13 research outputs found

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography

    Get PDF
    The growth of data-driven technologies, 5G, and the Internet place enormous pressure on underlying information infrastructure. There exist numerous proposals on how to deal with the possible capacity crunch. However, the security of both optical and wireless networks lags behind reliable and spectrally efficient transmission. Significant achievements have been made recently in the quantum computing arena. Because most conventional cryptography systems rely on computational security, which guarantees the security against an efficient eavesdropper for a limited time, with the advancement in quantum computing this security can be compromised. To solve these problems, various schemes providing perfect/unconditional security have been proposed including physical-layer security (PLS), quantum key distribution (QKD), and post-quantum cryptography. Unfortunately, it is still not clear how to integrate those different proposals with higher level cryptography schemes. So the purpose of the Special Issue entitled “Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography” was to integrate these various approaches and enable the next generation of cryptography systems whose security cannot be broken by quantum computers. This book represents the reprint of the papers accepted for publication in the Special Issue

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    Advancements in On-chip Sensors and Covert Communication for Remote Power Analysis Attacks on FPGAs

    Full text link
    Security threats are continuously evolving as malicious actors constantly seek vulnerabilities in computer systems and devise fresh methods to gain unauthorized access to sensitive information. As Field Programmable Gate Arrays (FPGAs) become increasingly prevalent in cloud and networked environments, a host of new security risks is emerging, necessitating in-depth examination and innovative defensive strategies. Among these emerging threats, Remote Power Analysis (RPA) attacks are of particular concern. RPA attacks exploit variations in signal-propagation delay resulting from fluctuations in power consumption to infer confidential information processed on a remote FPGA, accomplished by deploying on-chip sensors within the logic fabric of the FPGA. This thesis discusses the ever-changing landscape of FPGA security by presenting two on-chip sensors, VITI and PPWM, in conjunction with a covert communication channel. The innovations presented in this thesis collectively aim to comprehensively understanding and addressing the potential threat posed by RPA attacks. The first sensor, VITI (Voltage Induced Time Interval Sensor), distinguishes itself from the on-chip sensors presented in the literature by enhancing stealthiness without sacrificing effectiveness. VITI utilizes adjustable delay elements on FPGAs for self-calibration, enabling autonomous adaptation to various conditions. Experimental results validate the efficiency of VITI in measuring power consumption, successfully recovering a 128-bit Advanced Encryption Standard (AES) key with only 20,000 power traces, while consuming merely 1/4th and 1/16th of the area compared to time to digital converters and ring oscillators, respectively. The second sensor, PPWM (Power to Pulse Width Modulation Sensor), further heightens stealthiness by employing a pulse width modulation technique to minimize bandwidth requirements. PPWM generates a pulse whose width is modulated by the power consumption of the FPGA. This pulse is used to selectively and asynchronously clear a flip-flop, and the resulting single-bit output of the flip-flop is harnessed for RPA attacks. PPWM achieves the successful recovery of an AES key within 16,000 power traces, while consuming only 25% of the bandwidth compared to VITI. The covert communication channel introduced in this thesis enables on-chip sensors to communicate with attackers, especially on cloud-based FPGAs, without exposing themselves to the targeted victim or the cloud service provider. This covert communication channel leverages the handshake signals of the Advanced eXtensible Interface (AXI) protocol to establish a hidden timing channel, achieving remarkably low 1.988 × 10^(−4) bit-error rate when exfiltrating information from a cloud FPGA. Additionally, the thesis presents an end-to-end RPA attack as a case study, employing PPWM to capture information leakage through power consumption and the covert communication channel to exfiltrate data to an off-cloud computer. The research presented in this thesis lays a foundational understanding of practical and real-world RPA attack scenarios. The knowledge gained from this thesis is expected to aid in making informed decisions in the development of comprehensive countermeasures and security protocols to robustly defend FPGAs against the ever-evolving landscape of security threats

    Key Agreement with Physical Unclonable Functions and Biometric Identifiers

    Get PDF
    This thesis addresses security and privacy problems for digital devices and biometrics, where a secret key is generated for authentication, identification, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices. A low-complexity transform-coding algorithm is developed to make the information-theoretic analysis tractable and motivate a noisy (hidden) PUF source model. The optimal trade-offs between the secret-key, privacy-leakage, and storage rates for multiple measurements of hidden PUFs are characterized. The first optimal and low-complexity code constructions are proposed. Polar codes are designed to achieve the best known rate tuples. The gains from cost-constrained controllable PUF measurements are illustrated to motivate extensions

    Towards Practical and Secure Channel Impulse Response-based Physical Layer Key Generation

    Get PDF
    Der derzeitige Trend hin zu “smarten” Geräten bringt eine Vielzahl an Internet-fähigen und verbundenen Geräten mit sich. Die entsprechende Kommunikation dieser Geräte muss zwangsläufig durch geeignete Maßnahmen abgesichert werden, um die datenschutz- und sicherheitsrelevanten Anforderungen an die übertragenen Informationen zu erfüllen. Jedoch zeigt die Vielzahl an sicherheitskritischen Vorfällen im Kontext von “smarten” Geräten und des Internets der Dinge auf, dass diese Absicherung der Kommunikation derzeit nur unzureichend umgesetzt wird. Die Ursachen hierfür sind vielfältig: so werden essentielle Sicherheitsmaßnahmen im Designprozess mitunter nicht berücksichtigt oder auf Grund von Preisdruck nicht realisiert. Darüber hinaus erschwert die Beschaffenheit der eingesetzten Geräte die Anwendung klassischer Sicherheitsverfahren. So werden in diesem Kontext vorrangig stark auf Anwendungsfälle zugeschnittene Lösungen realisiert, die auf Grund der verwendeten Hardware meist nur eingeschränkte Rechen- und Energieressourcen zur Verfügung haben. An dieser Stelle können die Ansätze und Lösungen der Sicherheit auf physikalischer Schicht (physical layer security, PLS) eine Alternative zu klassischer Kryptografie bieten. Im Kontext der drahtlosen Kommunikation können hier die Eigenschaften des Übertragungskanals zwischen zwei legitimen Kommunikationspartnern genutzt werden, um Sicherheitsprimitive zu implementieren und damit Sicherheitsziele zu realisieren. Konkret können etwa reziproke Kanaleigenschaften verwendet werden, um einen Vertrauensanker in Form eines geteilten, symmetrischen Geheimnisses zu generieren. Dieses Verfahren wird Schlüsselgenerierung basierend auf Kanalreziprozität (channel reciprocity based key generation, CRKG) genannt. Auf Grund der weitreichenden Verfügbarkeit wird dieses Verfahren meist mit Hilfe der Kanaleigenschaft des Empfangsstärkenindikators (received signal strength indicator, RSSI) realisiert. Dies hat jedoch den Nachteil, dass alle physikalischen Kanaleigenschaften auf einen einzigen Wert heruntergebrochen werden und somit ein Großteil der verfügbaren Informationen vernachlässigt wird. Dem gegenüber steht die Verwendung der vollständigen Kanalzustandsinformationen (channel state information, CSI). Aktuelle technische Entwicklungen ermöglichen es zunehmend, diese Informationen auch in Alltagsgeräten zur Verfügung zu stellen und somit für PLS weiterzuverwenden. In dieser Arbeit analysieren wir Fragestellungen, die sich aus einem Wechsel hin zu CSI als verwendetes Schlüsselmaterial ergeben. Konkret untersuchen wir CSI in Form von Ultrabreitband-Kanalimpulsantworten (channel impulse response, CIR). Für die Untersuchungen haben wir initial umfangreiche Messungen vorgenommen und damit analysiert, in wie weit die grundlegenden Annahmen von PLS und CRKG erfüllt sind und die CIRs sich grundsätzlich für die Schlüsselgenerierung eignen. Hier zeigen wir, dass die CIRs der legitimen Kommunikationspartner eine höhere Ähnlichkeit als die eines Angreifers aufzeigen und das somit ein Vorteil gegenüber diesem auf der physikalischen Schicht besteht, der für die Schlüsselgenerierung ausgenutzt werden kann. Basierend auf den Ergebnissen der initialen Untersuchung stellen wir dann grundlegende Verfahren vor, die notwendig sind, um die Ähnlichkeit der legitimen Messungen zu verbessern und somit die Schlüsselgenerierung zu ermöglichen. Konkret werden Verfahren vorgestellt, die den zeitlichen Versatz zwischen reziproken Messungen entfernen und somit die Ähnlichkeit erhöhen, sowie Verfahren, die das in den Messungen zwangsläufig vorhandene Rauschen entfernen. Gleichzeitig untersuchen wir, inwieweit die getroffenen fundamentalen Sicherheitsannahmen aus Sicht eines Angreifers erfüllt sind. Zu diesem Zweck präsentieren, implementieren und analysieren wir verschiedene praktische Angriffsmethoden. Diese Verfahren umfassen etwa Ansätze, bei denen mit Hilfe von deterministischen Kanalmodellen oder durch ray tracing versucht wird, die legitimen CIRs vorherzusagen. Weiterhin untersuchen wir Machine Learning Ansätze, die darauf abzielen, die legitimen CIRs direkt aus den Beobachtungen eines Angreifers zu inferieren. Besonders mit Hilfe des letzten Verfahrens kann hier gezeigt werden, dass große Teile der CIRs deterministisch vorhersagbar sind. Daraus leitet sich der Schluss ab, dass CIRs nicht ohne adäquate Vorverarbeitung als Eingabe für Sicherheitsprimitive verwendet werden sollten. Basierend auf diesen Erkenntnissen entwerfen und implementieren wir abschließend Verfahren, die resistent gegen die vorgestellten Angriffe sind. Die erste Lösung baut auf der Erkenntnis auf, dass die Angriffe aufgrund von vorhersehbaren Teilen innerhalb der CIRs möglich sind. Daher schlagen wir einen klassischen Vorverarbeitungsansatz vor, der diese deterministisch vorhersagbaren Teile entfernt und somit das Eingabematerial absichert. Wir implementieren und analysieren diese Lösung und zeigen ihre Effektivität sowie ihre Resistenz gegen die vorgeschlagenen Angriffe. In einer zweiten Lösung nutzen wir die Fähigkeiten des maschinellen Lernens, indem wir sie ebenfalls in das Systemdesign einbringen. Aufbauend auf ihrer starken Leistung bei der Mustererkennung entwickeln, implementieren und analysieren wir eine Lösung, die lernt, die zufälligen Teile aus den rohen CIRs zu extrahieren, durch die die Kanalreziprozität definiert wird, und alle anderen, deterministischen Teile verwirft. Damit ist nicht nur das Schlüsselmaterial gesichert, sondern gleichzeitig auch der Abgleich des Schlüsselmaterials, da Differenzen zwischen den legitimen Beobachtungen durch die Merkmalsextraktion effizient entfernt werden. Alle vorgestellten Lösungen verzichten komplett auf den Austausch von Informationen zwischen den legitimen Kommunikationspartnern, wodurch der damit verbundene Informationsabfluss sowie Energieverbrauch inhärent vermieden wird
    corecore