodes

circulating in the same direction.

Ref. [20] extends LTE4V2X to increase information dissemination efficiency. It

selects CHs by the distance from vehicles to eNodeB. Although compared to the

original approach, the complexity is lower and the LTE channel quality is higher, the

power consumption of message exchanging is not optimized. Nevertheless, [20] states

that the system can calculate the transmit power of DSRC channels by the distance

between vehicles so that the transmit power could be dynamically adjusted.

Road condition affects the speed and direction of vehicles. For example, vehicle’s

speed is lower on the bumpy road than on a smooth road. Vehicle mobility is deter-

mined by human behavior. Taking a street connected a megapolis and a village as an

example, in the morning, most vehicles move from the village (home) to the megapolis

(office); in the evening, most vehicles run following the reverse path. [21] quantifies

temporal locality similarity to measure the relation of two vehicles’ mobilities. Then,

it utilizes the relation of vehicles’ movements to form stable clusters.

Ref. [22] proposes an approach to minimize the total power consumed by DSRC

communications. They use a weighted distance matrix to indicate power consumed
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between each pair of vehicles. In this way, the CH selection problem is formulated

as a variant of the p-median problem in graph theory [23]. In this approach, the

number of clusters p is determined first based on LTE coverage radius and DSRC

coverage radius. The p cluster zones are determined by vehicle quantity and 802.11P

coverage radius. p Cluster Heads that are closest to the eNodeB are selected. Then,

the system dynamically selects new CHs to minimize the transmission power between

CMs and CH based on weighted distance and the p-median issue in graph theory.

Although this approach minimizes the power consumption within a single cluster, the

power consumption of V2I communications has not been considered. The method to

decide the zones is vague and complicated. Moreover, this approach is not suitable for

the scenario that CMs not only send their information to CH but also communicate

among themselves.

Ref. [24] proposes a high-integrity file transfer scheme for VANETs on highways

named Cluster-based File Transfer Scheme (CFT). In this scheme, CMs help their CH

to download file fragments, and then, transmit fragments to the CH which requests

the file. Since the very high speed of vehicles on highways, CFT is a good approach

to help the vehicles download files which they do not have enough connection time to

download. However, CFT just considers the bi-direction environment. In addition,

with CFT CH broadcasts its request to its neighbors; then, neighbors receive the

invitation of joining the cluster and broadcast the request to invite more vehicles to

join the cluster until there are enough vehicles. Therefore, CFT may not able to

apply in complicated environment, and it may cause network congestions.

2.2 Security and Privacy Protection in VANETs

AODV is a typical on-demand routing protocol widely used in VANETs and

plays an important role in the development of VANETs[25]. For VANETs, the most
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basic requirement is that the designed routing protocol is efficient, secure, and stable

in unattended, harsh environments. It is very important to propose a stable routing

algorithm with security policy.

At present for this problem, many domestic and foreign literature on the AODV

protocol have been studied and improved. The literature [26] proposes an improved

TAODV routing protocol based on trust mechanism to determine whether the node

is a malicious node by comparing the trust value of nodes. The literature[27] uses a

fixed time window to judge whether the node is selfish or not, and there is a delay

in judging the behavior of the node. Although the protocol in the literature[28]

can detect changes in node behavior, there is a problem of insufficient evidence in

calculating the trust value.

The literature[29] puts forward that the TARF routing protocol uses a neigh-

bor table to record the trust degree and energy consumption of each neighbor node

and prevent attacks based on routing location. However, routing protocol increases

routing load when broadcasting energy control packets. The literature [30] based

on the AODV routing protocol, uses the public key to encrypt and identify IP ad-

dresses. However, encryption technology creates many communication, computation

and memory costs in the key distribution process.

The literature [31] introduces CBM-AODV, which combines the success rate and

the link quality, improves the path stability in the routing process and can effectively

prevent the link failure. The literature[32] proposes the LLA method to find a stable

communication path, which focuses on the improvement of multi-hop paths and link

stability. It makes the routing meet the requirements of Quality of Service (QoS)

and provide real-time security information services. The literature [33] proposes a

reactive routing protocol AODVCS based on the biologically inspired cuckoo search

algorithm. The protocol uses the Cuckoo Search Algorithm (CSA) to determine the
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shortest path between two nodes, and adds a route trust prediction mechanism while

ensuring the complete routing security and reliability of the routing protocol packet

delivery rate, end-to-end delay, and other performance.

We utilize Received Signal Strength (RSS) in Task II.2 to protect vehicle privacy

in V2V communications.

RSS is widely used for security purpose. [34] utilizes the difference between the

RSS value on different devices in a body area network to design an authentication

mechanism. [35] uses the difference between RSS values to proximity to detect prox-

imity device and achieves a reliable securely pairing scheme. [36] designs a secure

method for mobile devices. The system named Wanda is able to help mobile devices

joining a local network, pairing with each other and be configured in cloud.

Security and privacy are key issues in vehicular networks. To achieve a secure

vehicular network, many works have been done. [37] introduces IEEE 1609.2 WAVE

communication standards, which is a Dedicated Short Range Communications pro-

tocol, and the Vehicle Safety Communications Project. The authors propose a novel

mechanism for RSU to transmission certificate revocation information and protect

privacy. In [38], the authors analyze black hole attack in vehicular networks. In

[39], the authors analyze Black Hole and Gray Hole Attack in vehicular networks and

design a framework against Black Hole and Gray Hole Attacks. [40] discusses six

attacks in vehicular networks: Message Suppression Attack, DoS Attack, SYN flood-

ing Attack, Alteration Attack, Link Spoofing Attack and Link withholding Attack

and Fabrication Attack. To defend against these attacks, authors propose a security

scheme via using the techniques of Multiple Operating Channels, Pool of Registered

Vehicles, and Directional Antenna. The results of simulation show that the security

scheme can reduce the number of successful attacks.

Privacy protection takes an important role in vehicular networks. Using pseudonyms
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is one of the most common methods to achieve privacy. [41] designs a decentralized

data validation approach to prevent attackers from getting private data from a cen-

tralized center. [42] proposes a context-based pseudonym change algorithm which

can use vehicles’ information to create pseudonyms. [43] groups vehicles and adds a

random silent period in communication to obscure a target vehicle’s position.

In [44], authors design a mechanism of pseudonym changing and updating. They

also try to increase the strengthen unlinkability. [45] proposes privacy schemes to

protect vehicles’ privacy when vehicles are using navigation services. In [46], authors

propose data a novel disseminating protocol to protect receivers’ position privacy with

the help of roadside units.

2.3 Other Related Topics

Radio Frequency Identification (RFID) technology has been widely used in ve-

hicular networks.

[47] and [48] introduce RFID-based vehicle management systems for a commu-

nity. These two systems have the function of controlling a vehicle. The system in

[47] can calculate parking fee, and the system in [48] can detect vehicle theft and give

an early warning. [49], [50], and [51] are about how to monitor vehicles by RFID.

In [49], a positioning method is proposed. The authors design a Vehicle Operational

Control system and a Level IV Intersection Control system.

[51] proposes a method to estimate vehicle speed. It analyzes vehicle position

information and develops driving instructions to assist the vehicle driving. The system

in [50] is used to track vehicles and can also reduce traffic congestion probability in

some ways such as controlling the traffic signal. It analyzes the traffic situation with

vehicle information and driving information.

[52] and [53] propose safety RFID-based preventive systems which can inform

12



the drivers the presence of pedestrians and the road oddities, respectively. Their

ultimate goals are to ensure safe driving. Their working principles are very similar.

In [52], the pedestrian carries an RFID tag while, in [53], an RFID tag is installed on

the road with a particular distance before the road oddity. The vehicle is equipped

with an RFID reader to detect pedestrians and oddities. [54] presents a method to

make the non-intelligent vehicles be able to communicate with an intelligent system,

disregarding it is a stand-alone system or a cooperative system.

Ref. [55] proposes a real-time RFID localization system whose average accu-

racy is 0.6 meters. [56] designs a distributed target location estimation model using

quantized RSS data. [57] and [58] design weighted localization system in vehicular

networks with the help of RSS span.

2.4 Uniqueness of our Works

Our Roadside Unit assistant based information dissemination approach proposed

in Task I.1 is different from existing information dissemination approaches because it

disseminates information to a specified group of vehicles efficiently with the help of

Meet-Table. We disseminate information only to the vehicles which are interested in

the information. There are a few works about distributing information such as CRL

(Certificate Revocation List) in VANETs [59] [10]. In [59], The Vehicle Infrastructure

Integration (VII) tries to distribute CRL to a vehicle through RSU broadcasting. This

method requires a very large number of RSUs and high cost. In [10], Haas et al. try

to propagate CRL in an epidemic fashion. The epidemic method can distribute CRL

to all vehicles with less number of RSU and less time, but it requires the large storage

and communication capacity in VANET. In our previous work, we propose Meet-

Table to optimize CRL propagation in VANETs[60]. The Epidemic method[10] can

rapidly distribute messages in VANET through broadcasting. But in a large VANET,
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if there is no limitation of broadcasting, flooding storm may destroy the availability

of it. Therefor, we propose a series of information dissemination with the the help of

Time-To-LiveTTL) to restrict flooding [13], Cloud-Computing and Fog-Computing.

Several cluster-based approaches are proposed to speed up information dissemi-

nating for managing vehicle networks. How to form clusters and how to select Clus-

ter Head are the key issues. In Task I.2, we propose a novel clustering approach

to form clusters and select Cluster Head. Unlike most existing approaches, our ap-

proach focuses on the stability of clusters. While increasing the stability of clusters,

the communication overhead decreases and the quality of communications increases.

Previous methods, e.g., [61] and [62], divide the vehicles by lanes or angle, which

change frequently. Instead of the movement information, two bytes, which indicate

the direction from their origin to destination, are used to divide the vehicles first.

Therefore, the Cluster Members in one cluster have a lower possibility to run far

away from the Cluster Head. The Center-Based Stable Clustering Algorithm also has

some other uniqueness. The clustering method uses the densest area to decrease the

number of clusters, and a new relative mobility metric is introduced to reduce the

influence of vehicles type and drives’ driving habits to the stability.

In Task II.1, unlike other proposed AODV protocol, we use fuzzy neural networks

to solve the stability and security of routing protocols, the node trust value and node

stability are obtained through fuzzy calculation. On this basis, a stable AODV proto-

col with security policy is proposed based on the original AODV protocol. The node

trust value and the node stability are obtained through the fuzzy neural network when

the route is initiated according to various influencing factors of the vehicle and finally

applied to the routine activities of the protocol. Protocols improve link stability,

save routing repair costs, reduce the impact of malicious nodes, and improve network

security. The simulation results show that compared with the AODV protocol, this
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protocol improves network performance under different environments.

Task II.2 aims to protect vehicles’ privacy. Most existing privacy protection

schemes utilize cryptography and context information. We create temporary IDs

with dynamic physical level information named RSS-Ratio. A remote malicious vehi-

cle cannot get the vehicle’s real ID. Moreover, our multi-antenna based information

privacy protection approach uses three antennas and RSS-Ratio to eliminate other

environmental unknowns. It has much higher accuracy than other existing RSS-based

approaches.
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Thrust I: Efficient Information Dissemination in VANETs

CHAPTER 3

TASK I.1: ROADSIDE UNIT ASSISTANT BASED DISSEMINATION

3.1 Problem Statement

In real VANETs, some nodes are not trustable. With the development of VANETs,

dangerous and untrustworthy vehicle identification information can also play impor-

tant role in safety application. These messages, such as dangerous driving, untrust-

worthy certificate, blacklist and so on, take a great role in VANETs. For example,

there is a vehicle controlled by a malicious attacker. It broadcasts fake information

to its neighbors. To protect other vehicles, its neighbors need to know this vehicle is

in blacklist. The previous data dissemination approaches can not disseminate such

information efficiently and accurately, since vehicles do not send a request for such

information and the system does not know which node cares about the information.

Information management in vehicular networks has been studied in literature [3],

and there are a few works about distributing CRL (Certificate Revocation List) in

vehicular networks. Literature [10] tries to propagate CRL in an epidemic fashion.

An epidemic method can distribute CRL to all vehicles with less number of RSUs and

less time, but it requires significant storage and communication capacity in vehicular

networks.

The previous data dissemination approaches can not disseminate information

efficiently and accurately to the vehicles who care about the information since vehicles
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do not send a request for such information. Moreover, broadcasting the message to

all vehicles is infeasible and high-cost. Therefore, we propose a novel information

dissemination mechanism to solve the problem: how to send such safety information

to the vehicles which may need it. Our work is based on the basic concept of Meet-

Table, which is introduced in literature [60] first.

In our work, we focus on the message describes a vehicle’s negative characteristic,

such as very unusual movement, malicious behavior, and invalid certification. This

approach also can be applied to other types of messages.

Since we do not exactly know which vehicle is interested in the message, we can

not only use the speed of information delivery to evaluate a method. Accordingly,

two parameters, coverage percentage and accurate coverage percentage, are defined

to assess the performance of our approach.

3.2 Basic Definitions and Meet-Table

In this chapter, a message uniquely binds to an objective vehicle. As the message

is not usable for all vehicles in the VANETs, it has a set of vehicles that may care

about it. Formally, a message is

m
def
=< o, d, C > (3.1)

Where m is the negative message, and it is a 3-tuple consisted by o, d and C; o

is the objective vehicle of m; d is the data in the message describing o; C is a set of

vehicles that concern the message m.

The messages m is often generated by authority. The authority generally put

several messages together and sign them as a whole document. We call this type of

document as a message document. Formally, a message document
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D
def
=< M, a > (3.2)

M = {mi|0 ≤ i ≤ nM} (3.3)

Where D is the message document, M is the set of messages, a is the authority,

nM is the number of elements in M .

As there are various objective vehicles in a message document, to distribute

the message document is more complicated and difficult than to distribute messages

separately.

For convenience of description, we define the set of vehicles and RSUs.

V = {vi|0 ≤ i ≤ nV } (3.4)

U = {ui|0 ≤ i ≤ nU} (3.5)

V is the set of all vehicles, nV is the number of vehicles. U is the set of all RSUs,

nU is the number of RSUs.

In VANETs, we should process a message m in a way that: (1) can push m

to all vehicle v ∈ C as soon as possible; (2) for every vehicle v ∈ C, can get m

with high availability. General message dissemination methods in VANETs try to

distribute data to all vehicles. These methods are not very efficient and suitable

for messages contain one vehicle’s information. For example, broadcasting CRL in

national wide VANETs is not only unfeasible but also unnecessary[60]. For evaluating

the method processing messages, possessing percentage, coverage percentage, and

accurate coverage percentage are used in our task.

Definition 3-1 The possessing percentage of a message is the percent of vehicles

possessing the message in all vehicles. Formally, coverage percentage
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rp =
|B|
|V | (3.6)

where B is the set of vehicles that possess the message.

Definition 3-2 The coverage percentage of a message is the percent of vehi-

cles possessing the message in vehicles concerning the message. Formally, coverage

percentage

rc =
|B ∩ C|
|C| =

Σ
b∈B

{
1 b ∈ C

0 b /∈ C

|C| (3.7)

where B is the set of vehicles that possess the message, C is a set of vehicles that

concern the message.

Definition 3-3 The accurate coverage percentage of a message is the percent

of vehicles concerning the message in vehicles possessing the message. Formally,

accurate coverage percentage

rac =
|B ∩ C|
|B| =

Σ
b∈B

{
1 b ∈ C

0 b /∈ C

|B| (3.8)

where B is the set of vehicles that possess the message, C is a set of vehicles that

concern the message.

The coverage percentage rc represents the availability of the message, while the

accurate coverage percentage rac of the message represents the efficiency of distribu-

tion method. Consequently, an evaluation criteria is:

Evaluation-Criteria-1: A good message distributing method should has both

high coverage percentage rc and high accurate coverage percentage rac.

According to Evaluation-Criteria-1, an ideal model of distributing message

m is to make C, the set of vehicles concerning m, equals to B, the set of vehicles

possessing m. General methods of disseminating information in VANETs try to
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broadcast m to all vehicles, its coverage percentage rc → 100%, but its accurate

coverage percentage rac → 0%. These methods are not applicable in the message

distribution described. So, in this chapter, we propose a series of improved schemes

for distributing messages to a specified group with the help of Meet-Table. Our final

goal is to design a high-performance message distributing method which has both

high coverage percentage and high accurate coverage percentage.

Accordingly, we need a method to get C, the set of vehicles concerning message

m. In fact, vehicles in C are these vehicles that may encounter the objective vehicle o

of message m. According to the reproducible moving patterns of human[63], we can

assume that these vehicles passed by the same RSU may encounter each other. We

can record vehicles passing an RSU or a vehicle with the table, called Meet-Table.

Formally, Meet-Table of w, an RSU or a vehicle, can be defined as

Tw = {pi|1 ≤ i ≤ nTw} (3.9)

pi
def
=< v, t, c >, v passed w (3.10)

T = Ti|o ≤ i ≤ nU (3.11)

where Tw is the Meet-Table generated by w; nTw is the number of elements in Tw; pi

is the ith record in Tw, that is a 3-tuple consisted of v, t, and c; v is a vehicle passed

w c times by time t. T is the set of all Meet-Tables in RSUs.

3.3 Message Distribution with Meet-Table and TTL

The Epidemic method[10] can rapidly distribute messages in VANETs through

broadcasting. But in a large VANET, if there is no limitation of broadcasting, flooding

storm may destroy the availability of it. TTL (Time-To-Live) can be used to restrict

flooding[13]. A large TTL can hardly restrict flooding, while a small TTL will sharply
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decrease the coverage of messages.

A Meet-Table of a vehicle is used to record vehicles the vehicle met. Therefore,

we can reset TTL during the message broadcasting with the help of Meet-Table.

Using Meet-Table with TTL to broadcast messages in VANETs, a balance between

flooding control and message coverage can be easily achieved. In this section, we

utilize Meet-Table to lead resetting of TTL in messages broadcasting in VANETs to

achieve high availability and high coverage of the messages, illustrate the principle

and give the algorithm of using Meet-Table with TTL in messages broadcasting in

VANETs, and simulate Meet-Table with TTL in messages broadcasting and give the

results.

3.3.1 Principle and Algorithms

Fig. 1. Principle of Message Distribution with Meet-Table and TTL

Fig. 1 shows a sample VANET. In this VANET,

R = {u1} (3.12)

V = {v1, v2, v3, v4, v5, v6} (3.13)
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m1.o = v1 (3.14)

m1.C = {v2, v3} (3.15)

Tv3 = {< v1, ... >, ...} (3.16)

Tv2 = {< v1, ... >, ...} (3.17)

Tv1 = {< v2, ... >,< v3, ... >, ...} (3.18)

TTL = 3 (3.19)

From Fig.1 we can see the enhancement of Meet-Table with TTL in messages

broadcasting in the VANET. When TTL is used to control broadcasting, m1 can only

transmit to v6, v5, v4 and v3. v2 cares m1 but it can not get the message m1.

When Meet-Table is used with TTL, m1’s ttl can be reset at v3 for m1’s objective

vehicle is v1 and v1 is in v3’s Meet-Table. Consequently, m1 can be continually

transmitted to v2.

The algorithms using Meet-Table with TTL to enhance the messages broadcast-

ing in VANETs are indicated in Fig. 2 and Fig. 3. In Broadcast step Algorithm,

s is a vehicle as the start point of broadcasting. m is the message waiting to be

broadcasted. Obviously, this algorithm is recursive. It is called by itself and Al-

gMeetTableTTL Broadcast. AlgMeetTableTTL Broadcast Algorithm is the main al-

gorithm. It takes m and V as inputs, generates a set of start points for broadcasting,

sets TTL of m, then calls Broadcast step Algorithm for all start points to fire the

broadcasting.

3.3.2 Performance Analysis

To evaluate the performance of the proposed scheme, we generated a dataset to

simulate all vehicles in San Francisco, USA.
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Fig. 2. Braodcast step Algorithm

Simulation of VANETs can use the dataset of realistic traces of vehicles[15] or

generate traces based on a map[10][64]. Realistic traces dataset of numerous vehicles

is very hard to get. The dataset used in [15] is realistic Taxi GPS traces from Shenzhen

and Beijing, China, and San Francisco, USA. The total number of vehicles in this

dataset is only about 13000, and it only contains Taxi, no other types of vehicles. In

addition, the time length of this dataset is no more than three days.

To evaluate the performance of the proposed scheme, we generated a dataset

to simulate all vehicles in San Francisco, USA. The dataset was created based on

parameters shown in Table 2.

Fig. 4 shows the percent of vehicles a vehicle met. The percent increases at

23



Fig. 3. AlgMeetTableTTL Broadcast Algorithm

first, but keeps static after a certain point of time. This means that vehicles in the

dataset have local attribute. In other words, the behavior of the vehicles like what

demonstrated in literature[63].

Fig. 4. Time vs. Percent of Vehicles Met

We simulate broadcasting methods of Epidemic without broadcasting control

(shortly Epidemic), the Epidemic with TTL, and the Epidemic with both TTL and
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Table 2. Parameters for Generating Simulation Dataset I

Parameter Value Note

Number of Vehicles 471388 Total number of vehicles in [65]

Intersections 7200 Estimated No. of Intersections in [65]

Length of road 1741(km) Total length of road in [65]

Area 1 21(km2) Area Land in [65]

Mean Travel Time 0.5(h) Mean Travel Time to Work in [65]

Speed 38.6(km/h) Average speed of commuter traffic speeds in [66]

MaxV2I 100(m) Max communication distance of vehicle to RSU

Start Points 0.0255%

TTL 6

Meet-Table (Epidemic with TTL and Meet-Table) on the generated dataset. The

simulation results are shown from Fig. 5 to Fig. 8.

The summary of the simulation results is in Table 3.

Table 3. Summary of Performance Simulation Results I

Method Name rp rc rac Delay

Epdemic high High Mid Low

Epdemic with TTL Low Low Low High

Epdemic with TTL and Meet-Table Min High High Low

From Table 3. we can see that: (1) Meet-Table with TTL increases the coverage

of messages; (2) Meet-Table with TTL has a higher accurate coverage percentage

than Epidemic with and without TTL have; (3) The delay of Meet-Table is as low as

that of Epidemic. So, Meet-Table with TTL can not only increase coverage but also
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Fig. 5. Time vs. Percent of Vehicles Possessing Message

Fig. 6. Time vs. Coverage Percentage
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Fig. 7. Time vs. Accurate Coverage Percentage

Fig. 8. Message Percent vs. Time Delay
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accurately and timely increase coverage.

According to Evaluation-criteria-1, Epidemic with Meet-Table and TTL is

better than Epidemic with or without TTL for distributing messages in VANETs.

3.4 Messages Distribution Based on Meet-Cloud

In previous section, we propose a data dissemination scheme with TTL to restrict

flooding. To further improve information dissemination efficiency, we apply Cloud

Computing to optimize Meet-Table based scheme.

3.4.1 Principle and Algorithms

3.4.1.1 Definitions and Deployment

In Section 3.3, Meet-Tables are distributed in RSUs. In this work, we construct

a global Meet-Table for message distribution. Meet-Tables must be aggregated to a

global form. Formally, the global Meet-Table can be defined as

G = {gi|1 ≤ i ≤ nG} (3.20)

gi
def
=< v,Ui > (3.21)

where, G is the global Meet-Table; nG is the number of elements in G. gi is the

ith recorder of G. v is the vehicle passed all RSUs in Ui.

The algorithm for aggregate Meet-Tables T to global Meet-Table G is presented

in Alg-Aggregate presented in Fig. 9.

In a large VANET, the size of G may be huge, and its recorders have variable

lengths, so it should be processed with NoSQL database [67] in Cloud Computing

environment. Hence, we propose Meet-Cloud to make use of Meet-Table and Cloud

Computing technology.
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distribution. So Meet-Tables must be aggregated to a
global form. Formally, the global Meet-Table can be
defined as

G = {gi|0  i  nG} (12)

gi
def
= < v, Ui > (13)

Where G is the global Meet-Table; nG is the number
of elements in G. gi is the ith recorder of G, and it’s a
2-tuple. v is the vehicle that passed all RSUs in Ui.

The algorithm for aggregate Meet-Tables T to global
Meet-Table G is presented in Alg-Aggregate.

Algorithm 1: Alg-Aggregate
Input: T, V, U

Output: G

1 G = � ;
2 foreach v 2 V do
3 Uv = � ;
4 foreach Tu 2 T do
5 foreach p 2 Tu do
6 if p.v == v then
7 Uv = Uv [ {u} ;
8 end
9 end

10 end
11 g =< v, Uv > ;
12 G = G [ g ;
13 end

In a large VANET, the size of G may be huge,
and its recorders have variable lengths, so it should
be processed with NoSQL database[9] in Cloud
Computing environment. Hence, we propose Meet-
Cloud to make use of Meet-Table and Cloud Computing
technology.

3.2 Deployment of Meet-Cloud

With the help of Meet-Table and Cloud Computing, we
can efficiently distribute negative messages in VANET.
The deployment of components in Meet-Cloud is shown
in Fig. 1.

In Meet-Cloud, a Cloud Service is running on
the Internet to process global Meet-Table and help
to distribute negative messages. It utilizes high
scalability and virtualization of Cloud Computing[10,
11] and NoSQL Database to serve global Meet-Table
processing and negative messages distributing. RSUs
are built at the roadsides. They are connected to
the Internet through wired or wireless communication
channels, e.g. 5G[12]. Every RSU can record the
vehicles pass it into its Meet-Table.

Fig. 1 Deployment of Meet-Cloud

Fig. 2 Architecture of Meet-Cloud

The Meet-Table of an RSU can be sent to the Cloud
Service in a planned schedule. When an RSU receives a
negative message from the Cloud Service, it broadcasts
the message to those vehicles passing it.

A vehicle travels along its ways. When it passes an
RSU on the roadside, it can be recorded by the RSU.
At the same time, it accepts messages broadcasting by
the RSU. If it comes across other vehicles, it can record
them into its Meet-Table, and broadcast the messages
gotten from RSUs it passed to them.

3.3 Architecture and Principle of Meet-Cloud

The principle of Meet-Cloud shown in Fig. 1 can be
illustrated with the architecture shown in Fig. 2.

Fig. 9. Alg-Aggregate Algorithm

With the help of Meet-Table and Cloud Computing, we can efficiently distribute

messages in VANET. The deployment of components in Meet-Cloud is shown in Fig.

10.

In Meet-Cloud, a Cloud Service is running on the Internet to process global

Meet-Table and help to distribute negative messages. It utilizes high scalability and

virtualization of Cloud Computing[68] and NoSQL Database to serve global Meet-

Table processing and negative messages distributing. RSUs are built at the roadsides.

They are connected to the Internet through wired or wireless communication channels,

e.g. 5G[69]. Every RSU can record the vehicles passed it into its Meet-Table.

The Meet-Table of an RSU can be sent to the Cloud Service in a planned schedule.

When an RSU receives a message from the Cloud Service, it broadcasts the message

to those vehicles passing it.
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Fig. 10. Architecture of Scheme Based on Meet-Table and Cloud Computing

A vehicle travels along its ways. When it passes an RSU on the roadside, it can

be recorded by the RSU. At the same time, it accepts messages broadcast by the

RSU. If it comes across other vehicles, it can record them into its Meet-Table, and

broadcast the messages gotten from RSUs it passed to them.

3.4.2 Architecture and Algorithms of Meet-Cloud

The principle of Meet-Cloud shown in Fig. 10 can be illustrated with the archi-

tecture shown in Fig. 11.

In the Meet-Cloud shown in Fig. 11,

V = {v1, v2, v3, v4} (3.22)

U = {u1, u2, u3, u4} (3.23)

Tu1 = {< v1, ... >} (3.24)
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Fig. 11. Architecture of Meet-Cloud

Tu2 = {< v3, ... >,< v4, ... >} (3.25)

Tu3 = {< v1, ... >,< v3, ... >,< v4, ... >} (3.26)

Tu4 = {< v2, ... >} (3.27)

G = {< v1, {u1, u3} >,< v2, {u4} >,< v3, {u2, u3} >,< v4, {u2, u3, u4 >}} (3.28)

m3
def
=< v3, d, {v1, v4} > (3.29)

So when m3 is sent to the Cloud Service to distribute, it can find < u3, {u2, u3} >

from G, and it can send m3 to u2 and u3 for broadcasting. u1 and u4 does not need

to do broadcast at all. Therefore, v1 and v4 will receive m3, but v2 will not.

In VANETs, if we know C, which is the set of vehicles that care the message m,

we can accurately distribute m to vehicles in C. In fact, vehicles in C are these vehicles
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that may encounter the objective vehicle of m According to the reproducible moving

patterns of human [63], we can assume that these vehicles pass by the same RSU

may encounter each other. So, we can record vehicles passed an RSU or vehicle with

Meet-Table. For message m, if ∃pi ∈ Tw, pi.v = m.o, then m should be distributed

through w.

3.4.3 Message Distribution and Redistribution Algorithm

A message, which describes an attribute of its objective vehicle, is often dis-

tributed by an authorized entity. For example, CRL is a typical message issued by

CA (Certificate Authority). In the proposed Meet-Cloud scheme, the algorithm for

distributing negative message is presented in Alg-Distribute shown in Fig. 12.

Alg-Distribute is invoked by the entity that wants to distribute the message

m, and executed by the Cloud Service, RSUs, and vehicles in an asynchronous and

distributed model.

When an RSU u encounters a vehicle v that never encountered before, the RSU

must redistribute negative messages of the vehicle to keep high coverage percent-

age and accurate coverage percentage of the messages. The message redistribution

algorithm is presented in Alg-Redistribute Algorithm shown in Fig. 13.

Alg-Redistribute Algorithmis invoked by RSUs, and executed by RSUs. Vehi-

cles in an asynchronous and distributed model. Every RSU executes its own Alg-

redistribute procedure respectively. The Cloud Service provides the interface for

querying messages of a vehicle.

3.4.4 Performance and Security Analysis

Meet-Cloud utilizes Meet-Table and Cloud Computing to securely and accurately

distributing messages in VANET. We compare it with other methods to study its
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In the Meet-Cloud shown in Fig. 2,
V = {v1, v2, v3, v4} (14)

U = {u1, u2, u3, u4} (15)

Tu1
= {< v1, ... >} (16)

Tu2
= {< v3, ... >, < v4, ... >} (17)

Tu3
= {< v1, ... >, < v3, ... >, < v4, ... >} (18)

Tu4
= {< v2, ... >} (19)

G = {< v1, {u1, u3} >,

< v2, {u4} >,

< v3, {u2, u3} >,

< v4, {u2, u3, u4} >} (20)

m3
def
= < v3, d, {v1, v4} > (21)

So when m3 is sent to the Cloud Service to distribute,
it can find < u3, {u2, u3} > from G, and it can send
m3 to u2 and u3 for broadcasting. u1 and u4 doesn’t
need to do broadcast at all. Therefore, v1 and v4 will
receive m3, but v2 will not.

In VANET, if we know C , which is the set of vehicles
that care the negative message m, we can accurately
distribute m to vehicles in C . In fact, vehicles in C are
these vehicles that may encounter the objective vehicle
of m According to the reproducible moving patterns of
human [6], we can assume that these vehicles pass by
the same RSU may encounter each other. So, we can
record vehicles passed an RSU or vehicle with Meet-
Table. For negative message m, if 9pi 2 Tw, pi.v =

m.o, then m should be distributed through w.

3.4 Negative Message Distribution Algorithm

A negative message describes a negative attribute of its
objective vehicle. It is often distributed by an authorized
entity. For example, CRL is a typical negative message
issued by CA (Certificate Authority). In the proposed
Meet-Cloud, the algorithm for distributing negative
message is presented in Alg-Distribute.

Alg-Distribute is invoked by the entity that wants to
distribute the message m, and executed by the Cloud
Service, RSUs, and vehicles in an asynchronous and
distributed model.

3.5 Negative Message Redistribution Algorithm

When an RSU u encounters a vehicle v that never
encountered before, the RSU must redistribute negative
messages of the vehicle to keep high coverage
percentage and accurate coverage percentage of the
messages. The negative message redistribution
algorithm is presented in Alg-Redistribute.

Algorithm 2: Alg-Distribute
Input: G, m

Output: m to u, v where u 2 U, v 2 V

1 Um = � ;
2 foreach gi 2 G do
3 if gi.v = m.o then
4 Um = gi.Ui ;
5 break ;
6 end
7 end
8 if Um 6= � then
9 foreach u 2 Um do

10 push m to u ;
11 foreach v, which is passing u do
12 u broadcasts m to v ;
13 foreach vv, which comes across v do
14 v broadcasts m to vv ;
15 end
16 end
17 end
18 end

Alg-Redistribute is invoked by RSUs, and executed
by RSUs and vehicles in an asynchronous and
distributed model. Every RSU executes its own Alg-
redistribute procedure respectively. The Cloud Service
provides the interface for querying negative messages
of a vehicle.

4 Performance and Security Analysis

Meet-Cloud utilizes Meet-Table and Cloud Computing
to securely and accurately distributing negative
messages in VANET. After describing all details of
it, now we compare it with other methods to study its
performance formally, and analyze its security. In the
next section, we give simulation results as well.

4.1 Performance Analysis

There two typical methods, RSU broadcast[3] and
Epidemic model[4], are used in VANET to distribute
negative messages. So we compare complexity and
coverage of them.

4.1.1 Complexity
For simplicity, we define several average quantities in
VANET.

The average number of RSUs a vehicle may
encounter

n̄u =

P
u2U nTu

nV

(22)

The Average number of vehicles a RSU may

Fig. 12. Alg-Distribute Algorithm

performance formally, and analyze its security. There two typical methods, RSU

broadcast[59] and Epidemic model[10], are used in VANETs to distribute messages.

So we compare complexity and coverage of them.

3.4.4.1 Performance Analysis

For simplicity, we define several average quantities in VANETs. The average

number of RSUs a vehicle may encounter

nu =

∑
u∈U nTu
nV

(3.30)
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Algorithm 3: Alg-ReDistribute
Input: v, Tu

Output: messages of v to vehicles passing u

1 p = null ;
2 foreach pi 2 Tu do
3 if pi.v = v then
4 p = pi ;
5 break ;
6 end
7 end
8 if p 6= null then
9 p =< v, current time, 1 > ;

10 Tu = Tu [ {p} ;
11 query m, m.o = v from the Cloud Service ;
12 if m 6= � then
13 foreach vv, which comes across u do
14 broadcasts m to vv ;
15 foreach vvv, which comes across vv do
16 vv broadcasts m to vvv ;
17 end
18 end
19 end
20 end

encounter

n̄u =

P
u2U nTu

nU

(23)

Then we can calculate complexities of Meet-Table,
RSU Broadcast and Epidemic. The results are shown in
Table 1.

From Table 1 we can see that:
(1) Meet-Cloud can reduce communication from core

to RSU and RSU to vehicle, for n̄u is smaller than nU .
(2) Meet-Cloud can reduce communication between

vehicles, for n̄u and n̄v are smaller than nV .
(3) Meet-Cloud can reduce vehicle storage, for n̄un̄v

are smaller than nV in large VANET.

4.1.2 Message Coverage Metric
RSU Broadcast and Epidemic try to distribute messages
to all vehicles, but Meet-Cloud tries to distribute
messages to the right vehicles that really care the
message. In a very large VANET, message coverage
metrics of these methods are shown in Table 2.

From Table 2 we can see that RSU Broadcast and
Epidemic are not so efficient. According to Evaluation-
Criteria-1 and Table 2, Meet-Table is the best one.

4.2 Security Analysis

In this section we give the attack model and analyze the
security of Meet-Table. In the next section, simulation

results of Fake Meet-Table attack and DoS attack are
given.

4.2.1 Attack Model
In the proposed scheme, we assume that authorized
entity, Cloud Service, most RSUs, and most vehicles
are trustworthy. Under this assumption, we can profile
the major attacks that can be conducted on the scheme.

(1) Fake negative message attack. An attacker tries
to distribute the untrue negative message of a target
vehicle to disturb communication and operation of the
victim.

(2) Holding on negative message attack. An attacker
tries to let vehicles received negative messages from
RSUs don’t broadcast the negative message to other
vehicles encountered.

(3) Fake Meet-Table attack. An attacker tries to build
fake Meet-Table by driving vehicle to pass lots of RSUs
that are not necessary to pass in a normal human travel
model.

(4) DoS (Denial of Service) attack. An attacker
tries to jam broadcasting of RSUs, to block negative
messages pushed from cloud service, to stop Cloud
Service, to broadcast a huge number of garbage
messages, etc.

4.2.2 Security of the Scheme
From the architecture and the algorithms described
above, we know that the proposed scheme executes in a
distributed and asynchronous model, so the scheme has
some potential anti-attack properties. Also, utilizing
the matured Cloud Computing technology, the Cloud
Service is scale free and hard to attack.

There are lots of anti-attack measurements for fake
negative message attack. For example, Cloud Service
can authenticate the sender; and negative messages may
be signed with signature for verification in RSUs and
vehicles.

If a vehicle is controlled by an attacker, it may
not broadcast negative messages received from RSUs
and other vehicles to the vehicles it encounters. This
holding negative message attack can hardly affect
the propagation of negative messages in VANET, for
comparing to other uncontrolled vehicles, the number
of vehicles controlled by the attacker is very less.

An attacker can drive the vehicle passing RSUs to
build fake Meet-Table, but it is very costly and easy
to detect. This physical attack is hard to take place
in a large scale. Besides, the movement pattern of the
attacker’s vehicle is very different from the ordinary

Fig. 13. Alg-ReDistribute Algorithm

The Average number of vehicles a RSU may encounter

nu =

∑
u∈U nTu
nU

(3.31)

Then we can calculate complexities of Meet-Table, RSU Broadcast and Epidemic.

The results are shown in Table 4.

From Table 4 we can see that: (1) Meet-Cloud can reduce communication from

core to RSU and RSU to vehicle, for nu is smaller than nU . (2) Meet-Cloud can reduce

communication between vehicles, for nu and nv are smaller than nV . (3) Meet-Cloud

can reduce vehicle storage, for nu · nv are smaller than nV in a large VANET.
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Table 4. Complexity of Distributing Method I

Complexity Meet-Cloud Epidemic Model RSU Broadcasting

Core to RSU Communication nMnu N/A nMnU

RSU to Vehicle Communication nMnu · nv N/A nMnUnv

Vehicle to Vehicle Communication nMnu · nv nMn
2
V N/A

Core Storage nM + nvnu N/A N/A

Vehicle Storage nMnu · nv nMnV nMnV

Computing nUnV N/A N/A

RSU Broadcast and Epidemic try to distribute messages to all vehicles, but Meet-

Cloud tries to distribute messages to the right vehicles that really care the message.

In a very large VANET, message coverage metrics of these methods are shown in

Table 5.

From Table 5 we can see that RSU Broadcast and Epidemic are not so efficient.

According to Evaluation-Criteria-1 and Table 5, Meet-Table is the best one.

Table 5. Message Coverage Metrics of Distributing Methods in Very Large VANET

Metric Meet-Cloud Epidemic RSU Broadcast

Possessing Percentage → 0% → 100% → 100%

Coverage Percentage → 100% → 100% → 100%

Accurate Coverage Percentage → 100% → 0% → 0%

3.4.4.2 Security Analysis

We also describe the attack model and analyze the security of Meet-Table. Sim-

ulation results of Fake Meet-Table attack and DoS attack are given.

In the proposed scheme, we assume that authorized entity, Cloud Service, most
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RSUs, and most vehicles are trustworthy. Under this assumption, we can profile the

major attacks that can be conducted on the scheme.

(1) Fake message attack. An attacker tries to distribute the untrue message of a

target vehicle to disturb communication and operation of the victim.

(2) Holding on message attack. An attacker tries to let vehicles received messages

from RSUs do not broadcast the message to other vehicles encountered.

(3) Fake Meet-Table attack. An attacker tries to build fake Meet-Table by driving

vehicle to pass lots of RSUs that are not necessary to pass in a normal human travel

model.

(4) DoS (Denial of Service) attack. An attacker tries to jam broadcasting of

RSUs, to block messages pushed from cloud service, to stop Cloud Service, to broad-

cast a huge number of garbage messages, etc.

From the architecture and the algorithms described above, we know that the

proposed scheme executes in a distributed and asynchronous model, so the scheme has

some potential anti-attack properties. Also, utilizing the matured Cloud Computing

technology, the Cloud Service is scale free and hard to attack. There are lots of

anti-attack measurements for fake message attack. For example, Cloud Service can

authenticate the sender; and messages may be signed with signature for verification

in RSUs and vehicles.

If a vehicle is controlled by an attacker, it may not broadcast messages received

from RSUs and other vehicles to the vehicles it encounters. This holding message at-

tack can hardly affect the propagation of negative messages in VANET, for comparing

to other uncontrolled vehicles, the number of vehicles controlled by the attacker is

very less.

An attacker can drive the vehicle passing RSUs to build fake Meet-Table, but

it is very costly and easy to detect. This physical attack is hard to take place in a
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large scale. Besides, the movement pattern of the attackers vehicle is very different

from the ordinary humans reproducible pattern[63], it is very easy to detect and clear

them from global Meet-Table.

Generally, DoS, especially DDoS (Distributed DoS) is hard to defeat if opposite

has enough resources[70]. In the proposed scheme, DoS, even DDos is hard to achieve

its goal. If an attacker wants to jam broadcasting of an RSU, he/she must be at

the site of the RSU, so he/she can only attack very limited RSUs. Because of the

matured protect technology of Cloud Computing, it is difficult for the attacker to

block messages pushed from Cloud Service or stop Cloud Service. An attacker can

broadcast a huge number of garbage messages to a limited part of VANETs and affect

a limited area of it, but he/she ca not affect the whole VANET, even the main part

of it, for it is distributed, executed asynchronously, and has numerous RSUs and

vehicles.

In summary, the scheme is secure to face these four types of attacks if it is

implemented carefully, as it is distributed, executed asynchronously, has numerous

entities, and is based on Cloud Computing technology.

3.4.5 Simulation and Results

After analysis of Meet-Cloud, we simulate it and other message distributing

methods, and study the performances of them. Additionally, we simulate Meet-Cloud

under DoS attack of RSUs and fake Meet-Table attack. The results are given and

analyzed in this section.

Simulation of VANETs can use the dataset of realistic traces of vehicles[15] or

generated traces based on a map[10][64]. Realistic traces dataset of numerous vehicles

are very hard to get. The dataset used in [15] is realistic Taxi GPS traces from

Shenzhen and Beijing, China, and San Francisco, USA. The total number of vehicles
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Table 6. Parameters for Generating Simulation Dataset II

Parameter Value Note

Number of Vehicles 471388 Total number of vehicles in [65]

Number of RSUs 1193 Refer to the No. of Signalized Intersections in [65]

Intersections 7200 Estimated No. of Intersections in [65]

Length of road 1741(km) Total length of road in [65]

Area 1 21(km2) Area Land in [65]

Mean Travel Time 0.5(h) Mean Travel Time to Work in [65]

Speed 38.6(km/h) Average speed of commuter traffic speeds in [66]

MaxV2I 100(m) Max communication distance of vehicle to RSU

MaxV2V 10(m) Max communication distance of vehicle to vehicle

in this dataset is only about 13000, and it only contains Taxi, no other types of

vehicles. In addition, the time length of this dataset is no more than three days.

To evaluate the performance and anti-attack ability of the proposed Meet-Cloud,

we generated a dataset to simulate all vehicles in San Francisco, USA. The dataset

was created based on parameters shown in Table 6.

On the generated dataset, the percent of vehicles and RSUs a vehicle met versus

time are shown in Fig. 14 (a) and Fig. 14 (b) respectively.

8 Tsinghua Science and Technology, June 2013, 18(3): 000-000

Table 3 Parameters for Generating Simulation Dataset

Parameter Value Note

Number of Vehicles 471388 Total number of vehicles in [16].

Number of RSUs 1193 Refer to the No. of Signalized Intersections in [16].

Intersections 7200 Estimated No. of Intersections in [16].

Length of road 1741(km) Total length of road in [16].

Area 121(km2) Area - Land in [16].

Mean Travel Time 0.5(h) Mean Travel Time to Work in [16].

Speed 38.6(km/h) Average speed of commuter traffic speeds in [17].

maxV2I 100m Max communication distance of vehicle to RSU

maxV2V 10m Max communication distance of vehicle to vehicle

(a) Time vs. Percent of Vehicles Met (b) Time vs. Percent of RSUs Met

Fig. 3 Percent of Vehicles and RSUs Met on the Test Dataset

Fig. 14. Percent of Vehicles and RSUs Met on the Test Dataset
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From Fig. 14 we can see that both the percents of vehicles and RSUs met keep

increasing at first, but keep static after a point of time. This pattern represents the

locality of vehicles movement. So the generated dataset has the same attribute of

movement of human in real daily life[15].

To compare the performance of the proposed Meet- Cloud with RSU broadcasting

and epidemic model, we simulate these three methods on the generated dataset. The

simulation results are shown in Fig. 15.Baohua Huang et al.: Meet-Cloud for Secure and Accurate Distribution of Negative Messages in VANET 9

(a) Time vs. Percent of Vehicles Possessing Message. (b) Time vs. Coverage Percentage

(c) Time vs. Accurate Coverage Percentage (d) Message Percent vs. Delay of Time

Fig. 4 Performance of Different Distribution Methods

Table 4 Summary of Performance Simulation Results

Value Name Epidemic Model RSU Broadcasting Meet-Table Based Scheme

Percent of Vehicles Possessing Message Much high High Low

Coverage Percentage Much high High High

Accurate Coverage Percentage Low Low High

Message Delay Low High Mid

simulate these three methods on the generated dataset.
The simulation results are shown in Fig. 4.

Table 4 summaries the performance simulation
results.

According to Table 4 and Evaluation-Criteria-1,
for the proposed Meet-Cloud has both high coverage
percentage and high accurate coverage percentage, and
mid message delay, it should be the best method for
distributing negative messages in VANET.

5.3 Fake Meet-Table Attack Simulation and
Results

In order to study the performance of Meet-Cloud
under fake Meet-Table attack, we randomly add records
into Meet-Table of RSUs and do simulation. The
performances of different ratio of fake Meet-Table
records are shown in Fig. 5.

From Fig. 5 we can see that fake Meet-Table leads

Meet-Cloud to act like Epidemic, and the higher ratio of
fake Meet-Table records there is, the more Epidemic the
Meet-Cloud goes to be like. But fake Meet-Table attack
can only leads to low accurate coverage percentage, not
low coverage percentage. In other words, fake Meet-
Table attack can only affect the accuracy of negative
message distributing, not range of negative message
distributing. So Meet-Cloud is secure under fake Meet-
Table attack.

5.4 DoS of RSUs Simulation and Results

We randomly turn off RSUs to simulate DoS attack of
RSUs. Performance of Meet-Cloud with different ratio
of RSUs off are shown in Fig. 6.

From Fig. 6 we can see that Dos of RSUs can’t
heavily affect performance of Meet-Cloud. So the
proposed Meet-Cloud is secure facing DoS attack.

Fig. 15. Performance of Different Distribution Methods

Table 7 summaries the performance simulation results.

According to Table 7 and Evaluation-Criteria-1, for the proposed Meet-Cloud

has both high coverage percentage and high accurate coverage percentage, and mid

message delay, it should be the best method for distributing messages between the

three methods in VANETs.
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Table 7. Summary of Performance Simulation Results II

Value Name Epidemic Model RSU Broadcasting Meet-Table Based Scheme

Percent of Vehicles Possessing Message Very high High Low

Coverage Percentage Very high High High

Accurate Coverage Percentage Low Low High

Message Delay Low High Mid

In order to study the performance of Meet-Cloud under fake Meet-Table attack,

we randomly add records into Meet-Table of RSUs and do simulation. The perfor-

mances of different ratio of fake Meet-Table records are shown in Fig. 16.

From Fig. 16 we can see that fake Meet-Table leads Meet-Cloud to act like

Epidemic, and the higher ratio of fake Meet-Table records there is, the more Epidemic

the Meet-Cloud goes to be like. But fake Meet-Table attack can only leads to low

accurate coverage percentage, not low coverage percentage. In other words, fake

Meet-Table attack can only affect the accuracy of message distributing, not range of

message distributing. So Meet-Cloud is secure under fake Meet-Table attack.

We randomly turn off RSUs to simulate DoS attack of RSUs. Performance of

Meet-Cloud with different ratio of RSUs off are shown in Fig. 17.

From Fig. 17 we can see that Dos of RSUs cant heavily affect performance of

Meet-Cloud. So the proposed Meet-Cloud is secure facing DoS attack.

In fake Meet-Table attack we found that fake records in Meet-Table may lead

Meet-Cloud to act like Epidemic. In DoS attack we found that turning off RSUs can

not heavily affect the performance of Meet-Cloud. These attributes of Meet-Cloud

make it secure to face these attacks.

But there is a fact we noticed. That is the proposed Meet-Cloud has attributes

of both RSU broadcast and Epidemic. In fact, it uses the Meet-Table to select several

RSUs as the starting point of Epidemic. So when there is a high ratio of fake Meet-
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(a) Time vs. Percent of Vehicles Possessing Message. (ad) Time vs. Percent of Vehicles Possessing Message in Detail.

(b) Time vs. Coverage Percentage (bd) Time vs. Coverage Percentage in Detail.

(c) Time vs. Accurate Coverage Percentage (cd) Time vs. Accurate Coverage Percentage in Detail.

Fig. 5 Performance of Meet-Cloud under Fake Meet-Table Attack

Fig. 16. Performance of Meet-Cloud under Fake Meet-Table Attack

41



Baohua Huang et al.: Meet-Cloud for Secure and Accurate Distribution of Negative Messages in VANET 11

(a) Time vs. Percent of Vehicles Possessing Message (ad) Time vs. Percent of Vehicles Possessing Message in Detail

(b) Time vs. Coverage Percentage (bd) Time vs. Coverage Percentage in Detail

(c) Time vs. Accurate Coverage Percentage (cd) Time vs. Accurate Coverage Percentage in Detail

Fig. 6 Performance of Meet-Cloud under DoS of RSUs

Fig. 17. Performance of Meet-Cloud under DoS of RSUs
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Table records, the Epidemic attribute of Meet-Cloud is enhanced, and it act like

Epidemic model. When DoS of RSUs occurs, some RSUs will be off, and starting

points of Epidemic will be less. But Epidemic model has a exponential distributing

ability. If there is only one starting point, Epidemic can distribute messages around

the point rapidly.

3.5 Messages Distribution Based on Meet-Fog

In the Cloud Computing based scheme, all RSUs report their Meet-Table to the

cloud service, so as to generate global Meet-Table, and the cloud service must push

every message to all RSUs that concerns it. So the cloud service needs not only

significant computing and communication capability, but also huge storage capacity.

Fog Computing can extend the Cloud Computing process to the edge of the network,

it enjoys the characteristics of low latency and location awareness[71], so we propose

Meet-Fog, a Meet-Table and Fog Computing based scheme, to utilize Fog Computing

and optimize our previous Meet-Table and Cloud Computing based scheme by reduc-

ing bandwidth and storage requirements of cloud, and moving computing requirement

from cloud to the edge.

3.5.1 Architecture of Meet-Fog

The architecture of Meet-Cloud is presented in the previous section. To opti-

mize computing, communicating, and storage of Meet-Cloud, Fog Computing can be

adopted. We can organize RSUs as Fogs to do a part of these tasks that must be

done by Cloud service. We call this scheme Meet-Fog. The architecture of Meet-Fog

is shown in Fig. 18.

In Meet-Cloud system, all RSUs send their Meet-Tables to Cloud Service, then

Cloud Service generates global Meet-Table G. Cloud Service sends the message m2
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about v2 to RSU u2 and u3, since v2s moving range is covered by u2 and u3. In

Meet-Cloud, Cloud Service must receive and store all Meet-Tables of all RSUs and

generate global Meet-Table from these Meet-Tables, so Cloud Service needs commu-

nication and storage capacity, and very powerful computing capability. Additionally,

the message is transmitted from Cloud Service to RSUs redundantly.

In Meet-Fog system showed in Fig. 18, RSU u2 and u3 are organized as a Fog to

serve message distribution of v2, and u2 is selected as the head of the Fog. Then the

record in global Meet-Table about v2 can be generated in the Fog and sent to Cloud

Service through the Fog head. For Cloud Service, messages about v2 only need to be

sent to the Fog head.

The architecture of Meet-Fog can only show the main idea. A formal model of

it can make algorithm description and analysis of it more precise and easier.

A message m describes one vehicle’s attribute is already defined at the beginning

of this chapter. All messages in the VANET can be denoted by a set

Mu = {mi|0 ≤ i ≤ nm} (3.32)

In order to organize RSUs as Fog, we must define the set of neighbor RSUs of

an RSU and extend Meet-Table definition.

The set of neighbor RSUs of RSU u

Hu = {ui|ui ∈ U, ui 6= u, ui ↔ u} (3.33)

ui ↔ u means u has a road to ui and there is no other RSUs between u and ui.

we can put the sets of neighbor RSUs to the Cloud Service as a global neighbor

RSUs. The global neighbor RSUs
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H = {hi|0 ≤ i ≤ nU} (3.34)

hi
def
=< ui, Hui > (3.35)

Meet-Table of RSU u is a set of records

Tu = {pi|0 ≤ i ≤ nTu} (3.36)

pi
def
=< v, t, c, h, ch > (3.37)

Where nTu is the number of records in Tu. v is a vehicle, v ∈ V , and it passed u c

times by time t. h ∈ Hu, v passed h ch times, and for ∀h ∈ Hu, ch is the maximum.

In Meet-Fog, global Meet-Table

G = {gi|0 ≤ i ≤ nG} (3.38)

gi
def
=< v, u > (3.39)

nG is the total number of records in G.

Comparing to Meet-Cloud, records in G is simpler. In fact, records of G in Meet-

Fog is generated in Fog, so the Cloud service only need to accept and store records

submitted by Fogs. Therefore, the requirements of computing capability, storage, and

communication capacity of Cloud Service can be reduced significantly.

3.5.2 Algorithms of Meet-Fog

Based on the formal model of Meet-Fog, algorithms are designed. They are

Initiate-System, Manage-RSU, Manage-Vehicle, Distribute-Message, and Redistribute-

Message algorithm.

Fig. 19 shows the function of Initiate-System, which is to construct necessary

data structures. This function runs only once during the setup process of the system.
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All these sets can be stored in the cloud by Cloud Service.

Manage-RSU Algorithm presented in Fig. 20 is used to maintain the set of

neighbor RSUs. It is triggered by the added or removed RSU and executed by Cloud

Service and all RSUs in a distributed model.

In VANETs, RSUs are a part of the infrastructure, so they often keep static.

Since adding and removing RSUs does not often occur, it is applicable to use Cloud

Service for managing global neighbor RSUs and handling RSU by adding and remov-

ing.

When a vehicle v passes by an RSU u, u will process its Meet-Table Tu. The

record in Tu of v contains a neighbor RSU h that v passed mostly. h and other

RSUs, v passed, forms a Fog to process the negative message of v. The algorithm

Manage-Vehicle shown in Fig. 21 is triggered by a vehicle v approaching RSU u.

When a negative message m needs to be distributed, the Cloud Service invokes

the execution of the Distribute-Message algorithm shown in Fig. 22.

Comparing Distribute-Message with Alg-Distribute Algorithm of Meet-Cloud,

the Cloud Service only sends m one time in Meet-Fog but many times in Meet-Cloud.

When a vehicle v moves into a new area and encounters a new RSU u, the negative

message of v should be redistributed to these vehicles passing u. The redistributing

procedure is triggered by the moving vehicle v, and mainly executed by the RSU u.

Fig. 23 presents Redistribute-Message Algorithm.

3.5.3 Performance Analysis

Meet-Fog utilizes computing power, communication bandwidth, storing capacity

of the edge of VANET to improve the efficiency of negative message distribution.

With the basis of formal model and algorithms of Meet-Fog and Meet-Cloud, we

can formally analyze message coverage and computing, communication, and storage
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Fig. 18. Architecture of Meet-Fog

Fig. 19. Initiate-System Algorithm
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Fig. 20. Manage-RSU Algorithm
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complexity of different negative message distribution schemes. We compare Meet-Fog,

Meet-Cloud, Epidemic model[10], and RSU broadcast [59] in this section.

In previous subsection, we created a simulation data set and simulated RSU

broadcast, Epidemic, and Meet-Table. The results show that Meet-Table can get

high coverage percentage and high accurate coverage percentage at the same time.

Both Meet-Fog and Meet-Cloud are based on Meet-Table. The difference be-

tween them is that Meet-Fog moves the task of generating global Meet-Table and

distributing the multi copy of negative message among RSUs to the Fog, which con-

sists of RSUs. So, on message coverage, Meet-Fog has the same results of Meet-Cloud.

We can put the simulation results in Meet-Cloud and the analysis results together

into Table 8. According to Evaluation-Criteria-1 and Table 8, Meet-Fog is a good

message distribution scheme.

Table 8. Message Coverage of Distribution Scheme

Value Name Epidemic Model RSU Broadcasting Meet-Cloud Meet-Fog

Percent of Vehicles Possessing Message Very high High Low Low

Coverage Percentage Very high High High High

Accurate Coverage Percentage Low Low High High

We not only analyze message coverage, but also analyze the algorithm complexity.

For simplicity, we define several average quantities in VANETs as Meet-Cloud.

The average number of RSUs a vehicle may encounter and the average number of

vehicles an RSU may encounter are same to the definitions in Meet-Cloud part. The

average number of neighbor RSUs a RSU may have is

nh =

(∑

hi∈H
|hi ·Hui |

)
/nU (3.40)

With the help of these average values, we can calculate the complexity of Meet-
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Fog. The results are shown in Table 9.

Table 9. Complexity of Distributing Method II

Complexity Meet-Fog Meet-Cloud Epidemic Model RSU Broadcasting

Core to RSU Communication nM nMnu N/A nMnU

RSU-RSU Communication nmnh N/A N/A N/A

RSU to Vehicle Communication nmnh · nv nMnu · nv N/A nMnUnv

Vehicle to Vehicle Communication nMnu · nv nMnu · nv nMn
2
V N/A

Core Storage nM + nv nM + nvnu N/A N/A

Edge Storage nMnu · nv nMnu · nv nMnV nMnV

Core Computing N/A nUnV N/A N/A

Edge Computing nUnv N/A N/A N/A

From Table 9 we can see that (1) Meet-Fog can sharply reduce the bandwidth

requirement of the cloud when it is compared with Meet-Cloud. (2) Meet-Fog can

sharply reduce the storage requirement of the cloud when it is compared with Meet-

Cloud. (3) Meet-Fog can completely move the computing power requirement of the

cloud to the edge when it is compared with Meet-Cloud. (4) Meet-Fog and Meet-

Cloud can sharply reduce the communication between vehicles when they are com-

pared with Epidemic, for nu << nV and nv << nV . (5) Meet-Fog and Meet-Cloud

can sharply reduce the storage requirement on vehicles when they are compared with

Epidemic and RSU broadcast, for nu · nv << nV in large scale VANETs.

3.6 Conclusion

Accurately and efficiently distributing messages is essential in VANETs. The

Epidemic method can rapidly distribute message but may cause flooding storm. The

Epidemic with TTL can control flooding storm but may sharply decrease coverage of

messages in VANETs. Meet-Table of a vehicle records vehicles it met, meaning the

high probability that it will encounter these vehicles. In this section, we utilize Meet-
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Table to lead TTL resetting in messages broadcasting. Simulation results show that

Meet-Table with TTL for the broadcasting of messages has high coverage percentage,

high accurate coverage percentage, and low delay of time. So, Meet-table with TTL

can not only increase coverage but also accurately and timely increase coverage.

A method combine Meet-Table and Cloud Computing named Meet-Cloud is also

proposed. Through formal analysis of proposed Meet-Cloud, we found that Meet-

Cloud has low communication and storage complexities than RSU Broadcasting and

Epidemic model. Performance simulation results show that Meet-Cloud has both

high coverage percentage and high accurate coverage percentage, and mid message

delay. The simulation results of fake Meet-Table attack and DoS attack of RSUs show

that Meet-Cloud is secure to face these attacks. Therefore, Meet-Cloud is better than

RSU Broadcast and Epidemic model in distributing negative messages in VANET.

During the analysis of the results of simulation of attacks on the proposed Meet-

Cloud, we found that it has attributes of both RSU broadcast and Epidemic. In

fact, Meet-Cloud uses the Meet-Table to select several RSUs as the start point of

Epidemic.

Then, we propose Meet-Fog, a Meet-Table and Fog Computing based scheme, to

utilize Fog Computing for improving our previous Meet-Table and Cloud Computing

based scheme. By employing Fog Computing, we move Meet-Cloud to Meet-Fog to

make use of resources on the edge of VANET. In Meet-Fog, RSUs are organized as

Fog to help Meet-Table management and messages distribution. Meet-Fog advances

Meet-Cloud by doing local work locally. As the analysis results show, Meet-Fog is

a location aware, distributed, efficient and accurate message distribution scheme for

VANETs.
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Fig. 21. Manage-Vehicle Algorithm
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Fig. 22. Distribute-Message Algorithm

Fig. 23. Redistribute-Message Algorithm
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CHAPTER 4

TASK I.2: SELF-ORGANIZED CLUSTER-BASED DISSEMINATION

4.1 Problem Statement

Current approaches for vehicle communications are roughly categorized into two

classes according to the adopted radio interfaces. One class of approaches is based on

Dedicated Short Range Communication (DSRC). The other class is based on existing

cellular technology[72].

DSRC began to be used for V2V communication from the 90s. With the rapid

improvement of mobile cellular networks, cellular technologies also catch some re-

searchers’ attention to use the existing cellular infrastructures and technologies for

vehicle communication.

Unfortunately, both DSRC and mobile cellular networks cannot fully meet the

needs of ITS. DSRC has a shortage in medium range. It is inadequate for large-scale

deployment[73] because of its coverage radius is not large enough. Mobile cellular

networks provide wide and large coverage, while its delay is longer than DSRC for

real-time information exchanges in local areas[74].

As a result, DSRC and mobile cellular networks are combined for vehicular net-

work communications. Fig. 24 shows an example of vehicular network, which sup-

ports communication not only via LTE but also via DSRC [74]. Overall, vehicular

networks are centralized as clusters because of cellular is based on connections and

scheduling. Vehicles may also exchange messages with their neighbors via DSRC.

As a result, vehicular networks still have decentralized parts under the centralized

architecture.
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Fig. 24. An Example of Vehicular Network

Many frameworks for managing vehicular networks have been proposed. Dividing

vehicles into clusters is a common and reasonable approach. [19] proposes a novel

framework named LTE4V2X. All vehicles have two interfaces. One is LTE interface.

The other is 802.11p interface. Vehicles are signed into clusters. The size of cluster

is smaller than or equal to the range of 802.11p. So that, vehicles in the same cluster

can exchange messages via DSRC. DSRC coverage radius is about 300 meters. LTE

coverage radius is about 1 kilometers. Therefore, a single eNodeB manages many

clusters around it. Within a cluster, a vehicle performs as a Cluster Head (CH) to

collect information of all Cluster Members (CM) via 802.11p and exchanges data with

the eNodeB via TLE. Fig. 25 is a simplified view of a cluster-based vehicular network.

This framework creates much less overhead and increases efficiency. [19] selects
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Fig. 25. A Simplified View of Clustered Vehicular Networks

the node with shorter communication delay to be CH. To find this node, vehicles

broadcast a CH ANNOUNCE message. If a vehicle hears CH ANNOUNCE message,

it will not broadcast its CH ANNOUNCE message. The vehicle who first broadcasts

a CH ANNOUNCE message will be selected as CH. Although this method reduces

communication delay in vehicular networks, it has the disadvantages such as infras-

tructure cannot know which one is CH until CH sends a message to it; information

collision may happen because all vehicles may broadcast their announcements; the

lifetime of a cluster is not very long. Therefore, we try to improve the clusters forming

and Cluster Head selection method.

In cluster-based vehicular networks, all vehicles send their position information to

eNodeB. Then, eNodeB manages the vehicles by clusters. CH performs as a messenger

to help eNodeB and CMs exchange information. We assume all vehicles are able
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to communicate via both LTE and DSRC. Fig. 26 illustrates the communications

within one cluster. First, CH receives a request from eNodeB via LTE. Second,

CH broadcasts the request via 802.11p. Then, CMs unicast the information to CH

via 802.11p. After collecting the information from all CMs and compressing the

information, CH sends the information back to eNodeB via LTE again.

Fig. 26. Communications within One Cluster

Compared with other MANETs, nodes in VANETs have higher mobility and

higher speed. Cluster reforming and CH changing must be much more frequently

than other typical MANETs. To decrease the management overhead and in- crease

communication quality, the clustering algorithm for VANETs should be able to form

stable clusters. To achieve this goal, this paper proposes a stable clustering algorithm

for VANETs. In this paper, we proposed a novel approach to form and maintain

stable clusters for VANETs on highways to avoid continual cluster reforming. A

center-based clustering algorithm is used to locate the initial clusters’ centers. In
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every cluster, a suitable CH is chosen by vehicles’ position, speed, and acceleration.

A cluster maintenance algorithm is proposed to keep CMs in its CH’s transmission

range.

4.2 Proposed Approach

In vehicular networks on highways, vehicles have very high mobility while the

road environment is simpler than other areas. We use a center-based clustering al-

gorithm to locate the initial cluster centers which is close to the densest areas. In

every cluster, a suitable CH is chosen with the help of vehicles’ position, speed, and

acceleration. A cluster maintenance algorithm is also proposed to avoid continual

cluster reforming.

4.2.1 Overview and Assumption

Clustering algorithm groups a set of unlabeled nodes into clusters. In cluster-

based VANETs, all vehicles send their position information to eNodeB. Then, eNodeB

manages the vehicles by clusters. CH performs as a messenger to help eNodeB and

CMs exchange information.

In this task, we propose a center detection based clustering algorithm. We group

the vehicles in the region where the density of vehicles is higher than other areas into

clusters with the help of blob detection method or an improved high-degree algorithm.

Some parameters, such as speed and acceleration, are added to the CH selection metric

to make the cluster stabler and decrease the CH re-selection frequency.

In this task, we have some assumption:

1. All vehicles have both LTE and 802.11p interfaces.

2. All vehicles are equipped with Global Positioning System (GPS) devises. So,

they have accurate geolocations.
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3. All vehicles know their destination, speed, and acceleration. n j

4.2.2 Cluster Formation

In our proposed algorithm, in the initialization stage of cluster formation, vehicles

send beacon messages to the eNodeB. The beacon message of one vehicle contains

the vehicle’s ID k, current position (xk, yk) , current speed vk, maximal acceleration

ak and direction type tk.

Direction type is decided by the vector from the current position to the destina-

tion. For vehicle k, whose destination position is (x′k, y
′
k), the direction vector

−→v k = (x′k − xk, y′k − yk) (4.1)

The Direction Angle θk of vector −→v k is

θk = tan−1 y
′
k − yk
x′k − xk

(4.2)

When θk ∈ [0◦, 90◦), tk = 1. When θk ∈ [90◦, 180◦), tk = 2. When θk ∈ [180◦, 270◦),

tk = 3. When θk ∈ [270◦, 360◦), tk = 4. Vehicles have different t are managed

respectively.

The initial clustering algorithm is described in Algorithm Fig. 27.

After receiving the beacon messages, the system analyzes vehicles’ position in-

formation, and detect the centers of the regions where the vehicle density is higher

than other areas. If the vehicle quantity or the vehicle density are not very large,

an improved Highest-Degree Algorithm is applied. Several vehicles which have more

neighbors in their transmit range are detected. We improve the original Highest-

Degree Algorithm to make sure the distance between any two vehicles we detected is

larger than the DRSC range. The positions of detected vehicles will be the centers we

use in the clustering algorithm. Otherwise, when the vehicle quantity and the vehicle
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density are very large, to decrease the computing complexity and analyze time, the

system draws dots on the map to indicate vehicles. The blob detection algorithm[75]

is used to detect the centers of regions on the map where the gray pixel value is

greater.

All vehicles whose distance to the center are not larger than the range of DSRC

are labeled as one cluster. Then, the system selects one nearest intersection for every

center among all intersections meet the following conditions:

1. The distance from it to the points in P is not smaller than the range of DSRC.

2. The intersection is not in any cluster’s region.

Vehicles near those selected intersections are grouped into clusters. Then, eN-

odeB uses the same way to select intersections near the selected intersections and

groups vehicles. After iterations, ungrouped vehicles are grouped into clusters. The

distance between two vehicles in the same cluster is not larger than the range of

DRSC. To further decrease computing complexity, in line 9 of Clustering Algorithm,

a vehicle or infrastructure located in the center or intersection can broadcast a request

to invite neighbors to join the cluster. In line 28, the chosen vehicle e can broadcast

an invitation instead of calculating distance by the system.

4.2.2.1 Cluster Head Selection

Compare to other MANETs, VANETs have lower stability, because of the high

mobility of vehicles. Although we divide the vehicles with the help of direction vector

−→v k, the stability of clusters cannot be guaranteed. To select an appropriate CH which

can increase the cluster lifetime and decrease the CH reselecting frequency, a relative

mobility metric M is introduced for CH election.

For a vehicle k, that is in the cluster clusteri, the position differences between it
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to all other N vehicles in the same cluster clusteri is

Dk =
N∑

n=1

√
(xk − xn)2 + (yk − yn)2 (4.3)

The speed differences between k to all other N vehicles in the same cluster is

Vk =
N∑

n=1

|vk − vn| (4.4)

The maximal acceleration differences between k to all other N vehicles in the

same cluster is

Ak =
N∑

n=1

|ak − an| (4.5)

The relative mobility metric M is

Mk = α
Dk

max {Dn|∀n ∈ Ci}
+ β

Vk
max {Vn|∀n ∈ Ci}

+ γ
Ak

max {An|∀n ∈ Ci}
(4.6)

, where α, β, and γ are the weighted coefficients. α+β+γ = 1. They can be adjusted

to fit the different traffic conditions.

The relative mobility metric M evaluates the relative position, speed and max-

imal acceleration differences between one vehicle to all other vehicles in the same

cluster. A smaller M indicates the vehicle has lower relative mobility than other

vehicles in this cluster. Cluster Head Selection Algorithm shown in Fig. 28 explains

the process of Cluster Head selection. All clusters formed with the help of centers

and intersections use Cluster Head Selection Algorithm to select CH. As a CH, the

vehicle’s relative mobility metric is smaller than any CMs. That means the motion

mode of CH is similar to the whole cluster.
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4.2.2.2 Cluster Maintenance and Reforming

The unpredictability and mobility of traffic make the cluster lifetime temporary.

It is infeasible to reform clusters in real time or very frequently. To minimize the

frequency and overhead of cluster reforming, we propose a cluster maintenance algo-

rithm. Cluster Maintain Algorithm shown in Fig. 29 explains the cluster maintenance

process.

1)No connections between CH and CM

When a CH cannot connect to a CM, the CH will delete the CM from its record

and notice eNodeB. When a CM cannot reach its CH, the CM will check the signal

it received via DSRC, and join the cluster whose signal of CH is strongest. If the CM

cannot receive a message strong enough, it will notice eNodeB via LTE and become

a CH.

2)No connections between eNodeB and CH

When eNodeB notices it has lost connection to a CH, it recalls Cluster Head

Selection Algorithm and a new vehicle will be CH of that cluster instead of the

leaving vehicle.

3)A vehicle joins the network

When a vehicle comes into the network, it first tries to join the nearest cluster

by broadcasting a CH request via DSRC. If it fails, it will send a message to eNodeB.

eNodeB will help the vehicle to join a cluster, or to be a CH and form a new cluster

by itself.

4)Two clusters are too close

With the movement of the vehicles, two clusters may be very close. When the

distance between two CHs is shorter than R for a period ∆t, the two clusters are

merged into one cluster. The Cluster Head Selected Algorithm is recalled. A new CH
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for the new cluster is selected. Then, all vehicles, which are out of the transmission

range of the new CH, leave this cluster and check the invitation signal they have

received via DSRC, and join the cluster whose signal of CH is the strongest. If a

vehicle does not find a cluster to join in, it notices eNodeB via LTE and becomes a

CH.

4.3 Performance Evaluation

4.3.1 Simulation Parameter

We perform the simulation with the help of Veins LTE. Veins LTE is a simulator

developed on Veins [76], which is an open source framework for simulation of vehicular

networks based on both IEEE 802.11p and LTE. It integrates a network simulator

named OMNeT++ and a traffic simulator named Simulation of Urban MObility

(SUMO) [77].

In our experiment, vehicles run on a real map of Washington, D.C., USA, ob-

tained from OpenStreetMap[78]. We extract the data of highways in the center of

Washington, D.C.. The total length of road is 30.38 km. The total lane length is

90.09 km. Every vehicle has random source and destination edge. The route from

the starting point to the destination is the shortest path found by Dijkstra’s algo-

rithm[79]. The maximal acceleration ability of vehicles we have used is 2.6 m/s2. The

maximal deceleration ability of vehicles is 4.5 m/s2. The vehicle’s maximum velocity

is 55.55 m/s.

We compare our proposed clustering algorithm, Center-Based Stable Clustering

Algorithm (CBSC), with a K-Means-Based method (KMB) and SCalE algorithm[61].

K-means algorithm[80] is commonly used in VANETs for clustering, e.g. [81], [82],

and [83]. In KMB method, we divide the vehicles into two parts by the angle of the
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vehicles and perform KMB on them respectively. The cluster maintenance algorithm

KMB uses is proposed in [62]. The predefined threshold ∆vth is 5 m/s. In the

simulations, all vehicles’ movement information is resent to eNodeB for cluster status

update in every 10 seconds. eNodeB needs exchange data with vesicles in every 3

seconds. The simulation time is 503 seconds.

4.3.2 Results and Analysis

The goal of this paper is to propose a stable clustering algorithm for VANETs.

To check whether a clustering algorithm can solve the high mobility of vehicles on

the highways, the cluster stability should be evaluated. The metrics we use to show

the performance of clustering algorithm are as follows:

1) Average CH Lifetime: The CH lifetime is the period from the vehicle to be

a CH to it is not a CH (i.e., be a CM or leave the system). When a CH ends its

lifetime, a new CH is elected, or the cluster is dissolved.

2) Average CM Lifetime: CM lifetime represents the duration of a CM stays in

the same cluster. The average CM lifetime is the average length of all vehicles’ CM

lifetime. It is another important metric to evaluate the stability of clusters.

3) Average Number of Re-affiliation Times per Vehicle: The average number

of re-affiliation times per vehicle represents the average number of times a vehicle

changes the cluster it belongs to during the simulation time.

4) Packet Loss Rate: Packet loss rate is the percentage of packets lost with

respect to packets sent.

In the experimentation, we compare the four metrics of the three methods with

different vehicle numbers, transmission ranges, or highway speed limits. Fig. 30, Fig.

32, Fig. 34, and Fig. 36 show the results obtained with the variety of total vehicle

number (N) and the variety of transmission range (R), when the highway speed limit
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(v) is 100 km/h. Fig. 31, Fig. 33, Fig. 35, and Fig. 37 show the results obtained

with the variety of transmission range (R) and the variety of highway speed limit (v),

when the total vehicle number (N) is 300.

Fig. 30 and Fig. 31 represent the average CH lifetime for the three methods.

Those figures enlighten the CHs under KMB have a marked shorter lifetime. Although

our CBSC has a higher value than SCalE a few times, in general, SCalE performs

slightly better than CBSC on the average CH lifetime.

The average CM lifetime values produced by KMB, SCalE and the CBSC meth-

ods are shown in Fig. 32 and Fig. 33. From those two figures, we can see that

the average CM lifetime produced by CBSC is much longer than other two methods.

ScalE has the worst performance on the average CM lifetime.

Fig. 34 and Fig. 35 show the average number of re-affiliation times per vehicle

obtained in 503 seconds. Obviously, comparing to other two algorithms, vehicles with

ScalE change status much more frequently. The data on the two figures shows CBSC

not only produces a lower cluster status change frequency than KMB produces, its

superiority but also is bigger with the increase in highway speed limit.

The results of simulation illustrate that clusters under CBSC are the stablest in

the three algorithms. They have the longest average CM lifetime and lowest average

number of re-affiliation times per vehicle. Although SCalE performs slightly better

than CBSC on the CH lifetime experiment, it produces a much shorter average CM

lifetime. Besides, the number of CMs is much larger than the CHs in one system.

Therefore, we consider that CBSC has higher stability than SCalE.

The basic function of VANETs is allowing communication between separated ve-

hicles and infrastructures. To test the performance of data dissemination in VANETs,

we do experiment on packet loss rate with different methods. Packet loss means a

packet fails to arrive at its destination. A high packet loss rate decreases the data
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dissemination efficiency and may cause network congestion. Therefore, an efficient

data dissemination mechanism should have a low packet loss rate. In our experiment,

all vehicles exchange data with eNodeB every three seconds. That means in every

three seconds, eNodeB sends data to all vehicles once, and each vehicle sends data to

eNodeB once. Like the scene we described in the previous section, eNodeB communi-

cates with the nodes in its record via CHs, and vehicles which are CMs send data to

their CHs first. Fig. 36 and Fig. 37 show the results of packet loss rate. With the in-

crease in vehicle velocity or the transmission range, the packet loss rates obtained by

all the three mechanisms decrease. But CBSC gets lower packet loss rate, while KMB

performs the worst, when the amount of vehicle is larger. That insinuates CBSC has

a good ability to handle a considerable amount of data. In the experiment, CBSC al-

ways obtains lowest packet loss rate. Since the interval between cluster status updates

is 10 seconds, we can know that the probability of CM leaving its CH between two

cluster status updates in CBSC is lower than other two algorithms. We can consider

that the proposed relative mobility metric M and CH selection algorithm of CBSC

do reduce the impact of vehicle mobility to cluster stability.

4.4 Conclusion

To decrease the management overhead and increase the quality of communica-

tions, we try to make the clusters in VANETs as stable as possible while keeping

the network performance acceptable. In this task, we propose a stable clustering

algorithm for VANETs on highways, which utilizes direction vector, the centers of

vehicle denser areas and intersections to group less quantity of more stable clusters.

To reduce the impact of vehicle type and drivers’ driving habits, we propose a novel

CH selection algorithm and cluster maintenance algorithm, which use the relative

mobility metric to reduce the influence of vehicle’s distance, velocity, and maximal

66



acceleration. In the simulation experiment, our algorithm’s performance ranks up

against other two algorithms’ (KMB and SCalE) on both stability and package de-

livery rate. In the future, we would like to further improve the algorithm for the

complex urban environment.
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Direction type is decided by the the vector from the current
position to the destination. For vehicle k, whose destination
position is px1

k, y1
kq, the direction vector

›Ñv k “ px1
k ´ xk, y1

k ´ ykq (1)

The Direction Angle ✓k of vector ›Ñv k is

✓k “ tan´1 y1
k ´ yk

x1
k ´ xk

(2)

When ✓k P r0˝, 90˝q, tk “ 1. When ✓k P r90˝, 180˝q, tk “ 2.
When ✓k P r180˝, 270˝q, tk “ 3. When ✓k P r270˝, 360˝q,
tk “ 4. Vehicles have different t are managed respectively.

The clustering algorithm is described in Algorithm 1.
After receiving the beacon message, the system analyzes

vehicles’ position information, and detect the centers of the
ranges where the vehicle density is higher than other areas. If
the vehicle quantity and the vehicle density are not very large.
An improved Highest-Degree Algorithm is applied. Several
vehicles which have more neighbors in their transmit range are
detected. We improve the original Highest-Degree Algorithm
to make sure the distance between any two vehicles we de-
tected is larger than the DRSC range. The positions of detected
vehicles will be the centers we use in the clustering algorithm.
Otherwise, when the vehicle quantity and the vehicle density
are very large, to decrease the complexity and analyze time,
the system draws dots on the map to indicate vehicles. The
blob detection algorithm[11] is used to detect the centers of
regions on the map where the gray pixel value is greater.

All vehicles whose distance to the center are not larger than
the range of DSRC are labeled as one cluster. Then, for every
center select the nearest intersection among all intersections
meet the following conditions:

1. The distance from it to the points in P is not smaller
than the range of DSRC.

2. The intersection is not in any cluster’s region.
Vehicles are grouped into clusters near those selected in-

tersections. Then, eNodeB uses the same way to select inter-
sections near the selected intersections and groups vehicles.
After iterations, un-grouped vehicles are grouped into clusters.
The distance between two vehicles in the same cluster is
not larger than the range of DRSC. To further decrease
computing complexity, in line 9 of Clustering Algorithm, a
vehicle or infrastructure located in the center or intersection
can broadcast a request to invite vehicles to join the cluster.
In line 26, the chosen vehicle e can broadcast an invitation
instead of calculating distance by the system.

C. Cluster Head Selection

Compare to other MANETs, VANETs have lower stability,
because of the high mobility of vehicles. Although we divided
the vehicles with the help of direction vector ›Ñv k, the stability
of clusters cannot be guaranteed. To select an appropriate
Cluster Head that can increase the cluster lifetime and decrease
the CH reselecting frequency, a relative mobility metric M is
introduced for CH election.

Algorithm 1: Clustering Algorithm
Input: Vehicle set V
Output: Initial clusters

1 Initialize center set C “ �;
2 Locate the centers;
3 Add the centers into C;
4 Initialize point set P “ C;
5 while P ‰ � do
6 foreach point p in P do
7 Initialize node set clusterp “ �;
8 foreach vehicle e in V do
9 if dep § R then

10 Add e into clusterp;
11 Remove e from V ;
12 end
13 end
14 if clusterp ‰ � then
15 Call Algorithm 2;
16 Return set clusterp;
17 Add the intersection nearest to p which meets

the conditions into P ;
18 end
19 Remove p from P ;
20 end
21 end
22 while V ‰ � do
23 foreach point c in C do
24 Select an element e in V nearest to c;
25 Initialize set clustere “ teu;
26 Remove e from V ;
27 Set e as CH;
28 foreach vehicle v in V do
29 if dev § R then
30 Add v into clustere;
31 Remove v from V ;
32 end
33 end
34 Return clustere;
35 end
36 end

For a vehicle k, which is in the cluster clusteri, the position
differences between it to all other N vehicles in the same
cluster clusteri is

Dk “
Nÿ

n“1

b
pxk ´ xnq2 ` pyk ´ ynq2 (3)

The speed differences between k to all other N vehicles in
the same cluster is

Vk “
Nÿ

n“1

|vk ´ vn| (4)

The maximal acceleration differences between k to all other

Fig. 27. Clustering Algorithm
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Algorithm 2: Cluster Head Selection Algorithm

Input: Vehicles in one cluster
Output: Cluster head o of the corresponding cluster

1 Set Mmin = +1;
2 foreach vehicle k do
3 Calculate the relative mobility metric Mk;
4 if Mk < Mmin then
5 Mmin = Mk;
6 o = k;

7 end

8 end
9 return o;

2

Fig. 28. Cluster Head Selection Algorithm

cluster clusteri is

Dk “
Nÿ

n“1

b
pxk ´ xnq2 ` pyk ´ ynq2 (3)

The speed differences between k to all other N vehicles in
the same cluster is

Vk “
Nÿ

n“1

|vk ´ vn| (4)

The maximal acceleration differences between k to all other
N vehicles in the same cluster is

Ak “
Nÿ

n“1

|ak ´ an| (5)

The relative mobility metric M is

Mk “ ↵ Dk

maxtDn|@nPCiu ` � Vk

maxtVn|@nPCiu ` � Ak

maxtAn|@nPCiu (6)

, where ↵, �, and � are weighted coefficients. ↵`� ` � “ 1.
They can be adjusted to fit the different traffic conditions.

The relative mobility metric M evaluates the relative posi-
tion, speed and maximal acceleration differences between one
vehicle to all other vehicles in the same cluster. A smaller
M indicates the vehicle has lower relative mobility than other
vehicles in this cluster. Algorithm 2 explains the process of
Cluster Head selection. All clusters formed with the help of
centers and intersections use Algorithm 2 to select CH. As a
CH, the vehicle’s relative mobility metric is smaller than any
CMs. That means the motion mode of CH is similar to the
whole cluster.

Algorithm 2: Cluster Head Selection Algorithm
Input: Vehicles in one cluster
Output: Cluster head o of the corresponding cluster

1 Set Mmin “ `8;
2 foreach vehicle k do
3 Calculate the relative mobility metric Mk;
4 if Mk † Mmin then
5 Mmin “ Mk;
6 o “ k;
7 end
8 end
9 return o;

D. Cluster Maintenance and Reforming

The unpredictability and mobility of traffic make the cluster
lifetime temporary. It is infeasible to reform clusters in real
time or very frequently. To minimize the frequency and
overhead of cluster reforming, we propose a cluster mainte-
nance algorithm. Algorithm 3 explains the cluster maintenance
process.

1)No connections between CH and CM
When a CH cannot connect to a CM, the CH will delete the

CM from its record and notice eNodeB. When a CM cannot

reach its CH, the CM will check the signal it received via
DSRC, and join the cluster whose signal of CH is strongest.
If the CM cannot receive a message strong enough, it will
notice eNodeB via LTE and become a CH.

2)No connections between eNodeB and CH
When eNodeB notices it has lost connection to a CH, it

recalls Cluster Head Selection Algorithm and a new vehicle
will be CH of that cluster instead of the leaving vehicle.

3)A vehicle joins the network
When a vehicle comes into the network, it first tries to join

the nearest cluster by broadcast a CH request via DSRC. If
failed, it sends a message to eNodeB. eNodeB will help the
vehicle to join a cluster, or to be a CH and form a new cluster
by itself.

4)Two clusters are too close
With the movement of the vehicles, two clusters may be

very close. When the distance between two CHs is shorter
than R for a period �t, the two clusters are merged into one
cluster. The Cluster Head Selected Algorithm is recalled. A
new CH for the new cluster is selected. Then, all vehicles
which are out of the transmission range of the new CH leave
this cluster and check the invitation signal they received via
DSRC, and join the cluster whose signal of CH is strongest. If
a vehicle does not find a cluster to join in, it notices eNodeB
via LTE and becomes a CH.

Algorithm 3: Cluster Maintenance Algorithm

if the eNodeB can not reach a CH then
Call Cluster Head Selection Algorithm;

end
if the CH can not reach a CM then

Reomve the CM;
Notice eNodeB;

end
if the distance between two CHs § R for a period �t
then

Merge the two clusters into one cluster;
Call the Cluster Head Selected Algorithm;

end
if a CM can not reach the CH then

if it can receive a signal from CHs then
Join the cluster whose signal of CH is strongest;

end
else

Notice eNodeB;
The node performs as a CH;

end
end

IV. PERFORMANCE EVALUATION

A. Simulation Parameter

We perform the simulation with the help of Veins LTE.
Veins LTE is a simulator developed on Veins [12], which is an
open source framework for simulation of vehicular networks

Fig. 29. Cluster Maintenance Algorithm
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Fig. 30. Average CH Lifetime VS. N and R

Fig. 31. Average CH Lifetime VS. R and v
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Fig. 32. Average CM Lifetime VS. N and R

Fig. 33. Average CH Lifetime VS. R and v
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Fig. 34. Average Number of Re-affiliation Times per Vehicle VS. N and R

Fig. 35. Average Number of Re-affiliation Times per Vehicle VS. R and v
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Fig. 36. Packet Loss Rate VS. N and R

Fig. 37. Packet Loss Rate VS. R and v
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Thrust II: Security and Privacy Protection in VANETs

CHAPTER 5

TASK II.1: IMPROVING SECURITY AND STABILITY OF AODV

WITH FUZZY NEURAL NETWORK IN VANETS

5.1 Problem Statement

The Ad hoc On-Demand Distance Vector (AODV) is a routing protocol for the

nodes in MANETs. It was proposed in 2003 by Perkins et al. [84] provides some

details and analyses for a MANET. The MANET has tens to thousands of nodes,

and all nodes are trustable.

There are four message types in AODV. They are Route Requests (RREQs),

Route Replies (RREPs), Route Error (RERRs), and Route Reply Acknowledgment

(RREP-ACK). An RREQ message contains the information about the request ID,

transmitting methods, the hop number from the originator to the node handling

the request, IP address of destination and originator, and the sequence numbers

of destination and originator. An RREP message contains the information about

transmitting methods, subnet prefix, hop number, IP address of destination and

originator, the sequence numbers of destination and originator, and the valid route

lifetime. An RERR message contains the No delete flag, the unreachable destinations

number, unreachable destination IP address, and unreachable destination sequence

number. If an RREP message requires acknowledgment, an RREP-ACK Message will

be sent back to notice that the links may be unidirectional.
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In the networks, each node uses route table to record route information. A

node creates a new route table entries after creating or getting a route to a new

destination. When it receives a fresher route or shorter route, the route table should

update. When nodes receive messages, they can use the sequence number to check

whether the information is fresher than the previous one. Therefore, route table

entries in each node also record the latest sequence number of the corresponding

destination. When the node gets a new sequence number from RREQ, RREP or

RERR messages, the route table entry will update. The nodes in the networks must

maintain its destination sequence number. To make sure the route is valid when it is

used, the routing table entry also contains its lifetime and a list of precursors.

When a node wants to communicate with another node which it can not find a

valid route to, the node will create and broadcast an RREQ message. Then, the node

waits for an RREP with the route to the destination. If the waiting time is longer

than NET TRAVERSAL TIME, it will rebroadcast a new RREQ message. Then,

after 2*NET TRAVERSAL TIME, it resends another RREQ message. And so on.

When the number of resending RREQ messages is higher than RREQ RETRIES, the

node will consider the destination to be unreachable.

When a node received an RREQ message, it checks its ID and originator IP

address. If the originator is itself or it has already received one same request, the node

discards this message. If not, the node searches, creates or updates the reverse route

from it to the originator. If the node has a valid route or it is the destination, it will

create and transmit an RREP message to the next hop to the originator. Sometimes,

an intermediate node should send a gratuitous RREP message to the destination after

sending an RREP message to the originator. The destination and originator of the

gratuitous RREP are the originator and destination of original RREQ message.

After receiving an RREP message, the node finds or creates a route to the pre-
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vious hop. If this node does not have a route to the destination, the node will create

one. Otherwise, it will find the fresher route between the route it records and the

route stored in the RREP message, and use the fresher one to replace another. If

required, the node also needs to send an RREP-ACK message back when the link to

the originator has a possibility to be unidirectional or cause an error. If an RREP

message transmission failure occurs, the node will add the next-hop into its blacklist

for a period. RREQ messages send by the nodes in blacklist are ignored.

A node, which is a part of an active route, periodically broadcasts the HELLO

messages to its neighbors. A HELLO message is a kind of RREP. The destination

of HELLO message is the node itself. Hop Count is 0. Its TTL is just 1. If a node

does not get a HELLO message from one neighbor for a period, the node considers

that the connection to that neighbor is broken. If a node receives a HELLO message

from a new node, it can create a new route. If a node receives a HELLO message

from a recorded neighbor, it can update the route lifetime and Destination Sequence

Number.

A node in an active route also has the duty to keep a close watch on the next hops.

When it detects that the link to its next hop is broken, the next hop is considered

to be lost. Then, the node sends an RERR message to its precursors. AODV also

provides detailed methods to handle some other problems and repair the broken links.

AODV is one of the most common routing protocol for mobile ad hoc networks.

It makes sure the route is fresh and overhead is low. However, it only suits for small

ad hoc networks. AODV cannot handle MANETs has a large number of nodes with

high mobility, such as VANETs. Literature [85] conducts a simulation to evaluate its

performance in real urban environment. The results illustrate some improvement is

necessary for applying AODV in VANETs.
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5.2 Proposed Approach

5.2.1 Improving AODV Protocol with Fuzzy Neural Network

5.2.1.1 Arithmetic Statement

Stability and security judgment throughout the improved AODV. Its success is

directly related to the smooth operation of the entire routing protocols. In this task,

GASA-FNN is used to improve the scheme based on Genetic Simulated Annealing

Algorithm (GASA). Firstly, factors impact security and stability of nodes are taken as

the node’s security measures and stability measures, and they are normalized. Then,

fuzzy neural networks are used to carry out fuzzy calculations on safety metrics and

stability metrics, and genetic simulated annealing is used to optimize parameters used

in the calculation process. Finally, node stability and node trust values are obtained

and discriminated in the routing process. The system structure is shown in Fig. 38.

Fig. 38. GSS-AODV Structure

5.2.1.2 Node Stability Metrics

Based on the classical AODV protocol algorithm, the relative velocity u and the

relative distance d between nodes are extracted, and the node load q is the key factor
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to measure the node stability. After the above factors are normalized and compre-

hensively processed, the node stability can be obtained through fuzzy processing to

be used in the improved GSS-AODV algorithm.

Set Ni neighbor nodes of node i to form Φi collection. j is a node in set Φi.

The normalized relative velocity between i and j is defined as formula (5.1). umax

is the maximum relative rate between vehicles, such as within the city speed limit

60km/h, the maximum relative rate of 120km/h.

unomalij =
|−→u i −−→u j|
umax

(5.1)

Suppose the coordinates of node i and neighbor node j are (xi, yi), (xj, yj), then

the relative distance between nodes i and j is defined as formula (5.2).

dij =
√

(xi − xj)2 + (yi − yj)2 (5.2)

Then, the normalized relative distance is defined as formula (5.3), where dmax is

the maximum communication distance, taking 250m.

dnomalij =
dij
dmax

(5.3)

Suppose the load of neighbor j is qi, that is, the number of packets stored in the

cache queue of this node. Let qmax represent the total length of the queue cached

by the node, that is, the maximum number of packets allowed to be stored. The

normalized load is defined as formula (5.4).

qnomalij =
qij
qmax

(5.4)
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5.2.1.3 Node Security Metrics

Several common VANETs internal attacks are: random data packet loss in the

process of forwarding; packet tampering and forgery; entice the surrounding nodes to

send data packets to malicious nodes to launch black hole attacks. By analyzing these

attacks, we can see that when the internal nodes are attacked, the repetition rate of

data packets may be too large. When there are attacks such as black hole attacks and

selective forwarding, there should be an abnormal number of packets sent[86]. The

neighbor table corresponding to a node has a certain correlation, and the neighbor

table between normal nodes should be repeated to some extent. Therefore, the packet

content repetition rate, the number of packets[87], and the relevance of surrounding

nodes can be used as detection factors for malicious nodes in the improved AODV

algorithm. Based on the classical AODV protocol algorithm, the detection factors

are extracted, normalized, and integrated, and then the node trust value is obtained

through the fuzzy processing.

Set Ni neighbor nodes of node i to form Φi collection.

As shown in the formula (5.5), Sij(t) represents the normalized packet repetition

rate, Tij(t) represents the normalized packet transmission factor, and Uij(t) represents

the normalized node similarity.





Sij(t) =
pij(t)−spij(t)

Pij(t)

Tij(t) =
|pij(t)−∆p(t)|

pij(t)

Uij(t) =

∑
c∈Nij(t)

1
logk(c)∑

c∈Nij(t)
1





(5.5)

where pij(t) is the number of packets between i and j at the t moment, spij(t) is

the number of repeated packets between i and j at the t moment, and the ∆p(t) is

the expected value of the number of packets. Uij(t) is measured by Adamic-Adar[88]

79



indexes. Nij(t) is the intersection of the neighbor set of node i and the neighbor set

of node j at the t moment. c is the common neighbor of two nodes, logk(c) is the

logarithm of node degree.

5.2.1.4 Fuzzy Neural Network

In this task, a multi-input and single-output neural network is used. Input

normalized relative velocity, the normalized relative distance and the normalized load,

with the help of fuzzy neural network, we get the node stability. Similarly, we use

fuzzy neural network, the normalized packet repetition rate, the normalized packet

transmission factor, and the normalized node similarity to calculate node trust value.

Fuzzy Neural Network structure is shown in Fig. 39.

Fig. 39. Fuzzy Neural Network Structure

Take trust value evaluation as an example. The first layer is the input layer,

which is responsible for passing the input variables to the second layer. The input

value is the exact value. The number of nodes is the number of input variables.
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Therefore, this layer has three neuron nodes, also known as three variables, S, T ,

and U . The second layer is the fuzzy layer, which is mainly to blur the input values.

The S, T , and U are converted into three fuzzy subsets {high,middleandlow}, which

can be represented as {h,m, l}, and there are 9 nodes. uij means j-th membership

fuzzy subset of variables i. In this task, we use the Gaussian function. The third

layer is the fuzzy rules reasoning layer. Each node of this layer corresponds to a fuzzy

rule, which is connected to the fuzzy subset of every variable in the second layer, and

there are 27 nodes, which correspond to 27 rules of the inference. The fourth layer is

the defuzzy layer. The fuzzy value of the fuzzy inference is converted into an exact

value, and the gravity method is used to blur it, and the output value of the neural

network is obtained. ρk is the connection weight of the third and fourth layers. Y is

the deterministic solution of the problem and the node trust value.

5.2.1.5 Optimizing the Fuzzy Neural Network with Genetic Simulated

Annealing Algorithm

In this task, we combined genetic algorithm and simulated annealing algorithm

to optimize the parameters used in the fuzzy neural network.

A group of initial population for the global optimal search process is randomly

generated. The fitness of each individual is evaluated. A portion of this population

is selected to generate a new group of individuals by selection, crossover, mutation

and other genetic operations. Then, with the help of simulated annealing algorithm,

the individual is fine-tuned to get a higher fitness. The process runs iteratively until

some termination condition is satisfied. In summary, there is a thought that the simu-

lated annealing algorithm is dissolved in the running of the genetic algorithm, which

not only has the advantages of the genetic algorithm and the simulated annealing

algorithm but also overcomes the corresponding deficiencies[89].
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5.2.2 GSS-AODV Protocol Description

5.2.2.1 Routing Initiation

When a source node needs to communicate with a destination node, it first

performs a route initiation process and broadcasts the RREQ packet to its neighbors.

Fig. 40 presents a process flow diagram.

Start

Receive the RREQ package

Loop

Duplicate

Reverse route has been established

Good quality and fresher

Discard

Establish
reverse route

Yes

No

No

Yes

Yes

No

Update reverse
route

Yes

self stability > threshold

No
No

Destination

Yes

Active route to the destination
No

Calculate link quality  
send RREP to originator 

Yes

Calculate link quality  
broadcast RREQ End

No

trust value > threshold

Yes

No

Fig. 40. Routing Initiation Process Flow Diagram
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The neighbor nodes that receive the RREQ package perform the following oper-

ations in turn:

1) Check for loop, if a loop discards the RREP package.

2) Check for duplicate RREQ packages. If a RREQ package is repeated, discard

the RREQ package.

3) Check whether the reverse route to the source node has been established. If

the new route has higher quality or similar quality and is fresher than the recorded

route, update the last-hop route. Otherwise, a reverse path to the source node should

be established. The link quality of the current path is the sum of all nodes’ stability

encapsulated in the RREQ message divided by the length of route.

4) Set a stable threshold with an initial value of 0.5 in the neighbor node. During

a period, the neighbor nodes will use the node stability of the neighbor nodes stored

in the neighbor table to calculate the average node stability and update the stability

threshold. When the node stability is greater than 0.5 or the stability threshold, the

RREQ packet is forwarded. This ensures that stable nodes with stability greater than

0.5 are always able to participate in forwarding. When the node is in the unstable

state, it is prevented to participate in forwarding, and the utilization of it is reduced.

Therefore, with the help of the stability threshold, it ensures link quality and avoids

the entire network forwarding of RREQ messages.

5) Neighbor nodes accumulate the stability and store them in the RREQ packet,

then, broadcast RREQ to their neighbor nodes. Different from the AODV proto-

col, the stability of a node has an active route to the destination still needs to be

evaluated. This helps the source node to consider the link quality of the entire path

comprehensively. When node stability meets the requirement, the node calculates the

link quality from the source node to the destination node and sends an RREP packet

containing this link quality to the source node.
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6) Every node calculates the average of its neighbors’ trust value. Node put the

neighbor nodes, whose trust value is smaller than 0.5 or the average neighbor trust

values, as in blacklist. They do not participate in the current node routing process.

Their messages are ignored.

7)The process ends after the destination node is reached.

5.2.2.2 Routing Choice

RREQ packet is continuously forwarded. Thus, the destination node finally

received the RREQ. When the destination node receives the RREQ packet, the node

performs a routing process:

1) When the destination node receives the RREQ packet, it first waits for a route

discovery period and continuously accepts the RREQ packet before the waiting time.

2)After the waiting time is over, the destination node calculates the link quality

according to the cumulative sum of node stability and the number of hops contained

in the RREQ packet using formula (5.6), to evaluate the link quality:

LQm =
Stm
N

(5.6)

Where LQm represents the link quality of the m-th link, Stm represents the sum

of node stability of the m-th link, and N is the number of link hops. The higher the

node stability of the path is and the smaller the number of hops is, the better the

link quality is. Compared with AODV, only the path with the smallest hop count is

considered, the improved routing protocol can choose a more stable path based on

the relatively fewer hops.

3) During the process of receiving, if the path contained in RREQ is fresher or

has higher quality than the route in the routing table, the route table should update.
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4) When the originator receives an RREP packet, it first checks whether the

reverse route of the destination node is established and then determines whether the

route needs to be updated by comparing the quality of the link. This process ensures

that the reverse path is always stable, then selects the most stable link for data

transfer.

5.2.2.3 Routing Maintenance

Nodes periodically send HELLO message to maintain a connection between their

neighbor nodes. HELLO message encapsulates node information. Its TTL is 1.

When a node receives a HELLO message from a neighbor node for the first time,

it adds the neighbor to its neighbor table and then uses the fuzzy neural network to

calculate the node trust value of the corresponding node. It records the repetition

rate, the number of packets, the relevance of surrounding nodes, and the average trust

values of all the current neighbors in the packet used in the current calculation as

training data of the simulated genetic annealing algorithm in the neighbor table.

When a node receives a HELLO message from its neighbor node which is already

recorded in the neighbor table, the node first uses the node information encapsulated

in the message and the fuzzy neural network to update the node stability and the

node trust value, and then prolongs the lifetime of the corresponding neighbor node

in the neighbor table.

From time to time, the node checks whether the survival time of all the nodes

is less than the current time and considers whether the neighboring node is lost. In

the improved routing protocol, when the node is lost, the time difference td between

the lost time and the received first HELLO message moment is the actual link time

with the neighboring node. Calculate the node actually stable Str by formula (5.7),

where MT represents the average node link duration.
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Str =
−1(

td
MT

+ 1
) + 1 (5.7)

This function has a stability of 0.5 at td = MT and a positive limit of 1. This

Str is used as the output of training data of genetic simulated annealing algorithm,

and the corresponding information of the neighbor table is input as training data to

optimize the parameters of the fuzzy neural network. Finally, the lost neighbor node

is deleted from the neighbor table. To ensure that the actual stability of the node

always meets the current motion environment of the node, the node calculates the

average link duration of all the neighboring nodes in the time and updates the MT

from time to time.

5.3 Performance Evaluation

In this task, the network simulation software NS2 (Network Simulator Version

2) is used to simulate the improved GSS-AODV protocol and the original AODV

protocol.

5.3.1 Stability Experimental Results and Analysis

First, we test the routing performances of GSS-AODV and AODV with different

quantity of vehicles when the vehicle speed is 20 ∼ 120m/s.

Fig. 41 (a) shows the change of delivery rate of AODV and GSS-AODV packets

with the increase in the number of vehicles. The GSS-AODV routing protocol finally

obtains the link quality by calculating the node stability, which is used to evaluate

the link stability. Therefore, the stable link is always selected in the route initiation

and selection part to avoid data packet loss. In addition, GSS-AODV can dynami-

cally adjust the parameters used by the fuzzy neural network according to different

environments to improve the accuracy of selecting a stable link. Therefore, when
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the number of nodes is the same, the packet delivery rate of GSS-AODV protocol is

always higher than that of AODV protocol, and the relative stability is high.

Fig. 41 (b) shows the end-to-end average delay of AODV and GSS-AODV routing

protocols with the increase in the number of nodes. Because the GSS-AODV protocol

considers the node load when selecting the link, the node load is taken as a factor

to calculate the node stability. Therefore, when the number of nodes is small, GSS-

AODV can select a stable and low-load link for data transmission, reduce the queuing

time, and reduce the end-to-end delay. When the number of nodes continues to

increase, the number of optional paths increases, the load on the nodes generally

decreases, and the influence of the node load on the link stability decreases. GSS-

AODV will optimize the algorithm parameters through simulated genetic annealing

to reduce the weight of the node load in the calculation stability of the fuzzy neural

network.

Fig. 41 (c) shows the changes in routing overhead of the two routing protocols,

AODV and GSS-AODV, with the increase of the number of nodes. As shown in

the figure, with the number of nodes increases, the control overhead of the AODV

and GSS-AODV routing protocols also increases. However, the GSS-AODV protocol

determines whether to forward the message according to the node stability decision

result in the route initiation stage, which limits the flooding of the RREQ message in

the network. And GSS-AODV always selects the stable link to transmit data. That

link is not easily broken. The number of route repairs is reduced, and the source node

does not need to frequently initiate the route, thereby reducing the number of RREQ

transmissions.

Then, we test the GSS-AODV protocol routing performance under different ve-

hicle maximum moving speed when the number of vehicles is 100.

Fig. 41 (d) shows the packet delivery rate of AODV protocol and GSS-ADOV
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protocol with the maximum moving speed of vehicle nodes increases. GSS-AODV

routing protocol uses a fuzzy neural network to calculate the node stability. We can

get the link quality to evaluate the link stability. In the route initiation and selection

part, GSS-AODV always chooses a stable link transmission data, and the link has

a lower probability to disconnect. The parameters of the fuzzy neural network are

optimized by genetic simulated annealing algorithm under different vehicle speed.

The weight of the vehicle speed in the node stability calculation is changed to ensure

the stability of the selected link.

Fig. 41 (e) shows the end-to-end average delay of AODV protocol and GSS-

AODV protocol with the increase in the maximum moving speed of vehicles. At

low speed, because GSS-AODV waits for a route discovery cycle, it will cause some

network delay. However, early restoration is added during route restoration to avoid

the delay caused by packet loss. At high speed, the GSS-AODV protocol always

selects the stable link to transmit data, which can reduce the delay caused by the

route repair.

Fig. 41 (f) shows the routing overhead of AODV protocol and GSS-AODV

protocol with the increase in the maximum moving speed of vehicles. GSS-AODV

controls the forwarding of RREQ by the unstable node in the route initiation part

and adjusts the weight of movement speed in the fuzzy neural network according to

the motion condition and the parameters controlled by genetic simulated annealing

algorithm. The GSS-AODV can select stable links to transmit data at different

speeds to reduce the routing overhead required by rerouting the links when the links

are disconnected.
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5.3.2 Security Experimental Results and Analysis

First, we test the routing performance of the GSS-AODV protocol under the

different number of black hole nodes, when the number of vehicles is 100.

Fig. 42 (e) shows the packet loss ratio of AODV protocol and GSS-ADOV

protocol with the number of black holes increase. As the figure shows, with the

increase in the number of black hole nodes, more REEQ packets are phagocytic, and

the loss rate of the two protocols increases. The GSS-AODV routing protocol uses

fuzzy neural network to calculate the node trust value and select the nodes with

high trust value to participate in the routing initiation. It reduces the probability of

attack and the number of nodes in different situations by genetic simulated annealing

algorithm, so as to optimize the parameters of fuzzy neural network and change the

node correlation in the node trust value weight calculation the increased probability

of select safe node.

Fig. 42 (a) shows the end-to-end average delay of AODV and GSS-AODV with

the increase in the number of black hole nodes. In the environment with fewer black

hole nodes, the GSS-AODV protocol preferentially selects the nodes with higher trust

values to participate in the routing process, which causes certain network delay. How-

ever, routing protocol optimizes the parameters according to the specific conditions

and avoids prolonged delay, so that the average delay does not show a large gap. With

the increase of black hole nodes quantity, the GSS-AODV protocol always selects the

nodes with higher trust values to participate in the routing process and reduces the

probability of routing requests being swallowed by the attacking nodes.

Fig. 42 (c) shows the routing overhead of AODV and GSS-AODV with the

increase in the number of black hole nodes. When the number of black hole nodes

increases, both the probability of losing RREQ and the number of control messages
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between nodes increase. Therefore, the routing load increases. However, since the

GSS-AODV controls the forwarding of the RREQ through the node trust value in

the routing initiation part and uses the genetic simulated annealing algorithm to

control the parameters, the weight of the node similarity in the fuzzy neural network is

adjusted according to the condition of the black hole node. In different environments,

GSS-AODV can select the secure node to participate in the routing process to reduce

the routing overhead required for initiating the route initiation due to the black hole

node attacks.

We also test the routing performance of the GSS-AODV protocol under different

numbers of vehicle nodes, when the ratio of the black hole nodes is ten percent.

Fig. 42 (f) shows the packet loss rate of AODV and GSS-AODV with the increase

in the number of nodes. GSS-AODV routing protocol evaluates the node security by

calculating the node trust value. Therefore, routing protocol always selects relatively

secure nodes to participate in the routing process to reduce the impact of black hole

nodes in node communication and increase the packet delivery rate. Also, GSS-AODV

can dynamically adjust the parameters used by the fuzzy neural network according

to different environments to improve the accuracy of selecting a safe node.

Fig. 42 (b) shows the end-to-end average delay of two routing protocols, AODV

and GSS-AODV, with the increase in the number of nodes. When selecting a node

to participate in the routing process, the GSS-AODV protocol takes the amount of

data packets sent and the repetition rate as influence factors into the calculation of

the trust value of the node. When the number of nodes is small, the GSS-AODV

protocol mainly considers the packet repetition rate and improves the weight of the

packet repetition rate in the node trust value, which helps the routing protocol to

prevent the attack node from repeatedly sending attack messages and affecting the

ad hoc network.
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Fig. 42 (d) shows how the routing costs of AODV and GSS-AODV routing

protocols changes with the increase of the number of nodes. In the route initiation

phase, GSS-AODV protocol determines whether to participate in the routing process

according to the judgment result of the node trust value. Thereby it limits the flooding

of the RREQ message in the network. And since the GSS-AODV always selects the

secure node to transmit data, the data packet is not easy to be lost, and the routing

security is enhanced. Therefore, the source node does not need to initiate routing

frequently, and the number of RREQ transmission is reduced.

5.4 Conclusion

Stability and security are both hot issues in VANET research. This paper

presents a stable AODV routing algorithm, named GSS-AODV, based on the fuzzy

neural network. In GSS-AODV, the node stability and route length are considered

in equilibrium, and the parameters are adjusted by genetic simulated annealing al-

gorithm under different practical conditions to ensure that the calculated node sta-

bility is in accordance with the actual situation. The proposed algorithm takes into

consideration of multiple attack models and adjusts the parameters through genetic

simulated annealing algorithm in different practical environments to improve the ac-

curacy of node trust value. Experimental results show that GSS-AODV can choose

the route including more secure nodes, reduce the packet loss rate, reduce the average

end-to-end delay, and normalize routing overhead.
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Fig. 41. Stability Experimental Results and Analysis
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Fig. 42. Security Experimental Results and Analysis
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CHAPTER 6

TASK II.2: MULTI-ANTENNA BASED INFORMATION PRIVACY

PROTECTION FOR V2V COMMUNICATIONS

6.1 Problem Statement

As vehicles meet each other occasionally in vehicular networks, the passenger in

a vehicle may just want to have a one-time conversation with its neighbors. Con-

sequently, the user will have the requirement of protecting its privacy via (a) not

revealing its IDs (such as user name) to its neighbors even during the process of

connection setup and (b) making the application servers (which could be the road-

side base stations) unaware of who participate in the conversations. This anonymity

requirement brings challenges to the research for the connection setup and the con-

nection maintenance during a conversation.

Some related work and previous mechanisms are presented in Chapter 2. Some

proposed communication approaches are based on geo-location.Some previous net-

work security research focuses on protocol and IP address. Our goal is to propose a

novel approach which can meet the anonymous requirements in vehicular networks.

To meet the anonymous requirements, considering the feasibility of installing

multiple antennas on vehicles, we propose to utilize physical layer information (RSS-

Ratio), which have the properties such as (i) unique for a user, (ii) frequently updated,

(iii) including location information, and (iv) hard to be obtained by attackers, to

generate temporary IDs for the communication parties.

Received Signal Strength (RSS) is an indicator of the signal strength in receiver

for wireless communications. Ideally, the received signal strength can be quantified
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as follows[34]:

Pr[dBM ] = P0 − 20 log(
d

d0

) (6.1)

where p0 is the signal power at distance d0 away from the sender, d is the distance

between receive and send antennas.

Since RSS is susceptible to environmental changes, considering the fading caused

by environment, a log-normal shadowing model is widely used to analyze RSS:

Pr[dBM ] = P0 − 20α log(
d

d0

) + χσ (6.2)

where α is the path loss exponent, χσ is background noise, which is a Gaussian

distributed random variable with zero mean and standard deviation σ.

All environmental unknowns make it difficulty to obtain an accurate RSS value.

To eliminate environmental unknowns, [90] proposes a new definition RSS-Ratio de-

noted by τ , is the output value of the three-antenna based RSS processing. Formally,:

τ =
P 1
r − P 2

r

P 1
r − P 3

r

=
log(d1

d2
)

log(d1
d3

)
(6.3)

where P 1
r , P 2

r , and P 3
r are respectively the RSS measured at the receiver’s antenna ]1,

]2, and ]3; and d1, d2 , and d3 , are respectively the distance from the signal source

to the receiver’s antenna ]1, ]2, and ]3.

6.2 Proposed Approach

6.2.1 RSS-Ratio Properties Analysis

We propose an approach to utilize RSS-Ratio for implementing anonymous com-

munications in vehicular networks.

Since RSS-Ratio only depends on distance information, it is much stabler than

RSS. Fig. 43 demonstrates the values of RSS and RSS-Ratio under several trans-
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Fig. 43. Impact of Transmission Power on RSS and RSS-Ratio

mission powers in outdoor environments. One can see that RSS-Ratio is much more

stable than RSS over different transmission powers. Similar results have also been

observed when time and other environmental unknowns vary.

Moreover, from Eqn. (6.3), we can see that RSS-Ratio is theoretically only

related to the distances from the signal source to the receiver’s three antennas. It is,

therefore, predicable given the distances. The geographical distribution of RSS-Ratio

value has interesting features. Given an RSS-Ratio value and three receiving antennas

deployed at (0,0), (1,0), and (0, 1), almost all the possible locations of the senders,

which can produce the given RSS-Ratio value at the receiver, appear on a straight

line [90] as shown in Fig. 44, where the number beside a line is the given RSS-Ratio

value and the line is the possible locations of the senders.

From Fig. 44, we have two interesting observations: (i) the value of RSS-Ratio

is relatively stable as long as the relative position between the two vehicles (the

sender and the receiver) does not change too much; (ii) even more, as the relative

position changes slowly (comparing to the time of signal transmission and RSS-Ratio

computation), the RSS-Ratio of the sender at the next time instance is predictable

without the need of knowing the physical locations of the two vehicles. It is, therefore,
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2

The geographical distribution of RSS-Ratio value has
interesting features. Given a RSS-Ratio value and three
receiving antennas deployed at (0,0), (1,0), and (0, 1),
almost all the possible locations of the senders, which
can produce the given RSS-Ratio value at the receiver,
appear on a straight line [1] as shown in Fig. 2, where
the number beside a line is the given RSS-Ratio value
and the line is the possible locations of the senders.
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Fig. 2. RSS-Ratio distribution

From Fig. 2, we have two interesting observations:
(i) the value of RSS-Ratio is relatively stable as long
as the relative position between the two vehicles (the
sender and the receiver) does not change too much;
(ii) even more, as the relative position changes slowly
(comparing to the time of signal transmission and
RSS-Ratio computation), the RSS-Ratio of the sender
at the next time instance is predictable without the
need of knowing the physical locations of the two
vehicles. It is, therefore, possible to utilize RSS-Ratio
for connection setup and maintenance. In addition,
other vehicles that are not at the receiver’s position
and may not have the same deployment of the three
receiving antennas as the one at the receiver, are not
able to estimate the distances d1, d2, and d3 from the
signal source to the receiver’s antennas. As a result,
they will not be able to have the same RSS-Ratio for
the same signal source. In other words, the RSS-Ratio
for one pair of source and destination is unique.

III. ANONYMOUS CONNECTION SETUP AND
MAINTENANCE

Based on the analytical results presented in Sec. II,
we propose to use RSS-Ratio as the address for the
following reasons: (i) RSS-Ratio is a value related to
the antenna layout and the relative locations of the
sender and the receiver. It is very rare for the receiving
vehicle to have the same measured RSS-Ratio from

two vehicles; (ii) RSS-Ratio changes relatively slowly
when the vehicles are moving together; (iii) It is almost
impossible to predict a RSS-Ratio by attackers as they
do not know the exact receiving antenna layout and
the exact relative locations. Note that even the sender
cannot predict its RSS-Ratio measured by the receiver.
As the measured RSS-Ratio is time sensitive, the

receiver can have a series of measured RSS-Ratio
values from the sender. Note that these RSS-Ratio
values are also and only predicable by the receiver.
We will use these RSS-Ratio values to identify and
maintain a TPC connection. Particularly, we proposes
to follow the steps below for connection setup and
maintenance.
1) The sender randomly sends several preambles to

the receiver so that the receiver can measure the
RSS-Ratio for each preamble.

2) The sender sends a connection setup request to
the receiver with its location information, where
the preambles were sent. Note that the sender
will add several faked locations as well.

3) The receiver measures the RSS-Ratio for each
preamble and the connection request packet. As
the receiver can calculate the RSS-Ratio based
on the sender’s location and its own receiving
antenna layout, it can use fuzzy vault scheme to
f nd out which are the sender’s locations.

4) The receiver uses these measured RSS-Ratio
values as the address of the sender and repeats
step-(1-3) as a new sender so that the sender in
step-(1) can setup the connection from its side.

5) When sending each packet, the sender adds its
location and several faked locations. The receiver
uses the method in step-(3) to maintain the
connection.

Note that the connection setup and maintenance
procedure step-(1-5) is also the key generation and
exchange procedure by using the sender’s locations
as the key seed. Moreover, by following the proposed
steps, an attacker cannot pretend to be the sender as its
measured RSS-Ratio values are not consistent with the
ones measured from the sender, and cannot decrypt a
message as it doesn’t know which are the sender’s real
locations.

IV. FUTURE WORK

In future, we will study the following up problem
regarding how to evaluate the trust of the information
under the requirement of anonymous communications,
so that users can protect their privacy and use the
information with conf dence simultaneously.
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Fig. 44. RSS-Ratio Distribution

possible to utilize RSS-Ratio for connection setup and maintenance. In addition, other

vehicles that are not at the receiver’s position and may not have the same deployment

of the three receiving antennas as the one at the receiver, are not able to estimate

the distances d1, d2, and d3 from the signal source to the receiver’s antennas. As a

result, they will not be able to have the same RSS-Ratio for the same signal source.

In other words, the RSS-Ratio for one pair of source and destination is unique.

6.2.2 Anonymous Connection Setup and Maintenance

Based on theses analytical results, we propose to use RSS-Ratio as the address

for the following reasons:

(i) RSS-Ratio is a value related to the antenna layout and the relative locations

of the sender and the receiver. It is very rare for the receiving vehicle to have the

same measured RSS-Ratio from two vehicles;
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(ii) RSS-Ratio changes relatively slowly when the vehicles are moving together;

(iii) It is almost impossible to predict a RSS-Ratio by attackers as they do not

know the exact receiving antenna layout and the exact relative locations. Note that

even the sender cannot predict its RSS-Ratio measured by the receiver.

As the measured RSS-Ratio is time sensitive, the receiver can have a series of

measured RSS-Ratio values from the sender. Note that these RSS-Ratio values are

also and only predicable by the receiver. We will use these RSS-Ratio values to

identify and maintain a TPC connection. The connection setup algorithm is depicted

in Fig. 44. Particularly, we propose to follow the steps below for connection setup

and maintenance.

Steps of Connection Setup and Maintenance

1) The sender randomly sends several preambles to the receiver so that the

receiver can measure the RSS-Ratio for each preamble.

2) The sender sends a connection setup request to the receiver with its location

information, where the preambles were sent. Note that the sender will add several

faked locations as well.

3) The receiver measures the RSS-Ratio for each preamble and the connection

request packet. As the receiver can calculate the RSS-Ratio based on the sender’s

location and its own receiving antenna layout, it can use fuzzy vault scheme to find

out which are the sender’s locations.

4) The receiver uses these measured RSS-Ratio values as the address of the sender

and repeats step-(1-3) as a new sender so that the sender in step-(1) can set up the

connection from its side.

5) When sending each packet, the sender adds its location and several faked

locations. The receiver uses the method in step-(3) to maintain the connection.

Note that the connection setup and maintenance procedure step-(1-5) is also
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Algorithm 1: Anonymous Connection Setup

Input: vehicle s, vehicle r, location information ls of where s sent
preambles, location information lr of where r sent preambles

1 if s wants to connect to r then
2 Randomly send several preambles to r;
3 Send a connection setup request to r with ls and several faked

locations;
4 if r wants to be connected to then
5 Measure the RSS-Ratio for each preamble and the connection

request packet;
6 Get ls;
7 Randomly send several preambles to s;
8 Send a connection setup request to s with lr and several faked

locations;

9 end
10 s measures the RSS-Ratio for each preamble and the connection

request packet;
11 Get lr;
12 Setup connection;

13 end

Algorithm 2: Cluster Head Selection Algorithm

Input: Vehicles in one cluster and their location; the number n of
vehicles in this cluster.

Output: Cluster head o of the corresponding cluster
1 Calculate matrix D; \\D is the matrix, which shows the signal distances

between all vehicle pairs.
2 Set s = +1; \\s is the optimal transmission distance in this cluster.

for c = 1; c  n; c + + do
3 S = ⌃i=n

i=1dic;
4 if S < s then
5 s = S;
6 o = c;

7 end

8 end
9 return o;

1

Fig. 45. Anonymous Connection Setup Algorithm

the key generation and exchange procedure by using the sender’s locations as the key

seed. Moreover, by following the proposed steps, an attacker cannot pretend to be the

sender as its measured RSS-Ratio values are not consistent with the ones measured

from the sender, and cannot decrypt a message as it does not know which are the

sender’s real locations.

6.3 Conclusion

As vehicles meet each other occasionally in vehicular network, users will naturally

have the requirement of protecting their privacy during vehicular network commu-

nications. The privacy requirements bring unique challenges for the communication

setup and maintenance as any information (such as IP address and MAC address)

that may relate to the users’ IDs should not be used. To resolve this problem, we

propose to utilize the dynamic physical level information, RSS-Ratio, as the address.
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We briefly present why RSS-Ratio can be used as an address while not revealing users’

IDs, and our proposed method of utilizing RSS-Ratio for anonymous connection setup

and maintenance.
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