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Editorial

Physical-Layer Security, Quantum Key Distribution, and
Post-Quantum Cryptography

Ivan B. Djordjevic

Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd.,
Tucson, AZ 85721, USA; ivan@email.arizona.edu; Tel.: +1-520-626-5119

The growth of data-driven technologies, 5G, and the Internet pose enormous pressure
on underlying information infrastructure. There are numerous proposals on how to deal
with the possible capacity crunch [1]. However, the security of both optical and wireless
networks lags behind reliable and spectrally efficient transmission [2]. Significant achieve-
ments have been recently made in the arenas of quantum computing [3] and quantum
communication [4,5]. Because most conventional cryptography systems rely on computa-
tional security, which guarantees security against an efficient eavesdropper for a limited
time, with advancements in quantum computing, this security can be compromised. To
solve for these problems, various schemes providing the perfect/unconditional security
have been proposed, including physical-layer security (PLS), quantum key distribution
(QKD), and post-quantum cryptography. Unfortunately, it is still unclear how to integrate
those different proposals with higher-level cryptography schemes. Thus, the purpose of
this Special Issue was to integrate these various approaches and enable the next generation
of cryptography systems whose security cannot be broken by quantum computers.

The topics addressed in this Special Issue include physical-layer security [2], quantum
key distribution (QKD) [2], post-quantum cryptography [6], quantum-enhanced cryptog-
raphy [7], stealth communication [2], and covert communication [8]. There are 14 papers
published in this Special Issue, distributed as follows: 1 review paper, 1 perspective paper,
and 12 articles.

In the review paper [9], authors apply the restricted Eve’s concept to the satellite-to-satellite
secret key distillation. In conventional QKD, it is assumed that Eve is the omnipotent,
limited only by the laws of physics. This represents an unreasonable assumption for certain
applications, where the presence of Eve is easy to detect, such as free-space optical commu-
nications, particularly satellite-to-satellite communications. By introducing geometrical
optics within a restricted model, authors have shown that the secret key rate (SKR) can be
significantly improved compared to the conventional QKD. Authors analyze SKRs from
Bob’s perspective through the exclusion zone approach and from Eve’s perspective through
dynamic positioning of the receiver aperture.

In the perspective paper [10], the author discusses how to build a global quantum
communication network (QCN) by interconnecting the disconnected terrestrial QCNs
through LEO satellite QCN, based on the cluster state concept. This heterogenous global
QCN will provide unprecedented security for future 5G+/6G wireless networks, Internet
of Things (IoT), optical networks, and autonomous vehicles.

In the first article paper [11], authors discuss the underwater QKD. Authors apply
measurement-device-independent (MDI) QKD with the zero-photon catalysis (ZPC) per-
formed at the emitter of one side to improve the SKR and extend the transmission distance.
Numerical results indicate that the proposed ZPC-based scheme outperforms the corre-
sponding single photon subtraction-based scheme in the extreme asymmetric case.

In the second article paper [12], the author describes how to build the multipartite QCN
based on the surface code (SC) concept. The key idea is to simultaneously entangle multiple
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nodes in an arbitrary topology based on the SC approach. The author also describes how
to extend the transmission distance between nodes to beyond 1000 km using SCs.

In the third article paper [13], authors introduce an open-destination MDI QKD
network that provides security against untrusted relays and all detector side-channel
attacks, in which all user users are capable of distributing keys with the help of other users.

In the fourth article paper [14], authors introduce a QKD protocol which employs
the mean multi-king problem in which a sender shares a bit sequence with receivers
as a secret key. Authors study the relation between eavesdropper’s information gain
and disturbance introduced into legitimate users’ information, known as the information
disturbance theorem, used for the BB84 protocol. Authors show that Eve’s extracting
information disturbs the quantum states and increases the error probability, as expected.

In the fifth article paper [15], authors introduce a QKD post-processing method,
cubically raising the SKR in the number of double matching detection events. In the
proposed protocol, contrary to the conventional QKD protocols, the secret bits rely on
Bob’s measurement basis selection rather than Alice’s transmitted bits. Furthermore, the
proposed protocol combines the sifting, reconciliation, and amplification into a unique
process, thus requiring a single-round iteration without sending redundancy bits.

In the sixth article [16], authors study a recent proposal for quantum identity authenti-
cation from Zawadzki [17] and formally prove that the corresponding protocol is insecure.

In the seventh article [18], authors study the phase-matching QKD (PM-QKD) protocol,
employing discrete-phase randomization and the post-compensation phase to quadratically
improve the SKR. Unfortunately, according to the authors, the discrete-phase randomiza-
tion opens a security loophole. Authors introduce the unambiguous state discrimination
measurement and the photon-number-splitting attack against PM-QKD with imperfect
phase randomization, demonstrating the rigorous security of decoy state PM-QKD with a
discrete-phase randomization protocol.

In the eight article [19], authors introduce a nonclassical attack on the QKD system
and propose a corresponding countermeasure method. The proposed attack is based on
the sync pulses attenuated to a photon level to determine the signaling interval. To solve
this attack, authors propose using variable power synchronizing pulses at varying lengths,
combined with the controlled signal attenuation.

In the nineth article paper [20], an entanglement-based QKD protocol is proposed
that employs a modified symmetric version of the Bernstein–Vazirani algorithm to achieve
secure and efficient key distribution, with two variants presented (fully symmetric and
semi-symmetric).

In the 10th article paper [21], related to the physical-layer security, authors study
the impact of injection and jamming attacks during the advantage distillation in a MIMO
wireless system and show that the man-in-the-middle attack can be mounted as long as the
attacker has one extra antenna with respect to the legitimate users. To solve for this prob-
lem, authors propose reducing the injection attack by using a particularly designed pilot
randomization technique. Then, by employing a game-theoretic approach, authors evaluate
the optimal strategies available to the legitimate users in the presence of reactive jammers.

In the 11th article [22], authors introduce a Bayesian probabilistic algorithm that incor-
porates all published information in a qubit-based synchronization protocol to efficiently
determine the clock offset without sacrificing any secure key. Given that the output of the
algorithm is a probability, it can be used to quantify the synchronization confidence.

In the final article paper [23], related to the secure computation, authors present
randomized versions of two known oblivious transfer protocols—one being quantum
and the other being post-quantum with ring learning and an error assumption, thus
demonstrating their security in the quantum universal composability framework with the
use of a common reference string model.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent
eavesdropper that is only limited by the laws of physics. However, this is not the case for specific
application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the
geometrical optics restricted eavesdropping model for secret key distillation security analysis and
apply to a few scenarios common in satellite-to-satellite applications.

Keywords: geometrical optics restricted eavesdropping; secret key distillation; satellite-to-satellite

1. Introduction

Quantum key distribution is known to guarantee unconditional security. The first
QKD protocol, BB84, was developed in 1984 [1], which uses the polarization states of single
photons to safely distribute keys. This was also known as the first discrete variable (DV)-
QKD. Different protocols have since been studied, such as device-independent protocols
that study the security with compromised apparatus [2–5], high dimensional protocols that
exploit high dimensional degrees of freedom to increase the key rate [6–10] and decoy state
protocols [11–13] that use decoy states against the photon-number-splitting attack [14].
Another major category in the study of QKD protocols, the continuous variable (CV)
protocols [15,16] that encode keys into CV observables of carrier fields [17], are known to
be more easily implementable for their compatibility with current communication devices
instead of relying on single-photon generation and detection like most DV protocols.

Generally, in this paper, we assume that Alice uses a multi-photon source governed by
the mean photon number without photon-number-resolving detectors so that she is limited
in knowing whether she is transmitting a multi-photon wave packet, for example, if she
only has a Geiger mode detector that clicks when one or more photons are detected. For
security analysis of the quantum key distribution under these assumptions, conventionally,
an omnipotent eavesdropper (Eve) that can gather information from the multi-photon wave
packets transmitted from Alice to Bob by collecting every photon that does not arrive at
Bob’s receiver is assumed [18–25]. However, this is not the case for some specific application
scenarios. For example, it would be reasonable to assume that the eavesdropper’s (Eve’s)
power collection ability is limited due to the size of her aperture in an optical wireless
channel from Alice to Bob. In [26,27], geometrical optics restricted eavesdropping analysis
was proposed, considering the reasonably limited power collection ability of Eve. In [28–33],
some of the applications of this restricted Eve model were introduced.

In this invited paper, we present some of the applications of the geometrical optics
restricted model. In Section 2, we briefly introduce the power-collection-restricted eaves-
dropping model and give the lower and upper bound expressions. In Section 3.1, we
showcase geometrical optics restricted eavesdropping analysis with a case where the eaves-
dropper has an aperture of a limited size in the same plane as Bob’s while investigating the
exclusion zone as one of Bob’s defense strategies. In Section 3.2, we further assume that
Eve’s aperture can be dynamically positioned and provide the results while optimizing this

Entropy 2021, 23, 950. https://doi.org/10.3390/e23080950 https://www.mdpi.com/journal/entropy5
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eavesdropping strategy. We conclude that the geometrical optics restricted eavesdropping
model is suitable for multiple application scenario analysis.

2. Geometrical Optics Restricted Eavesdropping Model

As is illustrated in Figure 1, instead of assuming that Eve collects all the photons
outside of Bob’s receiver, only a fraction κ of them is collectable by Eve, denoted here as a
wiretap channel with a κ-transmissivity beamsplitter. Here, η is the Alice-to-Bob channel
transmissivity, μ is the input mean photon number per mode on Alice’s side, and ne is
the noise mean photon number per mode on Eve’s side. ψAA′

and ψEE′
in Figure 1 are

entanglement pairs. Alice would keep mode A and send mode A′ to Bob, and in the most
general case, Eve would also use entanglement pairs to eavesdrop, retaining mode E and
sending mode E′ into the channel. In [26], the lower bound on the achievable key rate for
direct and reverse reconciliation is shown below:

K→ ≥ βg(ne(1 − η) + ημ)− ∑i g

(
νER

yi
− 1

2

)
− βg(ne(1 − η)) + g(ne(1 − ηκ)), (1)

K← ≥ βg(μ)− ∑
i

g

(
νER

yi
− 1

2

)
− βg

(
μ − ημ(1 + μ)

1 + ne − neη + ημ

)
+ ∑

i
g

(
νER

yi
− 1

2

)
, (2)

g(x) = (x + 1) log2(x + 1)− x log2 x (3)

with detailed expressions of νER
yi

available in [26]. Here, β is the reconciliation efficiency,
which is set to β = 1 throughout this paper.

Figure 1. Geometrical optics restricted model wiretap channel notation [26].

The upper bound in a pure loss channel (ne = 0) is shown to be [26]

K ≤ log2
η + κ(1 − η)

κ(1 − η)
, (4)

while the upper bound in a thermal noise channel does not have a closed form expression.
Detailed calculations can be found in Appendix A of [26].

3. Applications on Satellite-to-Satellite Secret Key Distillation

In this section, we study some applications of the geometrical optics restricted model
analysis that would be common in satellite-to-satellite links where Eve’s collecting ability
would be naturally limited due to the radius of her receiver aperture, which usually ranges
from centimeters to decimeters for traditional free-space communication. If we take existing
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space applications into account for an upper-bounding estimation of Eve’s aperture size,
the Giant Magellan Telescope, one of the largest optical observatories, has a primary mirror
of a 12.5-m radius [34]. Other known aperture sizes of satellite-based applications are
much smaller, such as the 1.2-m-radius primary mirror for the Hubble Space Telescope [35]
and the 20-cm-radius aperture for NASA’s “Wide-field Infrared Survey Explorer” infrared
telescope [36].

We analyze both the communication parties’ and Eve’s strategy by starting with
a defense strategy from Bob’s side called an exclusion zone, under the aforementioned
assumptions and considering the case where Eve’s aperture is in the same plane with Bob’s
in Section 3.1. Then, in Section 3.2, we move forward from that and assume that Eve’s
aperture can be dynamically positioned, concluding Eve’s strategy for eavesdropping.
In this section, we assume that a Gaussian beam with a beam waist W0 and wavelength
λ = 1550 nm is transmitted. The space temperature is set to T = 3 K, and we calculate the
noise mean photon number using the black body radiation equation:

ne =
1

e
h f
kT − 1

, (5)

where h is the Planck constant, f is the transmission center frequency, and k is the Boltzmann
constant. We then calculate the power transmitted by Alice PAlice, the power received by
Bob PBob, the power received by Eve PEve, and the channel transmissivity η, and the
restriction factor on Eve κ can be expressed as

η =
PBob
PAlice

, (6)

κ =
PEve

Ptotal(1 − η)
, (7)

In this section, we calculate the lower bound as the maximum of the direct reconcilia-
tion lower bound and the reverse reconciliation lower bound.

3.1. Bob’s Defense Strategy: Exclusion Zone

In this subsection, we introduce the problem set-up of one of the most straightfor-
ward defense strategies of the communication parities: the so-called exclusion zone. In
principle, the closer Eve is to the beam transmission axis from Alice to Bob, the more likely
the legitimate communication parities would detect the eavesdropper’s presence (e.g.,
with a naïve approach such as a visible or infrared telescope or even radar to detect the
eavesdropper’s presence and abort communication if a possible eavesdropper is detected
within a certain range to the communication parities). In free-space channels such as the
satellite links, it is also possible for Bob to have opaque material around his receiver to
absorb any photons that might have arrived outside of his receiver’s aperture, preventing
them from further propagation and possibly ending up in Eve’s receiver aperture. As is
illustrated in Figure 2, the exclusion zone is denoted with a dashed circle around Bob’s
receiver, excluding potential eavesdroppers to collect photons that arrive in this region.
By definition, Bob’s aperture area is also part of the exclusion zone, since the photons
arriving at Bob’s aperture would not be collectable by Eve. Here, more specifically, we
say that Bob is setting up an exclusion zone if the area of the exclusion zone (Aex) is larger
than his receiver aperture area (ABob or Ab). Other specified parameters include L being
the transmission distance and AAlice (Aa) and AEve (Ae) being the area of Alice’s aperture
(radius ra) and Eve’s aperture (radius re), respectively. The radii of Bob’s aperture and the
exclusion zone are denoted as rb and rex (rex ≥ rb). Here, the limited size of Eve’s aperture
is placed in the same plane as Bob’s, since that would be the worst-case scenario for the
purpose of our study under this exclusion zone assumption if Eve is not allowed between
the Alice-to-Bob line of sight.

7
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Figure 2. Limited size aperture of Eve in the same plane as Bob’s. Here, Bob is setting an exclusion
zone around his receiver as a defense strategy.

To start with, we set rex = rb (no additional exclusion zone) and investigate how Eve’s
aperture size would affect the achievable secure key rate lower bound (LB) and upper
bound (UB), as shown in Figure 3. Here, we can see that under these parameters, the lower
bound was quite close to the upper bound, which gave us the capacity in this scenario.
As Eve’s aperture size increased, the achievable rate went down and saturated but still
outperformed the unrestricted case capacity. The reason for this convergence is that the
transmitted beam intensity was the strongest at its center and weakened fast in the outer
regions. As such, up to some point, increasing Eve’s aperture size would only be able to
gather photons from the regions far away from the beam center, thus making it ineffective
in increasing Eve’s advantage. As a result of that, in the figure below, we only set Eve’s
aperture radius to be 10 cm, equal to ra and rb, for a fair comparison.

Figure 3. Achievable secure key rate lower and upper bound as functions of Eve’s aperture radius
re, with rex = rb. The unrestricted case (infinite-sized aperture on Eve’s side) is also included. Here,
W0 = ra = rb = rex = 20 cm.
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In Figure 4, we set the exclusion zone radius to be rex = 15 cm and 20 cm to compare
the achievable rate lower bounds (LB) and upper bounds (UB) for the case without an
additional exclusion zone. Here, we can see that with an aperture of a limited size on Eve’s
side, the achievable secure key rate outperformed that of the unrestricted case. The lower
bound and upper bound were quite close, which gave the range for the capacity. We can
also see that an exclusion zone helped increase the key rate when the transmission distance
was not too large. However, when the transmission distance was sufficiently large, the
lower and upper bounds became constant, as proved in [30], when the collecting ability of
Bob and Eve became proportional to their aperture sizes:

lim
L→∞

PEve
PBob

=
Ae

Ab
, (8)

 
Figure 4. Achievable secure key rate lower and upper bounds as functions of the transmission
distance. The unrestricted case (infinite size aperture on Eve’s side with rex = rb) is also included.
Here, W0 = ra = rb = re = 10 cm.

Here, we can see that an exclusion zone would not affect this saturation very much, as
at a large transmission distance, the collecting ability of Bob and Eve became proportional
to their aperture sizes as in Equation (8) when the area of an exclusion zone was not
significantly larger than the receiver aperture sizes of Bob and Eve.

3.2. Eavesdropper’s Strategy: A Dynamically Positioned Aperture

In this subsection, we introduce and analyze one of the eavesdropper’s possible
strategies with a dynamically positioned aperture, which would apply to the geometrical
optics restricted model, where Eve could dynamically position her aperture behind Bob’s.
As is illustrated in Figure 5, AAlice(Aa), ABob(Ab), and AEve(Ae) are the area of Alice’s
aperture (radius ra), Bob’s aperture (radius rb), and Eve’s aperture (radius re), respectively.
LAB is the distance between Alice’s and Bob’s aperture planes, while LBE is the distance
between Bob’s and Eve’s aperture planes. D is the distance between Eve’s aperture center
and the beam propagation line-of-sight path.

9
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Figure 5. Eavesdropper dynamic positioning set-up.

As was proven in Equation (44) of [33], when LAB was sufficiently large, the optimal
strategy for Eve was to set LBE = LAB and D = 0. Thus, we set LBE = LAB, D = 0 and
obtained the lower and upper bounds on the achievable secure key rate as in Figure 6. It
is shown that in this case, the rate increased with the increase in W0 as this decreased the
divergence angle, making the beam more focused on Bob’s aperture plane. We can also
see that Eve suppressed Alice and Bob’s achievable key rate compared with the similar
distance range in Figure 4 by applying this strategy.

Figure 6. Lower and upper bounds of the achievable secure key rate versus LAB with LBE = LAB

and D = 0. Bob’s and Eve’s aperture radii are rb = re = 10 cm.

10
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4. Discussion

In this invited paper, we briefly introduced the geometrical optics restricted model
and presented a few cases applying this model to some common cases in free-space optical
links such as the satellite-to-satellite channel. We showcased the achievable secure key rate
lower and upper bounds and compared them to the unrestricted case. Furthermore, we
investigated the strategy from both the communication parties’ side and Eve’s side within
this model.
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Abstract: Research in quantum communications networks (QCNs), where multiple users desire to
generate or transmit common quantum-secured information, is still in its beginning stage. To solve
for the problems of both discrete variable- and continuous variable-quantum key distribution (QKD)
schemes in a simultaneous manner as well as to enable the next generation of quantum communication
networking, in this Special Issue paper we describe a scenario where disconnected terrestrial QCNs
are coupled through low Earth orbit (LEO) satellite quantum network forming heterogeneous
satellite–terrestrial QCN. The proposed heterogeneous QCN is based on the cluster state approach
and can be used for numerous applications, including: (i) to teleport arbitrary quantum states between
any two nodes in the QCN; (ii) to enable the next generation of cyber security systems; (iii) to enable
distributed quantum computing; and (iv) to enable the next generation of quantum sensing networks.
The proposed QCNs will be robust against various channel impairments over heterogeneous links.
Moreover, the proposed QCNs will provide an unprecedented security level for 5G+/6G wireless
networks, Internet of Things (IoT), optical networks, and autonomous vehicles, to mention a few.

Keywords: quantum key distribution (QKD); discrete variable (DV)-QKD; continuous variable
(CV)-QKD; postquantum cryptography (PQC); quantum communications networks (QCNs)

1. Introduction

Quantum communication (QuCom) employs quantum information theory concepts, in particular
the no-cloning theorem and the theorem of indistinguishability of arbitrary quantum states, to
implement the distribution of keys with verifiable security, commonly referred to as quantum key
distribution (QKD), where security is guaranteed by the fundamental laws of physics as opposed to
unproven mathematical assumptions employed in computational security-based cryptography [1–3].
Despite the appealing features of QuComs, there are some fundamental and technical challenges
that need to be addressed prior to its widespread application. For instance, both the rate and
distance of QuCom are fundamentally limited by channel loss, which is specified by the rate-loss
tradeoff. To overcome the rate-distance limit of discrete variable (DV)-QKD protocols, two predominant
approaches have been pursued recently: (i) the development of quantum relays and (ii) the employment
of trusted relays. Quantum relays require the use of long-duration quantum memories and high-fidelity
entanglement distillation [4], which are not yet widely available. On the other hand, the trusted-relay
methodology assumes that the relay between two users can be trusted [5]; unfortunately, this
assumption is difficult to verify in practice. The measurement device independent (MDI)-QKD
approach [6] was able to close the detection loopholes; however, its secret-key rate (SKR) is still
bounded by O(T)-dependence (with T standing for transmissivity). Recently, twin-field (TF) QKD
has been proposed to overcome the rate-distance limit [7], whose SKR scales with the square-root of
transmittance, which represents a promising approach to extend the transmission distance. Another
key limitation of DV-QKD is the deadtime of single-photon detectors (SPDs), which limits the baud
rate and consequently the SKRs. To solve for this problem, a continuous variable (CV)-QKD can be
used instead [1,8–10], which employs homodyne/heterodyne detection instead and thus does not
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exhibit the SPDS’ deadtime limitation problem. In particular, the discrete modulation (DM)-based
CV-QKD protocols offer much better reconciliation efficiency compared to that of Gaussian modulation
(GM)-based CV-QKD protocols. Unfortunately, the security proofs of DM-based CV-QKD schemes for
collective and coherent attacks are still incomplete. To overcome key challenges for DV-QKD, such as
low SKR values and limited distance, as well as for DM-based CV-QKD, such as incompleteness of
security proofs, the following approaches have been proposed in our recent papers: (1) discretized GM
(DGM)-CV-QKD [11], (2) optimized CV-QKD [12], and (3) hybrid DV-CV QKD [13]. An alternative
approach to QKD is post-quantum cryptography (PQC) [14]. PQC is typically referred to by various
cryptographic algorithms that are thought to be secure against any quantum computer-based attack.
Unfortunately, PQC is also based on unproven assumptions and some of the PQC algorithms will be
broken in the future by developing more sophisticated quantum algorithms.

Modern classical communication networks consist of multiple nodes connected by various types
of channels, including free-space optical (FSO) links, optical fibers, ground–satellite links, wireless
RF, and coaxial cables. Such a heterogeneous architecture would be equally important for QCNs, as
quantum nodes may access a QCN via different kinds of channels. Indeed, quantum communications
have been individually validated in free-space, optical fibers, and between a satellite and a ground
station, but a combined heterogeneous QCN employing multiple types of channels remains elusive.
Unlike in the point-to-point communication case, the fundamental quantum communication rate limits
are not well known. Several QKD testbeds have been reported so far, including the DARPA QKD
network [15], Tokyo QKD network [16], and secure communication based on quantum cryptography
(SECOQC) network [17]. The QKD can also be used to establish QKD-based campus-to-campus virtual
private networks employing the IPsec protocol [18] as well as to establish the network setup for using
transport-layer security (TLS) based on QKD [19]. However, all of these networks employ the dark
fiber infrastructure. Quantum communication over satellite links has already been demonstrated; see
for example [20,21].

In this Special Issue paper, we propose to implement the multipartite QCN by employing the
cluster state-based concept [22]. The proposed quantum network can be used to: (i) perform distributed
quantum computing, (ii) teleport quantum states between any two nodes in the network, and (iii)
enable the next generation of cyber security systems. The cluster states can be described by using
the stabilizer formalism and as such they can easily be certified by simple syndrome measurements.
In this formalism, the cluster states can be interpreted as codewords of a corresponding quantum
error correction code, while corresponding errors can be corrected for by simple syndrome decoding,
among others. By performing simple Y and Z measurements on properly selected nodes we can
straightforwardly establish the Einstein–Podolsky–Rosen (EPR) pair between any two nodes in the
network. Moreover, multiple EPR pairs can be established simultaneously. We further propose a cluster
state-based quantum network of satellites that enables global coverage. The quantum satellite network
would be composed of quantum subnetworks comprised of low Earth orbit (LEO) satellites. Some of
these LEO satellite-based quantum subnetworks can be connected to a subnetwork of medium Earth
orbit (MEO)/ geostationary orbit (GEO) satellites. The LEO satellites should be used to interconnect
terrestrial cluster state-based quantum networks. This quantum global network can also be used to
distribute the entangled states for quantum sensing applications and to enable distributed quantum
computing on a global scale. SDN concepts should be used to reconfigure the proposed QCN.

The paper is organized as follows. In Section 2, we describe the proposed cluster states-based
QCN concept. In Section 3, we describe potential approaches to extend the transmission distance
between QCN nodes. In Section 4, we describe the QCN that is currently under development at the
University of Arizona. Finally, in Section 5, we provide some relevant concluding remarks.

2. Proposed Cluster States-Based Quantum Communications Networks

To enable the next generation of quantum communication networking, we envision a scenario
in which disconnected terrestrial cluster states-based QCNs are coupled through the LEO satellite
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(cluster state) quantum network, thus providing global coverage. The proposed quantum network
will be highly robust against turbulence encountered by FSO links, as the envisioned quantum
satellite network will communicate to ground nodes only through the LEO satellite-to-ground links,
exhibiting a vertical downlink profile through vacuum followed by a turbulence layer with strength
that is altitude-dependent.

The cluster states belong to the class of the graph states, which also include Bell states,
Greenberger–Horne–Zeilinger (GHZ) states, W-states, and various entangled states used in quantum
error correction [22]. When the cluster C is defined as a connected subset on a d-dimensional lattice, it
obeys the set of eigenvalue equations Sa

∣∣∣φ〉
C
=
∣∣∣φ〉

C
, Sa = Xa ⊗

b∈N(a)
Zb, where Sa are stabilizer operators

with N(a) denoting the neighborhood of a ∈ C. To create a 2-D cluster state, the approach proposed by
Gilbert et al. [23] is applicable; it employs linear states, generated by spontaneous parametric down
conversion (SPDC), local unitaries, and type I fusion to create the desired 2-D cluster state. The type I
fusion is illustrated in Figure 1, based on [23]. The vertical photon is reflected by the polarization beam
splitter (PBS), while the horizontal photon is transmitted through the PBS. Given the probabilistic
nature of the PBS, with the photons present at both the left and right input ports, there are four
possible outcomes, each occurring with probability 0.25. Two outcomes correspond to the desired
fusion operators, and the success probability of the fusion is 0.5. When a single photon is detected
by the detector, a successful fusion is declared. The procedure to create the T-shape cluster state is
described in Figure 2. To create the box-cluster state, we start with a four-qubit linear cluster state,
re-label the qubits 2 and 3, and apply the Hadamard gates to qubits 2 and 3, which effectively establish
the bond between qubits 1 and 4. Namely, relabeling the qubits is equivalent to the SWAP gate action.
To create the box-on-chain cluster state, we start with a longer linear chain of qubits and apply the
same approach as in a box-state creation. Two T-shape cluster states can be fused together to get the
H-shape cluster state, etc.

l r
Figure 1. Illustrating the type I fusion process. PBS: polarization beam splitter.
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T-

Z-

SWAP(

Figure 2. Gilbert’s approach to create the T-shape cluster state.

Once the 2-D cluster state of nodes is created, we can use properly selected Y and Z measurements
to create the EPR pair between any two arbitrary nodes in the quantum network. As a reminder, the
role of the Z measurement is to remove the particular node (qubit) from the cluster, whereas the role
of Y measurement is to remove a given node and link neighboring nodes. As an illustration, the 2-D
cluster state with nine nodes is shown in Figure 3. Let us assume that we are interested in establishing
EPR pairs between nodes 3 and 7 as well as nodes 1 and 9. We first perform Y measurements in the
following order: Y8, Y5, and Y6 to get the intermediate stage. We then perform Z-measurement on
node 2 and Y measurement on node 4 to get the two desired EPR pairs. Given that the 2-D cluster state
is universal, it is possible to use the same network architecture for both QCN and distributed quantum
computing. We also imagine the scenario in which each node is equipped with multiple qubits, wherein
several layers of 2-D cluster states are active at the same time, which will allow us to simultaneously
perform QCN and distributed quantum computing. Moreover, when several 2-D cluster states are run
in parallel on the same set of network nodes, we will be able to reconfigure the QCN as needed. This
can be done with the help of the SDN concept. The SDN has been introduced to separate the control
plane and data plane, manage network services through the abstraction of higher-level functionality,
and implement new applications and algorithms efficiently. It has already been studied to enable the
coexistence of classical and quantum communication channels. Our SDN-based QCN architecture
is composed of three layers, namely an application layer, a control layer, and a QCN layer. Users
send their requests from the application layer with the help of the northbound interface to the SDN
controller. The SDN controller allocates the QCN resources with the help of its global map through the
southbound interface. The QCN layer would be composed of dense wavelength-division multiplexing
(DWDM) FSO/single-mode fiber (SMF)/few-mode fiber (FMF) links and QCN nodes. Any two nodes
in the QCN can communicate through either through a dedicated SMF/FSO/FMF link or through
a wavelength channel. The SDN control should also determine sequence of measurements to be
performed in order to establish desired EPR pairs. To deal with time-varying channel conditions over
heterogeneous links, we should adapt the system configuration based on both application requirement
and link condition.

Figure 3. Establishing EPR pairs between nodes 1 and 9 as well as between nodes 3 and 7.
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3. Extending the Distance between Nodes in QCN

The DV-QKD can be used to build QKD networks, as discussed in the introduction. Unfortunately,
the DV-QKD is affected by the deadtime of SPDs. Moreover, even if Eve cannot get the key because
DV-QKD is used, she can prevent parties from creating secure keys, which is similar to the Denial of
Service (DoS) attack. Further, since SKRs for DV-QKD are low, the quantum key pool, storing the
secure keys, will often be empty, hampering the operation of QKD networks. To solve for this problem
we propose to use the hybrid QKD-PQC protocols, in which QKD is used for raw key transmission and
PQC in information reconciliation to reduce the leakage during the error reconciliation stage, which is
illustrated in Figure 4. As mentioned in the introduction, the PQC is typically referred to in various
cryptographic algorithms that are thought to be secure against any quantum computer-based attack.
Unfortunately, the PQC is also based on unproven assumptions and some of the QPC algorithms
might be broken in the future by developing advanced quantum algorithms. For this reason we
propose to use the PQC algorithms only in the information reconciliation phase so as to limit the
leakage due to transmission of parity bits over an authenticated classical channel (in conventional
QKD). The quantum algorithms to be developed (not yet known), which will be capable of breaking
the PQC algorithms, will have certain complexity expressed in terms of the number of operations L.
By ensuring that the number of parity bits N–K is shorter than the number of secure PQC bits log2L,
the proposed cryptographic scheme will be secure. Evidently, the proposed cryptographic scheme
exploits the complexity of corresponding quantum algorithms used to break the PQC protocols. Given
that the McEliece cryptosystem based on quasi cyclic (QC)-low-density parity-check (LDPC) coding
is straightforward to implement as shown in [24], whereas the corresponding LDPC encoders and
decoders have been already implemented in field-programmable gate array (FPGA) [25], it represents
an excellent candidate to be used for the transmission of parity bits in the TF-QKD scheme. As an
illustration, the secret fraction that can be achieved with the BB84 protocol is lower bounded by [1]:

r = q(Z)
[
1− h2

(
e(X)
)]
− q(Z) feh2

(
e(Z)
)
, (1)

where q(Z) denotes the probability of declaring a successful result when Alice sent a single-photon
and Bob detected it in the Z-basis, fe denotes the error correction inefficiency (fe ≥ 1),
e(X) [e(Z)] denotes the QBER in the X-basis (Z-basis), and h2(x) is the binary entropy function
h2(x) = −x log2(x) − (1− x) log2(1− x). The second term q(Z)h2[e(X)] denotes the amount of information
Eve was able to learn during the raw key transmission, and this information can be removed from the
final key during the privacy amplification phase. The third term q(Z)fe h2[e(Z)] represents the amount
of information revealed during the error correction stage. By sending the parity bits over the PQC
channel this term can be effectively eliminated and the SKR can be increased.

Figure 4. Illustration of post-quantum cryptography-based information reconciliation.

By using this approach, as illustrated in Figure 5, the transmission distance between two nodes
in QCN can be significantly extended. Here we provide comparisons of the joint TF-QKD-McEliece
encryption scheme against the phase-matching (PM) TF-QKD protocol introduced in [26], the MDI-QKD
protocol [6], and the decoy-state-based BB84 protocol [27]. The system parameters are selected
as follows: the detector efficiency ηd = 0.25, reconciliation inefficiency f e = 1.15, the dark count
rate pd = 8 × 10−8, the misalignment error ed = 1.5%, and the number of phase slices for PM
TF-QKD is set to M = 16. Regarding the transmission medium, it is assumed that recently reported
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ultra-low-loss fiber of attenuation 0.1419 dB/km (at 1560 nm) is employed [28]. In the same Figure, the
Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound on a linear key rate is provided as well. Both PM
TF-QKD and joint TF-QKD-McEliece encryption schemes outperform the decoy-state BB84 protocol
for distances larger than 162 km, while simultaneously outperforming the MDI-QKD protocol for all
distances, and exceed the PLOB bound at a distance of 322 km. The PM TF-QKD protocol can achieve
the maximum distance of 623 km. The proposed joint TF-QKD-McEliece encryption scheme is able to
achieve the distance of even 1127 km, thus significantly outperforming all other schemes. Even though
the operating wavelength was 1560 nm, other suitable wavelengths such as 2 μm and 3.9 μm can be
used as well.

 

η
f
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e

p

SK
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L

Figure 5. Proposed hybrid QKD-PQC scheme against MDI-QKD and TF-QKD in terms of secret-key
rate vs. distance, assuming that ultra-low loss fiber is used.

Now, by connecting the base stations to the nodes in the proposed QCNs, we can provide
the unconditional security to the 5G+/6G wireless networks. By organizing the base stations in a
quantum optical mesh network and employing the proposed hybrid QKD-PQC concept we can provide
unconditional security to a large number of users. The Internet of Things (IoT) architecture will comprise
widely distributed nodes connected via different types of channels to enable new functionalities in
communication, sensing, and computing. Communication security in such a giant network is of
paramount importance. Our proposed QCNs will underpin the unconditional physical-layer security
of the IoT given that it will allow any two arbitrary nodes to securely transmit data at a high rate
via an optical link. Critically, the security of such a network will not rest upon the trusted-node
assumption, and a compromised node will not affect the security of other nodes. As such, the proposed
QCNs will lead to a substantially stronger security level for the IoT. To enable security for future 6G
wireless networks at a reasonable cost, the proposed joint satellite–terrestrial QCN can be based on the
Cubesat satellites.

For satellite-to-satellite quantum communications, in addition to the proposed hybrid QKD-PQC
concept, it also possible to employ our recent restricted eavesdropping concept [29], which offers a
significant increase in SKRs. This concept was presented in the ICTON 2020 paper [30]. Alternatively,
the hybrid QKD can also be applied [13].

4. QCN under Development

The terrestrial QCN to be developed at the University of Arizona is shown in Figure 6; it will
exploit the existing NSF MRI INQUIRE quantum network, representing the quantum hub (QuHub)
to share entangled photons and SPDs among different labs across the campus. The outdoor FSO
bidirectional link, connecting the Electrical and Computer Engineering and Optical Sciences buildings,
has already been established, with the FSO transceiver shown in Figure 7. We will also create the mesh
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network as well as the hybrid network composed of mesh, optical star, and ring network segments.
The deployed heterogeneous QCNs will allow us to test novel quantum-networking theories and
develop experimental tools for counteracting various channel impairments. To deal with atmospheric
turbulence effects, the adaptive optics (AO) subsystem, composed of a wavefront sensor (WFS) and
deformable mirror will be used. The AO will be combined with adaptive LDPC coding.

 

Figure 6. Terrestrial quantum communication network to be developed at the University of Arizona.

 

Figure 7. Free-space optical transceiver used in outdoor FSO link.

To provide global coverage, we envision a scenario in which disconnected terrestrial QCNs, such
as the one shown in Figure 6, are coupled through the LEO satellite quantum network. We have recently
shown that a Bessel–Gaussian (BG) beam, carrying an orbital angular momentum mode, exhibits better
tolerance to atmospheric turbulence effects compared to Gaussian beams for distances up to a few
kilometers [31]. However, for LEO satellite-to-ground QuCom links, BG beams diffract much faster
than Gaussian beams for such long-distance applications. Hence, we need to use pure Bessel beams
to overcome this problem, as we have shown in our recent paper [32]. To enable robustness against
turbulence encountered by FSO links, the envisioned quantum satellite QCN should communicate to
ground nodes only through the LEO satellite-to-ground links, exhibiting a vertical downlink profile
through vacuum followed by a turbulence layer with altitude-dependent strength. In principle.
MEO/GEO satellite QCNs can be created above LEO QCNs to provide the planetary coverage.

5. Concluding Remarks

To enable the next generation of quantum-enabled cyber security systems, we proposed a quantum
network of satellites that will provide the global coverage. The quantum satellite network will be
composed of quantum subnetworks comprised of LEO satellites. Some of these LEO satellite-based
quantum subnetworks will be connected to a subnetwork of MEO satellites. The MEO satellite
subnetworks will then be interconnected to the global network of GEO satellites. The LEO/MEO
satellites will also be used to interconnect terrestrial quantum networks. Each quantum communication
subnetwork will be based on the cluster state concept. This quantum global network will allow us to
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establish EPR pairs between any two nodes in the global network. It can also be used to distribute the
entangled states for quantum-sensing applications and to enable distributed quantum computing on a
global scale.
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Abstract: Underwater quantum key distribution (QKD) is tough but important for modern underwater
communications in an insecure environment. It can guarantee secure underwater communication
between submarines and enhance safety for critical network nodes. To enhance the performance of
continuous-variable quantum key distribution (CVQKD) underwater in terms of maximal transmission
distance and secret key rate as well, we adopt measurement-device-independent (MDI) quantum
key distribution with the zero-photon catalysis (ZPC) performed at the emitter of one side, which is
the ZPC-based MDI-CVQKD. Numerical simulation shows that the ZPC-involved scheme, which is
a Gaussian operation in essence, works better than the single photon subtraction (SPS)-involved
scheme in the extreme asymmetric case. We find that the transmission of the ZPC-involved scheme
is longer than that of the SPS-involved scheme. In addition, we consider the effects of temperature,
salinity and solar elevation angle on the system performance in pure seawater. The maximal
transmission distance decreases with the increase of temperature and the decrease of sunlight elevation
angle, while it changes little over a broad range of salinity.

Keywords: continuous-variable quantum key distribution; measurement device independent;
zero-photon catalysis; underwater channel

1. Introduction

Quantum key distribution (QKD) [1–3] is a key part of quantum communications. There are
two categories of protocols, that is, the discrete-variable (DV) QKD protocol [4,5] and the continuous
variable (CV) QKD protocol [6–8]. DVQKD, which was proposed in 1984 with the proposal of
Bennett-Brassard 1984 (BB84) [9], codes on different states of a single photon to convey information.
Currently, it has gotten fully developed and has been experimented in free space, optical fiber, and so
forth. However, DVQKD can be easily interfered by various factors such as background noise light
and noise from components. Besides, because single-photon source is quite hard to realize even
nowadays, people use attenuating laser sources for substitution, which could exert bad effects on
secret key rate. Fortunately, two decades after BB84 was proposed, CVQKD was born, which was
based on the continuity of quantum eigenstate and modulates information on continuous variable of
quantum such as phase and amplitude for communications. Compared with DVQKD, CVQKD can
automatically filter background noise light with simple light source at the same time. Subsequently,
CVQKD is compatible with contemporary optical communication system, which makes it a hot topic
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in QKD realm quickly. Moreover, in terms of measurement devices, CVQKD relies on homodyne or
heterodyne detectors, which are more efficient to achieve higher secret key rates than single-photon
detectors. Of course, CVQKD is still imperfect. There exist disadvantages like short transmission
distance, but these defects are being overcome by advancing technology.

Currently, there have been several CVQKD protocols in terms of system model, such as
the point-to-point (PP) CVQKD and measurement-device-independent [10,11] (MDI) CVQKD [12].
PP-CVQKD, as literally interpreted, is conducted between two parties, Alice and Bob, directly.
It is vulnerable to attacks aimed at detector imperfection. However, in MDI-CVQKD, Alice and
Bob first prepare and transmit coherent states to the third party Charlie. Subsequently, Charlie
interferes the received states to make Bell measurement and announces measurement results publicly.
Finally, the secret key can be shared between Alice and Bob after post-processing. Compared with
PP-CVQKD, MDI-CVQKD is born to solve the flaw of detector imperfection. It can resist side-channel
attacks such as the local oscillator calibration attack [13], the wavelength attack [14], and the detector
saturation attack [15].

At present, CVQKD is always conducted through free space and fiber channel, both of which
are meaningful but challenging. Light transmission in air channel can be disturbed by natural
environment like atmospheric turbulence [16–18], rain, fog, sunlight, and so forth. Fiber channel
seems immune to external disturbance, but it is difficult to be wired up and could be easily
destroyed. Underwater CVQKD may be more meaningful than air or fiber channel in a sense.
Common QKD methods for two underwater vehicles nowadays are using periscopes and satellite link.
However, these methods require underwater vehicles to rise to the sea surface. Fortunately, CVQKD
can be feasibly implemented through underwater channel in practice, which provide a more convenient
scheme for underwater vehicles to communicate safely. However, the realization of underwater
CVQKD is more difficult considering attenuation caused by ocean current, molecular impact,
microorganism, scattering, and so forth. These factors could exert adverse effects on entanglement
between quantum, thus leading to short transmission distance. In what follows, we consider something
different as the effects of temperature, salinity and sun elevation angle.

Recently, there have been several works for QKD underwater. For example, John proposed the
underwater BB84 protocol using pairs of polarization entangled photons [19]. Bouchard suggested
a high dimensional BB84 protocol with twisted photons in outdoor conditions [20]. After that
Ruan proposed a method to estimate parameters to improve CVQKD performance [21].
However, the implementation of MDI-QKD underwater has been waiting for some researches to
fill the gaps. Note that despite the absolute device security of MDI-QKD, its transmission distance
is unsatisfactory, and thus it is difficult to be implemented in harsh environments like seawater.
Fortunately, to lengthen the transmission distance, the non-Gaussian operations [22] like single photon
subtraction (SPS) [23] and zero-photon catalysis (ZPC) [24] are the most commonly used means.
One article has put forward a plan of operating single photon subtraction (SPS) in the fiber-based
CVQKD [25]. In this paper, we dedicate to lengthen the transmission distance of underwater CVQKD
via the Gaussian operations. Motivated by the characteristics of noiseless attenuation, we perform
the zero-photon catalysis, which can keep the Gaussian behavior of photon to prolong the maximal
transmission distance of the CVQKD system underwater with the achievable high secret key rate.

This paper is structured as follows. In Section 2, we propose the ZPC-based MDI-CVQKD for
underwater secure communication. In Section 3, we show the performance improvement of the
ZPC-based scheme by using numerical simulations. Finally, a conclusion is drawn in Section 4.

2. The ZPC-Based MDI-CVQKD Protocol

In this section, we suggest the ZPC-based MDI-CVQKD system through underwater channel.
Due to the equivalence of prepare-and-measure (PM) scheme and entanglement-based (EB) scheme,
we consider the EB ZPC-involved scheme to simplify the security proof of the underwater
MDI-CVQKD system.
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Figure 1 shows the schematic diagram of the EB ZPC-involved scheme. In this scheme, Alice in
deep water aims to establish a secret channel with Bob in shallow water. Note that Alice and Bob may
not locate in the same vertical area. For the convenience of demonstration, we suppose that Alice is
vertically below Bob, and the transmission distance turns into depth. First, Alice and Bob prepare
entanglement resource EPR1 and EPR2 with variances VA and VB, respectively. Then, they keep modes
A1 and B1, and send other modes A2 and B2 to an untrusted party Charlie through water channel.
To simplify equipment, we assume that the ZPC operation is conducted by David on Alice’s side,
which turns mode A2 into mode Ã2. After that, Charlie receives modes Ã2 and B2, and performs BSM
(Bell state measurement)-based detection and announces measurement results PC2 and XC1 publicly
through a classical channel. Ultimately, Bob modifies mode B1 to mode B̃1 through operation D(α),
where D(α) is a displacement operation. In this way, Alice and Bob obtain two mode A1, B̃1 for
heterodyne detection to get data (XA, PA) and (XB, PB), which can be used for estimation of channel
parameter, coordinate information, and so forth. After series of post-processing, secret key will be
achieved successfully.

Figure 1. Schematic diagram of the zero-photon catalysis (ZPC) based measurement-device-independent-
continuous-variable quantum key distribution (MDI-CVQKD) through underwater channel. Hom:
homodyne detection, Het: heterodyne detection, PD: photon detector, BS: beam splitter.

As for the ZPC-involved data-processing shown in Figure 1 (a), vacuum state in auxiliary mode
D is injected into an input port of beam splitter (BS) with transmittance T, which is detected at the
corresponding output port of BS at the same time. That is exactly the ZPC operation. This process is
usually represented by an equivalent operator given by

∧
O0 ≡ Tr[B(T)

∧
∏
off

] = D 〈0| B(T)|0〉D, (1)

where B(T) is the operator representing BS with transmittance T and can be described as

B(T) = exp[
√

T − 1)(a2
†a2 + d†d) + (d†a2 − da2

†)
√

1 − T], (2)
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and
∧
∏
off

is the projection operator in photon detector(PD), which here is an on/off detector. Now we

consider how the ZPC operation makes effect. State EPR1 is essentially a two-mode squeezed vacuum
state, which can be expressed as

|EPR1〉A1 A2 = S2(r)|0, 0〉A1 A2

=
√

1 − λ2
∞
∑

l=0
λl |l, l〉A1 A2 , (3)

where λ=
√
(VA − 1)(VA + 1). After conducting the ZPC operation, this state turns into |ψ〉A1 Ã2

,
which can be described as

|ψ〉A1 Ã2
=

Ô0√
Pd

|EPR1〉A1 A2 , (4)

where Pd = 2/(1 + T + (1 − T)VA), standing for the success probability of the ZPC operation.
Subsequently, the covariance matrix of |ψ〉A1 Ã2

can be calculated as

VA1 Ã2
=

(
x ∏ zσz

zσz y ∏

)
, (5)

where σz = diag(1,−1), x = y = (2VA − RVA + R)/(1 + T + RVA), and z = 2
√

T(VA
2 − 1)/(1 + T +

RVA). We note that the above-mentioned ZPC operation is actually a Gaussian operation in essence,
which have an effect on the performance of the underwater CVQKD system.

3. Security Analysis

While demonstrating the effect of the ZPC-involved scheme on the underwater CVQKD system,
we consider transmittance of seawater channel, which characterizes the transparency of seawater,
thus affecting the ability of light transmission, which is shown in Appendix A. Subsequently, we show
the performance improvement of the ZPC-based system.

3.1. Derivation of the Secret Key Rate

As shown in Figure 2, we have an equivalent point-to-point (PP) protocol of the underwater
ZPC-based MDI-CVQKD. It should be noticed that the reasonableness of this equivalence has been
proved [26]. Thus we use Tc and εth to represent the transmittance and excess noise of the PP CVQKD
protocol given by

Tc = g2TA/2, (6)

and
εth = TB/TA(εB − 2) + εA + 2/TA. (7)

Taking into account the noise caused by Charlie’s imperfect detection, the whole channel noise can be
expressed as

χtot = 1 − Tc/Tc + εth + 2χhom/TA, (8)

with χhom = (νel + 1 − η)/η, where νel stands for electronic noise and η stands for quantum efficiency.
The transmittance TA(B) of seawater channel can be expressed as

TA(B) = e−α(λ)DAC(BC) , (9)

where α(λ) means attenuation coefficient shown in Appendix A.
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Figure 2. Schematic diagram of the ZPC-based point-to-point (PP) CVQKD system.

Different from non-Gaussian operation, after performing ZPC, the resulting state |ψ〉A1 Ã2
is still

a Gaussian state, thus it is reasonable to derive the secret key rate directly from the conventional
Gaussian CVQKD given by

K=Pd{(βI(A : B))− χ(B : E)}, (10)

where β means the reverse-reconciliation efficiency, I(A : B) represents the mutual information
between Alice and Bob, and χ(B : E) denotes the Holevo bound between Bob and Eve.
Assuming |ψ〉A1 B̃1

denotes the state when |ψ〉A1 Ã2
passes through the channel in the equivalent

PP CVQKD protocol, the covariance matrix of |ψ〉A1 B̃1
can be described as

VA1 B̃1
=

(
X ∏ Zσz

Zσz Y ∏

)

=

(
x ∏

√
Tczσz√

Tczσz Tc(x + χtot)∏

)
.

(11)

Then, I(A : B) can be calculated as

I(A : B)=log2
(X + 1)(Y + 1)

(X + 1)(Y + 1)− Z2 . (12)

To calculate χ(B : E), we assume Eve is aware of David’s existence and can purify the whole system
ρA1 B̃1ED. Based on this, χ(B : E) can be described as

χ(B : E)=S(E)− S(E|B)
=

2
∑

i=1
G( λi−1

2 )−G( λ3−1
2 ),

(13)

where G(x) = (x + 1)log2(x + 1) − xlog2x, representing the von Neumann entropy, and λ2
1,2 =

(Δ ±√
Δ2 − 4ω2)/2 with ω = XY−Z2 and Δ = X2+Y2−2Z2 .
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3.2. Numerical Simulations

In the following, we show the performance improvement of the ZPC-based MDI-CVQKD in terms
of the maximal transmission distance and the secret key rate as well, compared with the SPS-based
MDI-CVQKD and the traditional MDI-CVQKD.

In numerical simulations of the secret key rate of the ZPC-based MDI-CVQKD, we set DBC = 0,
which is the asymmetric case that achieves the longest transmission distance. Moreover, we take into
account εA = εB = 0.01, β = 0.96, η = 1, and νel = 0. First of all, we consider the influence of the
tunable variance VA and VB, where VA and VB are significant to system, as shown in Figure 3. For the
simplicity, we set VA = VB. We find that the traditional scheme is sensitive to VA(VB), whereas the
SPS-based and ZPC-based schemes show the stable transmission depth even when VA(VB) changes
in a big range in Figure 3a. In addition, the secret key rate decreases fast with the increase of VA(VB),
as shown in Figure 3b. By contrast, the secret key rate of the other two schemes decrease slowly with
the increase of VA(VB). This result shows that the ZPC-based and SPS-based schemes have a more
flexible application in the underwater CVQKD system.

Figure 3. (a) The secret key rate as a function of VA (VB) for the traditional scheme (blue surface) and
the ZPC-based (magenta surface) and the single photon subtraction (SPS)-based scheme (green surface).
(b) A cross section of (a) where depth is set to 30 m for the traditional (yellow), the ZPC-based (blue),
and the SPS-based (red).

Note that in practical system, the performance of CVQKD is related to the perfection of
components. For example, the Faraday-mirror, which is used for adjusting the polarization angle of
signal, is quite sensitive to the rotation angle. The rotation angle should be set as 45◦ accurately to make
the polarization angles of signal and local oscillator orthogonal. However, in practice, the rotation
angle could not be perfectly set, thus leading to the decrease of secret key rate, especially when
transmittance T is small. Fortunately, increasing variance appropriately can provide us an efficient
ploy to make up for the defects [27].

In Figure 4, we illustrate the performance of the related schemes in terms of the secret key rate
and the maximal transmission depth under different variance. From Figure 4a, when variance VA (VB)
is small, both underwater ZPC-based and SPS-based schemes show no obvious advantages in terms of
depth compared with the condition on land. For the SPS-based scheme, it reaches the longest depth
at about 43 m, which is close to that of the traditional scheme. For the ZPC-based scheme, it has the
longest transmission distance of 50 m. This phenomenon may be caused by the small transmittance
in the sea. Due to the small transmittance of seawater, the secret key rate of all three schemes comes
to zero fast, thus giving fewer chances for the SPS-based scheme and ZPC-based scheme to show
distance advantages. However, In Figure 4b, it shows a different result. When variance VA (VB) is
increased, the longest distance of traditional scheme decreases to 30 m, while the performance of
the SPS-based and ZPC-based schemes maintain stable. It seems that for the increased modulation
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variance the SPS-based and ZPC-based schemes show better performance than the traditional protocol,
of which the ZPC operation works better. Moreover, it also shows that for the high modulation
variance, the ZPC-based scheme is the best among the three schemes discussed above.

Figure 4. The secret key rate of the MDI-CVQKD system under pure seawater via the ZPC-based
scheme, the SPS-based scheme, and the traditional scheme. T(SPS) = 0.9. The purple line represents
PLOB [28] bound. (a). VA = VB = 40. (b). VA = VB = 150.

To show the advantages of the ZPC-based scheme over the SPS-based scheme, we plot the secret
key rate as a function of transmittance (T) of beam splitter (BS) and depth. As shown in Figure 5,
the ZPC-based scheme has apparent advantages in terms of both secret key rate and depth compared
with the SPS-based scheme. Besides, from this figure, we can get the optimal transmittance (T) of both
two schemes. We find that the optimal transmittance (T) is 0.75 for the ZPC-based scheme and 0.72 for
the SPS-based scheme. This result proves that the ZPC operation does improve system performance
and works better than the SPS operation.

Figure 5. The secret key rate of the MDI-CVQKD system under pure seawater for VA = VB = 40.
(a) the ZPC-based scheme, (b) the SPS-based scheme.

Subsequently, we consider effects of factors of pure sea water on the ZPC-based MDI-CVQKD
system. First of all, we consider the effects of temperature in Figure 6. It shows that the transmission
depth changes by about 5 m when the temperature ranges from 0 ◦C to 40 ◦C. It seems that the colder
the seawater means the better the performance. This characteristic is easily to be comprehended since
colder seawater means weaker thermal movement of molecular, thus leading to weaker influence on
the performance of the underwater CVQKD system. It should be noticed that this range of change is
possible, considering differences in seasons, time in a day and geographical location.
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Figure 6. Relationship among secret key rate, transmission depth and temperature for VA = VB = 40.

Figure 7 shows the effects of sun elevation angle. Here we consider the influence that sunlight
exerts on transmittance and omit the influence on the excess noise. The reason for this simplification is
based on the assumption that the photon detector is ideal and not affected by background light. It is
shown that depth lengthens by about 15 m when the sun elevation angle changes from 70◦ to 20◦.
Therefore, we could deduce that the underwater CVQKD system has the best performance around
midday and has the worst performance at dusk. This result is quite different from the situation
of CVQKD in free space, transmittance of which has little relationship to background light while
background noise is influenced profoundly by background solar light.

Figure 7. Secret key rate of the ZPC-based MDI-CVQKD in oligotrophic seawater under different
sun elevation angle for VA = VB = 40. The upper three lines represent PLOB bound corresponding
different sun elevation angle.

From simulation above, we can find that even if ZPC operation improves the performance of
CV-MDI-QKD to some extent, our scheme is still constrained by transmission distance compared
with conditions in fiber and open air, which is secure up to at least 100 km. However, its flexibility
compared with fiber allows it to become the next generation of optical switch underwater. For example,
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it can be used as a non-contact optical switch to establish secure net for underwater vehicles.
Besides, it can be applied to optical communication system for autonomous underwater robots [29]
and remote underwater robot operation [30]. Moreover, the development of underwater wireless
optical communication (UWOC) provides another chance for our scheme. Recently, Sun verified
the operation of UWOC at tens of gigabits per second or close to a hundred meters of distance [31].
With the help of our proposed scheme, UWOC will be safer and more credible.

4. Conclusions

We have proposed a ZPC-involved scheme for strengthening the security of the underwater
MDI-CVQKD system in terms of the secret key rate and the maximal transmission depth. This scheme
aims to establish a potential underwater MDI-CVQKD channel between two underwater parties.
We consider the influence that the ZPC operation exerts on the MDI-CVQKD system and derive
the secret key rate. To make it more persuasive, we compare the ZPC-involved scheme with the
SPS-involved and traditional schemes as well. Numerical simulations show that the ZPC-involved
scheme has better performance, prolonging the transmission depth by about 5 m. We find that the
ZPC-involved scheme shows better performance obviously when the tunable modulation variance
is set high. Besides, we consider the possible factors influencing our proposed method. It is found
that temperature has a relatively considerable impact on transmission depth while salinity is not an
important factor in terms of the maximal transmission depth and the secret key rate. In addition,
sun elevation angle influences the system performance to some extent as well, which implies that the
performance of the underwater CVQKD system may be changeable with different time.
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Abbreviations

The following abbreviations are used in this manuscript:

QKD Quantum key Distribution
DVQKD Discrete-variable Quantum key Distribution
CVQKD Continuous-variable Quantum key Distribution
MDI Measurement-device-independent
TMSV Two-mode squeezed vacuum
SPS Single-photon subtraction
ZPC Zero-photon catalysis
EB Entanglement-based
PM Prepare- and-measure
Het Heterodyne detection
Hom Homodyne detection
BS Beam splitter

Appendix A. A: Seawater Channel

Usually, transmittance is a function of distance (here means depth) D and attenuation coefficient
α(λ). Since the transmission distance of light in seawater is short, seawater channel could be regarded
as a linear attenuation model, which can be expressed as

Tsea = e−α(λ)D, (A1)

31



Entropy 2020, 22, 571

where α(λ) is related to wavelength λ. In seawater, the blue-green light (450 nm < λ < 550 nm)
has the smallest attenuation coefficient. For the performance improvement, we use 520 nm laser in
numerical simulations. The attenuation coefficient α(λ) is affected by absorption and scattering [32,33].
Absorption, as it is literally comprehended, means irreversible energy loss of light caused by the
interaction of photons and particles, which is a kind of electromagnetic action. However, scattering is
a purely physical collision process happening between photons and particles, which just changes the
direction of photon movement and does not cause energy degradation. Involving these two factors,
the expression of α(λ) can be written as

α(λ) = a(λ) + b(λ), (A2)

where a(λ) is absorption coefficient and b(λ) is scattering coefficient. More specifically, the parameters
a(λ) and b(λ) consist the effects of seawater and other particles given by [34]

a(λ) = aw(λ) + aCDOM(λ) + aphy(λ) + adet(λ), (A3)

and
b(λ) = bw(λ) + bphy(λ) + bdet(λ), (A4)

where w means pure sea water, CDOM means colored dissolved organic matter, phy means
plankton, and det means detritus. Consequently, it is impossible to calculate all impact factors.
However, researchers have demonstrated some effects of factors such as chlorophyll, bubbles, and
salt, providing us valuable experience. In fact, besides the above-mentioned factors, temperature
and sunlight could have potential impacts on α(λ) as well. Therefore, we will further consider the
mixing effects of temperature and salinity, and the effects of sun elevation angle in the following part
of this section. Since the factors we consider have little effects on impurity not belonging to seawater,
our security analysis is based on pure seawater.

Appendix A.1. Mixing Effects of Temperature and Salinity

In what follows, we consider the effect of temperature and salinity on the ZPC-based MDI-CVQKD
in pure seawater environment. Then the attenuation coefficient α can be simplified to

α = aw + bw, (A5)

where aw stands for absorption coefficient of seawater and bw stands for scattering coefficient.
Moreover, bw contains two parts, the fluctuation of the density of pure water (bwd) and the electro
shrinkage effect of hydrated ions (bwe) given by

bw = bwe + bwd, (A6)

where bwe and bwd can be respectively expressed as

bwe =
64π5NR6(2 + δ)

3λ4(1 + δ)

(
εwa − εpw

εwa + 2εpw

)2
, (A7)

bwd =
8π3

λ4

(
ρ

∂n2

∂ρ

)2

kτβh(δ), (A8)

where λ is light wavelength, N is number of ions in unit volume, δ is solution depolarization, n is
the refractive index of pure water, k is Boltzmann constant, β is isothermal compressibility, τ is
absolute temperature, ρ is seawater density, R represents hydration radius [35], εwa and εpw represent
the average dielectric constant of the hydrated ions and the average dielectric constant of pure
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water respectively, and h(δ) = (2 + δ)/(7 − 7δ). In addition, we take into account εpw = nw
2, and

εwa = εhw(R3 − r3)/r3 + εir3/R3, where r represents the effective radius of ions [36], εi is the Dielectric
constant of ions, εhw denotes the Dielectric constant of water in the first hydrated layer. Both εi and
εhw can be obtained from Clausius-Mossotti equation [37].

In Equation (12), it shows that the increase of N (number of ions in unit volume) will lead to
the increase of bwe, whereas the increase of salinity will lead to the decrease of bwd, as shown in
Equation (13). Besides, the increase of temperature will cause the increase of bwd. In reality, it is
analyzed that bwe acts as the main factor affecting bw because the increase of salinity also causes
the increase of bw, the trend of which is similar to that of bwe. However, bwe is quite small and is
slightly influenced by salinity [38]. Therefore, we ignore the effect of bw on the CVQKD system while
deriving the secret key rate. Note that the scattering coefficient bw is also negligible compared with the
absorption coefficient aw in terms of temperature [39].

Therefore, the change of total attenuation coefficient α with temperature and salinity mainly
reflects the change of absorption coefficient aw with temperature and salinity, and the change of
attenuation coefficient and absorption coefficient is consistent. Note that the effect of temperature on
absorption coefficient in seawater can be expressed as [40]

aw(λ, T, S) = aw(λ, T0, 0) + ψSS + ψT(T − T0), (A9)

where T and T0 mean real-time temperature and initial temperature respectively, S means salinity, ψS
and ψT stand for linear salinity slope and temperature slope, respectively. From analysis all above,
we obtain the expression of transmittance in pure seawater

Tpuresea = e−[aw(λ,T0,0)+ψSS+ψT(T−T0)]D. (A10)

To show the mixing effects of temperature and salinity visually, we simulate in the pure seawater
environment, where attenuation coefficient α is around 0.04. Note that according to Reference [40],
when λ = 520 nm, ψS = −0.00002 and ψT = 0.0002 for seawater respectively. In Figure A1, we find
that temperature has a great influence on the attenuation coefficient α. Specifically, the attenuation
coefficient α increases by 0.008 when temperature changes from 0 ◦C to 40 ◦C. However, salinity has
little influence on the attenuation coefficient α. The range of 40 PSU brings no significant changes.

Figure A1. Effects of temperature and salinity on attenuation coefficient.
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Appendix A.2. Effects of Sun Elevation Angle

Generally speaking, the intensity of sunlight, which is closely related to sun elevation angle,
mainly influences transmittance of seawater and excess noise. In this section, we will have a deep
insight into these two effects.

First, we study its influence on transmittance. It is generally admitted that the transparency and
color of ocean water are determined by the optical properties of sea water, which are related to sunlight
illumination. Thus, the optical properties changed by sunlight could have a certain impact on the
underwater ZPC-based MDI-CVQKD system. To have a quantitative elaboration of the impact of
sunlight or more specifically, the irradiance on the transmittance of seawater, we consider the effects of
sun elevation angle on the performance of the CVQKD system.

Actually, the transmittance of seawater in different depth z relates with sun light through the
following equation [41]

Tsea(z) = [Ed(z) + μsFse−kz/μs ]/(E0 + μsFs), (A11)

where Ed(z) is downward irradiance, μs is the angle at which sun rays enter the water, and Fs is the
irradiance from the sky just below the sea surface given by Fs = qE0 with a parameter q related to
characteristics of atmosphere and the air-water interface. In addition, E0 is the irradiance of the sky
diffuse light going into the water and k = a + 2bB, where a is the absorption coefficient, and bB is the
backscattering coefficient. According to the Snellius law, μs and sun elevation angle have the following
relationship

μs =
√

1 − cos2hs/nw2, (A12)

where hs is the sun elevation angle, and nw is the refraction coefficient of seawater (usually takes value
1.34). Ed(z) can be calculated through irradiance attenuation coefficient, which takes different value in
different depth z, given by

kd(z) = − 1
Ed(z)

× dEd(z)
dz

. (A13)

Therefore, the relationship among kd(z), absorption coefficient a and scattering coefficient b can be
expressed by [42]

kd(z) =
1

μ0
[a2 + G(μ0)ab]

1
2 , (A14)

where G(μ0) = q1μ0 − q2. q1 and q2 are related to the average value of kd(z), which in practice we
often take the value of intermediate depth.

From the elaboration of T(z), it is still not easy to get an accurate simulation of the transmittance
T(z). Fortunately, we can obtain data directly from the derived chart [41]. For example, the
transmittance (520 nm light) of 10 m deep oligotrophic seawater is 62%, 56%, and 52% corresponding
sun elevation angle of 70◦, 45◦, and 20◦, respectively. Thus, it is possible to calculate the attenuation
coefficient through the equation α = − ln T/D, which are 0.047, 0.057 and 0.065, correspondingly.

Then, we analyze its influence on excess noise. According to Reference [43], the solar background
noise underwater is

P = LΩBπr2, (A15)

where Ω = π and L, B, r mean solar radiance, filter bandwidth determined by laser generating local
oscillator (LO), radius of virtual telescope on sea surface to receive background light respectively.
The parameter L can be calculated by

L =
HRL f e−cD

π
, (A16)

where H is downwelling irradiance, R = 1.25%, L f = 1 are underwater reflectance of H and the factor
of directional dependence of the underwater radiance. Finally, we derive the expression of excess noise
underwater:

ε=εlim +
τP
hν

, (A17)
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where εlim means excess noise limit and is estimated as 0.01 (SNU), τ = 1 ns is the reciprocal of
frequency of homodyne detector at Bob’s end, h is Planck’s constant and ν is the frequency of noise
photons, which is in the range of visible light. Note that H ranges from about 0.5 to 2 for clear day
time. The according excess noise ranges from 0.01 to 0.012, which is so trivial that could be ignored.
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Abstract: In this paper, we propose the surface codes (SCs)-based multipartite quantum
communication networks (QCNs). We describe an approach that enables us to simultaneously
entangle multiple nodes in an arbitrary network topology based on the SCs. We also describe how
to extend the transmission distance between arbitrary two nodes by using the SCs. The numerical
results indicate that transmission distance between nodes can be extended to beyond 1000 km by
employing simple syndrome decoding. Finally, we describe how to operate the proposed QCN by
employing the software-defined networking (SDN) concept.
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communications; entanglement; surface codes

1. Introduction

Quantum information processing (QIP) opens up new avenues for reliable communications,
high-precision sensing, and high-performance computing [1–20]. Entanglement represents a unique
resource for QIP, which allows quantum computers to solve classically intractable problems [7], provides
certifiable security [2] for data transmissions, and enables sensors to achieve measurement sensitivities
beyond the classical limit [8]. The quantum communication is the key cornerstone to fully exploit the
properties of entanglement. The modern classical communications tend to use heterogeneous networks
capable of simultaneous data transmission between nodes connected via different types of channels,
such as free-space optical (FSO) and fiber-optics links. Nodes in existing quantum communication
networks (QCNs), however, have been limited to a single optical medium. Moreover, trusted node
assumption [4] is required to operate the current QCNs. As a result, one compromised node in a
QCN can undermine the security of the entire QCN. Several quantum key distribution (QKD) testbeds
have been reported so far, such as the DARPA QKD network [5], Tokyo QKD network [6], and the
secure communication based on quantum cryptography (SECOQC) network [7]. Unfortunately, these
different QKD networks employ the dark fiber infrastructure.

In this paper, we propose the multipartite heterogenous QCN employing the surface codes,
which does not require the trusted node assumption. The research on multipartite entanglement is
getting momentum with numerous experimental demonstrations, such as [8]. The surface codes,
typically defined on a 2-D lattice, are closely related to the quantum topological codes on the
boundary [1], introduced by Bravyi and Kitaev [11,12]. This class of codes is highly popular in quantum
computing [13–15] because only local qubits are involved in stabilizers. In Litinski’s framework [14], the
surface code for quantum computing is represented as a game, played on a board partitioned in a certain
number of tiles. On each tile we can place a logical qubit, represented as a patch. The edges of qubits
represent the logical Pauli operators [1]. The logical qubits correspond to the surface code (SC) patches.
By placing the SC patches in nodes of a communication network, and connecting the neighbouring
patches by d wavelength channels, corresponding to the distance of the underlying surface code, we
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can create the quantum communication network. The SC patches placed in intermediate nodes can be
operated as the SC-based quantum repeaters, thus extending significantly the transmission distance.
When the patch edges in the tiles of neighbouring network nodes are different, we can perform the
product measurements to entangle them. For instance, the product Z⊗Z between adjacent nodes’
patches can be simultaneously measured to introduce the entanglement between two adjacent quantum
nodes. Namely, we start with the state |++〉 = 0.5(|00〉 + |11〉 + |01〉 + |10〉) and perform the measurement
on Z⊗Z operator. If the result of the measurement is +1, the qubits end up in state 2−1/2(|00〉 + |11〉);
otherwise, they end up in state 2−1/2 (|01〉 + |10〉). In either case, the qubits are maximally entangled.
This indicates that the proposed SC-based QCN is highly flexible and have numerous applications,
including: (i) to teleport quantum states between any two nodes in the network, (ii) to develop the
information infrastructure with unprecedented security level, (iii) to enable distributed quantum
computing, and (iv) to enable ultra-high precision for quantum sensing applications. To operate such a
quantum network, we propose to employ the software-defined networking (SDN) concepts.

The paper is organized as follows. In Section 2, we introduce the surface codes and describe
briefly the Litinski’s formalism needed in incoming sections. In Section 3, we describe the proposed
SC-based QCN concept. In Section 4, we describe our approach to extend the transmission distance
between QCN nodes. In Section 5, we provide illustrative numerical results. In Section 6, we describe
how to operate the proposed SC-based QCN by utilizing the SDN concepts. Finally, in Section 7, we
provide some important concluding remarks.

2. Surface Codes for Quantum Networking and Distributed Computing

The surface code belongs to the class of topological codes [1] and it is defined on a 2-D lattice,
with one illustrative example provided in Figure 1, with qubits being clearly indicated in Figure 1a.
The stabilizers of plaquette type can be defined as provided in Figure 1b. Each plaquette stabilizer
denoted by X (Z) is composed of Pauli X (Z)-operators on qubits located in the intersection of edges of
corresponding plaquette. As an illustration, the plaquette stabilizer denoted by X related to qubits 1 and
2 will be X1×2. The plaquette stabilizer denoted by Z, related to qubits 5, 6, 8, and 9, will be Z5Z6Z8Z9.
To simplify the notation, we can use the representation provided in Figure 1c, where the shaded
plaquettes correspond to all-X containing operators’ stabilizers, while the white plaquettes correspond
to all-Z containing operators’ stabilizers. The stabilizers require only local qubits’ interaction, which is
not true for other classes of quantum error correction codes.

 
(a) (b) (c) (d) 

Z Z Z Z=

X X X X=

Figure 1. Illustration of a surface code: (a) the qubits are located in the lattice positions, (b) all-X and
all-Z plaquette operators, (c) popular representation of surface codes in which stabilizers are clearly
indicated, and (d) logical operators.

The weight-2 stabilizers are allocated around perimeter, while weight-4 stabilizers are located
in the interior. The logical operators for this code are run over both sides of the lattice, as shown in
Figure 1d, and can be represented as X = X3X6X9, Z = Z1Z2Z3. The codeword length is determined
as the product of side lengths, expressed in number of qubits, and, for the surface code from Figure 1,
we have that n = Lx × Lz = 3 × 3 = 9. On the other hand, the number of information qubits is k = 1. The
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minimum distance of this code is determined as the minimum side length, that is d =min(Lx,Lz) = 3,
indicating that this code can correct a single qubit error.

Let us now specify the rules of the game, that is the operations that can be applied to the patches
(qubits), which can be categorized as [14]: (i) initialization, (ii) qubit measurements, and (iii) patch
deformations. Compared to computing only limited number of operations are required in quantum
networking. With each of these operations, we associate the cost, expressed in terms of time-steps,
with each time-step (t.s.) corresponding to ~d code cycles (related to the measuring all stabilizers
d times), with d being the distance of underlying surface code per tile. One-qubit patches, shown
in Figure 2 as |q1〉 and |q2〉, can be initialized to |0〉 or |+〉 states, while two-qubit patches, shown in
Figure 2 as |q3〉, to |00〉 or |++〉 states, with associated cost being 0 t.s. (The logic |+〉-state indicates
that all physical qubits are initialized into |+〉-state.) In principle, one-qubit patches can be initialized
to the arbitrary states, such as the magic state |m〉 = |0〉 + exp(jπ/4)|1〉; however, an undetected Pauli
error [1] can spoil the initialized state. The single-patch measurements can be performed in X or Z bases,
and after the measurement the corresponding patches get removed from the board, thus freeing up
the occupied tiles for future use. The cost associated with single-patch measurements is 0 t.s. For
two-patch measurements, when the edges in neighboring tiles are different, we can perform the product
measurements. As an illustration, the product Z⊗Z between adjacent patches can be measured as
illustrated in Figure 3 (left).

 

(a) (b) 

Figure 2. Illustration of one-qubit and two-qubits patches: (a) notation and (b) actual
physical implementation.

 

Z⊗

 |  |  |  |

Figure 3. Illustrating the lattice surgery procedure for the measurement on the product Z⊗Z.

In surface codes, this corresponds to the lattice surgery [14,15], in which we change the configuration
as shown in Figure 3 (right) by introducing the patches with dark-red edges; after that, we measure
the stabilizers for d cycles to get the outcome of measurements, and split again. The cost associated
with the lattice surgery is 1 t.s. This represents the way to introduce the entanglement between two
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adjacent patches. Namely, we start with the state |++〉 = 0.5(|00〉 + |11〉 + |01〉 + |10〉) and perform
the measurement on Z⊗Z operator. If the result of the measurement is +1, the qubits end up in state
2−1/2(|00〉 + |11〉); otherwise, they end up in state 2−1/2 (|01〉 + |10〉). In either case, the qubits are
maximally entangled. We can apply the similar procedure to the X⊗Z product operator. Of course, it is
also possible to measure the product operator involving the Y operator, which is really not needed in
our proposed QCNs. What is even more interesting is that it is possible to measure the product for
more than two encoded Pauli operators through multi-patch measurements [14].

3. Proposed Surface-Codes-Based Quantum Communications Networks

To enable the next generation of quantum communication networking, we propose to employ
the surface codes so that the logical qubits are located at different nodes in the network. The logical
qubits are represented by the patches introduced in the previous section. For simplicity, we assume
that the surface code is defined on a d × d grid. The neighboring nodes are connected by employing d
wavelengths, as illustrated in Figure 4. Some of the optical links could be FSO links.

By performing the Z⊗Z measurement, as described in the previous section, the logical qubits
create the Einstein–Podolsky–Rosen (EPR) pair. The results of the measurements have been passed to
the SDN controller, which will know the exact EPR pair being created. To create the desired QCN,
the corresponding product measurements need to be simultaneously performed. As an illustration,
let us consider the ring network composed of four nodes, as shown in Figure 5 (left), with each node
being equipped with the surface code patch representing the corresponding logical qubits. In principle,
one surface patch can be split between multiple nodes, but, to facilitate explanations, we assume that
each node contains a single SC patch. By performing the simultaneous product Z⊗Z measurements
between logical qubits q1 and q2, q2 and q3, q3 and q4, q4 and q1, we can entangle the nodes 1–4 and thus
create the ring QCN. On the other hand, for the four-node mesh network shown in Figure 5 (right), by
performing the simultaneous product Z⊗Z measurements between logical qubits q1 and q2, q2 and q3,
q3 and q4, q4 and q1 as well as the simultaneous X⊗X measurements between q1 and q3, q2 and q4, we
can entangle the four qubits into the mesh configuration. By providing the results of the measurements
to the SDN control plane, the exact maximum entangled state between nodes in the QCN will be
known. Clearly, this approach allows us to entangle the logical qubits in an arbitrary network. The
trapped ions-based technology represents a perfect candidate for practical implementation of the
proposed QCN. By equipping every node in the proposed QCN by multiple qubit patches, in principle,
we can simultaneously perform quantum networking and quantum distributed computing. Instead of
wavelength-division multiplexing (WDM), the multicore fiber can also be used to connect the logical
qubits [16]. The proposed QCN does not require the trusted node assumption, but it is assumed that
Eve does not have access to SDN controller.

 

Figure 4. Simplified description of connecting two logical qubits from two neighboring nodes by
d wavelengths.
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 |

 |

 |

 |  |

 |

 |

 |

Figure 5. Illustrative four-node ring (left) and four-node mesh (right) quantum communication networks.

4. Extending the Distance between the Nodes in the Proposed SC-Based QCN

To extend the transmission distance between neighboring nodes in QCN, we propose to use the
quantum error correction (QEC)-based repeaters. So far, QEC-based repeaters are based on two-dimensional
QE-based repeaters, such as the dual-containing Calderbank–Shor–Steane (CSS)-codes-based
repeaters [17] and surface-codes-based repeaters [18]. Unfortunately, dual-containing CSS codes
are essentially girth-4 quantum low-density parity-check (LDPC) codes with poor error correction
performance [19]. On the other hand, the surface codes proposed in [18] introduce large latency and
are not compatible with the QCN proposed in the previous section. Here, we propose a different
approach to interpret an intermediate node as an SC patch and apply the patch deformation approach
due to Litinski and thus extend the logical qubit to two spatially separated patches, which is illustrated
in Figure 6. In this example, three wavelengths are needed to interact remote patches. Once the logical
qubit is extended to the intermediate node, we further perform product X⊗Z measurements to entangle
the logical qubits q1 and q2. This approach is applicable to several intermediate nodes, thus offering
the potential to significantly extend the distance between any two desired nodes in the QCN.

 |

 |

 |

Figure 6. Extending the distance between two nodes in a quantum communication network (QCN) by
creating the logical qubit spanning two spatially separated surface code (SC) patches.

5. Illustrative Numerical Results

Although the channel loss dominates the performance of quantum repeaters, there will be
quantum errors associated with each stage, which can be represented by using the quantum channel

43



Entropy 2020, 22, 1059

model provided in Figure 7, where X and Z quantum errors occur with the same probability p. The
corresponding Kraus representation [1] is given by:

ρ f = ξ(ρ) = (1− 2p)ρ+ pX ρX + pZρZ. (1)

(a) (b) 

ψ
−

ψ

ψ

ψ

 ρ
−

ρ

 ρ

ρ

Figure 7. Quantum channel model under study: (a) Pauli operator description and (b) density
operator description.

Let us consider the BB84 protocol by employing the approach introduced in previous section. The
corresponding secret-key rate after N sections will be:

SKR =
{
[1− P(E)]T

}Nmax
(
1− h2

(
q(Z)N

)
− feh2

(
q(X)

N

)
, 0
)
, (2)

where fe denotes the error correction inefficiency (fe ≥ 1), q(X)
N

[
q(Z)N

]
denotes the quantum bit-error rate

(QBER) in the X-basis (Z-basis) after N stages, T represents the single link transmissivity, and h2(x) is

the binary entropy function h2(x) = −x log2(x) − (1− x) log2(1− x). The term h2

(
q(Z)N

)
represents the

amount of information Eve was able to learn during the raw key transmission, which can be removed

from the final key during the privacy amplification phase. The term feh2

(
q(X)

N

)
represents the amount

of information revealed to Eve during the information reconciliation stage. The dark counts, device
imperfections, and errors introduced by Eve are all contributed to the Eve and included in transition
probability p. The QBER after N stages can be estimated by:

qN =
1− sN

2
, s = 1− 2p. (3)

The probability of the syndrome decoding error is bounded by [1]:

P(E) ≤
d2∑

j = �(d−1)/2�+1

(
d2

j

)
(1− s) jsd2− j, s = 1− 2p, (4)

So, [1 − P(E)]T represents the success probability for the single stage. The total success probability
can be estimated by {[1 − P(E)]T}N and is illustrated in Figure 8 by setting the X (Z) qubit error
probability to p = 10−2 and transmissivity to T = 1, for different d × d surface codes.
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P

N

p
d
d
d

Figure 8. Total success probability defined as (1 − P(E))N, where N is the number of stages, when the
d × d surface code is used, and syndrome decoding is applied.

The numerical results for secret-key rate (SKR) for different transmissivities T (assuming that
fe = 1) vs. the number of stages N are summarized in Figures 9 and 10. The channel transmittance in
Figure 9 is set to T = 0.95, while in Figure 10 it is set to T = 0.85. The qubit error transition probability
p is used as a parameter. In both figures, the 7 × 7 surface code is used. Given that the effective
transmission distance of the fiber is given by [20]:

Leff =
1− e−αL

α
≈ 1/α, (5)

SK
R

N

d T
p
p
p

Figure 9. Normalized secret-key rate (SKR) vs. the number of stages N assuming that the 7 × 7 surface
code is used, and single link channel transmittance is T = 0.95.
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SK
R

N

d T
p
p
p

Figure 10. Normalized SKR vs. number of stages N assuming that 7 × 7 surface code is used, and
single link channel transmittance is T = 0.85.

For ultra-low loss fiber introduced in [21] with attenuation coefficient α = 0.1419 dB/km, we obtain
that Leff = 30.606 km. The total transmission length can be now estimated by:

Ltot = NLeff|ln T|. (6)

For T = 0.95, by setting the qubit error probability to p = 10−4, we can see from Figure 9
that the achievable total transmission distance for normalized SKR of 10−6 is Ltot = 252 × 30.606 ×
|ln0.95| = 395.61 km. On the other hand, for T = 0.85, by setting the qubit error probability to p = 10−4,
we can see from Figure 10 that the achievable total transmission distance for normalized SKR of 10−15

(typical for discrete variable QKD schemes [2]) is Ltot = 208 × 30.606 × |ln0.85| = 1034.61 km, and this
results is comparable to the recently proposed hybrid QKD-postquantum cryptography scheme [22,23].
By employing higher complexity quantum sum-product algorithm [1] in each stage, instead of simple
syndrome decoding, the total transmission distance well beyond 1000 km can be achieved. Typical
QKD transmission distances are significantly shorter, even when the most advanced twin-field QKD
schemes are used [24].

6. Operating the Proposed QCN by SDN Control

The SDN has been introduced to separate the control plane and data plane, manage network
services through abstraction of higher-level functionality, and implement new applications and
algorithms efficiently [25,26]. It has already been studied to enable the coexistence of classical and
quantum communication channels [27]. To enhance the security of the software-defined optical
networks, authors in [28] proposed a four-layer architecture composed of: application, control, QKD,
and data layers. The SDN-based QCN architecture compatible with the proposed QCN should contain
three layers only—namely, application layer, control layer, and QCN layer. Users will send their
requests from the application layer with the help of northbound interface to the SDN controller. The
SDN controller will allocate the QCN resources with the help of its global map through the southbound
interface. The QCN layer can be composed of DWDM links and QCN nodes. Each QCN node
should contain quantum transceivers, integrated on the same chip, together with a d × d array of
physical qubits. Any two nodes in QCN can communicate through either a dedicated SMF link or by
d wavelength channels. To enable so, we could employ our recently proposed bidirectional optical
space switch [29], to reconfigure the QCN. Other alternative optical switches can be used as well.
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In addition to conventional modules, the application layer should also have modules to provide
security management services. On the other hand, the control layer, in addition to controlling the
QCN layer, should provide allocation of resources as well as provide services for multiple applications.
To deal with time-varying channel conditions over heterogeneous links, we can adapt the channel
configuration based on both application requirements and link conditions.

7. Concluding Remarks

To enable the next generation of quantum communication networks, we have proposed to employ
the surface-codes-based patches as quantum nodes. We have described how to simultaneously entangle
multiple quantum nodes in any quantum network topology by employing the SCs. We have also
described how to extend the transmission distance between any two quantum nodes to beyond 1000
km. Finally, we have described how to operate the proposed QCN by employing the SDN concept. The
trapped ion technology is an excellent candidate to be used as an enabling technology to implement
SC-based QCNs. One important issue will be to implement a portable, rack-mounted ion-trap-based
quantum interface, and some progress has already been made by researchers from Duke University
in collaboration with ColdQuanta, Inc [30]. To improve the efficiency of the proposed QCNs, the
high-dimensional SCs should be employed. By employing high-dimensional-based quantum error
correction, we can achieve error correction capability comparable to 2D but with significantly shorter
codeword lengths as discussed in [31]. An alternative approach to the proposed QCN will be a recently
introduced cluster-state-based QCN [32].
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Abstract: Quantum key distribution (QKD) networks hold promise for sharing secure randomness
over multi-partities. Most existing QKD network schemes and demonstrations are based on trusted
relays or limited to point-to-point scenario. Here, we propose a flexible and extensible scheme named
as open-destination measurement-device-independent QKD network. The scheme enjoys security
against untrusted relays and all detector side-channel attacks. Particularly, any users can accomplish
key distribution under assistance of others in the network. As an illustration, we show in detail a
four-user network where two users establish secure communication and present realistic simulations
by taking into account imperfections of both sources and detectors.

Keywords: quantum cryptography; quantum key distribution; quantum network;
measurement-device-independent

PACS: 03.67.Dd; 03.67.Hk

1. Introduction

Quantum key distribution (QKD) [1–4] provides unconditional security between distant
communication parties based on the fundamental laws of quantum physics. In the last three
decades, QKD has achieved tremendous progress in both theoretical developments and experimental
demonstrations. To extend to a large scale, the QKD network holds promise to establish an
unconditionally secure global network. Different topologies for QKD network have been demonstrated
experimentally during the past decades [5–11]. However, due to high demanding on security and the
relatively low detection efficiency, the realization of large-scale QKD networks is still challenging.

On the one hand, many previous demonstrations of quantum networks heavily rely on the
assumption of trusted measurement devices. From security point of view, however, such assumption
is challenging in realistic situations, as various kinds of detector side-channel attacks are found due to
the imperfections of practical devices [12–16]. Fortunately, measurement-device-independent QKD
(MDI-QKD) protocol [17,18] can remove all kinds of attacks in the detector side-channel. Since its
security does not rely on any assumptions on measurement devices, MDI-QKD networks are expected
to close the security loophole existing in the previous QKD networks. The MDI-QKD network

Entropy 2020, 22, 1083; doi:10.3390/e22101083 www.mdpi.com/journal/entropy

49



Entropy 2020, 22, 1083

has been discussed theoretically in Ref. [19,20], and a preliminary experimental MDI-QKD network
demonstration was realized very recently [21].

On the other hand, most of the existing QKD networks are limited to point-to-point QKD.
When expanded to multi-partite QKD case, the complexity increases, and the efficiency decreases
significantly. Recent study shows that multi-partite entanglement can speed up QKD in networks [22].
Therefore, it is highly desirable to develop variously novel schemes of QKD networks if assisted by
multi-partite entanglement source. Then, an immediate problem comes out: how to design a QKD
network enjoying security against untrusted measurement devices and simultaneously offer practical
applicability for arbitrary scalability? This is exactly the purpose of this work.

In this paper, we propose a flexible and extensible protocol named as open-destination MDI-QKD
network, by combining the idea of open-destination teleportation [23] and MDI-QKD [17,18]. In this
protocol, secure communication between any two users in the network can be accomplished under
assistance of others. The open-destination feature allows these two-party users share secure keys
simultaneously, where we also generalize to the case of C communication users. Remarkably,
this feature allows communication users not to be specified before the measurement step, which makes
the network flexible and extendable. Furthermore, the MDI feature enables this scheme to be secure
against untrusted relays and all detector side-channel attacks. Specially, all users need only trusted
state-preparation devices at hand, while the untrusted relay section is made by entangled resources
and measurement devices.

2. Open-Destination MDI-QKD Network

Consider an N-party quantum network. We are particularly interested in the case where arbitrary
two users want to share secure keys. This scenario is denoted as (N, 2) for convenience. To simplify
the discussion, here we focus on the star-type network, where both the user and a central source emit
quantum signals. The signals are measured by untrusted relays located between each user and the
central source.

2.1. Protocol

The (N, 2) open-destination MDI-QKD runs as follows. An illustration of the (4, 2) example is
shown in Figure 1.

Step. 1 Preparation: A third party, which may be untrusted, prepares N-partite GHZ state

|GHZ〉N =
1√
2
(|0〉⊗N + |1〉⊗N), (1)

where |0〉 and |1〉 denote two eigenstates of the computational basis Z. All users prepare
BB84 polarization states, i.e., |0〉, |1〉, |+〉, and |−〉 with |±〉 = (|0〉 ± |1〉)/√2 being the two
eigenstates of the basis X. The third party and all users distribute the prepared quantum
states to their relays, which may also be untrusted.

Step. 2 Measurement: The relays perform Bell state measurements (BSMs). When using linear
optical setups, only two outcomes related to projections on |ψ±〉 = (|01〉 ± |10〉)/√2 can be
distinguished.

Step. 3 Announcement: All relays announce their successful BSM results among a public classical
authenticated channel. The two communication users announce their photons bases,
and other users announce their states prepared in the X basis.

Step. 4 Sifting: The two communication user keep the strings where all the relays get successful
BSM results and other users use X bases. Then, they discard the strings where different
preparation bases are used. To guarantee their strings to be correctly correlated, one of the
two users flip or not flip his/her bit according to the corresponding BSM results and other
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users’ prepared states (see Appendix A for details). Then, the two users obtain the raw
key bits.

Step. 5 Post-processing: The two communication users estimate the quantum phase error and
quantum bit error rate (QBER) in Z and X bases, according to which they further perform
error correction and privacy amplification to extract correct and secure keys.

In this protocol, the multi-partite GHZ state between distant users can also be established through
a prior distributed singlets, following the scheme of Bose et al. [24]. In fact, the open-destination feature
allows arbitrary two users in the network to share secure keys based on the same experiment statistics.
To accomplish the task of MDI-QKD among arbitrary two users, a natural scheme is to establish
direct MDI-QKD between each two users. This requires either the central source to adjust his devices
such that EPR pairs (the maximally entangled quantum states of a two qubit system, named after
Einsetin, Podolski and Rosen Paradox [25]) are sent along desired directions, or a number N(N − 1)/2
of two-user combinations to establish direct MDI-QKD using the same number of untrusted relays.
The open-destination scheme is an alternative scheme. It does not require the central source to adjust
his devices according to the demand of communications, at the same time involve only N untrusted
relays. In a practical scenario, all the users can use weak coherent pulses to reduce experimental
cost and apply decoy-state techniques [26–28] to avoid photon-number-splitting attack, as well as to
estimate the gain and the error rate.

BSM

BS
M

GHZ

:Fiber

:Detector

:PBS

GHZ :GHZ source

:Light source

:BS

BSM

BSM

BSM

Figure 1. An optical diagram for the polarization-encoding (4, 2) open-destination
measurement-device-independent quantum key distribution (MDI-QKD) network. The GHZ
source outputs 4-partite GHZ entangled state in polarization and the light source outputs BB84
polarization state. The BSM represents the Bell state measurement, where BS is the 50:50 beam
splitter, PBS is the polarization beam splitter, and D1H , D2H , D1V , and D2V are single-photon
detectors. A click in D1H and D2V , or in D1V and D2H , indicates a projection into the Bell state
|ψ−〉 = (|01〉 − |10〉)/√2, and a click in D1H and D1V , or in D2H and D2V , indicates a projection into
the Bell state |ψ+〉 = (|01〉+ |10〉)/√2.
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2.2. Correctness and Security Analysis

We will show the correctness and security of the open-destination MDI-QKD protocol,
i.e., the communication users end up with sharing a common key in an honest run and any
eavesdropper can only obtain limited information of the final key. The following analysis applies for
the (N, 2) case. As an illustration, we show a detailed derivation of the (4, 2) in Appendix A.

For the correctness of the protocol, we show that after successful BSMs and other users announce
the X-basis states, the two communication users can perform flip their bits locally to obtain perfectly
correlated sifted keys. We start from rewriting the GHZ state as

|GHZ〉N =
1√
2

[
|00〉12

⊗
k=3...N

|+〉k + |−〉k√
2

+ |11〉12

⊗
k=3...N

|+〉k − |−〉k√
2

]
, (2)

=

(
1√
2

)N−1

∑
χ

(|00〉12 + (−1)σχ |11〉12) |χ〉3...N . (3)

Here, χ ∈ {+,−}N−2 is a string of N − 2 bits with bit value “+” or “−” and σχ = 0(1) if the
number of “−” is even (odd).

We label each user by 1′, 2′, . . . , N′ and let the two communication users be 1′ and 2′. In a
successful run of the protocol, suppose that users 1′ and 2′ prepare states |α〉 , |β〉 ∈ {0, 1,+,−},
respectively, and other users 3′, . . . , N′ prepare state in the X basis, denoted as a string χ′ ∈ {+,−}N−2.
In addition, denote the successful BSM results as a string υ ∈ {+,−}N , with the kth bit υk denoting the
BSM outcome on the state prepared by the user k′ and the k-th particle of the GHZ state. Here, υk = ±
corresponds to projections |ψ±〉 〈ψ±|, respectively. Then, when other users send states denoted by |χ′〉
and when all untrusted relays announce successful BSM results υ, the equivalent measurement Mχ′ ,υ

12
on 1′ and 2′ is√

Mχ′ ,υ
1′2′ |αβ〉1′2′ =

(⊗
k

〈ψυk |kk′

)
|GHZ〉N ⊗ |αβ〉1′2′ |χ′〉3′ ...N′ , (4)

=

(
1√
2

)N−1

∑
χ

〈ψυ1 |11′ 〈ψυ2 |22′ (|00〉12 + (−1)σχ |11〉12) |αβ〉1′2′

× ∏
k=3...N

〈ψυk |kk′ |χ〉k |χ′〉k′ , (5)

∝ (〈00|1′2′ + (−1)τ 〈11|1′2′) |αβ〉1′2′ . (6)

Here, τ = σχ′⊕υ̃ ⊕ υ1 ⊕ υ2 with υ̃ = υ3υ4 . . . υN ∈ {+,−}N−2 and σχ′⊕υ̃ = +(−) if the number of
“−” in χ′ ⊕ υ̃ is even (odd). Therefore, when the user 1′ and 2′ both prepare Z-basis states, or when they
both prepare X-basis states with τ = 0, the corresponding strings are correctly correlated; otherwise,
when they both prepare X-basis states but τ = 1, their strings are anticorrelated, and one party needs
to flip all his/her bits.

For the security of the protocol, here we show that an open-destination MDI-QKD can be
equivalent to a standard bipartite MDI-QKD if we only focus on the two communication users.
Recall that, in the standard MDI-QKD, two parties, Alice and Bob, prepare and send quantum signals
to a remote untrusted relay, which announces a successful BSM result or not. In our scheme, one can
treat all parts outside the two users 1′ and 2′ as an untrusted relay [29]. That is, the GHZ source,
the BSM setups and all other users serve as a big untrusted relay, and the successful BSM results in the
standard MDI-QKD corresponds to all BSMs announcing successful measurements together with all
other users announcing X-basis states (see Figure A1 as an example of the (4, 2) case). In this sense,
our scheme is reduced to the MDI-QKD and the two has the same security. Additionally, although we
require the preparation device of each user to be trusted in the protocol, the two communication users
need not to trust these preparation devices of other users.
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2.3. Key Generation Rate

The key generation rate for open-destination MDI-QKD can be derived similarly as the standard
MDI-QKD, i.e., by converting it to an entanglement purification scheme. Suppose that the two
communication users both have virtual singlets at their hands and then send one particle to the
untrusted relays. In a successful run of the protocol, the remaining virtual particles of the two
communication users will be entangled. When the entanglement between the virtual particles is
sufficiently strong, the monogamy property of entanglement [30–32] guarantees the extraction of
information-theoretically secure key bits between the two users. In this sense, the secret key rate can
be roughly viewed as the gains of entanglement purification in the asymptotic case. Taking account
of imperfections, such as basis misalignment, channel loss, and dark counts of the detectors, the key
generation rate is given by the GLLP method [33]

R2 = QZZ
[
1 − H

(
eXX

)
− f H

(
eZZ

)]
. (7)

Here, we have assumed that the user 1′ and 2′ use Z basis to generate keys and use X basis to
estimate phase errors. In the equation, QZZ denotes the overall gain in the Z basis, and eXX (eZZ)
denotes the phase (bit) error rate, f > 1 is the error correction inefficiency for the error correction
process, and H(x) = −x log2(x)− (1 − x) log2(1 − x) is the binary Shannon entropy function. In a
realistic experiment, if using weak coherent pulses and adopting decoy-state techniques, QZZ, eZZ,
and eXX can be efficiently estimated [27,28].

2.4. Comparison with the Standard MDI-QKD

The open-destination MDI-QKD network is different from the conventional MDI-QKD. The main
difference comes from the open-destination feature, which in fact allows the all 2-party users in
the network generate their own secure keys independently and simultaneously. There are in
fact N(N − 1)/2 combinations of such two-party users. If one uses the conventional MDI-QKD
scheme, the same number of untrusted relays are required. To increase the communication distance,
one may further add the same number of relays and EPR sources to construct the user-relay-EPR
source-relay-user structure. Such construction of quantum network could be expensive considering
the number of devices required. One could also use the optical switches to reduce the number of
relays; however, in this case the communication would be arranged in time order and some users
have to wait. In the open-destination scheme, N untrusted relays are sufficient to connect each other
supplied with good-quality GHZ central source. Although the distribution of GHZ states may lead
to other technological challenges, the open-destination scheme can reduce the number of devices
significantly in constructing the network. As for the performance, the two schemes in fact have similar
performance in the ideal case. The difference is that the open-destination scheme generates secure
keys for any two-party users in one round of implementation while the bipartite MDI-QKD scheme
costs N(N − 1)/2 rounds. Furthermore, the open-destination scheme also establishes conference key
agreements among arbitrary users, which can not be accomplished directly via the bipartite MDI-QKD.
We will discuss this case in the next section.

3. Numerical Simulation

As an example, we will analyze the secure key rate for the (4, 2) open-destination MDI-QKD
(see Appendices B and C for details). For simplicity, the single-photon source and the asymptotic
approximations are assumed. We let the BSM setups be located in each user’s side, although, in a
realistic experiment, the BSM setups can be located in anywhere to increase the communication
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distance. We suppose that quantum channels are identically depolarizing such that untrusted relays
receive the GHZ state in a mixture form [34]:

ρ = p |GHZ〉 〈GHZ|4 +
1 − p

16
I16, (8)

where 0 ≤ p ≤ 1. We also assume that all detectors are identical, i.e., they have the same dark count
rates and the same detection efficiencies. After numerical simulation, the lower bound of secure key
rates with respective to communication distance between user and central source are shown in Figure 2.
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Figure 2. Lower bound on the secret key rate R versus communication distance between
communication users using Werner-like states source. The red line denotes p = 1, i.e., the perfect
GHZ source. The parameters are chosen according to experiments [35] : the detection efficiency
ηd = 40%, the misalignment-error probability of the system ed = 2%, the dark count rate of the detector
pd = 8 × 10−8, the error correction efficiency f = 1.16, the intrinsic loss coefficient of the standard
telecom fiber channel α = 0.2 dB/km.

The simulation shows that the secure key rate and the largest communication distance decrease
when p decreases. To implement open-destination MDI-QKD efficiently, good-quality GHZ sources
and single-photon sources are necessary. If such requirements are satisfied, our scheme can tolerate a
high loss of more than 500 km of optical fibers, i.e., 100 dB, using perfect GHZ source and single-photon
source, even when the BSM setups are located in every user’s side. One can double the communication
distance by putting the BSM setups in the middle of the users and the GHZ source, which is similar with
the case in MDI-QKD [17,18]. For the realistic case where weak coherent pulses are used, our analysis
can be generalized by considering the decoy state method [27,28] and following the procedures in
Refs. [36,37].

4. Generalization to The (N,C) Case

As aforementioned, the complete analysis has been focused on the (N, 2) open-destination
MDI-QKD case. Here, we show that the case of two communication users can also generalized to the
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case of C communication users. Note that the open-destination feature enables any C users to generate
secure keys at the same time.

Suppose that, in an N-party quantum network with users 1, 2, · · · , N, the communication users
are denoted by the subset C = {i1, i2, . . . , iC}, where C = |C|. The auxiliary set denoted by A consists
of auxiliary users, i.e., users that assist communication users to generate secure keys, with A = |A| =
N − C users. According to Equation (3), for a general C communication users case, the GHZ state can
be rewritten as

|GHZ〉N =
1√
2

[
|00 · · · 0〉12···C

⊗
k=C+1...N

|+〉k + |−〉k√
2

+ |11 · · · 1〉12···C
⊗

k=C+1...N

|+〉k − |−〉k√
2

]
, (9)

=

(
1√
2

)N−1

∑
χ

(|00 · · · 0〉12···C + (−1)σχ |11 · · · 1〉12···C) |χ〉C+1...N . (10)

Here, χ ∈ {+,−}N−C is a string of N − C bits with bit value “+” or “−” and σχ = 0(1) if the
number of “−” is even (odd). Intuitively, with the assistance of N − C auxiliary users, C-qubit GHZ
states are shared among arbitrary C communication users. Meanwhile, based on the C-qubit GHZ
state, the communication users can complete different quantum information tasks with the merit
of open destination, such as quantum conference key agreement [24,34,38–40] and quantum secret
sharing [39,41–43]. In general, we call it the (N, C) open-destination quantum communication task.
When C = 2, and the aim is to establish QKD, the task is reduced to the (N, 2) open-destination
MDI-QKD network discussed above.

For instance, in the general case of (N, C) open-destination quantum conference key agreement,
all users prepares and sends BB84 states to their respective untrusted relays. The central source
simultaneously distribute the GHZ state, which is measured together with the state from user
on the untrusted relay. When the relays announce successful BSM outcomes and when all
auxiliary users announce their prepared states in X-basis, the communication users virtually share a
multipartite entangled state, as the same of the (N, 2) case. After suitable local operations of bit flips,
all communication users share correctly correlated bits.

By slightly modifying the scheme, the experimental cost, especially the number of detectors can
be reduced significantly. For instance, when all users announce their preparation basis X for assisting
others while keep the bits corresponding to Z basis for distill the key, any C users can share secure
keys simultaneously. This is because their respective sifted keys corresponds to different portions of
the raw data. If one insists on using the conventional two-party QKD and multi-party conference
key agreement scheme to realize the same function of the open-destination scheme under discussion,
about (2N − 2)N detectors are required. In the open-destination scheme, the number of detectors is
reduced to 4N, which only increases linearly with the user number N.

As an example, we consider the case of (N, 3) open-destination quantum conference key
agreement. From Equation (10), the post-selected 3-party GHZ state is |φ±

3-party〉 = (|000〉 ± |111〉)/√2
according to the announcements of the states and the BSM results related with auxiliary users.
Meanwhile, as shown in Table 1, an equivalent GHZ analyzer among three communication users can be
obtained according to the post-selected GHZ state |φ±

3-party〉 and the BSM results of their corresponding
relays. Then, according to the MDI-QCC protocol in Ref. [39], (N, 3) open-destination quantum
conference key agreement can be directly conducted based on the equivalent GHZ analyzer.
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Table 1. The equivalent GHZ analyzer measurement results of three communication users. Here,
GHZA denotes the post-selected GHZ state from the GHZ source; BSM result 1(2,3) denotes the BSM
results of three relays nearby the communication users’ side; GHZ analyzerC denotes the results of
corresponding GHZ analyzer among three communication users.

GHZA BSM Result 1 BSM Result 2 BSM Result 3 GHZ AnalyzerC

|φ+
3-party〉 (|φ−

3-party〉) |ψ+〉 |ψ+〉 |ψ+〉 |φ+
3-party〉 (|φ−

3-party〉)
|φ+

3-party〉 (|φ−
3-party〉) |ψ+〉 |ψ+〉 |ψ−〉 |φ−

3-party〉 (|φ+
3-party〉)

|φ+
3-party〉 (|φ−

3-party〉) |ψ+〉 |ψ−〉 |ψ+〉 |φ−
3-party〉 (|φ+

3-party〉)
|φ+

3-party〉 (|φ−
3-party〉) |ψ+〉 |ψ−〉 |ψ−〉 |φ+

3-party〉 (|φ−
3-party〉)

|φ+
3-party〉 (|φ−

3-party〉) |ψ−〉 |ψ+〉 |ψ+〉 |φ−
3-party〉 (|φ+

3-party〉)
|φ+

3-party〉 (|φ−
3-party〉) |ψ−〉 |ψ+〉 |ψ−〉 |φ+

3-party〉 (|φ−
3-party〉)

|φ+
3-party〉 (|φ−

3-party〉) |ψ−〉 |ψ−〉 |ψ+〉 |φ+
3-party〉 (|φ−

3-party〉)
|φ+

3-party〉 (|φ−
3-party〉) |ψ−〉 |ψ−〉 |ψ−〉 |φ−

3-party〉 (|φ+
3-party〉)

Similar to the open-destination MDI-QKD in Section (2) of the (N, 2) case, the security of the (N, 3)
open-destination quantum conference key agreement is also based on the entanglement purification
discussion [39,44,45]. According to the multi-partite entanglement purification scheme [46], the secret
key rate can be written as follows [34,39,40]:

R3 = QZ{1 − f · max[H(EZ
12), H(EZ

13)]− H(EX)}, (11)

where QZ is the overall gains when three communication users send out quantum states in
Z basis, EZ

12 (EZ
13) is the marginal quantum bit error rate between user 1 and user 2 (3) in Z

basis, EX is the overall quantum bit error rate in X basis, f is the error correction efficiency,
and H(x) = −x log2(x)− (1 − x) log2(1 − x) is the binary Shannon entropy function. QZ, EX, EZ

12,
and EZ

13 can be gotten directly from the experimental results. Meanwhile, the estimation of key rate
can be slightly different if the sources of users are weak coherent states [33].

5. Conclusions

As a conclusion, we proposed a flexible and extensible scheme of the (N, 2) open-destination
MDI-QKD network. We proved the correctness and security of the protocol, and derived practical key
generation rate formula. For an illustration, we studied a specific network where two of four users
want to distill quantum secure keys. For the scenario, we presented a polarization-encoding scheme
for experimental implementation and offered in detail a simulation by taking the imperfections in both
source and detectors into account. The simulation results show that the scheme enjoys a promising
structure and performance in real-life situation.

A significant virtue of our scheme is the security against untrustful relays and all detector
side-channel attacks. Moreover, the open-destination feature enables any two users to establish
MDI-QKD without changing the network structures. In fact, one can establish MDI-QKD among
arbitrary users even after the entangled source have been distributed and all the measurements have
been completed. Furthermore, following the multi-entanglement swapping scheme, the network can
be extended into a large scale by adding shared multi-partite GHZ states.

We would like to remark that currently the efficiency was relatively low (seen from Figure 2).
This can be overcome by taking optimization in network topology, basis selections, and measurements
for both the auxiliary and communication parties, as well as considering asymmetric loss for various
channels, etc., like techniques adopted in Ref. [47]. Any future improvement on distributing
multipartite entanglement efficiently and effectively will definitely benefit the proposed scheme
and push it forward practical applications.
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Appendix A. Sifting Procedure of The (4,2) Case

In this section, we describe the sifting procedure of open-destination MDI-QKD in detail for
the (4, 2) case. We will show that such scenario can be reduced to the standard MDI-QKD scenario.
The general case can be proved in a similar way, as shown in the main text. The schematic diagram is
depicted in Figure A1a.

We start by writing the GHZ state as

|GHZ〉4 =
1

2
√

2
[(|00〉+ |11〉)(|++〉+ |−−〉)

+ (|00〉 − |11〉)(|+−〉+ |−+〉)]. (A1)

Up to the announcement of the quantum state of users 3′ and 4′, the BSM(s) of relays 3 and 4
on the received quantum state from GHZ source and quantum state from users 3′(4′) can be treated
as an equivalent projective measurement on the whole GHZ state. Specifically, if the relays 3 and
4 perform the BSM and obtain equivalent projective measurement results |00〉 or |11〉 (|01〉 or |10〉),
the photons received by relays 1 and 2 will be projected into state |φ+〉 = (|00〉+ |11〉)/√2 (|φ−〉 =
(|00〉 − |11〉)√2) according to Equation (A1). After announcement of the successful BSM results and
the quantum states of auxiliary users 3′ and 4′, the projected state received by relays 1 and 2 can be
determined. So, one can treat the GHZ source, the BSM setups of relays 3 and 4 and the quantum
state of auxiliary user 3′ and 4′ as an virtual entanglement source, which outputs different Bell states.
The protocol is thus directly equivalent to MDI-QKD with an entangled source in the middle [29] as
illustrated in Figure A1b. Since the virtual Bell state with two BSMs along each side can be equivalent
to a virtual BSM, the scheme is finally equivalent to implement MDI-QKD between users 1′ and 2′

as showed in Figure A1c. Therefore, in an honest run, the protocol is reduced to the honest standard
MDI-QKD scenario, and the parties will end up with sharing a common key.
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Figure A1. (a) The schematic diagram for the (4, 2) open-destination MDI-QKD scheme. Users 1′

and 2′ denote communication users, while users 3′ and 4′ denote auxiliary users. (b) The equivalent
topological schematic diagram when users 1′ and 2′ communicate with each other. According to BSM
results of relays 3 and 4 and quantum states of auxiliary users 3′ and 4′, the GHZ state is projected to a
virtual Bell state. (c) The final equivalent topological schematic diagram that users 1′ and 2′ perform
MDI-QKD, according to the BSM results and the virtual Bell state.

Firstly, notice that the projection measurement of two systems onto one Bell state can be viewed as
a POVM (positive operator valued measure) on one system if one knows the state of the other system.
For example, as shown in Figure A1a, a successful BSM result of |ψ−〉 of the relay 3 with auxiliary
photons from auxiliary 3′ in the state |α〉′3 can be viewed as a POVM tr3′ [|ψ−〉 〈ψ−|33′ |α〉 〈α|3′ ] on the
state 3. In the open-destination scheme, we have |α〉 ∈ {|+〉 , |−〉} and the BSM results {|ψ+〉 , |ψ−〉}.
The correspondence between the POVM on the system k and the untrusted relay announces a successful
BSM together with auxiliary state are listed in Table A1.

Table A1. The correspondence between the POVM on state labeled k and the BSM result labeled by kk′

with auxiliary state labeled by k′.

State of System k′ BSM Result on Systems kk′ POVM on System k

|+〉 |ψ−〉 |−〉 〈−| /2
|−〉 |ψ−〉 |+〉 〈+| /2
|+〉 |ψ+〉 |+〉 〈+| /2
|−〉 |ψ+〉 |−〉 〈−| /2

Secondly, when the two auxiliary users prepare X-basis photons and the corresponding relays get
successful BSM results, according to Table A1, the total GHZ state collapses into one of the maximally
entangled states |φ±〉 = 1√

2
(|HH〉 ± |VV〉) at the side of two communication users.

Thirdly, at the sides of the two communication users, according to the post-selected Bell state
|φ±〉 and the BSM results of their corresponding relays, a BSM between two communication users can
be obtained. Such correspondence is listed in Table A2.
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Table A2. The equivalent BSM results of two communication users. Here, BellA denotes the
post-selected Bell state from the GHZ source; BSM result 1(2) denotes the BSM results of the two
relays nearby the communication users’ side; BSMC denotes the results of corresponding BSM between
two communication users.

BellA BSM Result 1 BSM Result 2 BSMC

|φ+〉 |ψ+〉 |ψ+〉 |φ+〉
|φ+〉 |ψ+〉 |ψ−〉 |φ−〉
|φ+〉 |ψ−〉 |ψ+〉 |φ−〉
|φ+〉 |ψ−〉 |ψ−〉 |φ+〉
|φ−〉 |ψ+〉 |ψ+〉 |φ−〉
|φ−〉 |ψ+〉 |ψ−〉 |φ+〉
|φ−〉 |ψ−〉 |ψ+〉 |φ+〉
|φ−〉 |ψ−〉 |ψ−〉 |φ−〉

Finally, as shown in Table A3, according to the final equivalent BSM result and the preparation
bases, one of the communication users apply a bit flip or not such that their keys can be correlated.
In fact, only when both communication users select X basis and the final equivalent BSM result is |φ−〉,
one of them needs to apply a bit flip. After many rounds, they obtain enough raw key bits that can be
used in the following data post-processing process.

Table A3. Flip table according to the preparation bases and the equivalent BSM result at communication
users side.

Basis |φ+〉 |φ−〉
Z-basis No Flip No Flip
X-basis No Flip Flip

Appendix B. Detector Analysis

Since the BSM with the auxiliary photon is equivalent to an probabilistic projective measurement,
one can use an equivalent detector to replace the BSM device with the corresponding light source
in the key rate analysis. Here, we develop a method to derive the equivalent detector parameters,
i.e., the detection efficiency and the dark count of the equivalent detector. We use the BSM setup with
polarization encoding as illustrated in Figure A2.

In H/V basis, suppose that Alice and Bob encode the same polarization states; then, the state
becomes as follows after the BS:

a†
Hb†

H |vac〉 → (a†2
1H − a†2

2H) |vac〉 , (A2)

where a† (b†) denotes creation operators, and |vac〉 denotes vacuum state. The probability of the
successful BSM when the input states are |H〉 and |H〉, is given by

PHH = 2pd(1 − pd)
2(1 − (1 − pd)(1 − ηd)

2), (A3)

where ηd is the detection efficiency, and pd is the dark count. Suppose that Alice and Bob encode
different polarization state; then, after the BS, the state becomes as follows:

a†
Hb†

V |vac〉 →(a†
1Ha†

1V − a†
2Ha†

2V) |vac〉
+ (a†

2Ha†
1V − a†

1Ha†
2V) |vac〉 .

(A4)
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BSM

Figure A2. The BSM setup with polarization encoding. BS denotes beam splitter, PBS denotes
polarization beam splitter, and H and V denote, respectively, horizontal and vertical linear polarizations,
and D1H , D2H , D1V , D2V denote single-photon detectors. A click in D1H and D2V , or in D1V and D2H ,
indicates a projection into the Bell state |ψ−〉 = (|HV〉 − |VH〉)/√2, and a click in D1H and D1V , or in
D2H and D2V , indicates a projection into the Bell state |ψ+〉 = (|HV〉+ |VH〉)/√2.

The probability of the successful BSM when the input states are |H〉 and |V〉 is given by

PHV = (1 − pd)
2(1 − (1 − pd)(1 − ηd))

2. (A5)

Thus, the equivalent detection probability when the input state is |H〉 is given by

η
′
H =

1
2
(1 − pd)

2[2pd(1 − (1 − pd)(1 − ηd)
2)

+ (1 − (1 − pd)(1 − ηd))
2].

(A6)

Due to symmetry, the equivalent detection probability when the input state is |V〉 has the
same form with the case that the input state is |H〉, i.e., one has η

′
V = η

′
H . Similarly, by using

the transformation relation under {+,−} basis

a†
+b†

+ |vac〉 → (a†
1Ha†

1V − a†
2Ha†

2V) |vac〉
a†
+b†− |vac〉 → (a†

1Ha†
2V − a†

1V a†
2H) |vac〉 ,

(A7)

one can ontain the equivalent detection probability when the input state is |+〉 as follows:

η
′
+ =(1 − pd)

2(1 − (1 − pd)(1 − ηd))
2. (A8)

Due to symmetry, one has η
′
− = η

′
+.

We consider practical experimental parameters, which are listed in Table A4. For the experimental
parameters, one arrives at

η
′Z
d = 0.08, η

′X
d = 0.16, (A9)

where η
′Z
d denotes the equivalent detection efficiency for H/V basis, i.e., Z basis, and η

′X
d denotes the

equivalent detection efficiency for +/− basis, i.e., X basis.
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Table A4. List of experimental parameters used for simulation. ηd is the detection efficiency; ed is
the misalignment-error probability of the system; pd is the dark count rate of the detector; f is error
correction efficiency; α is the intrinsic loss coefficient of the standard telecom fiber channel.

ηd ed pd f α(dB/km)

40% 2% 8 × 10−8 1.16 0.2

To calculate the parameters for equivalent dark count, one should consider the case in which
there was no incoming photon. Suppose the local photon being |H〉, and the incoming photon being
vacumm state, the states become as follows after the BS:

b†
H |vac〉 → i√

2
a†

1H +
1√
2

a†
2H , (A10)

where b†
H denotes the creation operator of local photon. So, one can get the probability of the successful

BSM as follows:
PH = 2pd(1 − pd)

2ηd. (A11)

Due to symmetry, one has that P+ = P− = PV = PH . Here, Px denotes the probability of the
successful BSM result when the local photon is |x〉 and there is no incoming photon. So, one can get
the equivalent dark count as

p
′
d = 2pd(1 − pd)

2ηd. (A12)

For the experimental parameters given in Table A4, one arrives at

p
′
d = 6.4 × 10−8. (A13)

Finally, one can achieve the parameters for the equivalent detectors shown in Table A5.

Table A5. List of the parameters for the equivalent detectors. η
′Z
d (η

′X
d ) denotes the equivalent

detection efficiency for Z (X) basis, and p
′
d denotes the equivalent dark count.

η
′Z
d η

′X
d p

′
d

8% 16% 6.4 × 10−8

Appendix C. Simulation for (4,2)-Scenario

For simulation purposes, one can assume practically that the source has the form of
Werner-like states

ρ = p |GHZ〉 〈GHZ|4 +
1 − p

16
I, (A14)

in which |GHZ〉4 = (|HHHH〉 + |VVVV〉)/√2 is the 4-partite GHZ states, I/16 is the 4-partite
maximal mixed states, and 0 ≤ p ≤ 1. As proven in the previous section, according to the measurement
results of auxiliary side, the photons received by communication side will be projected into different
Bell states. Here, we consider the case in which auxiliary side get the |+〉 ⊗ |+〉 results, due to the
symmetry. When auxiliary side get the |+〉 ⊗ |+〉 result, the particles received by communication side
will collapse into

ρAB = p |φ+〉 〈φ+|+ 1 − p
4

I, (A15)

where φ+ = (|HH〉+ |VV〉)/√2 is one of the Bell states. So, it is equivalent with the case in which the
two communication users (denoted by Alice and Bob) perform an entanglement-based QKD using the
two-qubit Werner states ρAB as a source and the equivalent detectors as detection device, as illustrated
in Figure A3, from the perspective of key rate analysis.
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Taking these imperfections of the source and detectors into account, the key generation rate in a
realistic setup will be given by

R = QZZ
11 (1 − H(eXX

11 ))− QZZ
μν · f · H(EZZ

μν ). (A16)

In the following, we discuss how one can derive each quantity in this key rate formula, i.e., QZZ
11 ,

eXX
11 , QZZ

μν , and EZZ
μν .

EPR
PM

Alice

PM

Bob

PBS PBS

Figure A3. Equivalent setup for Alice and Bob when tracing the BSM results of the auxiliary
users. PBS denotes polarization beam splitter, PM denotes polarization modulator, and EPR
denotes EPR source.

Yield. Denote the yield of single-photon pair as Y11, i.e., the conditional probability of a coincidence
detection event given that the entanglement source emits an single-photon pair. Then, Y11 is given by

Y11 = [1 − (1 − Y0A)(1 − ηA)][1 − (1 − Y0B)(1 − ηB)], (A17)

where Y0A = Y0B = p
′
d are the background count rates on Alice’s and Bob’s sides in the Z basis,

and ηA = ηB = η
′Z
d × 10−αL/20 denotes the total detection efficiency considering the channel loss.

Equation (A17) is also applicable to the X basis. Then, the gain of the single photon part and the overall
gain are given by

QZZ
μν = QZZ

11 = Y11. (A18)

Error Rate. The error rate of single-photon pair in the X basis eXX
11 has three main contributions

taking some imperfections into account: (i) The imperfections of entanglement source, i.e., the maximal
mixed states component, which brings 50% error rate e0 = 1/2; (ii) Background counts, which are
random noises e0 = 1/2; (iii) Intrinsic detector error ed, which characterizes the alignment and stability
of the optical system. So, the error rate of single-photon pair eXX

11 is given as follows:

eXX
11 Y11 = pe0(Y11 − ηAηB) + pedηAηB + (1 − p)e0Y11, (A19)

where the first item comes from background counts, the second term comes from intrinsic errors,
and the third term comes from the mixed part of the source. So, one achieves the error rate of
single-photon pair eXX

11 as follows:

eXX
11 = e0 − pηAηB(e0 − ed)

Y11
. (A20)

Similarly, the error rate in the Z basis is given by

EZZ
μν = e0 − pηAηB(e0 − ed)

Y11
. (A21)
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Abstract: We introduce a quantum key distribution protocol using mean multi-kings’ problem.
Using this protocol, a sender can share a bit sequence as a secret key with receivers. We consider
a relation between information gain by an eavesdropper and disturbance contained in legitimate users’
information. In BB84 protocol, such relation is known as the so-called information disturbance
theorem. We focus on a setting that the sender and two receivers try to share bit sequences and
the eavesdropper tries to extract information by interacting legitimate users’ systems and an ancilla
system. We derive trade-off inequalities between distinguishability of quantum states corresponding
to the bit sequence for the eavesdropper and error probability of the bit sequence shared with the
legitimate users. Our inequalities show that eavesdropper’s extracting information regarding the
secret keys inevitably induces disturbing the states and increasing the error probability.

Keywords: quantum key distribution; mean-king’s problem; mean multi-kings’ problem; information
disturbance theorem

1. Introduction

In the quantum state discrimination problems, one tries to discriminate the quantum states by
performing the single measurement. Several strategies exist, e.g., in [1–3] and Section 9.1.4 in [4].
On the other hand, in the mean-king’s problem [5], one can use not the single measurement but
also post-information. Specific setting of the mean-king’s problem is often told as a tale [6] of a
king and a physicist Alice. In the tale, Alice prepares a qubit in an initial state at first. The king
performs a measurement with one of observables σx, σy, σz on the qubit and obtains an outcome.
Then, Alice obtains an outcome by performing a measurement on the qubit. After the measurement,
the king reveals the observable he has measured as the post-information. Then, Alice tries to guess
king’s outcome by using her outcome and the post-information. A solution to the problem is a
pair of the initial state and Alice’s measurement such that she can guess king’s outcome correctly.
Using Aharonov–Bergman–Lebowitz rule [7], a solution which consists of Bell state and a measurement
on a bipartite system has been shown [5]. As an application of the solution to the mean-king’s
problem, a quantum key distribution protocol (QKD) has been shown [8]. In this protocol, Alice and
the king employ the guessing result as a secret key, and security analysis of the protocol has been
considered [8–11].

A QKD protocol by using mean multi-kings’ problem has been shown [12] (see Section 2 for details).
In this protocol, Alice and kings (called King1, King2, ..., Kingn) are legitimate users. Alice guesses each
king’s measurement outcome by using her measurement outcome and post-information from each
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king; then, each guessing result is shared as a secret key between Alice and each king. The protocol has
superior aspects, such as the number of measurements, state preparation and key discarding, to several
realizations (whose components are the QKD protocol by using the mean-king’s problem or BB84
protocol [13]) for Alice and each king to share the secret key. In the case of n = 2, security analysis
against a simple attack so called intercept-resend attack has been considered and error rate of bits
shared between Alice and the kings has been shown.

In this paper, we consider a relation between information gain by an eavesdropper (called Eve)
and disturbance contained in the legitimate users’ information in the QKD protocol by using the
mean multi-kings’ problem. In BB84 protocol, such relation is known as the so-called information
disturbance theorem [14–18]. According to the theorem, Eve’s information gain in a basis inevitably
induces disturbance contained in the legitimate users’ information in the conjugate basis. Therefore,
the theorem is also regarded as an information theoretical version of the uncertainty relation.
The theorem also plays an important role in the proof of the unconditional security [19]. We consider
that Eve tries to extract information by employing an attack which she performs any measurement
on her quantum system at any time after interacting the quantum system with kings’ qubits after
their measurements in the case of n = 2. In this setting, we give trade-off inequalities between
distinguishability of quantum states corresponding to the bit sequences for Eve and error probability
of the bit sequences shared with Alice and the kings. Our inequalities show that Eve’s extracting
information regarding the secret keys inevitably induces disturbing the states of kings’ qubits and
increasing the error probability even though the post-information and Alice’s qubit are used in the
guessing step, unlike BB84 protocol.

This paper is organized as follows. In the next section, we review a description of the quantum
key distribution protocol by using the mean multi-kings’ problem. In Section 3, we give the description
of the protocol in the case of n = 2. In Section 4, we give the outline of the attack and the trade-off
inequalities between distinguishability and disturbance. Finally, we summarize this paper in Section 5.

2. Protocol

Let us start by introducing the essence of the mean multi-kings’ problem and the QKD by using it.
Alice and King1, King2, ... , Kingn are the characters in this problem. The problem can be summarized
as follows. Alice prepares a composite system, which consists of her system and n systems for
kings, in an initial state. Each king performs a measurement on his system and obtains an outcome.
After kings’ measurement, Alice performs a measurement on the composite system and obtains an
outcome. Furthermore, each king reveals post-information: the measurement type he has performed.
Immediately, Alice guesses kings’ outcomes by using her outcome and the post-information from each
king. A solution to the problem is defined as a three-tuple of the initial state, Alice’s measurement,
and a guessing function such that she can guess kings’ outcomes correctly. In this problem, the initial
state will be changed depending on the kings’ measurements and outcomes. In general, it is impossible
to distinguish the changed states correctly. Therefore, Alice tries to get some potential answers by
performing the measurement and to narrow down the correct outcome from them by using the
guessing function of her outcome and the post-information.

We can construct the QKD protocol by using a setting of the mean multi-kings’ problem and
a solution to it, i.e., Alice and each king share the guessing result as a secret key. Figure 1 is a
graphically demonstrated protocol. Let us consider a setting that Alice prepares a composite system
which consists of n + 1 qubits and each king performs one of two fixed measurements on his qubit.
Then, two solutions where the initial states are multipartite entangled states can be shown as described
below; therefore, we can also construct the QKD protocol by using those solutions. In the QKD,
Alice and each king try to share secret keys while she switches the solutions.
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Figure 1. The QKD protocol by using the mean multi-kings’ problem.

Before introducing details of the QKD protocol, we introduce some preliminary definitions,
the setting of the mean multi-kings’ problem, and the solutions to it. Define

Z0 := |0〉〈0|, Z1 := |1〉〈1|, X0 := |0̄〉〈0̄|, X1 := |1̄〉〈1̄| (1)

for |0〉 := (1, 0)T , |1〉 := (0, 1)T , |0̄〉 := 1√
2
(1, 1)T , |1̄〉 := 1√

2
(1,−1)T . Define an outcome set

K := {(s1, t1, s2, t2, . . . , sn, tn) | sj, tj ∈ {0, 1}}, (2)

operators for (s1, t1, s2, t2, . . . , sn, tn) ∈ K

E(Z)
(s1,t1,s2,t2,...,sn ,tn)

:= Xs1 Zt1 ⊗ Xs2 Zt2 ⊗ · · · ⊗ Xsn Ztn , (3)

E(X)
(s1,t1,s2,t2,...,sn ,tn)

:= Zs1 Xt1 ⊗ Zs2 Xt2 ⊗ · · · ⊗ Zsn Xtn , (4)

and an index set

S(W)
(Jj ,ij)

n
j=1

= S(W)
(J1,i1,J2,i2,...,Jn ,in)

:= S(W)
(J1,i1)

× S(W)
(J2,i2)

× · · · × S(W)
(Jn ,in)

(5)

(W ∈ {Z, X}) which consists of direct product of

S(Z)
(J,i) :=

{
{(0, i), (1, i)} (J = 0, i ∈ {0, 1})
{(i, 0), (i, 1)} (J = 1, i ∈ {0, 1}), (6)

S(X)
(J,i) :=

{
{(i, 0), (i, 1)} (J = 0, i ∈ {0, 1})
{(0, i), (1, i)} (J = 1, i ∈ {0, 1}). (7)

We define the setting of the mean multi-kings’ problem. Alice prepares the composite system
(n + 1 qubits) H̃ := HA ⊗HK1 ⊗HK2 ⊗ · · · ⊗HKn � (C2)

⊗n+1 in an initial state. Each Kingj performs
one of the measurements on HKj

M(Jj) = (M
(Jj)

0 , M
(Jj)

1 ) (Jj ∈ {0, 1}), (8)

where M(0) := (M(0)
0 := Z0, M(0)

1 := Z1) and M(1) := (M(1)
0 := X0, M(1)

1 := X1), and obtains an
outcome ij ∈ {0, 1}. Alice performs a measurement on H̃ and obtains an outcome. After Alice’s
measurement, the kings reveal (Jj)

n
j=1 as the post-information. Then, Alice tries to guess kings’

outcomes by using her outcome and the post-information.
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Here, we show two solutions to the problem. In this case, Alice can guess the kings’ outcomes
correctly by employing one of

|Φ(Z)〉 :=
1√
2
(|00 · · · 0〉+ |11 · · · 1〉) (9)

|Φ(X)〉 :=
1√
2
(|0̄0̄ · · · 0̄〉+ |1̄1̄ · · · 1̄〉) (10)

as an initial state, a measurement depending on the initial state |Φ(W)〉

P(W) :=
(

P(W)
k := 2n+1|(I⊗E(W)

k )Φ(W)〉〈(I⊗E(W)
k )Φ(W)|

)
k∈K

(11)

and a guessing function s(k, (Jj)
n
j=1, Φ(W)) of her outcome k ∈ K, the post-information (Jj)

n
j=1, and the

initial state |Φ(W)〉, where s(k, (Jj)
n
j=1, Φ(W)) is defined as (ij)

n
j=1 satisfying k ∈ S(W)

(Jj ,ij)
n
j=1

(we regard

k = (s1, t1, s2, t2, . . . , sn, tn) in the same light as ((s1, t1), (s2, t2), . . . , (sn, tn))).
We clear the number of non-zero matrices in her measurement and their orthogonality.

We can observe

|(I⊗E(Z)
k )Φ(Z)〉 = (I⊗Xs1 Zt1 ⊗ · · · ⊗ Xsn Ztn)

1√
2
(|00 · · · 0〉+ |11 · · · 1〉)

= 1√
2
(δt10 · · · δtn0|0〉Xs1 |0〉 ⊗ Xs2 |0〉 ⊗ · · · ⊗ Xsn |0〉

+δt11 · · · δtn1|1〉 ⊗ Xs1 |1〉 ⊗ Xs2 |1〉 ⊗ · · · ⊗ Xsn |1〉).
(12)

Then, the number of non-zero vectors is equal to 2n+1. It leads to the conclusion that the number
of non-zero matrices in P(Z) is equal to 2n+1. Furthermore, we observe

〈(I⊗E(Z)
k )Φ(Z)|(I⊗E(Z)

k′ )Φ(Z)〉
= 〈(I⊗Xs1 Zt1 ⊗ · · · ⊗ Xsn Ztn)Φ

(Z)|(I⊗Xs′1
Zt′1

⊗ · · · ⊗ Xs′n Zt′n)Φ
(Z)〉

= 1
2n+1 (δt10δt20 · · · δtn0 + δt11δt21 · · · δtn1)δkk′ .

(13)

It implies that P(Z) is an orthogonal measurement on H̃. When Z is switched to X, we have the
same result in the case of W = X.

Next, we show that Alice can correctly guess kings’ outcomes. We observe

S(W)
(Jj ,ij)

n
j=1

∩ S(W)
(Jj ,i′j)

n
j=1

= ∅ (14)

for any Jj and (i1, i2, . . . , in) �= (i′1, i′2, . . . , i′n), and

M(J1)
i1

⊗ M(J2)
i2

⊗ · · · ⊗ M(Jn)
in = ∑

k∈S(W)
(Jj ,ij)

n
j=1

E(W)
k (15)

holds for any Jj and ij. When Kingj performs the measurement M(Jj) and obtains an outcome ij,
by Equation (15), the post-measurement state is proportional to

|(I⊗M(J1)
i1

⊗ M(J2)
i2

⊗ · · · ⊗ M(Jn)
in )Φ(W)〉 ∈ ⊕

k∈S(W)
(Jj ,ij)

n
j=1

Ak, (16)

where Ak is a subspace spanned by |(I⊗E(W)
k )Φ(W)〉. Ak and Ak′ are orthogonal for any k �= k′ and

P(W) is composed of orthogonal projections onto each subspace Ak by Equation (13). If Alice obtains an
outcome k by performing P(W) and the post-information (Jj)

n
j=1 from the kings, then kings’ outcomes
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(ij)
n
j=1 should satisfy k ∈ S(W)

(Jj ,ij)
n
j=1

. However, by Equation (14), such (ij)
n
j=1 uniquely exists. Thus,

Alice can correctly guess kings’ outcomes.
A description of the QKD protocol by using the mean multi-kings’ problem is as follows.

1. Alice prepares a composite system (n + 1 qubits) H̃ = HA ⊗HK1 ⊗HK2 ⊗ · · · ⊗HKn � (C2)
⊗n+1

in the initial state |Φ(W)〉 (W ∈ {Z, X}) with probability 1
2 . Then, she sends the qubit HKj to Kingj

(j = 1, 2, . . . , n).

2. Each Kingj performs the measurement M(Jj) = (M
(Jj)

0 , M
(Jj)

1 ) (Jj ∈ {0, 1}) with probability 1
2 on

HKj and obtains an outcome ij ∈ {0, 1}. After the measurement, each Kingj returns HKj to Alice.

3. Alice performs the measurement P(W) = (P(W)
k )k∈K (W ∈ {Z, X}) on H̃ when the initial state

was |Φ(W)〉. Then, she obtains an outcome k ∈ K.
4. After the measurement, each Kingj announces post-information Jj to Alice.
5. Alice obtains a sequence s(k, (Jj)

n
j=1, Φ(W)) from the outcome k, the post-information (Jj)

n
j=1,

and the initial state |Φ(W)〉.
6. They repeat the above process. After that, Alice randomly chooses sequences

(i′1j )
n
j=1, (i′2j )

n
j=1, . . . , (i′rj )

n
j=1 from all sequences. Similarly, kings work together to choose

sequences (i1j )
n
j=1, (i2j )

n
j=1, . . . , (irj )

n
j=1 which are the same positions as the positions Alice chose.

Then, Alice and kings work together to calculate error rate
∑r

u=1(1−δ(i′uj )nj=1(i
u
j )

n
j=1

)

r .

The rest of the process is the same as for ordinary QKD protocols, such as BB84 protocol. If the
error rate is too large, the protocol is aborted. Otherwise, the leftover sequences are performed with
error-correction and privacy amplification [20].

Remark that Alice and each Kingj can share the secret key when they employ the QKD protocol
using the mean-king’s problem or BB84 protocol. In the case of employing the QKD using the
mean-king’s problem (see left hand side of Figure 2), Alice prepares 2 qubits in the Bell state and
performs a single measurement on the 2 qubits for each Kingj. Therefore, she needs to prepare 2n qubits
and perform n measurements to share the secret key with n kings. On the other hand, in the QKD
protocol using the mean multi-kings’ problem, Alice only prepares n + 1 qubits in |Φ(Z)〉 or |Φ(X)〉
and performs the single measurement P(Z) or P(X). In the case where the BB84 protocol is employed
(see right hand side of Figure 2), Alice just prepares n qubits in one of the states |0〉, |1〉, |0̄〉, |1̄〉 and no
performing the measurement is required. Then, Alice and Kingj discard the raw key where their bases
do not match before calculating error rate. On the other hand, in the QKD protocol using the mean
multi-kings’ problem, there is not such discarding step before calculating error rate.

Figure 2. The QKD protocols using the mean-king’s problem (left hand side) and BB84 protocols
(right hand side) for Alice and the kings to share the secret key.
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3. Protocol: n = 2

We describe the working of the protocol in the case of n = 2 by focusing on the case of W = Z to
reduce cumbersome notations.

By Equation (2), the index set takes the following form,

K = {(s1, t1, s2, t2) | sj, tj ∈ {0, 1}}. (17)

And by Equation (3), the operator E(Z)
k for k ∈ K takes the following form,

E(Z)
k = E(Z)

(s1,t1,s2,t2)
= Xs1 Zt1 ⊗ Xs2 Zt2 (k = (s1, t1, s2, t2) ∈ K). (18)

Similarly, we can observe the operators for W = X. By Equation (5), we observe the index sets
S(W)
(J1,i1,J2,i2)

for J1 = 0, J2 = 0, i1, i2 ∈ {0, 1}, and W = Z:

S(Z)
(0,0,0,0) = S(Z)

(0,0) × S(Z)
(0,0)

= {((0, 0), (0, 0)), ((0, 0), (1, 0)), ((1, 0), (0, 0)), ((1, 0), (1, 0))}
= {(0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0)} (19)

S(Z)
(0,0,0,1) = S(Z)

(0,0) × S(Z)
(0,1)

= {((0, 0), (0, 1)), ((0, 0), (1, 1)), ((1, 0), (0, 1)), ((1, 0), (1, 1))}
= {(0, 0, 0, 1), (0, 0, 1, 1), (1, 0, 0, 1), (1, 0, 1, 1)} (20)

S(Z)
(0,1,0,0) = S(Z)

(0,1) × S(Z)
(0,0)

= {((0, 1), (0, 0)), ((0, 1), (1, 0)), ((1, 1), (0, 0)), ((1, 1), (1, 0))}
= {(0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)} (21)

S(Z)
(0,1,0,1) = S(Z)

(0,1) × S(Z)
(0,1)

= {((0, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 1), (0, 1)), ((1, 1), (1, 1))}
= {(0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 1), (1, 1, 1, 1)}, (22)

where we regard ((l1, l2), (l3, l4)) in the same light as (l1, l2, l3, l4). Similarly, we can observe the index
sets for other J1, J2, i1, i2, and W.

Let us consider that Alice prepares the qubits H̃ = HA ⊗HK1 ⊗HK2 in the initial state

|Φ(Z)〉 = 1√
2
(|000〉+ |111〉). (23)

Let us consider that King1 and King2 choose the same measurement M(0) and obtain the same
outcome 0, i.e., J1 = 0, J2 = 0 and i1 = 0, i2 = 0. After kings’ measurement, Alice performs the
measurement P(Z) = (P(Z)

k )k∈K on H̃, where

P(Z)
k = 8|(I⊗E(Z)

k )Φ(Z)〉〈(I⊗E(Z)
k )Φ(Z)|r

= 8|(I⊗Xs1 Zt1 ⊗ Xs2 Zt2)Φ
(Z)〉〈(I⊗Xs1 Zt1 ⊗ Xs2 Zt2)Φ

(Z)|. (24)

After the measurement, King1 and King2 announce the post-information J1 = 0 and J2 = 0 to
Alice. When Alice obtains an outcome k = (0, 0, 0, 0), she is assured that kings’ outcome (i1, i2) is (0, 0),
because (i1, i2) satisfying k = (0, 0, 0, 0) ∈ S(W)

(J1,i1,J2,i2)
= S(Z)

(0,i1,0,i2)
is (0, 0). In Table 1, we summarize

Alice’s guessing rule by using her outcome and the post-information from the kings.
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Table 1. The relationship among kings’ measurements J1, J2, Alice’s outcome k, and kings’ outcomes
i1, i2 when she chooses |Φ(W)〉. In this table, NA means that probability of obtaining the corresponding

outcome k is zero unless Eve performs an attack because the corresponding matrix P(W)
k is a zero

matrix. An example of Alice’s guessing: Alice is assured that kings’ outcome (i1, i2) is (0, 0) when
W = Z, J1 = 0, J2 = 0, and k = (0, 0, 0, 0).

W = Z, J1 = 0, J2 = 0 W = Z, J1 = 0, J2 = 1 W = Z, J1 = 1, J2 = 0 W = Z, J1 = 1, J2 = 1
W = X, J1 = 1, J2 = 1 W = X, J1 = 1, J2 = 0 W = X, J1 = 0, J2 = 1 W = X, J1 = 0, J2 = 0

k (i1, i2) k (i1, i2) k (i1, i2) k (i1, i2)

(0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0)
(0, 0, 0, 1) NA —— (0, 0, 0, 1) NA —— (0, 0, 0, 1) NA —— (0, 0, 0, 1) NA ——
(0, 0, 1, 0) (0, 0) (0, 0, 1, 0) (0, 1) (0, 0, 1, 0) (0, 0) (0, 0, 1, 0) (0, 1)
(0, 0, 1, 1) NA —— (0, 0, 1, 1) NA —— (0, 0, 1, 1) NA —— (0, 0, 1, 1) NA ——
(0, 1, 0, 0) NA —— (0, 1, 0, 0) NA —— (0, 1, 0, 0) NA —— (0, 1, 0, 0) NA ——
(0, 1, 0, 1) (1, 1) (0, 1, 0, 1) (1, 0) (0, 1, 0, 1) (0, 1) (0, 1, 0, 1) (0, 0)
(0, 1, 1, 0) NA —— (0, 1, 1, 0) NA —— (0, 1, 1, 0) NA —— (0, 1, 1, 0) NA ——
(0, 1, 1, 1) (1, 1) (0, 1, 1, 1) (1, 1) (0, 1, 1, 1) (0, 1) (0, 1, 1, 1) (0, 1)
(1, 0, 0, 0) (0, 0) (1, 0, 0, 0) (0, 0) (1, 0, 0, 0) (1, 0) (1, 0, 0, 0) (1, 0)
(1, 0, 0, 1) NA —— (1, 0, 0, 1) NA —— (1, 0, 0, 1) NA —— (1, 0, 0, 1) NA ——
(1, 0, 1, 0) (0, 0) (1, 0, 1, 0) (0, 1) (1, 0, 1, 0) (1, 0) (1, 0, 1, 0) (1, 1)
(1, 0, 1, 1) NA —— (1, 0, 1, 1) NA —— (1, 0, 1, 1) NA —— (1, 0, 1, 1) NA ——
(1, 1, 0, 0) NA —— (1, 1, 0, 0) NA —— (1, 1, 0, 0) NA —— (1, 1, 0, 0) NA ——
(1, 1, 0, 1) (1, 1) (1, 1, 0, 1) (1, 0) (1, 1, 0, 1) (1, 1) (1, 1, 0, 1) (1, 0)
(1, 1, 1, 0) NA —— (1, 1, 1, 0) NA —— (1, 1, 1, 0) NA —— (1, 1, 1, 0) NA ——
(1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1)

In the case of n = 2, the following simple attack so called intercept-resend attack can be
considered. An eavesdropper (called Eve) intercepts HKj returned to Alice from Kingj (step 2

in the protocol) and performs the measurement M(0) or M(1) probabilistically on HKj . After the
measurement, she resends HKj to Alice. When Eve performs the intercept-resend attack to only

HK1 , the probability which the error occurs is 1
8 , where the error means the event: δ(i′uj )2

j=1(i
u
j )

2
j=1

= 0.

When Eve performs the intercept-resend attack to both HK1 and HK2 , the probability which the
error occurs is 1

32 (p1 + p2 − 2p1 p2 + 7), where pj denotes the probability, which Eve performs the
measurement M(0) on HKj (j ∈ {1, 2}). The minimum value of the probability is 0.21875 when
(p1 = 1, p2 = 1) or (p1 = 0, p2 = 0) and the maximum value of the probability is 0.25 when
(p1 = 1, p2 = 0) or (p1 = 0, p2 = 1).

4. Distinguishability vs. Disturbance

In this section, let us consider two types of the attacks and let us see whether Eve can extract
information by employing the attacks without disturbing contained in legitimate users’ information
in the case of n = 2. First, Eve tries to gain information from the qubit returned to Alice by King1

(step 2 in the protocol) by interacting the qubit HK1 with her quantum system HE (see Figure 3).
Second, she tries to gain information from the qubits HKj returned to Alice by Kingj (step 2 in the
protocol) by interacting HK1 ⊗HK2 with her quantum system HE (see Figure 4). In both of the attacks,
Eve performs any measurement on her quantum system HE at any time.

We can consider an attack that Eve interacts her quantum system with the qubits sent to the kings
by Alice. However, in this attack, the qubits are not encoded because the kings have not measured
the qubits. Especially, in the case of n = 1, the setting of the attack can be considered as monogamy
of entanglement [21,22]. Moreover, we can also consider an attack that Eve interacts her quantum
system with both of the qubits sent to the kings by Alice and the qubits returned to Alice by the kings.
However, the setting of the attack is different from one for discussing the information disturbance
theorem. In the setting for the theorem, Eve tries to information extract from only the encoded qubits.
Therefore, we concentrate on the above two attacks that Eve tries to extract information from the qubits
sent to Alice by the kings.
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Figure 3. The interaction HK1 with HE.

Figure 4. The interaction HK1 ⊗HK2 with HE.

In the beginning, we define error probability which represents probability that Alice cannot guess
king’s outcomes correctly by using her outcome and the post-information. Remark that the error
probability is different from the error rate (step 6 in the protocol). Let P(W)(k | J1; i1, J2; i2) be the
probability that Alice obtains an outcome k when she chooses |Φ(W)〉 and Kingj obtains an outcome ij

with the measurement M(Jj) (j ∈ {1, 2}). We define

P(W)
suc(J1;i1,J2;i2)

:= ∑
k∈S(W)

(Jj ,ij)
2
j=1

P(W)(k | J1; i1, J2; i2) (25)

and
Psuc(J1;i1,J2;i2) :=

1
2 ∑

W∈{X,Z}
P(W)

suc(J1;i1,J2;i2)
. (26)

Then, we define the error probability when Kingj obtains an outcome ij with the

measurement M(Jj):
Perr(J1;i1,J2;i2) := 1 − Psuc(J1;i1,J2;i2). (27)

Equation (27) represents probability that Alice’s sequence and kings’ sequence do not match when
Kingj obtains an outcome ij with the measurement M(Jj), i.e., Alice cannot guess kings’ outcomes
correctly by using her outcome and the post-information.

Let us consider that Eve tries to extract information from HK1 . Eve prepares her own quantum
system HE in a quantum state Ω. She intercepts HK1 in the state ρ(K1) returned to Alice by King1 and
interacts it with HE. Let us denote the interaction by

T∗(ρ(K1)) := Uρ(K1) ⊗ ΩU†, (28)

where U is a unitary operator on HK1 ⊗HE. Moreover, we denote the local state of HE (resp. HK1 ) by
partial trace over the HK1 (resp. HE)

T∗
E(ρ

(K1)) := trHK1
T∗(ρ(K1))

(
resp. T∗

K1
(ρ(K1)) := trHKE

T∗(ρ(K1))
)

. (29)
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Let us consider that King1 obtains an outcome i with a measurement M(1). Then, the state of HK1

before the interaction is ρ(K1) = |ī〉〈ī|. Eve tries to extract information regarding to the secret key by
distinguishing T∗

E(|0̄〉〈0̄|) and T∗
E(|1̄〉〈1̄|).

We employ trace distance as a measure for distinguishability of the states. Trace norm between a
state ρ and a state σ is defined as ||ρ − σ||1 := sup||A||=1 | tr(ρ − σ)A|, where || · || denotes operator
norm. Trace distance is defined as follows,

D(ρ, σ) :=
1
2
||ρ − σ||1. (30)

It takes a value from 0 to 1. In addition, D(ρ, σ) = 0 if and only if ρ = σ, and D(ρ, σ) = 0 if and
only if tr(ρσ) = 0. Let us remind the definition of fidelity [23,24]. Fidelity between ρ and σ is defined

as F(ρ, σ) := tr
√

ρ1/2σρ1/2. The following alternative expression of fidelity [25,26] has been shown,

F(ρ, σ) = inf
(Ma)a :POVM

∑
a

√
p(a | ρ)p(a | σ), (31)

where p(a | ρ) and p(a | σ) are defined as p(a | ρ) := tr(Maρ) and p(a | σ) := tr(Maσ).

Lemma 1. The following relation between trace distance and fidelity holds,

1
2
||T∗

E(|0̄〉〈0̄|)− T∗
E(|1̄〉〈1̄|)||1 ≤ F(T∗

K1
(|0〉〈0|), T∗

K1
(|1〉〈1|)). (32)

Proof of Lemma 1. From Lemma 3 in [27], we have

|〈0|T(I⊗A)|1〉| ≤ ||A||F(T∗
K1
(|0〉〈0|), T∗

K1
(|1〉〈1|)) (33)

for any operator A on HE, where T is defined as tr T∗(ρ)X = tr ρT(X). By using Equation (33),
we observe ∣∣∣ tr

[{
T∗

E(|0̄〉〈0̄| − T∗
E

(
1
2 I

)}
A
]∣∣∣ =

∣∣∣ tr
{(

|0̄〉〈0̄| − 1
2 I

)
T(I⊗A)

}∣∣∣
=

∣∣∣ tr
{

1
2 (|0〉〈1|+ |1〉〈0|)T(I⊗A)

}∣∣∣
≤ 1

2{|〈1|T(I⊗A)|0〉|+ |〈0|T(I⊗A)|1〉|}
≤ ||A||F(T∗

K1
(|0〉〈0|), T∗

K1
(|1〉〈1|)).

(34)

Then,

1
2 ||T∗

E(|0̄〉〈0̄|)− T∗
E(|1̄〉〈1̄|)||1 =

∣∣∣∣∣∣T∗
E(|0̄〉〈0̄|)− T∗

E

(
1
2 I

)∣∣∣∣∣∣
1

= sup||A||=1

∣∣∣ tr
[{

(T∗
E(|0̄〉〈0̄|)− T∗

E

(
1
2 I

)}
A
]∣∣∣

≤ F(T∗
K1
(|0〉〈0|), T∗

K1
(|1〉〈1|))

(35)

holds.

Theorem 1. The following trade-off inequality holds,

D(T∗
E(|0̄〉〈0̄|), T∗

E(|1̄〉〈1̄|)) ≤
√

2Perr(0;0,0;0) +
√

2Perr(0;1,0;1). (36)

The left hand side of the inequality represents distinguishability for Eve, and the right hand
side is the sum of the error probabilities which represent probability that Alice’s sequence and kings’
sequence are not equal when the kings obtain the corresponding outcomes with the corresponding
measurements, i.e., Alice cannot guess kings’ sequence correctly by using her outcome and the

75



Entropy 2020, 22, 1275

post-information. This theorem shows that Eve’s extracting information regarding King1’s key related
with the measurement M(1) inevitably induces disturbing the states and increases the error probability
when both of kings choose the measurement M(0). This implies that the more Eve extracts information,
the more possibility for Alice and the kings to detect the existence of the attack increases. In particular,
Eve cannot extract information about the key at all (i.e., trace distance is zero) when the corresponding
error probabilities are zero. Remark that similar inequalities between distinguishability of other pairs
of states and the error probabilities can be proven in the similar way as below.

Proof of Theorem 1. Before obtaining the inequalities, let us observe the error probability.
Define ρi := T∗

K1
(|i〉〈i|). By direct calculations (see Appendix A for details), we have the

following probability,

Perr(0;i,0;i) =
1
2
(1 − 〈i|ρii〉). (37)

By using Equations (31) and (37), we have

F(ρ0, ρ1) = inf(Ma)a :POVM ∑a
√

tr(Maρ0) tr(Maρ1)

≤ √
tr(|0〉〈0|ρ0) tr(|0〉〈0|ρ1) +

√
tr(|1〉〈1|ρ0) tr(|1〉〈1|ρ1)

=
√〈0|ρ00〉(1 − 〈1|ρ11〉) +√

(1 − 〈0|ρ00〉)〈1|ρ11〉
≤ √

1 − 〈1|ρ11〉+√
1 − 〈0|ρ00〉

=
√

2Perr(0;0,0;0) +
√

2Perr(0;1,0;1),

(38)

where we employ (|0〉〈0|, |1〉〈1|) as a POVM in the first inequality. Then, we have the trade-off
inequality by the definition of trace distance, Equations (32) and (38).

Let us consider that Eve tries to extract information from HK1 and HK2 . Eve prepares a quantum
systems HE in a quantum state Ω. She intercepts HK1 ⊗HK2 in the state ρ(K1,K2) returned to Alice by
King1 and King2. Then, she interacts both systems with HE. Let us denote the interaction by

K∗(ρ(K1,K2)) := Vρ(K1,K2) ⊗ ΩV†, (39)

where V is a unitary operator on HK1 ⊗ HK2 ⊗ HE. And we denote the local state of HE
(resp. HK1 ⊗HK2 ) by partial trace over the HK1 ⊗HK2 (resp. HE)

K∗
E(ρ

(K1,K2)) := trHK1⊗HK2
K∗(ρ(K1,K2))

(
resp. K∗

K1,K2
(ρ(K1K2)) := trHKE

K∗(ρ(K1,K2))
)

. (40)

Let us consider that King1 and King2 perform the same measurement M(1) and obtain the same
outcome i. Then, the state of HK1 ⊗HK2 before the interaction is |īī〉〈īī|. Eve tries to extract information
regarding to the secret key by distinguishing K∗

E(|0̄0̄〉〈0̄0̄|) and K∗
E(|1̄1̄〉〈1̄1̄|).

Lemma 2. The following relation between trace distance and fidelity holds,

||K∗
E(|0̄0̄〉〈0̄0̄|)− K∗

E(|1̄1̄〉〈1̄1̄|)||1 ≤ ∑i∈{0,1} F(K∗
K1K2

(|ii〉〈ii|), K∗
K1K2

(|01〉〈01|)
+∑i∈{0,1} F(K∗

K1K2
(|ii〉〈ii|), K∗

K1K2
(|10〉〈10|). (41)

Proof of Lemma 2. From Lemma 3 in [27], we have

|〈i1i2|K(I ⊗ A)|i′1i′2〉| ≤ ||A||F(K∗
K1K2

(|i1i2〉〈i1i2|), K∗
K1K2

(|i′1i′2〉〈i′1i′2|)) (42)
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for any operator A on HE, where K is defined as tr K∗(ρ)X = tr ρK(X). By using Equation (42),
we observe

| tr[{K∗
E(|0̄0̄〉〈0̄0̄|)− K∗

E(|1̄1̄〉〈1̄1̄|)}A]| = | tr{(|0̄0̄〉〈0̄0̄| − |1̄1̄〉〈1̄1̄|)K(I⊗A)}|
=

∣∣∣ tr
{

1
2 (|00〉〈01|+ |00〉〈10|+ |01〉〈00|+ |01〉〈11|

+|10〉〈00|+ |10〉〈11|+ |11〉〈01|+ |11〉〈10|)K(I⊗A)
}∣∣∣

≤ ∑i∈{0,1} |〈ii|K(I ⊗ A)|01〉|+ ∑i∈{0,1} |〈ii|K(I⊗A)|10〉|

≤ ||A||
{

∑i∈{0,1} F(K∗
K1K2

(|ii〉〈ii|), K∗
K1K2

(|01〉〈01|)

+∑i∈{0,1} F(K∗
K1K2

(|ii〉〈ii|), K∗
K1K2

(|10〉〈10|)
}

.

(43)

In Equation (43), we take supreme over all A such that ||A|| = 1, then we have Equation (41).

Theorem 2. The following trade-off inequality holds,

D(K∗
E(|0̄0̄〉〈0̄0̄|), K∗

E(|1̄1̄〉〈1̄1̄|)) < ∑
i1,i2∈{0,1}

√
2Perr(0;i1,0;i2). (44)

Although Eve tries to distinguish the states on HK1 ⊗HK2 , this theorem gives the same claim
as the one of Theorem 1. This theorem shows that Eve’s extracting information regarding kings’
keys related with the measurement M(1) inevitably induces disturbing the states and increases the
error probability when both of kings choose the measurement M(0). Remark that similar inequalities
between distinguishability of other pairs of states and the error probabilities can be proven in the
similar way as below.

Proof of Theorem 2. In the same manner, let us observe the error probability. Define ρi1i2 :=
K∗

K1K2
(|i1i2〉〈i1i2|). By direct calculations (see Appendix B for details), we have the following probability,

Perr(0;i1,0;i2) =

{
1
2 (1 − 〈i1i2|ρi1i2 |i1i2〉) (i1 = i2)
1 − 1

2 〈i1i2|ρi1i2 |i1i2〉 (i1 �= i2).
(45)

By using Equations (31) and (45), we have

F(ρ00, ρ01) = inf(Ma)a :POVM ∑a
√

tr(Maρ00) tr(Maρ01)

≤ √
tr{(|11〉〈11|+ |01〉〈01|)ρ00} tr{(|00〉〈00|+ |01〉〈01|)ρ01}

+
√

tr{(|00〉〈00|+ |10〉〈10|)ρ00} tr{(|00〉〈00|+ |10〉〈10|)ρ01}
<

√
tr{(|11〉〈11|+ |01〉〈01|)ρ00}+

√
tr{(|00〉〈00|+ |10〉〈10|)ρ01}

=
√

1 − 〈00|ρ00|00〉 − 〈10|ρ00|10〉+√
1 − 〈01|ρ01|01〉 − 〈11|ρ01|11〉

<
√

1 − 〈00|ρ00|00〉+√
2 − 〈01|ρ01|01〉

=
√

2Perr(0;0,0;0) +
√

2Perr(0;0,0;1).

(46)

where we employ (|11〉〈11|+ |01〉〈01|, |00〉〈00|+ |10〉〈10|) as a POVM in the first inequality. In the
same manner, we have

F(ρii, ρ01) <
√

2Perr(0;i,0;i) +
√

2Perr(0;0,0;1), (47)

F(ρii, ρ10) <
√

2Perr(0;i,0;i) +
√

2Perr(0;1,0;0) (i ∈ {0, 1}). (48)

Then, we have the trade-off inequality by the definition of trace distance, Equations (41) and (48).
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5. Summary

In this paper, we discussed the quantum key distribution protocol using the mean multi-kings’
problem. By using the protocol, Alice can share the secret key with Kingj (j = 1, 2, . . . , n). In the
case of n = 2, we considered whether Eve can extract information when she can performs the
interaction between her own quantum system and the qubit returned by Kingj and can performs
any measurement on her quantum system at any time. We employed trace distance as a measure for
distinguishability of the states for Eve. Furthermore, we gave the trade-off inequalities between trace
distance of the quantum states corresponding to the secret key for Eve and the error probability which
represents probability that the bit sequences shared by the legitimate users do not match. In BB84,
such relation is know as the information disturbance theorem and the theorem is also regarded as
an information theoretical version of the uncertainty relation. Our inequalities showed that Eve’s
extracting information regarding kings’ keys inevitably induces disturbing the states and increases the
error probability even though Alice can use the post-information to guess kings’ outcomes. This implies
that the information gain by Eve increases possibility for the legitimate users to detect the existence
of the attacks. In particular, when the corresponding error probability is zero, Eve cannot extract
any information.
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the published version of the manuscript.
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Appendix A

We provide a direct calculation for obtaining the error probabilities in the proof of Theorem 1.
Let us consider that the initial state is |Φ(W)〉, Kingj (j ∈ {1, 2}) obtains an outcome ij with M(Jj),

and Eve performs the interaction on HK1 ⊗HE. Let ρ
(W)
(J1;i1,J2;i2)

be a state of the composite system before
Alice’s measurement. The state takes one of the following forms,

ρ
(Z)
(0;i1,0;i1)

= |i1〉〈i1| ⊗ ρi1 ⊗ |i1〉〈i1|, (A1)

ρ
(Z)
(0;i1,1;i2)

= |i1〉〈i1| ⊗ ρi1 ⊗ |ī2〉〈ī2|, (A2)

ρ
(Z)
(1;i1,0;i2)

= |i2〉〈i2| ⊗ ρī1 ⊗ |i2〉〈i2|, (A3)

ρ
(Z)
(1;i1,1;i2)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |ī2〉〈ī2|, (A4)

ρ
(X)
(0;i1,0;i2)

= |i1 ⊕ i2〉〈i1 ⊕ i2| ⊗ ρi1 ⊗ |i2〉〈i2|, (A5)

ρ
(X)
(0;i1,1;i2)

= |ī2〉〈ī2| ⊗ ρi1 ⊗ |ī2〉〈ī2|, (A6)

ρ
(X)
(1;i1,0;i2)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |i2〉〈i2|, (A7)

ρ
(X)
(1;i1,1;i1)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |ī1〉〈ī1|, (A8)

where ρi := T∗
K1
(|i〉〈i|), ρī := T∗

K1
(|ī〉〈ī|), and ⊕ denotes exclusive or.

By direct calculation of

P(W)
suc(J1;i1,J2;i2)

= ∑
k∈S(W)

(Jj ,ij)
2
j=1

tr
(

P(W)
k ρ

(W)
(J1;i1,J2;i2)

)
, (A9)
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we have the following probabilities,

P(Z)
suc(0;i1,0;i1)

= P(Z)
suc(0;i1,1;i2)

= 1, (A10)

P(Z)
suc(1;i1,0;i2)

= P(Z)
suc(1;i1,1;i2)

= 〈ī1|ρī1 ī1〉, (A11)

P(X)
suc(0;i1,0;i2)

= P(X)
suc(0;i1,1;i2)

= 〈i1|ρi1 i1〉, (A12)

P(X)
suc(1;i1,0;i2)

= P(X)
suc(1;i1,1;i1)

= 1, (A13)

where we can find out the index set S(W)

(Jj ,ij)
2
j=1

in Table 1. By the definition of Psuc(J1;i1,J2;i2), we have the

following probabilities,

Psuc(0;i1,0;i2) =

{
1
2 (〈i1|ρi1 i1〉+ 1) (i1 = i2)
1
2 〈i1|ρi1 i1〉 (i1 �= i2),

(A14)

Psuc(0;i1,1;i2) =
1
2
〈i1|ρi1 i1〉, (A15)

Psuc(1;i1,0;i2) =
1
2
〈ī1|ρī1 ī1〉, (A16)

Psuc(1;i1,1;i2) =

{
1
2 (〈ī1|ρī1 ī1〉+ 1) (i1 = i2)
1
2 〈ī1|ρī1 ī1〉 (i1 �= i2).

(A17)

Then, we can observe the error probabilities from these probabilities.

Appendix B

We provide a direct calculation for obtaining the error probabilities in the proof of Theorem 2.
Let us consider that the initial state is |Φ(W)〉, Kingj (j ∈ {1, 2}) obtains an outcome ij with M(Jj),

and Eve performs the interaction on HK1 ⊗HK2 ⊗HEj . Let ρ
′(W)
(J1;i1,J2;i2)

be a state of the composite
system before Alice’s measurement. The state takes one of the following forms,

ρ
′(Z)
(0;i1,0;i1)

= |i1〉〈i1| ⊗ ρi1i1 , (A18)

ρ
′(Z)
(0;i1,1;i2)

= |i1〉〈i1| ⊗ ρi1 ī2 , (A19)

ρ
′(Z)
(1;i1,0;i2)

= |i2〉〈i2| ⊗ ρī1i2 , (A20)

ρ
′(Z)
(1;i1,1;i2)

= |ī1〉〈ī1| ⊗ ρī1 ī2 , (A21)

ρ
′(X)
(0;i1,0;i2)

= |i1 ⊕ i2〉〈i1 ⊕ i2| ⊗ ρi1i2 , (A22)

ρ
′(X)
(0;i1,1;i2)

= |ī2〉〈ī2| ⊗ ρī1i2 , (A23)

ρ
′(X)
(1;i1,0;i2)

= |ī1〉〈ī1| ⊗ ρī1i2 , (A24)

ρ
′(X)
(1;i1,1;i1)

= |ī1〉〈ī1| ⊗ ρī1 ī1 , (A25)

where ρij := K∗
K1K2

(|ij〉〈ij|) (i, j ∈ {0, 1, 0̄, 1̄}).
By direct calculation of

P(W)
suc(J1;i1,J2;i2)

= ∑
k∈S(W)

(Jj ,ij)
2
j=1

tr
(

P(W)
k ρ

′(W)
(J1;i1,J2;i2)

)
, (A26)

79



Entropy 2020, 22, 1275

we have the following probabilities,

P(Z)
suc(0;i1,0;i1)

= 1, (A27)

P(Z)
suc(0;i1,1;i2)

= 〈ī1 ī2|ρi1 ī2 |ī1 ī2〉+ 〈i1 ⊕ 1ī2|ρi1 ī2 |i1 ⊕ 1ī2〉, (A28)

P(Z)
suc(1;i1,0;i2)

= 〈ī1 ī2|ρī1i2 |ī1 ī2〉+ 〈ī1i2 ⊕ 1|ρī1i2 |ī1i2 ⊕ 1〉, (A29)

P(Z)
suc(1;i1,1;i2)

= 〈ī1 ī2|ρī1 ī2 |ī1 ī2〉, (A30)

P(X)
suc(0;i1,0;i2)

= 〈i1i2|ρi1i2 |i1i2〉, (A31)

P(X)
suc(0;i1,1;i2)

= 〈i1i2|ρi1 ī2 |i1i2〉+ 〈i1i2 ⊕ 1|ρi1 ī2 |i1i2 ⊕ 1〉, (A32)

P(X)
suc(1;i1,0;i2)

= 〈i1i2|ρī1i2 |i1i2〉+ 〈i1 ⊕ 1i2|ρī1i2 |i1 ⊕ 1i2〉, (A33)

P(X)
suc(1;i1,1;i1)

= 1. (A34)

By the definition of Psuc(J1;i1,J2;i2), we have the following probabilities,

Psuc(0;i1,0;i2) =

{
1
2 (〈i1i2|ρi1i2 |i1i2〉+ 1) (i1 = i2)
1
2 〈i1i2|ρi1i2 |i1i2〉 (i1 �= i2),

(A35)

Psuc(0;i1,1;i2) =
1
2
(〈ī1 ī2|ρi1 ī2 |ī1 ī2〉+ 〈i1 ⊕ 1ī2|ρi1 ī2 |i1 ⊕ 1ī2〉

+〈i1i2|ρi1 ī2 |i1i2〉+ 〈i1i2 ⊕ 1|ρi1 ī2 |i1i2 ⊕ 1〉), (A36)

Psuc(1;i1,0;i2) =
1
2
(〈ī1 ī2|ρī1i2 |ī1 ī2〉+ 〈ī1i2 ⊕ 1|ρī1i2 |ī1i2 ⊕ 1〉

+〈i1i2|ρī1i2 |i1i2〉+ 〈i1 ⊕ 1i2|ρī1i2 |i1 ⊕ 1i2〉), (A37)

Psuc(1;i1,1;i2) =

{
1
2 (〈ī1 ī2|ρī1 ī2 |ī1 ī2〉+ 1) (i1 = i2)
1
2 〈ī1 ī2|ρī1 ī2 |ī1 ī2〉 (i1 �= i2).

(A38)

Then, we can observe the error probabilities from those probabilities.
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Abstract: We present a new post-processing method for Quantum Key Distribution (QKD) that
raises cubically the secret key rate in the number of double matching detection events. In Shannon’s
communication model, information is prepared at Alice’s side, and it is then intended to pass it over
a noisy channel. In our approach, secret bits do not rely in Alice’s transmitted quantum bits but
in Bob’s basis measurement choices. Therefore, measured bits are publicly revealed, while bases
selections remain secret. Our method implements sifting, reconciliation, and amplification in a unique
process, and it just requires a round iteration; no redundancy bits are sent, and there is no limit in
the correctable error percentage. Moreover, this method can be implemented as a post-processing
software into QKD technologies already in use.

Keywords: QKD; distillation; amplification; reconciliation

1. Introduction

To put it in historical context, fiber-optic telecommunications over long distances
was not possible until manufacturing techniques that improved drastically its efficiency
were developed. Fibers had been used to see inside the body, but they remained unusable
for long-distance information transfer because too much light was lost along the way.
However, in the 1960s, Charles Kao introduced a new disruptive approach based on pure
glass fibers and laser technology with transcendent achievements [1].

In the quantum era, Quantum Key Distribution (QKD) is one of the most promising
technologies to secure the information intended to cross data networks. However, the
development of new techniques for the rapid establishment of secret key information using
quantum pulses over long distances has become unpostponable [2–6].

Unfortunately, some factors prevent QKD of becoming a widely used technology as
its inability to reach long-distances and produce large keys at high speed. The greatest
weakness of QKD technology lies in its ability to gain useful information to establish a
secret key despite the noise in the quantum channel [7,8]. On the one hand, noise provides
the possibility for an attacker to disguise themselves, and, on the other hand, it imposes
severe difficulties to correct errors produced during transmission in order to derive two
identical cryptographic keys at both sides of the quantum link [9,10]. In the case of BB84
protocol, it has been estimated that a secure key can be distilled when the quantum bit
error rate (QBER) is less than 11% [11].

In the few past years, we have developed a new scheme for QKD quantum called
quantum flows [12–14] capable of resisting challenging attacks [15–25]. In quantum flows
approach, Alice sends to Bob a pair of quantum states, parallel or non-orthogonal, which
is chosen randomly. Bob measures the two quantum states with the same measurement
basis, X or Z under active basis selection. If Bob obtains the same result, a single bit
has been transmitted from Alice to Bob. Quantum flows have allowed us to formulate
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a new method for QKD distillation based on binary structures called frames. Framed
reconciliation integrates the regular QKD stages of sifting, reconciliation, and amplification
in a unique process. This property makes our method unique in the context of QKD
distillation; moreover, it accelerates convergence and produces a key that grows cubically
in the number of double detection events.

In this work, we enhance the framed reconciliation method showed previously for
2 × 2 frames [14], and we discuss that framed reconciliation can surpass Shannon’s infor-
mation bounds for noisy channels. We strongly recommend that the reader consults our
previous work on Quantum Key Distillation Using Binary Frames, so that we can keep
the present article concise, as far as possible. Basic concepts comprise quantum flows,
non-orthogonal quantum states, quantum photonic gains, binary frames, and matching
results (MR). Having introduced 2 × 2 frames, which are the frames with the minimum
size, we discuss here 3 × 2 frames. Throughout the article, we will compare both schemes.

2. Communication Model

Classical theory of communication, as it was established by Claude Shannon in 1948,
defines a general communication system where Alice (the information source) prepares
an information signal, that she sends over a noisy channel, but it corrupts at least in part
due to the presence of noise in the channel [26,27]. At the other side, Bob receives this
information signal, but Alice and Bob must implement a processing method to recover
from the errors produced during transmission [28–32].

Shannon’s theory imposes a limit to the highest transmission speed over a noisy
channel because it can never surpass the channel capacity. The coding rate is computed
as the number of message symbols divided by the number of transmitted signals. A
higher coding rate means higher transmission speed. When the efficiency of the codes
approximates to the channel capacity by increasing the number of transmitted signals,
it is known that these codes approach to the Shannon limit. However, a coding rate too
high makes it impossible to achieve a decoding error probability close to zero because the
optimum channel capacity is achievable just by letting the number of transmitted signals
reach infinity [33]. We claim our method goes beyond this limit because it does not require
the number of transmitted signals to be increased. In fact, the coding rate reaches unity.
The QKD protocol in Reference [34] exhibits a total efficiency of the communication to
come up to 100%, but it does not define an error correction algorithm.

On the other side, if e is the probability that a transmitted 0 bit is received as a 1
and 1 − e is the probability to be received as a 0, Shannon theory implies that, in case
that e = 0.5, one can never say anything about the original message [35,36] because the
entropy is maximized when the two possible outcomes are equally probable. Since our
method corrects errors when e = 0.5, we claim that it goes beyond the limits implied by
Shannon’s theory.

In our approach, we call active (or real) information that which is derived from
Shannon’s model viewpoint because information is first prepared by Alice, then transmitted
through the (quantum) channel, and, finally, recovered by Bob after it has been measured
and proven to be correct. Conversely, in our scheme, information is not enclosed in the
transmitted quantum pulses but in the quantum bases (X or Z) that Bob chooses at the
other side. In fact, measured bits are publicly announced but the measurement bases are
never revealed. We designated reactive information to this communication paradigm that
we introduced to the sifting QKD procedure.

Reactive bits are computed using Bob’s measurement bases, so errors produced in the
quantum channel are easily detected by Alice because such bits are publicly revealed by
Bob. Remarkably, in the presence of the unit error rate, information can still be recovered
since errors give reactive information by themselves. For the same reason, not all of
Alice’s information can be recovered, even in the absence of errors produced by the
quantum channel.
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Two reconciliation approaches have been conceived in QKD: direct and reverse recon-
ciliation. In reverse reconciliation (RR), Alice must infer Bob’s outcomes, rather than Bob
guessing Alice’s encodings, known as direct reconciliation (DR). Under this classification
frame, reconciliation is RR, so let us briefly contrast our approach with RR which was
introduced in the context of continuous variable QKD [31,37].

It has been demonstrated that RR reconciliation achieves longer distances even beyond
the 3dB limit of previous CV-QKD works [38]. RR reconciliation has been implemented
over LDPC basis [39], and it was shown that LDPC codes can reach within 0.0045 dB of
the Shannon limit. Unfortunately, it requires large block lengths (107) [40]. Even more,
decoding LDPC has larger computational and memory requirements than either Cascade
or Winnow algorithms [41]. In contrast, our method does not require additional bits
which reduces the coding rate. Our experimental simulations show complete efficiency
in detecting/correcting errors. Moreover, the secret throughput grows cubically in the
number of double detection events.

Before we introduce 3 × 2 frames, we will explain quantum communication based
on frames through a simple example about our reconciliation method. To facilitate its
exposition, we use 2 × 2 frames in this example. Then, to simplify exposition we discuss the
role of auxiliary frames in the 2 × 2 case. In Section 3, we address the research methodology
for 3 × 2 frames and then we detail the QKD distillation protocol. To make the discussion
more effective, we have placed tables of 3 × 2 protocol in the Appendix A. Finally, in
Section 4, we analyze the efficiency and the security of the 3 × 2 protocol against different
attacks as the Intercept-Resend (IR) attack and the Photon Number Splitting (PNS) attack.

2.1. Quantum Communication

In the BB84 protocol [42–45], a quantum state |iX〉 (or |iZ〉), where i represents the
encoded bit (i = 0, 1), is useful to be distilled whenever it has been measured in the proper
(compatible) quantum basis, basis X for |iX〉 (or Z for |iZ〉). Otherwise, a non-compatible
measurement is produced, the bit derived from this measurement is ambiguous, and it
must be discarded. However, in the quantum flows scheme, ambiguous cases can still be
used for the following reasons [14]:

• The states are grouped by non-orthogonal pairs (|iX〉 , |iZ〉) or (|iX〉 , |(i − 1)Z〉), where
i = 0, 1.

• A non-orthogonal pair is measured with the same quantum basis X or Z. Both
measurements yield the same result half of the times, i.e., if measuring (|iX〉 , |iZ〉)
with X (or Z) gives i, or measuring (|iX〉 , |(i − 1)Z〉) with X (or Z) gives i or 1 − i, in
both cases. We call those cases double matching detection event. Then, non-compatible
measurements never occur.

• It implies that the bit encoded in the X or Z basis is transmitted from Alice to Bob. This
communication model defines two communication channels, channel X and channel
Z, because there are two bits enclosed in a non-orthogonal quantum pair: one bit over
channel X and other bit in channel Z. Bob just chooses which channel he wants to
use. Provided a double matching detection event is generated, both measurements
are equally useful.

2.2. Example of Error Correction

In order to better introduce our communication model, let us illustrate it with a simple
example to contrast it with Shannon’s model. To see the effect of the errors instead of
the losses in the channel, let us assume a conservative quantum channel. Table 1 shows
an hypothetical QKD protocol possibly based on BB84, where Alice has sent 18 quantum
states (in practical implementations, some sifted bits must be sacrificed to estimate the
error rate of the channel). In this example, a 30% error rate (e) is produced; therefore, the
QKD distillation process must be declined because prominent reconciliation algorithms,
such as Cascade, Winnow, or LDPC, cannot work with this high error rate.
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Table 1. In this example of a running Quantum Key Distribution (QKD), 6 errors (underlined at
Bob’s column) among 18 measured quantum states are produced, so it gives an error rate of 30%.
According to Shannon’s limit, it yields a transmission rate of 0.0817. It is known that, at 50%, there is
no reconcilable information.

Alice Bob

|0X〉2, |0Z〉1, |0X〉2, |0Z〉1,
|1X〉4, |0Z〉3, |1X〉4, |1Z〉3,
|1X〉6, |1Z〉5, |1X〉6, |1Z〉5,
|0X〉8, |1Z〉7, |1X〉8, |1Z〉7,
|1X〉10, |0Z〉9, |0X〉10, |0Z〉9,
|0X〉12, |1Z〉11, |0X〉12, |0Z〉11,
|1X〉14, |1Z〉13, |1X〉14, |1Z〉13,
|1X〉16, |0Z〉15, |0X〉16, |0Z〉15,
|0X〉18, |1Z〉17 |1X〉18, |1Z〉17

Let us suppose that the same errors are produced using the framed reconciliation
method as it is illustrated in Figure 1. In this example, we ignored the losses due to double
detection events and the amplification gain produced by the amount of combinations
between double matching detection events (we will discuss them later). The reconciliation
based on frames can process this error rate; in fact, it can reconcile any error rate that e has
in the channel, so there is no need to estimate e wasting bits for this purpose. To simplify
the exposition, in this example, we used 2 × 2 frames, but we will discuss 3 × 2 frames in
the Distillation Method section.

Figure 1. Using frame reconciliation, all errors are detected and corrected (or removed).
Each double detection event has been enumerated to follow them into the frames (see
Tables 2 and 3).
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Table 2. Alice receives the Sifting String (SS) from Bob, which she knows belongs to f2, f3, and f4,
respectively, but they are ambiguous, so she uses the auxiliary frames f10, f9, and f9, respectively, to
identify the error and then correct it.

f2
2.

3.

MR = 01⎛⎝ − |1Z〉
− |1Z〉

⎞⎠
SS = 00, 11

f10
2.

1.

MR = 01⎛⎝ − |1Z〉
− |0Z〉

⎞⎠
SS = 01, 10

f3
4.

3.

MR = 10⎛⎝|1X〉 −
− |1Z〉

⎞⎠
SS = 11, 11

f9
4.

1.

MR = 10⎛⎝|1X〉 −
− |0Z〉

⎞⎠
SS = 10, 10

f4
7.

9.

MR = 00⎛⎝ |1X〉 −
|1X〉 −

⎞⎠
SS = 00, 11

f9
9.

1.

MR = 10⎛⎝|1X〉 −
− |0Z〉

⎞⎠
SS = 10, 10

Table 3. After Alice receives these SS, she determines that the respective frames must be eliminated
because ambiguity cannot be removed.

f2
5.

3.

MR = 10⎛⎝|0X〉 −
− |1Z〉

⎞⎠
SS = 01, 01

f3
6.

3.

MR = 01⎛⎝ − |0Z〉
− |1Z〉

⎞⎠
SS = 01, 01

f6
8.

7.

MR = 00⎛⎝ |0X〉 −
|1X〉 −

⎞⎠
SS = 10, 01

2.3. Auxiliary Frames

A major component of the framed reconciliation method relies in the auxiliary frames.
There are two types of auxiliary frames: zero frames and testing frames. Every quantum
state of a zero frame is |0X〉 or |0Z〉. Identifying measurement errors in a zero frame is easy,
as we will see later. A testing frame contains one row that is under evaluation because it
presumably contains error, and the rest of the rows come from a zero verified frame.

To compute the sifting string (SS), we follow the next procedure: A sifting string is
constructed concatenating the bits that result after the ⊕ logical operation is applied to each
column of the frame (a blank space is treated as a zero bit) and putting the measured bits
that are produced by the optical detectors. The secret bits are derived from the code that
is assigned to the arrangement of measurements inside the frame. We call measurement
results (MR) to this arrangement. To see the role of auxiliary frames, let us assume that we
intend to apply the framing algorithm to the Shannon’s model; thus, several zero bits are
interleaved between the secret bits to be used as auxiliary correcting bits.

1. To achieve reconciliation in Shannon’s model, the first step is to ensure that auxiliary
zero bits are error-free. However, Shannon’s 2 × 1 frames does not allow to identify
errors in two consecutive zero bits (at least in one round iteration) as indicated by the
following relations:⎛⎝ 0
⊕
0

⎞⎠ =

⎛⎝ 1
⊕
1

⎞⎠ = 0 (SS).

In addition, when using 2 × 1 frames, there is a unique possible matching result
(MR), that is written below; therefore, no secret information can be derived from MRs
in Shannon’s model.
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⎛⎝|•〉

|•〉

⎞⎠.

2. By contrast, using 2 × 2 frames, errors in the auxiliary frames can be easily identified.
Here, we list the error-free zero frames:⎛⎝|0X〉 −

⊕
− |0Z〉

⎞⎠ =

⎛⎝− |0Z〉
⊕

|0X〉 −

⎞⎠ =

⎛⎝|0X〉 −
⊕

|0X〉 −

⎞⎠ =

⎛⎝− |0Z〉
⊕

− |0Z〉

⎞⎠ = 00, 00 (SS),

which can be compared, for illustrative purposes, to the erroneous cases:⎛⎝|1X〉 −
⊕

− |1Z〉

⎞⎠ =

⎛⎝− |1Z〉
⊕

|1X〉 −

⎞⎠ = 11, 11 (SS),

⎛⎝|1X〉 −
⊕

|1X〉 −

⎞⎠ =

⎛⎝− |1Z〉
⊕

− |1Z〉

⎞⎠ = 00, 11 (SS).

3. Ambiguous SS are produced in regular frames. For example, to the left, we indicate
that Alice sends the frame f2 to Bob, who measures it using MR = 11. However, when
applying the Z measurement basis, the photo-detector yields an error reporting |1Z〉
instead |0Z〉; so, we have:

f2a =

⎛⎝|1X〉 |0Z〉
|1X〉 |1Z〉

⎞⎠, f2b =

⎛⎝− |1Z〉
⊕

|1X〉 −

⎞⎠ = 11, 11 (SS).

When Alice receives the string SS = 11,11 which belongs to f2, she knows it implies two
possibilities: either SS comes from the error-free string SS24 = 11, 11 under MR = 10
in f2 or an error is produced in the first measured bit that actually corresponds to
the string SS23 = 10, 01 under MR = 11 in f2. To disambiguate it, Alice uses the
auxiliary frame f10. Thus, she looks at a frame f10 where the ambiguous row (−, |1Z〉)
is allocated. Remember that each row is combined with each other. Previously, the
second row of f10, i.e., (|0X〉 ,−), was verified as a zero frame. Then, suppose Alice
finds the following f10 case:

f10 =

⎛⎝− |1Z〉
⊕

|0X〉 −

⎞⎠ = 10, 10.

The sifting string 10,10 reveals that an error exists in the row that is under evaluation;
therefore, Alice decides SS23. Then, the pair (SS23, f2) determines Alice’s secret bit. It must
be highlighted that the sifting strings of auxiliary frames cannot be distinguished from
other identical SS from regular frames, so privacy is guaranteed. In fact, it is ensured that
each SS can proceed equally from each bit.

2.4. One-Time Pad XOR Equivalency

It is known that the XOR one-time pad encryption method is a perfect cryptosystem
provided the crypto key achieves the same number of bits as the plaintext. Let us show
that the framing method actually behaves as one-time encryption. First, in Table 4, we can
see the logical XOR (⊕) function. Each encrypted bit c could be produced by each key bit
denoted as k.
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Table 4. The logical XOR function.

c k ⊕ b

0 0 ⊕ 0
1 ⊕ 1

1 0 ⊕ 1
1 ⊕ 0

As specified in the framed reconciliation method [14], Bob must reveal the sifting bits
along the measured bits. However, each SS maps two different MRs, as can be verified in
Table 5. Since secret bits are enclosed in MRs, we proved that secret bits of the framing
protocol are equivalent to the secret bits of the XOR one-time pad cryptosystem. The same
analysis can be applied to the 3 × 2 frames.

Table 5. The XOR function for 2 × 2 frames; matching results (MR) is the measurement result, and sb
denotes the final secret bit.

c k ⊕ b MR Frames sb

00

(|0X〉 ,−)⊕ (−, |0Z〉) 10 f1 0
(−, |0Z〉)⊕ (|0X〉 ,−) 11 f5 1
(|1X〉 ,−)⊕ (|1X〉 ,−) 00 f2, f6 0
(−, |1Z〉)⊕ (−, |1Z〉) 01 f3, f4 1

01

(−, |1Z〉)⊕ (−, |0Z〉) 01 f1, f6 0
(−, |1Z〉)⊕ (|0X〉 ,−) 11 f4 1
(|0X〉 ,−)⊕ (−, |1Z〉) 10 f3 0
(−, |0Z〉)⊕ (−, |1Z〉) 01 f2, f5 1

10

(|1X〉 ,−)⊕ (|0X〉 ,−) 00 f4, f5 0
(|1X〉 ,−)⊕ (−, |0Z〉) 10 f6 1
(|0X〉 ,−)⊕ (|1X〉 ,−) 00 f1, f3 0
(−, |0Z〉)⊕ (|1X〉 ,−) 11 f2 1

11 (−, |1Z〉)⊕ (|1X〉 ,−) 11 f1, f3, f6 0
(|1X〉 ,−)⊕ (−, |1Z〉) 10 f2, f4, f5 1

3. Distillation Method with 3 × 2 Frames

Before we detail the steps of the distillation method for 3 × 2 frames, let us describe
the research methodology we applied:

1. The 3 × 2 frames must be identified: there are 43 = 64 binary 3 × 2 frames.
2. The measurement results (MR) must be specified: in 3 × 2 frames, there are 8 MR.

Those MR are illustrated in Table A2 of Appendix A.
3. Frames are classified as usable and useless frames: a usable frame is a frame that pro-

duces a distinct SS under each MR. In 3 × 2 frames, there are 8 distinct SS per frame
and 24 usable frames. Sifting bits are written in Table A4 of Appendix A. Remember
that Sifting Strings (SS) are composed by the sifting bits and the measured bits: SS =
1st sifting bit || 2nd sifting bit|| 3th sifting bit, 1st measured bit || 2nd measured bit ||
3th measured bit. The 3th sifting bit is appended to achieve discrimination, and it can
be considered as a parity sifting bit.

4. Auxiliary frames which are intended to catch errors produced in regular frames must
be identified. In 3 × 2 frames, there are 3 auxiliary frames labeled as f25, f26, and
f27. The frame f25 is the zero frame and is used to verify the two (below) rows of the
testing frames f26 and f27. The upper row of f26 and f27 is the row that is being tested.
In the end, Alice will include the auxiliary frames inside the set of frames that Bob
must remove. Auxiliary frames are listed in Table A1 of Appendix A.

5. All usable frames under each MR must be expanded to analyze all possible errors
through SS, from single to multiple errors. Then, ambiguous SS that can be corrected
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under the auxiliary frames must be detected. In addition, all the SS that cannot be
disambiguated must be identified and the corresponding frames must be removed.
We show in Table A5 the cases that can be successfully disambiguated.

6. At Bob’s side, each (SS, MR) pair defines a secret bit (sb). For Alice, the same secret bit
results from the pair (SS, fi) because she knows the frame that is behind each SS. It
must be guaranteed that each SS can be produced equally by both bits. In addition,
it must be ensured that each secret bit proceeds from the same number of frames, so
that the bit probability of each SS is the same in order to reduce the eavesdropper’s
information gain (SS are publicly transmitted over the classical channel). This action
may involve removing some extra SS. Alice sends to Bob the set of SS of all the frames
that must be eliminated including auxiliary frames. Table A3 of Appendix A enlists
SS, MR, frames, and sb.

Now, we can proceed to summarize the steps of the distillation method for 3 × 2 frames
that comprises sifting, reconciliation, and privacy amplification. The overall steps of the
process are indicated in Figure 2:

1. Alice sends some non-orthogonal quantum pairs either (|iX〉 , |iZ〉) or (|iX〉 , |(1 − i)Z〉)
where i = 0, 1. Although quantum non-orthogonal pairs can be mutually interleaved
they are numbered, so each pair can be identified by Alice and Bob

2. Bob measures each quantum pair using the same measurement basis (X or Z) which
is chosen randomly (under active basis measurement). Some double detection events
are produced. Bob informs Alice the tag number of such quantum pairs.

3. Alice computes all usable frames including null frames and auxiliary frames. She
communicates to Bob the frame arrangement information. We call this step privacy
amplification.

4. Bob computes the Sifting String (SS) of each frame. He returns the set of Siting Strings
he obtained to Alice.

5. Alice analyzes the SS received from Bob:
She generates frames f25 to prepare the auxiliary frames.
Using auxiliary frames, Alice removes ambiguity. Alice gets the secret bits using

the relation (SS, fi) and Table A3 of Appendix A.
Alice informs Bob of the cases that must be eliminated (because they cannot be

disambiguated).
6. Bob removes the frames identified by Alice to reach Alice’s secret bit string. Bob’s

secret bits are derived from (SS, MR) and Table A3 of Appendix A.
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Figure 2. The frame distillation runs in one iteration: Alice sends pairs of non-orthogonal
states (NOi). Bob informs to Alice which cases produced double matching detection events
(i). Alice generates all possible frames and sends to Bob the frame arrangement information
( fn). Bob returns back the sifting strings (SSn). Finally, Alice tells Bob which cases he must
delete (rm). Step 1 is executed over the quantum channel, while steps 2 to 5 are completed
using the classical channel.

4. Secret Rate

The secret rate of the framed reconciliation method can be derived directly from
frames without recurring to quantum physics mathematical relations. First off, we must
enlist the Sifting String (SS) generated by all the frames classified by Measurement Result
(MR) and separate the error-free SS from the erroneous SS (single and multiple errors).
According to the size of frames (2 × 2 or 3 × 2), the error could be in the first bit, second
bit, third bit, two bits, two of three bits, and three bits simultaneously. Then, we proceed to
identify ambiguous SS, (because they appear simultaneously as error-free SS and erroneous
SS for a given frame). Then, we identify the SS that can still be used after they are inspected
under auxiliary frames. We call those cases unequivocal SS cases.

We calculate the secret rate (in absence of eavesdropping) as the sum up of the
information derived from the unequivocal error-free rate and the amount of information
derived from the unequivocal erroneous rate (unequivocal error-free rate is obtained as the
number of unequivocal error-free SS under the total number of error-free SS; conversely,
the unequivocal error rate is obtained as the rate of unequivocal erroneous SS over the
total erroneous SS cases). As mentioned earlier, unequivocal means that ambiguity can be
removed using auxiliary frames. The bits from remaining SS must be eliminated since they
do not contribute to the secret rate.

In Table 6, we detail the deduction of the secret rate. Each SS contributes with a single
bit. In 2 × 2 frames, we have 4 usable frames, and each one generates 4 SS; to compute the
unequivocal erroneous rate, we have 2 SS per frame that can be recovered from 12 SS per
frame yields 1

6 . On the other hand, to derive the unequivocal error-free rate, we have 2 SS
per frame that can be recovered from 4 SS per frame it yields 1

2 . The unequivocal erroneous
rate in 3 × 2 frames yields 1

3 , and the unequivocal error-free rate gives 1
21 (see Figure 3).
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Table 6. The secret rate is indicated without taking the framing gain for each frame size. The secret
rate is shown when e = 0 and e = 1.

Iab(2×2)
Iab(3×2)

1
2 (1 − e) + 1

6 e 1
3 (1 − e) + 1

21 e
1
2 − 1

3 e 1
3 − 2

7 e
e = 0 → Iab(2×2)

= 1
2 e = 0 → Iab(3×2)

= 1
3

e = 1 → Iab(2×2)
= 1

6 e = 1 → Iab(3×2)
= 1

21

Figure 3. The theoretical transmission rate is plotted as a function of the quantum bit error
rate (QBER) e; we show the 2 × 2 and 3 × 2 lines and the Shannon’s reference function.
When e = 1, the secret rate achieves 0.16 for 2 × 2 frames and 0.047 for 3 × 2 frames.

4.1. Secret Throughput

One of the main advantages of the reconciliation method based on frames is the total
number of secret bits that results when the framing gain is applied. Remarkably, framing
gain results from the amount of total combinations among double matching detection
events. We call this process privacy pre-amplification (or amplification in short). Therefore,
we compute the secret throughput multiplying the secret rate by the framing gain. In the
case of 2 × 2 frames, we have 4 usable frames under 16 total frames, so the framing gain is
1
4 (

n
2). Conversely, in 3 × 2 frames, there are 24 over 64 frames, so the framing gain is 3

8 (
n
3).

Equation (2) describes the secret throughput for each case.

Iab(2x2)
=

1
4

(
n
2

)(
1
2
− 1

3
e
)

Iab(3x2)
=

3
8

(
n
3

)(
1
3
− 2

7
e
). (1)

Just to appreciate the growth rate of each frame size, we compute, in Table 7, some
values of the secret throughput as a function of n and e. As it can be inferred, 3 × 2 frames
have a visible advantage to produce secret bits, e.g., when n = 103, it raises the secret
throughput to n = 108 bits.
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Table 7. The theoretical secret throughput (bits) as a function of n and e for each frame size.

n
e = 0 e = 0.5 e = 1

Iab(2×2)
Iab(3×2)

Iab(2×2)
Iab(3×2)

Iab(2×2)
Iab(3×2)

100 618 20,212 412 11,550 206 2887
500 15,593 2,588,562 10,395 1,479,178 5197 369,794

1000 62,437 20,770,875 41,625 11,869,071 20,812 2,967,267

4.2. Rate Code

The rate code rab is the relation between the secret information and the total bits
generated to achieve reconciliation. In the case of 2 × 2 frames, the total information is
4(n

2), while the total number is 6(n
3) in 3 × 2 frames. The rate code for each size of frame is

written in Equation (2).

rab(2×2)
=

1
16

(
1
2
− 1

3
e
)

rab(3×2)
=

1
16

(
1
3
− 2

7
e
). (2)

4.3. Secret Key Rate

In the case of frame reconciliation, the eavesdropper has a great disadvantage since
they do not know Bob’s bases selection because they are not revealed over the classical
channel. Even if the eavesdropper captures some copies of the quantum pulses, they must
deal with the double detection events and the basis choices. Moreover, although the eaves-
dropper could replicate some double detection events, Alice performs all combinations
between double detection events. As a consequence of the privacy amplification process,
the eavesdropper’s information reduces even more.

4.3.1. The Intercept and Resend Attack (IR)

In the Intercept and Resend (IR) attack, the eavesdropper first measures each pair of
non-orthogonal quantum pulses in the quantum channel, and then they send another pair
of quantum pulses to Bob prepared according to the same quantum states.

Since secret bits are derived only from double matching detection events, Eve must
produce first a double matching detection event using the quantum states she intercepts
in the quantum channel because no useful information could be extracted from double
non-matching detection events nor even single detection events.

In addition, Eve must guarantee that both states she resends to Bob’s station achieve
his optical detectors, which imposes a severe difficulty because vacuum or single detection
events are more probable than double detection events. However, suppose Eve forces both
quantum states to arrive Bob’s receiver station. We can derive the efficiency of the IR attack
using the following example:

— Alice sends the non-orthogonal pair (|0X〉 , |0Z〉) to Bob over the quantum channel.
Eve measures them using Z basis, and let us assume she obtains a double matching
detection event, say (|0Z〉 , |0Z〉).

— Eve prepares and sends the quantum pair (|0Z〉 , |0Z〉) to Bob.
— Suppose Eve can force both quantum pulses to arrive to Bob’s optical station. There

are two quantum measurement bases (X or Z) and five possible outcomes:

– 1
2 due to Bob’s Z basis: (|0Z〉 , |0Z〉).

– 1
2 due to Bob’s X basis: {(|0X〉 , |0X〉), (|1X〉 , |1X〉), (|1X〉 , |0X〉), (|0X〉 , |1X〉)}.

To match Eve’s double detection event (|0Z〉 , |0Z〉), Bob must choose the Z basis
which occurs with 1

2 probability, so Eve’s final probability is 1
4 .
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The overall scheme is depicted in the following diagram, where Q(+,+) represents
Alice’s pairs of non-orthogonal states:

Q(+,+)

1
2 double matching (Eve)

1
2 X basis (Bob) 1

2 Z basis (Bob)

1
2 double non-matching (Eve).

4.3.2. The Photon Number Splitting Attack (PNS)

The eavesdropper has a copy of all the quantum states that arrive to Bob’s station
because Alice sends attenuated (multi-photon) quantum pulses, and the eavesdropper
is equipped with a sufficiently large quantum memory. However, the eavesdropper’s
probability of getting a double matching detection event is 1

2 . In addition, Eve must
measure choosing between two different measurement basis (X or Z); thus, his final
probability is 1

4 :

• 1
2 because of the probability to get a double matching detection event.

• 1
2 due to basis matching. Eve must measure choosing between two different measure-
ment basis (X or Z).

Q(+,+)

1
2 double matching (Bob)

1
2 X basis (Eve) 1

2 Z basis (Eve)

1
2 non-matching (Bob).

4.3.3. The Bases Choice Attack (BC)

The eavesdropper would decide to apply another quantum measurement bases to
gain more information, and then they use the measurement bases X + Z or X − Z. First,
consider that the eavesdropper chooses between the measurement bases (X + Z or X − Z)
with 0.5 probability. However, non-matching detection events are ambiguous for the
eavesdropper, which occur with 6

16 probability. In contrast, they get a double matching
event with 9

16 probability. As a result, the chance to get Bob’s information is 9
32 .

Equation (3) shows the relation to compute the secret key rate for each frame size. It is
written as the secret information multiplied by the rate between the total frames produced
by Alice and those the eavesdropper duplicates.

ΔI(2X2) =

[
1
2
− 1

3
e
][

1 − (R·n
2 )

(n
2)

]

ΔI(3X2) =

[
1
3
− 2

7
e
][

1 − (R·n
3 )

(n
3)

]. (3)

Table 8 shows the final secret key information for each attack: Intercept and Resend
attack (IR), Photon Number Splitting attack (PNS), and Basis Choice attack (BC). In the
case of 2 × 2 frames, we have ignored the linear term n that is generated in (n

2) because the
quadratic term n2 is dominant. In the same way, we omitted the quadratic and linear terms
produced by (n

3) because of the high order of the cubic term.
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Table 8. The secret key rate is computed as ΔI = Iab − Iae for each attack.

IR PNS BC(
1 − ( 1

4 )
2
)
· Iab(2×2)

(
1 − ( 1

4 )
2
)
· Iab(2×2)

(
1 − ( 9

32 )
2
)
· Iab(2×2)(

1 − ( 1
4 )

3
)
· Iab(3×2)

(
1 − ( 1

4 )
3
)
· Iab(3×2)

(
1 − ( 9

32 )
3
)
· Iab(3×2)

As it can be deduced from Table 8, the secret key rate is affected slightly by the
eavesdropper’s behavior. This new scenario opens the possibility to employ less attenuated
pulses as in CV-QKD to achieve, on one hand, long-distances quantum links or, on the
other, portable QKD in closed buildings [46].

5. Conclusions

We have discussed a new post-processing method for Quantum Key Distribution
(QKD) that raises cubically the secret key rate in the number of double matching detection
events. Secret bits are derived from reactive bits instead of Shannon information, so
Bob’s measured bits are publicly revealed, while bases selections remain secret. Our
method implements sifting, reconciliation, and amplification in a unique process, and it
just requires a round iteration; no redundancy bits are sent, and no limit in the correctable
error percentage. Despite the fact that the reconciliation is performed with a unity error
channel, the secret rate is kept, at least theoretically, in 16% using 2 × 2 frames and 4.7%
when using 3 × 2 frames.

It is not difficult to evaluate the security of this method because it can be evaluated
directly through the frames. There is no dependency on other security mechanism as hash
functions.

The protocol works fast, at least theoretically, convergence is guaranteed, and it can
be implemented as a post-processing software into QKD technologies.
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Appendix A

This Appendix contains the relevant tables used for the framed methodology:

• Table A1 describes the complete set of 3 × 2 frames.
• MR are illustrated in Table A2.
• Table A3 enlists SS, MR, frames, and sb.
• Sifting bits are written in Table A4.
• Table A5 shows the cases that can be successfully disambiguated.
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Table A1. There are 24 useful frames: fi, where i = 1, . . . , 24 and 3 Auxiliary frames f j, where j = 25, . . . , 27.

Useful Frames Auxiliary Frames

f1 =

⎛⎜⎝|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

⎞⎟⎠ f2 =

⎛⎜⎝|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

⎞⎟⎠ f3 =

⎛⎜⎝|0X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

⎞⎟⎠ f25 =

⎛⎜⎝|0X〉 |0Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉

⎞⎟⎠

f4 =

⎛⎜⎝|1X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

⎞⎟⎠ f5 =

⎛⎜⎝|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

⎞⎟⎠ f6 =

⎛⎜⎝|1X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

⎞⎟⎠ f26 =

⎛⎜⎝|0X〉 |1Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉

⎞⎟⎠

f7 =

⎛⎜⎝|0X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

⎞⎟⎠ f8 =

⎛⎜⎝|0X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

⎞⎟⎠ f9 =

⎛⎜⎝|1X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

⎞⎟⎠ f27 =

⎛⎜⎝|1X〉 |1Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉

⎞⎟⎠

f10 =

⎛⎜⎝|1X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

⎞⎟⎠ f11 =

⎛⎜⎝|0X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

⎞⎟⎠ f12 =

⎛⎜⎝|0X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉

⎞⎟⎠

f13 =

⎛⎜⎝|0X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

⎞⎟⎠ f14 =

⎛⎜⎝|1X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

⎞⎟⎠ f15 =

⎛⎜⎝|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉

⎞⎟⎠

f16 =

⎛⎜⎝|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

⎞⎟⎠ f17 =

⎛⎜⎝|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉

⎞⎟⎠ f18 =

⎛⎜⎝|0X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉

⎞⎟⎠

f19 =

⎛⎜⎝|0X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

⎞⎟⎠ f20 =

⎛⎜⎝|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉

⎞⎟⎠ f21 =

⎛⎜⎝|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉

⎞⎟⎠

f22 =

⎛⎜⎝|1X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉

⎞⎟⎠ f23 =

⎛⎜⎝|1X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

⎞⎟⎠ f24 =

⎛⎜⎝|1X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉

⎞⎟⎠
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Table A2. There exist eight possible Matching Results (MR) for 3 × 2 frames. The bit produced by a
double matching event is represented inside the key notation with the symbol •. Additionally, each
MR has been identified with a binary code left to each frame. After the sifting process, such MR code
will become part of the secret key.

MR = 000

⎛⎝|•X〉 −
|•X〉 −
|•X〉 −

⎞⎠ MR = 100

⎛⎝|•X〉 −
|•X〉 −
− |•Z〉

⎞⎠
MR = 001

⎛⎝− |•Z〉
− |•Z〉
− |•Z〉

⎞⎠ MR = 101

⎛⎝ − |•Z〉
− |•Z〉

|•X〉 −

⎞⎠
MR = 010

⎛⎝|•X〉 −
− |•Z〉

|•X〉 −

⎞⎠ MR = 110

⎛⎝|•X〉 −
− |•Z〉
− |•Z〉

⎞⎠
MR = 011

⎛⎝ − |•Z〉
|•X〉 −
− |•Z〉

⎞⎠ MR = 111

⎛⎝ − |•Z〉
|•X〉 −
|•X〉 −

⎞⎠
Table A3. Bob sends to Alice the Sifting Strings (SS) which are constructed with the sifting bits and the measured bits. Alice
knows the frames behind each SS, so she can get the secret bit (sb). On his side, Bob uses the SS and the MR to achieve the
same bit.

Sifting String
Bob’s MR Alice’s Frame sb Bob’s MR sb Alice’s Frame

Measured Sifting

110 000 000 f6, f9, f14, f22 0 001 1 f5, f11, f16, f24
011 000 000 f8, f13, f18, f19 0 001 1 f12, f15, f20, f23
011 001 110 f12, f15, f17, f19 0 111 1 f4, f13, f18, f23
110 001 100 f6, f10, f14, f24 0 101 1 f5, f11, f21, f22
010 011 110 f1, f11, f16, f18 0 101 1 f2, f6, f12, f20
111 011 100 f4, f9, f22, f23 0 111 1 f8, f10, f19, f24
001 010 001 f3, f4, f9, f13 0 011 1 f15, f20
100 010 001 f7, f8, f10, f14 0 011 1 f5, f16
010 010 001 f1, f2, f6, f18 0 010 1 f11, f12
111 010 001 f17, f19, f21, f22 0 010 1 f23, f24
001 011 110 f3, f13 0 100 1 f15, f17
100 011 101 f7, f14 0 111 1 f5, f21
001 100 000 f1, f15, f16, f17 0 010 1 f8, f13
100 100 000 f2, f5, f20, f21 0 010 1 f9, f14
010 100 000 f3, f7, f11, f12 0 011 1 f6, f18
111 100 000 f4, f10, f23, f24 0 011 1 f19, f22
001 101 111 f1, f15 0 101 1 f4, f13
100 101 100 f2, f5 0 110 1 f10, f14
010 101 111 f3, f6, f9, f12 0 100 1 f7, f8, f11, f18
111 101 101 f16, f17, f19, f24 0 110 1 f20, f21, f22, f23
011 110 010 f1, f15, f16, f17, f18, f19 0 011 1 f3, f4, f9, f12, f13, f23
110 110 010 f2, f5, f6, f20, f21, f22 0 011 1 f7, f8, f10, f11, f14, f24
011 111 101 f1, f15, f18, f23 0 100 1 f3, f12, f13, f19
110 111 110 f2, f5, f6, f24 0 111 1 f7, f11, f14, f22
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Table A4. We list the 24 frames that Alice uses during the distillation process. Bob computes the sifting bits applying the
XOR function to each column (they are written at the bottom of each frame) and appending an extra (required) sifting
bit. The sifting bits define the set {000, 001, 010, 011, 100, 101, 110, 111} that does not contain redundancy, so that Alice can
identify without ambiguity Bob’s Matching Results.

Alice Bob

f1 =

⎛⎝|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|0X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|0X〉 −
− |0Z〉

⎞⎠
0 0 0⎛⎝|0X〉 −

|0X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |0Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|0X〉 −
− |1Z〉
− |0Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
|0X〉 −
|1X〉 −

⎞⎠
1 0 1

f2 =

⎛⎝|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|0X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |1Z〉

|0X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|0X〉 −
− |0Z〉

⎞⎠
0 0 0⎛⎝|1X〉 −

|0X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |0Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|1X〉 −
− |1Z〉
− |0Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
|0X〉 −
|0X〉 −

⎞⎠
0 0 1

f3 =

⎛⎝|0X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |0Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |0Z〉

|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
− |0Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|0X〉 −
− |0Z〉
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 0 1

f4 =

⎛⎝|1X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |0Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |0Z〉

|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
− |0Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|0X〉 −
− |0Z〉
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 0 1

f5 =

⎛⎝|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|0X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 0 0

⎛⎝|1X〉 −
− |1Z〉

|0X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|0X〉 −
− |0Z〉

⎞⎠
0 1 0⎛⎝|1X〉 −

|0X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|1X〉 −
− |1Z〉
− |0Z〉

⎞⎠
1 1 1

⎛⎝ − |1Z〉
|0X〉 −
|0X〉 −

⎞⎠
0 1 1
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Table A4. Cont.

Alice Bob

f6 =

⎛⎝|1X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 0 0⎛⎝|1X〉 −

|1X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |0Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|1X〉 −
− |1Z〉
− |0Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 0 1

f7 =

⎛⎝|0X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |0Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |0Z〉

|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
− |0Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|0X〉 −
− |0Z〉
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 1 1

f8 =

⎛⎝|0X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
− |0Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |0Z〉

|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
− |0Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|0X〉 −
− |0Z〉
− |0Z〉

⎞⎠
0 0 0

⎛⎝ − |1Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 1 1

f9 =

⎛⎝|1X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
− |0Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |0Z〉

|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
− |0Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|1X〉 −
− |0Z〉
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 0 1

99



Entropy 2021, 23, 229

Table A4. Cont.

Alice Bob

f10 =

⎛⎝|1X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |0Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |0Z〉

|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
− |0Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|1X〉 −
− |0Z〉
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 1 1

f11 =

⎛⎝|0X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |1Z〉

|0X〉 −

⎞⎠
0 1 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|0X〉 −
− |1Z〉
− |0Z〉

⎞⎠
0 1 1

⎛⎝ − |1Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 1 1

f12 =

⎛⎝|0X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 0 0

⎛⎝|0X〉 −
− |1Z〉

|0X〉 −

⎞⎠
0 1 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|0X〉 −
− |1Z〉
− |1Z〉

⎞⎠
0 0 1

⎛⎝ − |0Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 0 1

f13 =

⎛⎝|0X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
− |0Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |0Z〉

|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|0X〉 −

|1X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
− |0Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|0X〉 −
− |0Z〉
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 0 1

f14 =

⎛⎝|1X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
− |0Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |0Z〉

|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
− |0Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|1X〉 −
− |0Z〉
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 1 1
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Table A4. Cont.

Alice Bob

f15 =

⎛⎝|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|0X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 0 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|0X〉 −
− |1Z〉

⎞⎠
0 1 0⎛⎝|0X〉 −

|0X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|0X〉 −
− |1Z〉
− |1Z〉

⎞⎠
0 0 1

⎛⎝ − |0Z〉
|0X〉 −
|1X〉 −

⎞⎠
1 0 1

f16 =

⎛⎝|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|0X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 0 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|0X〉 −
− |0Z〉

⎞⎠
0 1 0⎛⎝|0X〉 −

|0X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|0X〉 −
− |1Z〉
− |0Z〉

⎞⎠
0 1 1

⎛⎝ − |1Z〉
|0X〉 −
|1X〉 −

⎞⎠
1 1 1

f17 =

⎛⎝|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|0X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|0X〉 −
− |1Z〉

⎞⎠
0 0 0⎛⎝|0X〉 −

|0X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |1Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|0X〉 −
− |1Z〉
− |1Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
|0X〉 −
|1X〉 −

⎞⎠
1 1 1

f18 =

⎛⎝|0X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 0 0⎛⎝|0X〉 −

|1X〉 −
− |0Z〉

⎞⎠
1 0 1

⎛⎝ − |0Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|0X〉 −
− |1Z〉
− |0Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 0 1

f19 =

⎛⎝|0X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|0X〉 −
|1X〉 −
|1X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|0X〉 −
− |1Z〉

|1X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 0 0⎛⎝|0X〉 −

|1X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |1Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|0X〉 −
− |1Z〉
− |1Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 1 1

101



Entropy 2021, 23, 229

Table A4. Cont.

Alice Bob

f20 =

⎛⎝|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|0X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 0 0

⎛⎝|1X〉 −
− |1Z〉

|0X〉 −

⎞⎠
1 1 0

⎛⎝ − |0Z〉
|0X〉 −
− |1Z〉

⎞⎠
0 1 0⎛⎝|1X〉 −

|0X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |0Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 1 1

⎛⎝|1X〉 −
− |1Z〉
− |1Z〉

⎞⎠
1 0 1

⎛⎝ − |0Z〉
|0X〉 −
|0X〉 −

⎞⎠
0 0 1

f21 =

⎛⎝|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|0X〉 −
|0X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |1Z〉

|0X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|0X〉 −
− |1Z〉

⎞⎠
0 0 0⎛⎝|1X〉 −

|0X〉 −
− |1Z〉

⎞⎠
1 1 1

⎛⎝ − |1Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|1X〉 −
− |1Z〉
− |1Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
|0X〉 −
|0X〉 −

⎞⎠
0 1 1

f22 =

⎛⎝|1X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|0X〉 −

⎞⎠
0 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 1 0

⎛⎝|1X〉 −
− |1Z〉

|0X〉 −

⎞⎠
1 1 0

⎛⎝ − |1Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 0 0⎛⎝|1X〉 −

|1X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |1Z〉
− |1Z〉

|0X〉 −

⎞⎠
0 0 1

⎛⎝|1X〉 −
− |1Z〉
− |1Z〉

⎞⎠
1 0 1

⎛⎝ − |1Z〉
|1X〉 −
|0X〉 −

⎞⎠
1 1 1

f23 =

⎛⎝|1X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |0Z〉
− |1Z〉
− |1Z〉

⎞⎠
0 0 0

⎛⎝|1X〉 −
− |1Z〉

|1X〉 −

⎞⎠
0 1 0

⎛⎝ − |0Z〉
|1X〉 −
− |1Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |1Z〉

⎞⎠
0 1 1

⎛⎝ − |0Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 1 1

⎛⎝|1X〉 −
− |1Z〉
− |1Z〉

⎞⎠
1 0 1

⎛⎝ − |0Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 0 1

f24 =

⎛⎝|1X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉

⎞⎠
⎛⎝|1X〉 −
|1X〉 −
|1X〉 −

⎞⎠
1 0 0

⎛⎝ − |1Z〉
− |1Z〉
− |0Z〉

⎞⎠
0 0 0

⎛⎝|1X〉 −
− |1Z〉

|1X〉 −

⎞⎠
0 1 0

⎛⎝ − |1Z〉
|1X〉 −
− |0Z〉

⎞⎠
1 1 0⎛⎝|1X〉 −

|1X〉 −
− |0Z〉

⎞⎠
0 0 1

⎛⎝ − |1Z〉
− |1Z〉

|1X〉 −

⎞⎠
1 0 1

⎛⎝|1X〉 −
− |1Z〉
− |0Z〉

⎞⎠
1 1 1

⎛⎝ − |1Z〉
|1X〉 −
|1X〉 −

⎞⎠
0 1 1
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Table A5. We list the cases that can be successfully disambiguated. Zero cases refer to the error-
free SS.

Frame MR SS Disambiguated Bits

f1
010 011,110

2nd & 3rd101 011,111

f2
010 110,110

1st & 2nd110 110,111

f3
011 011,110

2nd & 3rd100 011,111

f4 100 111,011 zero & 1st

f5

001 110,000

zero & 2nd
010 110,110
101 110,001
110 110,111

f6

000 110,000

zero & 1st
010 110,110
100 110,001
110 110,111

f7
011 110,110

1st & 2nd111 110,111

f8 111 111,011 1st & 3rd

f9 100 111,011 1st & 3rd

f10 111 111,011 zero & 3rd

f11

001 110,000

zero & 1st
011 110,110
101 110,001
111 110,111

f12

001 011,000

zero & 3rd
011 011,110
100 011,111
110 011,001

f13

000 011,000

zero & 2nd
011 011,110
100 011,111
111 011,001

f14

000 110,000

zero & 2nd
011 110,110
100 110,001
111 110,111

f15

001 011,000

zero & 2nd
010 011,110
101 011,111
110 011,001

f16 101 111,101 1st & 3rd

f17 101 111,101 zero & 1st
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Table A5. Cont.

Frame MR SS Disambiguated Bits

f18

000 011,000

zero & 3rd
010 011,110
101 011,111
111 011,001

f19

001 111,010

zero & 1st
011 111,100
101 111,101
111 111,011

f20 110 111,101 1st & 3rd

f21 110 111,101 zero & 3rd

f22

001 111,010

zero & 3rd
011 111,100
100 111,011
110 111,101

f23

000 111,100

zero & 1st
010 111,010
100 111,011
110 111,101

f24

000 111,100

zero & 3rd
010 111,010
101 111,101
111 111,011
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Abstract: Identification schemes are interactive cryptographic protocols typically involving two
parties, a prover, who wants to provide evidence of their identity and a verifier, who checks the
provided evidence and decides whether or not it comes from the intended prover. Given the growing
interest in quantum computation, it is indeed desirable to have explicit designs for achieving user
identification through quantum resources. In this paper, we comment on a recent proposal for
quantum identity authentication from Zawadzki. We discuss the applicability of the theoretical
impossibility results from Lo, Colbeck and Buhrman et al. and formally prove that the protocol
must necessarily be insecure. Moreover, to better illustrate our insecurity claim, we present an attack
on Zawadzki’s protocol and show that by using a simple strategy an adversary may indeed obtain
relevant information on the shared identification secret. Specifically, through the use of the principal
of conclusive exclusion on quantum measurements, our attack geometrically reduces the key space
resulting in the claimed logarithmic security being reduced effectively by a factor of two after only
three verification attempts.

Keywords: quantum identity authentication; private equality tests; conclusive exclusion

1. Introduction

One of the major goals of cryptography is authentication in different flavours, namely,
providing guarantees that certain interaction is actually involving some specific parties from
a designated presumed set of users. In the two party scenario, cryptographic constructions
towards this goal are called identity authentication schemes, and have been extensively
studied in classical cryptography [1,2]. Classically, there are different ways of defining
so-called identification schemes, for mutual authentication of peers, mainly depending
on whether the involved parties share some secret information (such as a password) or
should rely on different (often certified) keys provided by a trusted third party. The advent
of quantum computers may suggest the end for many of these protocols however.

Since Wiesner proposed using quantum mechanics in cryptography in the 1970s, multi-
ple directions using this concept have undergone serious research. One major role quantum
mechanics has played in cryptography is the development of quantum key distribution
(QKD) where two parties can securely share a one time pad using quantum mechanics,
for example, the seminal protocol BB84 [3]. Among protocols providing entity authenti-
cation and strictly quantum in nature, some of them, such as those in [4–6], are based on
entanglement, while more recently [7,8] do not rely on entanglement but rather propose
to obtain identity authentication evidence from only the common knowledge of a shared
secret. These approaches are known as quantum identity authentication (QIA) protocols
(see also the related papers [9–14]). Due to the existence of quantum protocols such as BB84
that do not rely on entanglement it would be more appealing to not rely on entanglement
for entity authentication purposes.
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The QIA constructions in which authentication is intended from the common knowl-
edge of a shared secret, often called QIA schemes (or just quantum identification schemes),
are closely related to protocols for quantum equality tests and quantum private comparison.
All these constructions are concrete examples of two-party computations with asymmetric
output, i.e., allowing only one of the two parties involved to learn the result of a com-
putation on two private inputs. Without imposing restrictions on an adversary it was
shown by Lo [15], Colbeck [16] and Buhrman et al. [17] that these kind of constructions
are impossible, even in a quantum setting. As a consequence, constructions for generic
unrestricted adversaries in the quantum setting are doomed to failure.

While there are many things in common in the frameworks for developing QKD
protocols and identification schemes built as private comparison tests, we make note of the
following key differences in cryptographic considerations. Most QKD setups involve an
authenticated classical channel, thus the recipients may safely compare check bits to see if
there is an unintended observer. This however may not be the case in an authentication
scheme (like the one considered in this paper), so there may be no way for the legitimate
parties to determine if an eavesdropper is present. Thus, if the states obtained by the
authenticating party are not as expected, the authentication fails without the users knowing
if it is due to an adversarial presence or an attempted impersonator. For this reason the
traditional so called intercept-and-resend attack is completely irrelevant for authentication
as the adversary is always capable of sending messages as if coming from Alice or Bob,
though without the correct private value the protocol is overwhelming likely to fail. The
closest equivalent constraint is that the authenticating party may only make a single
measurement on a qubit before the state collapses. This constraint bars the adversary
from making many measurements on the same state in order to fully receive the private
value. This however does not exclude the possibility that many different calls of the
authentication protocol are made. Unlike key distribution protocols, where after a failure
the key is discarded, both classical and quantum authentication protocols must be secure
after being run multiple times with the same shared secret though with different random
inputs [1]. We make special note here that the objectives of QKD and QIA schemes are very
different. With this in mind readers should be cautious to apply the results of this work to
any current or future scheme if and only if its objectives and methods fall within certain
parameters.

1.1. Our Contribution

Recently, an original work about authentication without entanglement by Hong et al.
in [8] was improved by Zawadzki using tools from classical cryptography in [7]. In Za-
wadzki’s protocol, there are two parties, Alice and Bob, who share a common secret
bitstring k. In order to achieve entity authentication from Alice to Bob, they run a non-
interactive protocol in which Alice first computes a hash value ha, which depends on k and
a random nonce r; then Alice sends r to Bob so he can reproduce the computation obtaining
a hash value hb (which must equal ha if there is no adversarial interference). Next Alice
sequentially sends quantum states to Bob, which she prepares as a function of consecutive
pairs of bits of h. At reception, Bob measures these states choosing each time a basis which
depends on the value h. If all measures’ outcomes are the expected ones, Bob concludes
that the other party must know k and, therefore, identifies it as being Alice.

Our theoretical analysis of the protocol shows its insecurity, but in a non-constructive
way (e.g., it does not help finding a concrete successful adversarial strategy). However, we
are in addition able to show an explicit attack against the protocol, based on conclusive
exclusion on quantum measurements, which we describe in Section 4. There we analyze in
detail how the attack halves the size of the key space after only three verification attempts.

Note that, when analyzing Zawadski’s protocol, we deal only with its theoretical
design. Both the impossibility results we invoke and our attack do not take advantage of
physical aspects, such as distance or timing, they hold independently of the implementation.
It is indeed interesting to study in depth how identification protocols could be practically
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deployed in the real world, and what weaknesses could be exploited, but this is beyond
the scope of this work. These physical issues, present in attacks against QKD, such as,
for example, time-shift attacks [18], phase-remapping attacks [19] or synchronization
attacks [20], would also naturally arise for quantum identification protocols.

Finally, we discuss the applicability of the impossibility results and the explicit attack
to other QIA protocols, such as [4,5,8,21–24]. For instance, we point out that the protocol
from Hong et al. [8], in which Zawadzki’s protocol is based upon, is vulnerable to the same
attack we describe against the latter. On the other hand, the rest of the protocols cited,
for different reasons discussed later, are neither affected by the impossibility results nor
vulnerable to our attack.

The main contribution that arises from this work is that our theoretical analysis
evidences an implication of the proven impossibility of identification schemes, such as
Zawadzki’s design. Thus, we stress that fundamental changes in the original proposal,
beyond preventing our particular attack, would be needed in order to derive a secure
identification scheme.

1.2. Paper Roadmap

We start this contribution by summarizing in Section 2 the impossibility results from
Lo [15], Colbeck [16] and Buhrman et al. [17], concerning generic quantum two party
protocols. Further, we present and discuss the Zawadzki protocol in Section 3, evidencing
it actually fits the framework considered in the impossibility results from Section 2, and
thus concluding it must necessarily be insecure. Moreover, we outline a simple explicit
attack which we describe in Section 4. Finally we discuss how other QIA protocols are
affected by our results in Section 5 and provide some conclusions in Section 6.

2. Quantum Equality Tests Are Impossible

A one sided equality test is a cryptographic protocol in which one party, Alice, con-
vinces another party, Bob, that they share a common key by revealing nothing to them but
equality (or inequality) of their inputs. Formally we define a key space K and a function
F : K2 → {0, 1} which checks for equality. Let i ∈ K be Alice’s key and j ∈ K be Bob’s key.
The goals of a one sided equality test are as follows:

(1) F(i, j) = 1 if and only if i = j.
(2) Alice learns nothing about j nor about F(i, j).
(3) Bob learns F(i, j) with certainty. If F(i, j) = 0 then Bob learns nothing about i besides

that i �= j.

The above is a specific case of a one-sided two-party secure computation protocol
as described in [15], as only one side, Bob, learns the output of the computation. In this
work, a very general result is proven indicating that any protocol realising a one-sided
two-party secure computation task is impossible, even in a quantum setting. In particular,
Lo shows in [15] that if a protocol satisfies (1) and (2) then Bob can know the output of
F(i, j) for any j. Furthermore, a one sided equality test with some small relaxations on
points (1) and (3) is also proven impossible. Hence, any one-sided QIA protocol which
validates identities using equality tests by use of quantum mechanics is impossible without
imposing restrictions on the adversary.

Note that the above argument says nothing about protocols with built in adversarial
assumptions such as those presented in [25,26]. Further, note that many of QIA schemes in
the literature include a final round where Bob accepts or rejects, which makes Alice aware
of the success or failure of the protocol. Indeed, those schemes can be straightforwardly
turned into one-sided equality tests by suppressing Bob’s final message announcing the
result. Hence, they are clearly insecure against a dishonest Bob. However, note that if any
such protocol can be modified so that Alice may obtain information on the identification
output at some point before the last protocol round, it is unclear how Lo’s impossibility
result would apply. However, if they are built upon equality tests we can get impossibility
from another well know result by Buhrman el al. [17]. Certainly, two-sided QIA schemes, in
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which both Alice and Bob learn the result of the protocol, are a particular case of two-sided
two-party computations. It is shown in [17] that a correct quantum protocol for a classical
two-sided two-party computation that is secure against one of the parties is completely
insecure against the other. For equality tests, if one of the parties, say Alice, learns nothing
else than F(i, j), the other party, Bob, will indeed be able to compute F(i, j) for all possible
inputs j. Thus, any two-sided QIA protocol which validates identities using equality tests
is also impossible without imposing further restrictions on the adversary.

Both total insecurity results are valid for protocols that compute a deterministic
function F, and admit relaxed versions for computations that implement approximate
versions of F. For a non-deterministic function F, Colbeck [16] showed that in a correct
one-sided or two-sided two-party computation for F, one of the parties can always access
more information about the other party’s input than it is supposed to, where the analysis is
only done quantitatively for dychotomic values of i,j, and extended trivially to the general
case, yielding a qualitative more than a quantitative result.

3. Insecurity of Zawadzki’s QIA Protocol

In this section, we outline the protocol proposed in [7] and show that it must be
insecure on Alice’s side by the results discussed in Section 2. Moreover, we consider minor
changes to the protocol to evidence that making it more “in line” with classical authentica-
tion does not help, as the protocol remains insecure. Indeed, the changes introduced do
not fundamentally alter the protocol, namely both the changed and unchanged protocols
allow for the attack we outline in Section 4 to provide information leakage.

The protocol proposed in [7] can be described as follows: suppose Alice and Bob
have keys ka and kb, respectively, and agree on some universal hash function (universal
hash functions are to be understood as families H of functions providing a nice collision-
resistance property, i.e., given inputs x �= y, the probability of h(x) = h(y) can be proven
negligible if h is chosen at random from H (see [27]). In an abuse of notation, is it
typical to treat them as individual functions, as we do above) H : {0, 1}N → {0, 1}2d.
Bob wishes to verify that kb = ka without leaking any information about kb or ka. Al-
ice randomly generates a nonce ra from a designated domain and calculates the value
ha = H(ra||ka). Alice sends Bob ra. Bob receives rb (which in principle should be equal
to ra) then calculates the value hb = H(rb||kb). Note that if ka = kb and the nonces are
received as constructed, then ha = hb. Alice then acts on pairs of bits in ha with an embed-
ding function Q : {0, 1}2 → C2. This function Q uses the first of the two binary values to
determine the measurement basis (horizontal/vertical or diagonal/antidiagonal) and the
second to determine the specific qubit in {|0〉, |1〉, |+〉, |−〉}. More precisely, Q(0, 0) = |0〉,
Q(0, 1) = |1〉, Q(1, 0) = |+〉 and Q(1, 1) = |−〉. Applying Q to the pairs of bits in ha Alice
prepares and sends d qubits to Bob over the quantum channel one by one with a constant
speed known to Bob.

Using the first bit of each pair Bob decides in which base he measures the quantum
states and insures he obtains the correct qubit according to the second bit of the pair. If the
loss of qubits is very high or the rate of bits measured by Bob that disagree with the even
bits of hb is over a certain threshold then Bob rejects Alice’s challenge. Otherwise he accepts
her challenge. See Figure 1 for a schematic overview of the protocol.

For the sake of simplicity we restrict the security analysis to the case where there are
no losses in the communication and the bit error rate is set to 0.

The Zawadzki protocol is claimed to be leakage resistant when considering an adver-
sary measuring in a random basis. The reasoning behind this is that unless an adversary,
Eve, correctly guesses the correct basis for each round, she will obtain different values for
at least one of the bits of the hash. Now suppose an adversary is capable of computing
preimages of hash functions through brute force with unbounded classical computational
power or through dictionary attacks with unbounded classical memory. In this case it is
unlikely that there will exist a ke ∈ K such that H(re||ke) matches what Eve measured. In
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the event there does exist such a ke then with overwhelming probability ke �= ka = kb and
Eve will not be able to falsify authentication of Alice or Bob.

Alice Bob

H ←$ H
known to Alice and Bob

Input: ka Input: kb

ra ←$ {0, 1}∗
ha ← H(ra||ka)

ra

Classical
receives rb

hb ← H(rb||kb)

|ϕi〉 ← Q(ha2i−1 , ha2i )

repeat for all i=1,2,...,d

|ϕi〉 ∀i ≤ d

Quantum

si ← M(|ϕi〉, hb2i−1
)

repeat for all i=1,2,...,d

if si = hb2i
∀i ≤ d, accept

otherwise, reject

Accept/Reject

Classical

Figure 1. The protocol presented in [7].

Unfortunately, Zawadzki’s protocol implemets a two-sided equality test (one-sided if
the last accept/reject round is omitted) for the secrets, with a relaxation on the correctness,
that is, the condition F(i, j) = 1 if and only if i = j (in this case i is ha and j is hb). Suppose,
for the sake of reasoning, that the protocol were a correct two-sided equality test, then all
the results summarized in Section 2 apply and the protocol has necessary leakage. As Bob
is sending nothing but the final bit, we know that nothing can possibly leak from hb. Thus,
any potential leakage comes from ha and in fact it is completely leaked. Although Eve may
not be able to determine any exact bit of ka, due to collisions of the hash function, she may
drastically reduce the number of possible options for ka to those k such that ha = H(ra||k)
and hence construct a proper subset of K such that the true value for ka is contained in
this subset.

However, Zawadzki’s protocol is not perfectly correct. Whenever Alice and Bob
secrets, ha and hb, differ in the measurement bits (the ones associated to the measurements
basis), there is some probability of the computation returning value 1 and thus Bob accept-
ing Alice’s input as valid. This probability is exponentially small in the number of different
measurement bits between ha and hb, that is, for a large majority of the cases this probability
is very small. Thus, the reasoning made in the approximate case of the relaxation of the
correctness in the one-sided case in [15] can be applied to Zawadzki’s protocol (without
the last round) in these cases. That is, when Bob chooses a secret that differs in many
measurement bits from Alice’s secret, what will happen for a random choice of the secret,
he will be able not only to compute with some probability (close to 1) the equality test for
(ha, hb), but to compute the equality test with some different probabilities (close to 1) for
every (ha, h′b) such that the output of the computation has large probability of being the
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value of the equality test. Thus, he will obtain partial (but close to full) information about
many different secrets at the same time.

The approximate version of the result of Buhrman et al. [17] does not straightfor-
wardly say anything in this case as their notion of approximate correctness requires that
the function F should be computed correctly for every input with probability close to
1. Whereas in Zawadzki’s proposal the pairs of secrets (ha, hb) that only differ in one of
the measurement bits has probability of computing correctly the equality test equals 1/2.
However, it may be possible to give a version of the result of Buhrman et al. with a different
notion of approximate correctness.

Finally, the result of Colbeck does apply when considering the non deterministic
function F to be the actual computation of the secrets ha and hb implemented by the
protocol. Thus, the function implemented by the protocol is not secure and a dishonest
Bob could learn information about the implemented function for more than one secret hb
at a time, acquiring more information than following the protocol honestly.

Next we analyze what happens if some minor changes are done to make the protocol
more in line with classical authentication schemes. Unfortunately, we conclude that these
changes do not fundamentally modify the protocol and as will be clear the previous
reasoning still holds. Moreover, both the changed and unchanged protocols still allow
for the particular attack outlined in Section 4 to provide information leakage by allowing
an adversary to learn about many ha simultaneously as predicted by the results of Lo
and Colbeck.

Changes made to the protocol are as follows: (1) Bob generates r and H, this is done
to thwart a simple attack discussed later; (2) the hash function changes between trials, this
has no impact on the security of the protocol due to the public nature of the hash in both
instances; and finally (3) here we assume for simplicity that Alice and Bob obtain the same
nonce r with certainty, using classical error correction techniques one can be relatively
certain both parties obtain the same nonce. See Figure 2 below for a schematic overview of
the modified protocol.

Alice Bob

Input: ka Input: kb

r ←$ {0, 1}∗
H ←$ H
hb ← H(r||kb)

r H
Classical

ha ← H(r||ka)

|ϕi〉 ← Q(ha2i−1 , ha2i )

repeat for all i=1,2,...,d

|ϕi〉 ∀i ≤ d

Quantum

si ← M(|ϕi〉, hb2i−1
)

repeat for all i=1,2,...,d

if si = hb2i
∀i ≤ d, accept

otherwise, reject

Accept/Reject

Classical

Figure 2. Modified protocol.
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The reason we force Bob to generate the randomness instead of Alice is that an
adversary with unbounded quantum memory may impersonate Bob but not make a mea-
surement. Suppose an adversary does not know the key but requests Alice to identify
herself. If Alice generates and sends r, H with the string of states |ϕi〉 then the adversary
may record r, H and hold in memory, but not measure, the qubits. At a later time an honest
participant may ask the adversary to identify themselves, in this case the adversary may
send r, H and the qubits in memory. Thus, the adversary correctly forges an authentication.
Note that as we have presented the algorithm an adversary may still make this imperson-
ation by waiting between Alice and Bob then passing the information between the two.
The difference is that as long as Bob generates the nonce then this attack must only be done
while Alice and Bob are both online, whereas if Alice generates and sends the nonce then
an adversary may hold the states for as long as is technologically feasible.

Unfortunately, the changes introduced do not alter the validity of the impossibility
results discussed before. This updated version is still a two-sided equality test (one-sided if
the last accept/reject round is omitted) for the secrets with a relaxation on the correctness,
as no changes have been introduced after the generation of the secrets.

Thus, both the original and the modified protocols have necessary leakage and due
to the non-interactive nature of Bob we know that kb has no leakage, thus we know there
must exist some leakage on ka. Although Eve may not be able to determine any exact bit of
ka she may drastically reduce the number of possible options for ka and hence construct
a proper subset of K such that the true value for ka is contained in this subset. An attack
exemplifying this phenomenon is described in the next section.

4. A Key Space Reduction Attack on Zawadzki’s Protocol

Before discussing the specific attack, let B be a set of orthogonal bases in C2 and
consider the following fact. If a quantum state is prepared in a basis b ∈ B with value
v ∈ {0, 1}, then an adversary may always remove one possible combination of b and v with
a single measurement. Upon measuring in basis b′ ∈ B an adversary obtains v′ ∈ {0, 1}.
The adversary is then certain the original pair (b, v) was not (b′, 1

⊕
v′), as when measured

in the basis b the qubit prepared by b and v will yield v with certainty. Note that the
adversary cannot say with certainty how the qubit was prepared, but he can always
remove one possible option. This is an example of conclusive exclusion discussed in [28] in
the case of two measurement bases.

Suppose now that instead of sampling at random for b and v, the qubit is prepared
using a private key k ∈ K and a set of public parameters p, namely b = b(k, p) and
v = v(k, p). An adversary once again measures in basis b′ ∈ B (chosen or taken at random)
to obtain v′ ∈ {0, 1}, they may then determine a basis/value pair in which the qubit was
not prepared. Because the adversary is assumed to be computationally unbounded they
may then compute b(k̂, p) and v(k̂, p) for all k̂ ∈ K. Whenever these computations output
the impossible pair k′, v′ the adversary becomes aware that k̂ �= k, hence reducing the key
space. The extent to which the key space is reduced depends on the number of basis in
B. If the distribution of basis choices in B is low entropy the attack may be accomplished
as described while if B is high entropy then a probabilistic version decreases the space of
likely keys. The assumption that the adversary is computationally unbounded may be
lifted if k is low entropy (for he can then indeed test all possible values for k—given there
are only a polynomial set of candidates), however assuming a computationally bounded
adversary immediately removes unconditional security as an end goal.

Let us now apply this key space reduction to the QIA protocol proposed in [7], in this
case the private key is k and the public parameters are r and H. Suppose an Eve has no
a priori knowledge of the key except its existence in K. After receiving r and H over the
classical channel she measures all qubits |ϕi〉 received from Alice in the horizontal/vertical
basis and records the outputs as M. In the case where Eve is utilizing man-in-the-middle,
she is done. If she is impersonating Bob, she accepts or rejects the protocol.
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After the protocol finishes the adversary may then compute hk̂ = H(r||k̂) for all k̂ ∈ K.
Suppose the first qubit Eve measured in M was |0〉. She now examines the first two bits
of each hk̂, those that begin 00, 10, or 11 are all possible of obtaining the qubit |0〉 after
measurement. The first of these three tuples will yield |0〉 with certainty and the later two
with a probability of 0.5. The final tuple 01 however is not possible as that would imply
that the qubit started in the state |1〉 and measured in |0〉. Thus, Eve knows that any k̂
such that hk̂ begins 01 is not the key. The hash function is assumed to be independent and
identically distributed so this removes approximately 1

4 of all possible keys. Repeat this
process for all qubits. After completion of all hash and check operations the adversary
has obtained a subset of the key space which contains the key, hence causing information
leakage. Specifically, the adversary knows the key is in subset S defined by

S = {s ∈ K : hs2i = Mi and hs2i−1 = 0 ∀i ≤ d}.

Note that the true key k ∈ S and |S| ≈ ( 3
4 )

d|K|.
After running this attack on a single attempted authentication the proposed ideal

(brute force) security of 22d = 2N drops to 3d = 2log2(3)/2N ≈ 20.792N . Recall that authenti-
cation protocols must remain secure given many attempts. Thus, an adversary is allowed
to receive multiple authentication attempts, possibly claiming that the received hash of
the shared secret is denied due to interference from a third party. The logarithm of the
security parameter drops geometrically at a rate of log2(3)

2 ≈ 0.792 after every authentication
the adversary receives, meaning that once an adversary obtains the third authentication
(all with different random values or even different hash functions) the brute force security
has been reduced to brute force on a string of half the length. This trend continues with
every authentication attempt.

5. Other QIA Protocols

It is worth pointing out that the attack described in Section 4 also applies to the
protocol by Hong et al. [8], which Zawadzki [7] modifies. In more detail, the protocol
in [8] is similar to Zawadzki’s, but does not use a hash function. Instead, whenever Alice
transmits the qubits sequentially and, before sending each qubit, she randomly decides
if she is going to use security mode or authentication mode. In the first case, she sends a
decoy state while in the second one, a qubit encoding two bits of the authentication string
is sent, similarly to [7]. After Bob’s reception, Alice announces which mode she just has
used. Therefore an adversary using the same strategy described in our attack in Section 4
and collecting the information obtained whenever Alice announces authentication mode,
will be able to shrink the size of the key space in the same way we have previously stated.

On the other hand, other quantum identification protocols proposed in the litera-
ture are not vulnerable to our attack neither contradict the impossibility results men-
tioned in Section 2. For instance, some of them [4,5,21] are aided by the presence of a
trusted third party, therefore not being real two-party protocols. Another type of protocols,
such as [22–24], make use of an entangled quantum state shared between both parties.
In [22], the users, in addition, share a bitstring used as a password; both parties measures
their part of the entangled state to produce a one time key that one of the users XORs with
the password and sends the result to the other who checks for consistency. The downside
of this approach is that to repeat the identification process the parties need to be provided
again with new entangled states. In [23,24], the users do not share any classical secret,
they just use the entangled state to identify themselves.

6. Conclusions

The protocol given by Zawadzki in [7] may be secure against hash preimage attacks
when attempting to find an exact match; however, when considering impossible results
from quantum measurements we see some hashed key values are not possible. Proverbially,
the forest may be secure but each of the trees reveals enough information to reconstruct the
possible forests. By eliminating approximately one quarter of the key options from each
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qubit we see that by measuring all the individual qubits in a random basis does in fact
reveal a great deal about the key. This attack does not concern quantum memory but rather
relies heavily on classical computational power. Hence, unlike [25,26] where the authors
consider a bounded quantum storage model, the only way to make this protocol secure
without greatly changing its construction is to constrict adversarial computational power.

No solution is presented to the problem outlined in this paper. The reason for this is
that any solution presented which does not impose more fundamental restrictions such as
limited quantum memory or polynomial time restriction will inevitably fail due to the re-
sults of Lo [15], Colbeck [16] and Buhrman et al. [17]. Regardless of the restriction imposed,
implementation of this and any other “prepare and measure” authentication scheme must
find a way to contend with key space reductions posed by conclusive exclusion.
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Abstract: The twin-field quantum key distribution (TF-QKD) protocol and its variations have been
proposed to overcome the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. One variation
called phase-matching QKD (PM-QKD) protocol employs discrete phase randomization and the
phase post-compensation technique to improve the key rate quadratically. However, the discrete
phase randomization opens a loophole to threaten the actual security. In this paper, we first introduce
the unambiguous state discrimination (USD) measurement and the photon-number-splitting (PNS)
attack against PM-QKD with imperfect phase randomization. Then, we prove the rigorous security of
decoy state PM-QKD with discrete phase randomization. Simulation results show that, considering
the intrinsic bit error rate and sifting factor, there is an optimal discrete phase randomization value to
guarantee security and performance. Furthermore, as the number of discrete phase randomization
increases, the key rate of adopting vacuum and one decoy state approaches infinite decoy states,
the key rate between discrete phase randomization and continuous phase randomization is almost
the same.

Keywords: twin-field quantum key distribution; phase-matching; discrete phase randomization;
intrinsic bit error rate

1. Introduction

Quantum key distribution (QKD) can offer information theoretically secure means
to distribute secret keys between two remote parties [1], but the performance is restricted
by the fundamental rate-loss limit [2,3]. Recently, a novel twin-field QKD (TF-QKD) pro-
tocol [4] is proposed to surpass the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB)
bound [2], which shows the superiority relation between key rate and channel transmit-
tance, R ∼ O(

√
η). However, the security proof is not completed in the original TF-QKD

protocol [4]. In order to present a more rigorous security proof, various variations [5–10] of
the original TF-QKD protocol have been proposed. The related experimental works have
also been extensively studied [11–20].

All of these variant TF-QKD protocols have their own advantages. The no-phase-post-
selection TF-QKD (NPP-TF-QKD) protocol [5,6] provides better key rate performance in
closer-to-mid distance, but it needs phase locking and pre-phase feedback in the experiment,
so it is hard to implement [5,6,21]. The sending-or-not-sending TF-QKD (SNS-TF-QKD)
protocol [10] can tolerate large misalignment errors and provide better performance in long
distance [10,21]. The phase-matching QKD (PM-QKD) protocol [8] has no phase locking
with phase slices and employs a phase post-compensation technique, so it can be easily
experimentally implemented without pre-phase feedback [13,21].

In reality, the decoy state method is adopted to ensure the security of imperfect
single photon source [22–25] in the actual QKD system. An important theoretical premise
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and assumption of the method is that the global phase of coherent sources should be
continuously randomized [26–28]. However, perfect phase randomization is very difficult
to achieve. In an actual experiment, there are two means to randomize the global phase.
One means is to turn the laser on and off by controlling the current, but it is not suitable for
PM-QKD with the phase post-compensation technique—the reason for this is that we do not
know the precise phase slices. Moreover, experiments show that residual phase correlations
may exist between adjacent pulses [29]. The other one is to actively modulate the phase of
coherent sources controlled by a phase modulator with a true random number generator;
this method is suitable for PM-QKD, but the phase randomization is not continuous. Thus,
neither of these two means satisfy the assumption of the decoy state method, which may
introduce a potential loophole that threatens the security of the actual protocol [30]. Then,
the unambiguous state discrimination (USD) measurement [31] and the photon-number-
splitting (PNS) attack [32] can be used against the imperfect phase randomization.

An earlier security analysis of discrete phase randomization appears in the decoy
state Bennet-Brassard-1984 (BB84) in Reference [33], which points out, when the number
of discrete phase values is larger, that the performance of discrete phase randomization
is close to that of continuous phase randomization, and the number is said to be ten [33].
Similar security analysis methods are used for several other protocols, the measurement-
device-independent (MDI) QKD in Reference [34], the NPP-TF-QKD in References [35,36],
the SNS-TF-QKD in Reference [37], the PM-QKD in Reference [38]. Therein, Reference [38]
uses a different security poof method with Reference [8], and there is no in-depth formula
derivation in the decoy state PM-QKD with discrete phase randomization. In this paper,
we focus on these discrete global phase randomization issues in the PM-QKD protocol [39],
study a concrete attack against PM-QKD with imperfect phase randomization, apply the
decoy-state method to derive the single photon yield formula to exhibit performance of the
key rate and compare the yield difference of continuous phase randomization with discrete
phase randomization.

The paper is arranged as follows: in Section 2, we review the PM-QKD protocol in
detail, based on the security analysis of symmetric-encoding PM-QKD, we estimate the
overall phase error rate. In Section 3, we show a concrete attack against PM-QKD with
imperfect phase randomization. In Section 4, we show how to apply the decoy-state method
to obtain the upper bound of the phase-flip error rate with discrete phase randomization;
moreover, the yield difference between continuous and discrete phase randomization is
also studied in this section. The numerical simulation results are shown in Section 5, and
then we conclude in Section 6.

2. The Protocol of PM-QKD

We employ the attenuated laser as a single photon source, which is regarded as the
coherent state. When the coherent state is randomized by continuous phase, it is equivalent
to the Fock state, with the photon number distribution as

Pj|α = e−α αj

j!
(1)

In this section, we review the PM-QKD protocol, and without considering the security
effects of discrete phase randomization, Equation (1) is used for formula derivation.

2.1. Protocol Description

The implementation process of the PM-QKD is similar to Reference [39].

• State preparation. In each round, the coherent state
∣∣∣√αAei(πκA+

2π
D dA)

〉
is prepared

by Alice, the intensity αA ∈ {μA, νA, ωA}, where μA is she signal state, νA is the
decoy state, ωA is the vacuum state, the random key bit κA ∈ {0, 1}, the discrete
phase randomization number dA is randomly chosen from {0, 1, · · · , D − 1}, D is the
number of maximum discrete phase that is modulated by Alice, for simplicity, assume
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D is an even number. Similarly, Bob prepares the coherent state
∣∣∣√αBei(πκB+

2π
D dB)

〉
,

therein, αA = αB = α
2 ∈ { μ

2 , ν
2 , ω

2
}

.
• Measurement. Alice and Bob send their quantum states to Charlie with transmittances

ηA and ηB, Charlie performs an interference measurement with a beam splitter and
records which detector (L or R) clicks.

• Announcement. The detection result is announced by Charlie for each round; the
intensity settings αA, αB and phase numbers dA, dB are also announced by Alice
and Bob.

• Sifting. After that, the phase post-compensation method is used by Charlie to calculate
and then Charlie announces the phase match pairs. Assume the phase compensation
dδ ∈ {0, 1, · · · D/2 − 1}, only one of the two detectors clicks is the successful detection.
If the left detector clicks and |dA − dB − dδ| mod D = 0, Alice and Bob keep κA and
κB as the raw key. If the right detector clicks and |dA − dB − dδ| mod D = D/2, Bob
flips his key bit κB. If |dA − dB − dδ| mod D �= 0, D/2, for simplicity, we discard the
phase mismatch pairs.

• Parameter estimation. Alice and Bob estimate the information leakage from the raw
data that they have kept.

• Key generation. After reconciling the corresponding key string to perform error
correction, Alice and Bob use privacy amplification to produce the final keys.

2.2. Phase Error Estimation

The security analysis of asymptotic case is considered, so there are no statistical
fluctuations. The analysis method of the phase error rate that we use comes from [39], which
is an important new viewpoint of QKD security, establishing the relationship between the
symmetric encoding and privacy with the standard phase-error-correction approach [40],
and we summarize briefly as follows.

If the joint state ρAB is a pure of even or odd state, the symmetric encoding PM-QKD
protocol is perfectly private, the phase error rate Eph = 0, if the joint state ρAB is a mixture of
even and odd state, ρAB = Poddρodd + Pevenρeven, the phase error rate Eph �= 0, the effective
detection ratios of odd and even components of signal state are estimated by [39]

qodd|μ = Podd|μ
Yodd|μ

Qμ

qeven|μ = Peven|μ
Yeven|μ

Qμ

(2)

where Qμ = Podd|μYodd|μ + Peven|μYeven|μ is the total gain of mixture signal state ρAB. Yodd|μ
and Yeven|μ are the yield of odd signal state ρodd and even signal state ρeven, respectively.
Podd|μ and Podd|μ are the signal state probability of odd and even photon numbers.

The overall phase error rate comes from the even components, which is estimated
by [39]

Eph = Peven|μ
Yeven|μ

Qμ
(3)

where Peven|μ is given by the above section, Qμ is given by the experiment results, the
important task is to estimate the parameter Yeven|μ.

For simplicity, we use phase match pairs and discard phase mismatch pairs, so the
upper bound of phase error rate comes from the signal state bounded by

Eph ≤ 1 − q1|μ (4)

where q1|μ = P1|μ
Y1|μ
Qμ

.
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According to the above discussion, we get the final secure key rate by

R f =
2
D

Qμ[1 − H2(Eph)− f H2(Eμ)] (5)

where Qμ is the total gain of the signal state, Eph is the phase error rate of the signal state,
Eμ is the bit error rate of the signal state, f is the error correction efficiency, H2(x) =
−xlog2(x)− (1 − x)log2(1 − x) is the binary entropy function.

3. Attack PM-QKD with Imperfect Phase Randomization

Considering the extreme case that Eve knows, the exact phases of the signal and
decoy states without phase randomization, the PM-QKD protocol will have a serious
security loophole. Due to the signal state and the decoy state not being orthogonal, Eve
can use USD measurement to distinguish the signal state and the decoy state with the
probability q < 1. The optimal success probability [41] of USD measurement on each

side is qopt = 1 − e−|
√

μ−√
v|2/4, which is obtained by performing positive operator valued

measurement. After performing USD measurement, Eve measures the number of photons
in the pulse and performs a PNS attack.

For the sake of simplicity, we neglect the dark count and the misalignment error, and
only consider the channel loss. Without attacking, the gains of the signal state and decoy
state are

Qμ = 1 − e−ημ

Qv = 1 − e−ηv (6)

where η is the channel loss.
Under the PNS attack, the gains of the signal state and decoy state are

Qattack
μ =

∞

∑
j=1

q2
optZ

μ
j e−μ μj

j!

Qattack
v =

∞

∑
j=1

q2
optZ

v
j e−v vj

j!

(7)

where Zμ
j and Zv

j represent the probability that Eve forwards j photons to the signal state
and the decoy state, with j as the sum of the photons on both sides.

The simplified upper key rate under the PNS attack is bounded by

Ru = RPNS =
∞

∑
j=1

q2
optZ

μ
j e−μ μj

j!
[1 − H2(Eph)] (8)

The lower key rate of the simplified Equation (5) is bounded by

Rl
PM = RPM = Qμ[1 − H2(Eph)] (9)

Combining the USD measurement with PNS attack, the security of final key rate
without the phase randomized system is vulnerable. We can optimize Zμ

j to let Rl
PM > Ru,

especially for long distance communication, due to channel loss is large enough, we can
block single photon and release multiple photons. Then, the key rate will be higher than
the secure key rate, and information will leak out. Hence, Eve’s goal is to minimize Ru.

It is worth noting that the attack scheme of USD measurement and PNS attack, which
requires the quantum non-demolition measurement [42] about the photon numbers, the
lossless channel and the ability of controlling detector efficiency, all of these are beyond
the current technology. Ma adopts the beam splitting (BS) attack [43] in Reference [8]. We
briefly present his results as follows.
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Ma [8] points out, under the BS attack, that the probability of successfully distin-
guishing the states is Psuc = 1 − e−(1−η)μ. The simplified key rate of PM-QKD is lower
bounded by

Rl
BS = Qμe−2(1−η)μ (10)

Ma [8] supposes that the photon number channel model exists in PM-QKD, then
Gottesman–Lo–Lutkenhaus–Preskill (GLLP) [26] analysis can be used to obtain the formula

RGLLP = Q1|μ[1 − H2(Eph
1|μ)]− Qμ f H2(Eμ) (11)

where Q1|μ is the gain of the single photon signal state, Eph
1|μ is the phase error rate.

Due to the yield being Yj = 1 − (1 − η)j, the simplified GLLP key rate is lower
bounded by

Rl
GLLP = RGLLP = Q1|μ = ημe−μ (12)

Final results show that, when η is smaller than a certain value, the GLLP formula can-
not hold under the BS attack, so the photon number channel model is invalid. Fortunately,
the PM formula can defend against BS attack; the precondition is that the intensity must
be weaker.

4. The PM-QKD with Discrete Phase Modulation of Coherent State Sources

In this section, we introduce the security analysis of discrete phase randomized PM-
QKD. Then, we apply the decoy-state method to derive the single photon yield formula.
Finally, we compare the yield difference between continuous phase randomization and
discrete phase randomization.

4.1. Coherent State with Discrete Phase Randomization

For the coherent state with discrete phase randomization, the joint state of Alice and
Bob of PM-QKD is as follows

|ψ〉AB =
D−1

∑
dA=0

∣∣∣√αAei(πκA+
2π
D dA)

〉
A

∣∣∣√αBei(πκB+
2π
D dB)

〉
B

(13)

where κA, κB ∈ {0, 1}, |dA − dB − dδ| mod D = 0 or |dA − dB − dδ| mod D = D/2.
Considering the simple case, dδ = 0, then |dA − dB| = 0 or |dA − dB| = D/2. Now,

the density matrix can be written as

ρD
AB=

1
D

D−1

∑
dA=0

∣∣∣√αAei(πκA+
2π
D dA)

〉
A

〈√
αAe−i(πκA+

2π
D dA)

∣∣∣
⊗
∣∣∣√αBei(πκB+

2π
D dB)

〉
B

〈√
αBe−i(πκB+

2π
D dB)

∣∣∣
=

D−1

∑
j=0

PD
j|α
∣∣∣λD

j|α
〉

AB

〈
λD

j|α
∣∣∣

(14)

where PD
j|α =

∞
∑

l=0

e−ααlD+j

(lD+j)! ,
∣∣∣λD

j|α
〉

AB
= e−α/2√

PD
j|α

∞
∑

l=0

(
√

α)
lD+j

√
(lD+j)!

|lD + j〉AB, with |lD + j〉AB =

1√
2lD+j(lD+j)

(a† ± b†)
lD+j|00〉AB.
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In our security analysis with discrete phase randomization, we modify the final secure
key rate Equation (5) to

R f =
2
D

Qμ[1 − H2(ED
ph)− f H2(Eμ)] (15)

where the upper bound of phase error rate ED
ph comes from the signal state bounded by

ED
ph ≤ 1 − qD

1|μ, with qD
1|μ = PD

1|μ
YD

1|μ
Qμ

. The bit error rate Eμ and the gain Qμ remain the same.

4.2. The Decoy-State Method

In discrete phase randomized PM-QKD, we estimate the yield YD
1|μ of the single-photon

signal state. We use the vacuum and one decoy state, which is similar to the BB84 decoy
state analysis [24].

We know that, in the security proof of the decoy state method with continuous phase
randomization, there is an important assumption

Yj|signal = Yj|decoy (16)

However, it is not strict in the condition of discrete phase randomization, YD
j|signal �=

YD
j|decoy; the reason lies in ∣∣∣λD

j|μ
〉
�=
∣∣∣λD

j|v
〉

(17)

Consider the properties of trace distance; we need to estimate the difference of yields
for different intensities as [33] ∣∣∣YD

j|μ − YD
j|v
∣∣∣ = √

1 − (FD
j|μν

)
2 (18)

where FD
j|μν

=
∞
∑

l=0

(μv)(lD+j)/2

(lD+j)!

/√
∞
∑

l=0

μlD+j

(lD+j)!

∞
∑

l=0

vlD+j

(lD+j)! , that is the fidelity of
∣∣∣λD

j|μ
〉

and
∣∣∣λD

j|v
〉

.

The estimation of the yield YD
1|μ is similar to continuous phase randomization. The

equation can be written as

Qμ =
D−1

∑
j=0

PD
j|μYD

j|μ

Qv =
D−1

∑
j=0

PD
j|vYD

j|v =
N−1

∑
j=0

PD
j|vYD

j|μ +
D−1

∑
j=0

PD
j|v(Y

D
j|v − YD

j|μ)
(19)

We have

YD
1|μ =[PD

2|μQv − PD
2|vQμ − (PD

2|μPD
0|v − PD

0|μPD
2|v)Y

D
0|μ

− PD
2|μ

D−1

∑
j=0

PD
j|v(Y

D
j|v − YD

j|μ)−
∞

∑
j≥3

(PD
2|μPD

j|v − PD
j|μPD

2|v)Y
D
j|μ]

/(PD
2|μPD

1|v − PD
1|μPD

2|v)

(20)

with
∞
∑

j≥3
(PD

2|μPD
j|v − PD

j|μPD
2|v)Y

D
j|μ ≤ 0, YD

0|μ ≤ Qω/PD
0|ω +

√
1 − (FD

0|μω
)

2 and
D−1
∑

j=0
PD

j|v(Y
D
j|v −

YD
j|μ) =

D−1
∑

j=0
PD

j|μ

√
1 − FD

j|μν

2.
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Then

YD
1|μ ≥

PD
2|μQv − PD

2|vQμ − (PD
2|μPD

0|v − PD
0|μPD

2|v)Y
D
0|μ − PD

2|μ
D−1
∑

j=0
PD

j|μ

√
1 − FD

j|μν

2

PD
2|μPD

1|v − PD
1|μPD

2|v

(21)

4.3. The Yield Difference between Continuous and Discrete Phase Randomization

To compare the yield difference of continuous phase randomization and discrete phase
randomization, the density matrix of the continuous phase randomization can be written as

ρAB=
1

2π

∫ 2π

0

∣∣∣√αAei(πκA+ϕA)
〉

A

〈√
αAe−i(πκA+ϕA)

∣∣∣
⊗
∣∣∣√αBei(πκB+ϕB)

〉
B

〈√
αBe−i(πκB+ϕB)

∣∣∣
=

∞

∑
j=0

Pj|α|j〉AB〈j|

(22)

where the general Poisson distribution Pj|α is given by Equation (1), with |j〉AB = 1√
2j j!

(a† ± b†)j|00〉AB.

In the ideal case, D → ∞, the fidelity FC,D
j|α between |j〉AB and

∣∣∣λD
j|α
〉

AB
should be the

same. In the security analysis, the fidelity FC,D
j|α between |j〉AB and

∣∣∣λD
j|α
〉

AB
is bounded by

FC,D
j|α = F

(
|j〉AB,

∣∣∣λD
j|α
〉

AB

)
=

∣∣∣〈j
∣∣∣ λD

j|α
〉

AB

∣∣∣√
〈j | j〉AB

〈
λD

j|α
∣∣∣ λD

j|α
〉

AB

= 1

/
e−α/2√

PD
j|α

∞

∑
l=0

(√
α
)lD+j√

(lD + j)!

(23)

which is related to the intensity α, photon number j and discrete phase numbers D.
Therefore, the yield difference is bounded by

∣∣∣Yj|α − YD
j|α
∣∣∣ ≤ √

1 − FC,D
j|α =

√√√√√1 − 1

/
e−α/2√

PD
j|α

∞

∑
l=0

(√
α
)lD+j√

(lD + j)!
(24)

5. Numerical Results

Let’s suppose the transmittances between Alice/Bob and Charlie are ηA = ηB = η f ,
the detection efficiency of detectors is ηd, after the channel and detection losses, η = η f ηd,
the detection click probabilities are given by

Pα(L̄) = (1 − pd)e−ηαcos2 φAB
2

Pα(L) = 1 − Pα(L̄)

Pα(R̄) = (1 − pd)e−ηαsin2 φAB
2

Pα(R) = 1 − Pα(R̄)

(25)

where Pα(L)/Pα(R) and Pα(L̄)/Pα(R̄) are the detection click probabilities of the L/R click
and no L/R click, φAB is the phase mismatch between Alice and Bob.

Due to the discrete phase randomization, we can obtain D phase slices. Although
we keep the phase match pairs and discard all of the others, there is still an intrinsic bit
error rate [4], ED = D

2π

∫ 2π/D
0 sin2 φAB

2 dφAB. Significantly, this is very different from BB84
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protocol with the global phase mismatch value φAB = 0. When we use discrete phase
randomization, we must consider the intrinsic bit error rate, which will deeply affect the
bit error rate and phase error rate.

The error gain can be given by

QE
α=

D
2π

∫ 2π
D

0
Pα(R)Pα(L̄)dφAB

=
D
2π

∫ 2π
D

0
(1 − pd)e−ηαcos2 φAB

2 dφAB − (1 − pd)
2e−ηα

(26)

We can derive the total gain Qα as

Qα=
D
2π

∫ 2π
D

0
[Pα(L)Pα(R̄)+Pα(R)Pα(L̄)]dφAB

=
D
2π

∫ 2π
D

0
(1 − pd)e−ηαsin2 φAB

2 dφAB − (1 − pd)
2e−ηα+QE

α

(27)

The bit error rate of signal states is given by

Eμ=
QE

μ(1 − 2eopt) + eoptQμ

Qμ
(28)

The simulate parameters are listed in Table 1.

Table 1. List of parameters used in numerical simulations. Here pd is the dark counts rate; eopt is the
misalignment error probability of the system; ηd is the detection efficiency; f is the error correction
efficiency; η f is the transmission fiber loss coefficient (dB/km).

pd eopt ηd f η f

1 × 10−8 1.5% 0.2 1.1 0.2

In the key rate versus the transmission distance of the finite decoy states PM protocol
with a different number of phase values, as shown in Figure 1, the PLOB bound is plotted
for comparison. The smaller D, the lower the key rate; the reason is that the smaller the D,
the larger the intrinsic bit error rate. D = 8 can break the PLOB bound, and meanwhile, we
can find that there is an optimal D = 10, which can guarantee better performance. With
the increase of D, the key rate will become lower due to the sifting factor 2/D. Hence,
in an actual experiment of PM-QKD, we must find the suitable discrete phases value to
guarantee security and performance. When D → ∞, the key rate will tend to 0; we do not
present it here.

Moreover, we compare the performance of PM-QKD with discrete phase random-
ization between infinite decoy states and vacuum and one decoy state. As depicted in
Figure 2, when we adopt vacuum and one decoy state and small D, the key rate exhibits
poor performance. As D increases, the key rate of adopting vacuum and one decoy state
approaches infinite decoy states. Combining the conclusion of Figure 1, we find that the
discrete phase D = 10 still maintains good security and performance when the finite decoy
states are implemented.
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Figure 1. The key rate versus the transmission distance of the PM-QKD with different number of
discrete phase values; the PLOB linear bound is plotted for comparison.
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Figure 2. The key rate versus the transmission distance of the PM-QKD with different number
of discrete phase values, infinite decoy states and vacuum and one decoy state are plotted for
comparison. The dash line represents the case of vacuum and one decoy state; the solid line
represents the case of infinite decoy states.

Due to there being a sifting factor 2/D, we know that when D → ∞, the key rate will
tend to 0. In order to compare the key rate between continuous phase randomization and
discrete phase randomization, we first compare the fidelity between |j〉AB and

∣∣∣λD
j|α
〉

AB
,

as shown in Figure 3a. The fidelity varies slightly with the intensity. With the increase
of D, the fidelity gradually approaches 1. Therefore, when D is too small, the method
of continuous phase randomization is not suitable; we cannot ignore the safety effect of
discrete phase randomization.

Then, considering finite decoy states, the key rate between continuous phase random-
ization and discrete phase randomization has been studied in Figure 3b. As D increases,
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the performance of a key rate between discrete phase randomization and continuous phase
randomization is almost the same. This is consistent with the conclusion in Figure 3a.
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Figure 3. (a) The fidelity of different mean photon numbers. The fidelity refers to Equation (23),
which we take j = 1. (b) The key rate versus the transmission distance of the PM-QKD with a different
number of discrete phase values. The solid line represents the coherent state with continuous phase
randomization; the dash line represents the coherent state with discrete phase randomization.

6. Conclusions

In this paper, we introduce the USD measurement and PNS attack against PM-QKD
with imperfect phase randomization, and simultaneously, we deeply study the security
of discrete phase randomization PM-QKD protocol with a decoy state in the asymptotic
case. Our simulation results show that, as D increases, the key rate of adopting vacuum
and one decoy state approaches infinite decoy states, and furthermore, the performance of
key rate between discrete phase randomization and continuous phase randomization is
almost the same. We also find that due to the intrinsic bit error rate and sifting factor, there
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is an optimal discrete phase randomization value to guarantee security and performance.
Therefore, for the actual PM-QKD system, we should better adopt the suitable discrete
phase randomization value to apply.

Author Contributions: X.Z. carried out numerical simulation and wrote the paper; Y.W. and W.B.
assisted in discussing the research topic; M.J. contributed to attack; X.Z. and Y.L. derived the formulas;
H.L. and C.Z. discussed the PM-QKD protocol. All authors participated in revising and all authors
have read and agreed to the published version of the manuscript.

Funding: This work is sponsored by National Key Research and Development Program of China
(Grant No. 2020YFA0309702), National Natural Science Foundation of China (Grants No. 61605248,
No. 61675235 and No. 61505261) and Natural Science Foundation of Henan (Grant No. 202300410534
and No. 202300410532).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE
International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179.

2. Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun.
2017, 8, 15043. [CrossRef]

3. Takeoka, M.; Guha, S.; Wilde, M.M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 2014,
5, 5235. [CrossRef] [PubMed]

4. Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without
quantum repeaters. Nature 2018, 557, 400–403. [CrossRef] [PubMed]

5. Cui, C.; Yin, Z.Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution without Phase
Postselection. Phys. Rev. Appl. 2019, 11, 034053. [CrossRef]

6. Curty, M.; Azuma, K.; Lo, H.K. Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf.
2019, 5, 64. [CrossRef]

7. Lin, J.; Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution.
Phys. Rev. A 2018, 98, 042332. [CrossRef]

8. Ma, X.; Zeng, P.; Zhou, H. Phase-Matching Quantum Key Distribution. Phys. Rev. X 2018, 8, 031043. [CrossRef]
9. Tamaki, K.; Lo, H.K.; Wang, W.; Lucamarini, M. Information theoretic security of quantum key distribution overcoming the

repeaterless secret key capacity bound. arXiv 2018, arXiv:1805.05511v3.
10. Wang, X.B.; Yu, Z.W.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323.

[CrossRef]
11. Clivati, C.; Meda, A.; Donadello, S.; Virzì, S.; Genovese, M.; Levi, F.; Mura, A.; Pittaluga, M.; Yuan, Z.L.; Shields, A.J.; et al.

Coherent phase transfer for real-world twin-field quantum key distribution. arXiv 2020, arXiv:2012.15199v1.
12. Chen, J.P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.; Hu, X.L.; Guan, J.Y.; Yu, Z.W.; Xu, H.; Lin, J.; et al. Sending-or-Not-Sending with

Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 2020, 124, 070501. [CrossRef]
[PubMed]

13. Fang, X.T.; Zeng, P.; Liu, H.; Zou, M.; Wu, W.; Tang, Y.L.; Sheng, Y.J.; Xiang, Y.; Zhang, W.; Li, H.; et al. Implementation of
quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 2020, 14, 422–425. [CrossRef]

14. Liu, H.; Jiang, C.; Zhu, H.T.; Zou, M.; Yu, Z.W.; Hu, X.L.; Xu, H.; Ma, S.; Han, Z.; Chen, J.P.; et al. Field Test of Twin-Field
Quantum Key Distribution through Sending-or-Not-Sending over 428 km. arXiv 2021, arXiv:2101.00276v1.

15. Chen, J.P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.; Han, Z.Y.; Ma, S.Z.; Hu, X.L.; Li, Y.H.; Liu, H.; et al. Twin-Field Quantum Key
Distribution over 511 km Optical Fiber Linking two Distant Metropolitans. Res. Sq. 2021. [CrossRef]

16. Liu, Y.; Yu, Z.W.; Zhang, W.; Guan, J.Y.; Chen, J.P.; Zhang, C.; Hu, X.L.; Li, H.; Jiang, C.; Lin, J.; et al. Experimental Twin-Field
Quantum Key Distribution through Sending or Not Sending. Phys. Rev. Lett. 2019, 123, 100505. [CrossRef]

17. Minder, M.; Pittaluga, M.; Roberts, G.L.; Lucamarini, M.; Dynes, J.F.; Yuan, Z.L.; Shields, A.J. Experimental quantum key
distribution beyond the repeaterless secret key capacity. Nat. Photonics 2019, 13, 334–338. [CrossRef]

18. Wang, S.; He, D.Y.; Yin, Z.Q.; Lu, F.Y.; Cui, C.H.; Chen, W.; Zhou, Z.; Guo, G.C.; Han, Z.F. Beating the Fundamental Rate-Distance
Limit in a Proof-of-Principle Quantum Key Distribution System. Phys. Rev. X 2019, 9, 021046. [CrossRef]

19. Zhong, X.; Hu, J.; Curty, M.; Qian, L.; Lo, H.K. Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key
Distribution. Phys. Rev. Lett. 2019, 123, 100506. [CrossRef]

127



Entropy 2021, 23, 508

20. Zhong, X.; Wang, W.; Qian, L.; Lo, H.K. Proof-of-principle experimental demonstration of twin-field quantum key distribution
over optical channels with asymmetric losses. NPJ Quantum Inf. 2021, 7, 8. [CrossRef]

21. Mao, Y.; Zeng, P.; Chen, T. Recent Advances on Quantum Key Distribution Overcoming the Linear Secret Key Capacity Bound.
Adv. Quantum Technol. 2021, 4, 2000084. [CrossRef]

22. Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 91, 057901.
[CrossRef] [PubMed]

23. Lo, H.K.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [CrossRef] [PubMed]
24. Ma, X.; Qi, B.; Zhao, Y.; Lo, H.K. Practical decoy state for quantum key distribution. Phys. Rev. A 2005, 72, 1–127. [CrossRef]
25. Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503.

[CrossRef] [PubMed]
26. Gottesman, D.; Hoi-Kwong, L.; Lutkenhaus, N.; Preskill, J. Security of quantum key distribution with imperfect devices. Quantum

Inf. Comput. 2004, 4, 325–360. [CrossRef]
27. van Enk, S.J.; Fuchs, C.A. Quantum State of an Ideal Propagating Laser Field. Phys. Rev. Lett. 2001, 88, 027902. [CrossRef]

[PubMed]
28. Lo, H.K.; Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf.

Comput. 2006, 7, 431–458.
29. Xu, F.; Qi, B.; Ma, X.; Xu, H.; Zheng, H.; Lo, H.K. Ultrafast quantum random number generation based on quantum phase

fluctuations. Opt. Express 2012, 20, 12366–12377. [CrossRef]
30. Inamori, H.; Lütkenhaus, N.; Mayers, D. Unconditional security of practical quantum key distribution. Eur. Phys. J. D 2007,

41, 599–627. [CrossRef]
31. Dušek, M.; Jahma, M.; Lütkenhaus, N. Unambiguous state discrimination in quantum cryptography with weak coherent states.

Phys. Rev. A 2000, 62, 022306. [CrossRef]
32. Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on Practical Quantum Cryptography. Phys. Rev. Lett. 2000,

85, 1330–1333. [CrossRef]
33. Cao, Z.; Zhang, Z.; Lo, H.K.; Ma, X. Discrete-phase-randomized coherent state source and its application in quantum key

distribution. New J. Phys. 2015, 17, 053014. [CrossRef]
34. Cao, Z. Discrete-phase-randomized measurement-device-independent quantum key distribution. Phys. Rev. A 2020, 101, 062325.

[CrossRef]
35. Currás-Lorenzo, G.; Wooltorton, L.; Razavi, M. Twin-Field Quantum Key Distribution with Fully Discrete Phase Randomization.

Phys. Rev. Appl. 2021, 15, 014016. [CrossRef]
36. Wang, R.; Yin, Z.Q.; Lu, F.Y.; Wang, S.; Chen, W.; Zhang, C.M.; Huang, W.; Xu, B.J.; Guo, G.C.; Han, Z.F. Optimized protocol for

twin-field quantum key distribution. Commun. Phys. 2020, 3, 149. [CrossRef]
37. Jiang, C.; Yu, Z.W.; Hu, X.L.; Wang, X.B. Sending-or-not-sending twin-field quantum key distribution with discrete-phase-

randomized weak coherent states. Phys. Rev. Res. 2020, 2, 043304. [CrossRef]
38. Zhang, C.M.; Xu, Y.W.; Wang, R.; Wang, Q. Twin-Field Quantum Key Distribution with Discrete-Phase-Randomized Sources.

Phys. Rev. Appl. 2020, 14, 064070. [CrossRef]
39. Zeng, P.; Wu, W.; Ma, X. Symmetry-Protected Privacy: Beating the Rate-Distance Linear Bound Over a Noisy Channel. Phys. Rev.

Appl. 2020, 13, 064013. [CrossRef]
40. Koashi, M. Simple security proof of quantum key distribution based on complementarity. New J. Phys. 2009, 11, 045018.

[CrossRef]
41. Tang, Y.L.; Yin, H.L.; Ma, X.; Fung, C.H.F.; Liu, Y.; Yong, H.L.; Chen, T.Y.; Peng, C.Z.; Chen, Z.B.; Pan, J.W. Source attack of

decoy-state quantum key distribution using phase information. Phys. Rev. A 2013, 88, 022308. [CrossRef]
42. Grangier, P.; Levenson, J.A.; Poizat, J.P. Quantum non-demolition measurements in optics. Nature 1998, 396, 537–542. [CrossRef]
43. Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key

distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [CrossRef]

128



entropy

Article

Nonclassical Attack on a Quantum Key Distribution System

Anton Pljonkin 1,*, Dmitry Petrov 1, Lilia Sabantina 2 and Kamila Dakhkilgova 3

Citation: Pljonkin, A.; Petrov, D.;

Sabantina, L.; Dakhkilgova, K.

Nonclassical Attack on a Quantum

Key Distribution System. Entropy

2021, 23, 509. https://doi.org/

10.3390/e23050509

Academic Editors: Ivan B. Djordjevic

and Rosario Lo Franco

Received: 29 March 2021

Accepted: 22 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Technology and Information Security, Southern Federal University,
347900 Taganrog, Russia; dapetrov@sfedu.ru

2 Junior Research Group Nanomaterials, Faculty of Engineering and Mathematics,
Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; lilia.sabantina@fh-bielefeld.de

3 Faculty of Information Technology, Chechen State University, 364024 Grozny, Chechen Republic, Russia;
puma-i@mail.ru

* Correspondence: pljonkin@mail.ru; Tel.: +7-905-459-2158

Abstract: The article is focused on research of an attack on the quantum key distribution system and
proposes a countermeasure method. Particularly noteworthy is that this is not a classic attack on a
quantum protocol. We describe an attack on the process of calibration. Results of the research show
that quantum key distribution systems have vulnerabilities not only in the protocols, but also in other
vital system components. The described type of attack does not affect the cryptographic strength of
the received keys and does not point to the vulnerability of the quantum key distribution protocol.
We also propose a method for autocompensating optical communication system development, which
protects synchronization from unauthorized access. The proposed method is based on the use of sync
pulses attenuated to a photon level in the process of detecting a time interval with a signal. The paper
presents the results of experimental studies that show the discrepancies between the theoretical and
real parameters of the system. The obtained data allow the length of the quantum channel to be
calculated with high accuracy.

Keywords: quantum key distribution; single-photon mode; synchronization; algorithm; detection
probability; vulnerability

1. Introduction

This research was inspired by the works “Quantum man-in-the-middle attack on
the calibration process of quantum key distribution” [1] and “Device calibration impacts
security of quantum key distribution” [2], which describe attacks on the calibration system.
In the beginning, it is necessary to clarify several important nuances about our research: the
experiments were carried out with a two-pass quantum key distribution system (QKDS)
Clavis2; we do not examine the security of the quantum BB84 protocol and do not claim
that our attack is an attack on the BB84 protocol; and we do not test the strength of
quantum keys and do not claim that the described attack affects the strength of the keys.
These are important notes for understanding the aims of the paper. The quantum key
distribution process and the synchronization process are different. There are many articles
in the literature that describe these processes in detail. There are attacks on both quantum
protocols and the synchronization process, but there is practically no literature describing
attacks on the synchronization process. Our experiment was carried on the real Clavis2

quantum key distribution system. These are two stations connected by a quantum channel-
optical fiber. In real operating conditions, QKDS have many loopholes for an attacker. This
is not about quantum cryptography protocols that are reasonably secure. We are referring
to the technical imperfection of systems. The authors [1,2] discuss such imperfections
and show that an attacker can use them for attacks. It is important to understand that
the purpose of an attack on the QKDS may not only be the acquisition of a secret key.
Implementation of a controlled interference can also be a target of an attacker. From the
user’s point of view, this looks like a technical failure of the system, and there are two
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options: the user understands that the failure was caused by an attacker, or the user does
not detect the attacker. In this work, we will show experimentally how it is possible to
interfere with the normal operation of the QKDS without revealing itself.

The basic principles of quantum cryptography are absolute theoretical secrecy of the
transmitted data and the impossibility of unauthorized access to it. For cryptographic
systems, the security issue is formulated as the problem of distributing the encryption key
between legitimate users. Quantum cryptography systems solve the problem of generating
and distributing the encryption key using methods that are based on the laws of quantum
physics and are implemented in quantum key distribution systems. In the description of
quantum key distribution systems, much attention is paid to the operation of quantum
protocols. The main problem is the insufficient study of the synchronization process of
quantum key distribution systems. This paper contains a general description of quantum
cryptography principles. A two-way plug and play fiber-optic quantum key distribution
system with phase coding of photon states in synchronization mode was examined. A
quantum key distribution system was built on the basis of the scheme with automatic
compensation of polarization mode distortions. Single-photon avalanche diodes were
used as optical radiation detecting devices. The operation of such systems is impossible
without the process of station coordination, i.e., synchronization of the transmitter and
receiver separated in space. In the QKDS, synchronization consists of a high-precision
determination of the length of the optical pulse propagation path and is based on the
registration of the moment when the synchronizing pulse is received by photodetectors.

2. Experiment and Simulation

2.1. Signal Level in the QKD System

The most appropriate form of synchronization signal for the QKDS is a periodic
sequence of optical pulses [3]. In this case, the time markers are the pulses themselves, and
the measurement process consists of dividing the entire follow-up period into time intervals.
The conversion of a photon to a primary electron is registered in each time interval. The
results of live tests of a quantum cryptographic network based on the IDQuantique Clavis2

3110 QKD system are described in [4–7], and it is shown that the synchronization process
generates multiphoton pulses, and the photodetectors operate in linear mode. Using the
constructed energy model of the current Clavis2 3110 QKD system, we show that the
synchronization mode does not involve algorithms for controlling the emission power.
Figure 1 shows the dependence of the number of photons in the pulse on the length of the
quantum channel. The quantum channel is a fiber-optic communication line connecting
two stations of the QKD system. Dependencies demonstrate three synchronization modes
and take into account the following complex losses: in the optical fiber at the junction
points, and total losses in the encoding station (−47.7 dBm). The energy model of the
QKD system describes the characteristics of the detection equipment. In the process of
high-precision determination of the length of a quantum channel, pulses are sent from the
transmitting station to the encoding station, where they are reflected from the Faraday
mirror and follow back along the same optical path. The process is divided into three stages,
for each of which the pulse power values correspond to P1 = −48.3 dBm, P2 = −55.8 dBm,
and P3 = −24.2 dBm. The values of P1, P2, and P3 were obtained experimentally using
Yokogawa AQ2202 equipment. The photon energy with the refraction index for the
Corning®SMF-28e+ fiber is equal to

E(p) =
h c

n
γ

=
6.62·10−34·2.01·108

1550·10−9 = 0.0085·10−17 (1)
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Figure 1. Dependence of the number of photons in a pulse on the length of the quantum channel.

Repetition rate f1 = 800 Hz, f2 = 800 Hz, f3 = 5 MHz, and pulse duration τ = 1 ns. The
pulse duration is the same for the three modes. We performed the simulation based on the
equation. The graphs were plotted using the classical formula for expressing the number
of photons in terms of the pulse energy at a known repetition rate, taking into account the
refraction index of the emission in the fiber.

The dependences clearly demonstrate that only when the quantum channel is L = 50 km
long (taking into account the resulting losses and the double path of movement of the
pulses), the average number of photons in the pulse approximates to unity (the average
value of the three synchronization stages). The ordinate axis shows the resulting value,
i.e., the pulse with this number of photons passed the distance L × 2 and entered the pho-
todetector. It is apparent that the first stage had the most powerful energy characteristics.
The latter was related to the need to ensure the highest probability of detecting the reflected
signal at the first stage, since an erroneous detection or omission of the signal at the first
stage will cause a complex detection error at subsequent stages. Note that the power of
optical synchronizing pulses is constant for all values of the length of the quantum channel,
i.e., the system does not adjust the laser power depending on the length of the quantum
channel. A pulse with the number of photons m >> 10 is called a multiphoton pulse,
1 < m < 10 is a photon pulse, and m < 1 is a single-photon pulse. Therein, a single-photon
should not be perceived as a division of a photon, but as the presence of a signal in each
j-th pulse.

We showed experimentally that the multiphoton mode of calibration in the quantum
key distribution system is a vulnerability. Note that the purpose of unauthorized access
may be not only to intercept and read information, but also to synchronize the attacker’s
equipment in order to interfere with the work of the QKDS [8–10].

2.2. Experimental Attack on a Quantum Channel and Analysis

We configured the experimental design (Figure 2), where the quantum communication
system stations were located in adjoining rooms. A quantum channel of variable length
was organized between them. Corning®SMF-28e+ optical fiber coils with lengths (L) of 1,
2, 4, and 25 km were used for this. At the junction points of the optical coils, two fiber-optic
couplers with division coefficients were connected in series: kC1 (70%, 30%) and kC2 (90%,
10%). The output of the transmitting station was connected to the input of the divider kC1,
and the output of the divider kC1 (70%) was connected to the output of the divider kC2
(90%). The input of the kC2 divider was connected to the quantum channel in the direction
of the receiver station. Outputs kC2 (10%) and kC1 (30%) were connected to an optical
power meter (Yokogawa AQ2202) to capture signals.
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Figure 2. Experiment scheme. Clavis2 3110 QKD system with optical power couplers (kC1, kC2). I/O is input/output.

Note that the implementation of couplers in the optical communication channel was
not technically difficult. The latter was provided by two welded joints in the fiber-optic
communication line. The presence of two couplers allows one to calculate the time of
re-reflection, since the moment of interception of an optical pulse in only one direction
does not give complete information to the attacker about the operation of the system. It is
crucial to intercept the optical pulse during the reverse propagation of the reflected signal.
With information about the re-reflection time, an attacker can calculate the exact distance
to the recipient’s station and back [11–16]. This data allows one to perform some attacks
on quantum communication protocols, for example, an attack in which the operation
of the coding station is simulated. The attacker inserts their equipment instead of the
encoding station and sends substitution signals to the transmitting station’s photodetectors
at the right time. The aim of our experiment was to prove the possibility of successful
implementation of an attack on a quantum communication system by interference with the
calibration stage.

In the described design, the QKD system is put into operation mode. The synchroniza-
tion process and the operation of the quantum protocol BB84 function normally without
critical errors, i.e., the presence of two power couplers in the optical communication chan-
nel is not detected by the system and does not affect its operation. Keys are formed in
cycles, and the synchronization processes successfully. In this mode, the experiment lasted
24 h, and the system functioned without failures. After the signals at outputs kC1 (30%)
and kC2 (10%) were repeatedly recorded, we connected the optical emission source (Yoko-
gawa AQ2202) to the output kC2 (10%). The connection of the emission source also did
not affect the operation of the QKDS. Further, at random times, we provided a signal-
interference (τ = 1 ns, f = 270 Hz) to the output of the coupler kC2 (10%). The duration
of interference activation varied from 5 s to 10 min. In interference mode, the system
did not stop operating and did not issue errors but initiated the synchronization process
again. After synchronization, the quantum protocol operation was restored, and the key
distribution process resumed. We performed a simulation. We clearly demonstrated the
effect of interference on the operation of the quantum key distribution protocol. Figure 3
shows the dynamics of the measured quantum error (QBER).
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Figure 3. Dynamics measured by QKDS QBER software; 1–10 refer to iterations.

We can see that the graph does not contain any critical changes. Analysis of the
dynamics of quantum error does not allow for the detection of unauthorized interference
in the operation of the system. The latter is also confirmed by the graph in Figure 4, which
shows the dynamics of generated quantum keys.

Figure 4. Dynamics of accumulated quantum keys. The length of each key is 512 bits; 1–10 refer
to iterations.

Figure 4 shows the number of keys that are cyclically accumulated in the buffer.
Note that the length of a single key is 512 bits. The dependencies in Figures 3 and 4 are
presented for the length of the quantum channel L = 25,732 m. The graph in Figure 4 also
does not indicate when the system was affected by the interference. If we consider the
approximation of this dependence on the time axis, the time delay with an error of about
10% of the average key generation cycle will be visible in the intervals with interference
enabled. This delay occurs periodically during the operation of the QKD system and may
be due to the presence of in homogeneities in the quantum channel or physical changes
in the optical fiber due to temperature influences. Thus, the time dependence analysis
also does not allow for the detection of the presence of couplers in the communication
channel or indicate unauthorized interference. Let us turn to Figures 5 and 6. Figure 5
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shows statistics of accumulated quantum keys and QBER at different optical link lengths
without using couplers (i.e., without introducing interference).

Figure 5. Statistical data of the BB84 quantum protocol, quantum keys; 1–6 refer to iterations.

Figure 6. Statistical data on the operation of the quantum protocol BB84, QBER; 1–6 refer to iterations.

The graphs show that the maximum number of accumulated keys for 6 iterations
is 9546, with a quantum channel length (L) of 7880 m. The graph shows a significant
difference when the length of the fiber optic cable is 50,456 m. Here, the number of keys
generated in one iteration differs significantly from the same value for a shorter length of
the fiber optic link, while the growth dynamics is preserved. This dependence behavior
is due to the fact that the limit length of the quantum channel introduces significant
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attenuation in the signal. The values 8.76 < QBER < 9.54 for a quantum channel length
of 50,456 m are also high, but these values are not critical, because they do not exceed
the calculated value QBER = 11%. Comparing the dynamics of changes in the number of
accumulated keys and QBER in the presence of couplers and without them, let us turn to
the dependencies in Figures 3–6 that are plotted for the length of the quantum channel
in 25,732 m. The QBER value is within 2.3 < QBER < 3.1 if there are couplers, and within
2.8 < QBER < 5.7 if there are no couplers. These values are valid and do not indicate the
presence of an attacker in the communication channel. Moreover, in the experiment, the
values in the absence of couplers exceeded the values in the presence of couplers. The latter
indicates that external destabilizing factors have a more significant impact on QBER than
the presence of additional prepared connections in the communication channel.

When looking at graphs that reflect the accumulated keys, it is clear that for six
iterations, the values do not differ significantly on the two curves (the average number of
512-bit keys per iteration is about 300). Analysis of the results confirms the conclusion that
the presence of couplers in the communication channel and the impact of interference do
not affect the statistical data of the quantum protocol. A similar conclusion can be drawn
when considering the approximated curve on a time chart.

3. Single-Photon Synchronization Method

The results of the experiment show the vulnerability of the synchronization process
QKDS and prove the possibility of interfering with the system, while remaining unno-
ticed. Note that the classical method of controlling the emission power in a quantum
communication channel does not allow for detection of the presence of couplers. Under
ideal experimental conditions, when the quantum channel consists of a continuous fiber
(coil), the couplers can be detected using a reflectometer. In this case, it was possible to
see attenuation of 0.2–0.4 dB at the places of split joints. If only welded joints are used,
the presence of losses is almost impossible to detect. In real conditions, the completed
length of the quantum channel does not exceed 1 km, and the presence of fiber optic splice
closure is an integral part of the communication system. Fiber optic splice closure and
inhomogeneities of optical fiber introduce additional attenuation and hide the possible
presence of unauthorized connection to the communication channel. The reflectometric
detection method does not allow one to distinguish legitimate inhomogeneities (of different
types) from illegitimate ones.

We should also mention the quantum effects of the environment [17,18]. Note that the
quantum fluctuations are not described by classical functions and cannot be compensated.
Moreover, such quantum effects could be influencing the system, but it is expected that
their effects would be small. Of course, such effects must be taken into account, and their
influence on the quantum system should be investigated. There are environmental effects
that can affect the physical properties of the fiber. For example, temperature tends to
change the physical length of a fiber under certain conditions, but it is compensated for by
checking the length in the program.

We propose a method that provides protection against an attack on the QKDS during
the synchronization process. A distinctive feature of the method is the use of synchroniza-
tion pulses weakened to a single-photon level. In this case, the optical signal is attenuated
at the encoding station by a controlled attenuator, and the value of the insertion loss is
calculated so that after reflection from the Faraday mirror, the average number of photons
(m) in the synchronizing pulse is 0.1–0.5. Registration of single-photon pulses is performed
by avalanche photodiodes in Geiger mode.

The maximum length of the fiber optic link in QKDS is L = 100 km. Taking into
account the back propagation of emission to avoid overlapping of back transmitted pulses
at L = 100 km, the repetition period is Ts = 2 × L/v f iber ≈ 1 ms. Therefore, the maxi-
mum repetition rate of optical pulses should not exceed fs.max = 1/Ts ≈ 1 kHz. The
repetition period Ts is divided into Nw time intervals with duration τw in such a way that
Ts = Nw × τw. All intervals are analyzed sequentially. Each interval is analyzed N
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times, where N is the selection size. The pulse duration τs = 1 ns and τw = (2 . . . 4)× τs.
Absolute stability of the repetition period ΔTs and the duration Δτs is assumed. In each
interval, the number of accepted photoelectrons and/or dark current pulses (DCP) are
recorded. After polling all Nw time intervals, an array of values is generated as follows:{

nw.N(j), j = 1, Nw
}
= {nw.N(1), nw.N(2), . . . , nw.N(j), . . . , nw.N(Nw)}

At the values of τs and τw, the synchronizing pulse can lie entirely within one
time interval or lie on the border of two neighboring ones. In the first case, the val-
ues nw.N(2), . . . , nw.N(j), . . . , nw.N(Nw) in Nw − 1 intervals are described by Poisson’s
law with the parameter nd.N = N × ξd × τw. At the same time, in the interval with a syn-
chronizing pulse, the number nw.N(1), with the parameter nw.N = N × ξd × τw + N × ns.
Here ξd is the rate of occurrence of DCP, ns is the average number of the photoelectrons
registered for the duration of the pulse.

If the pulse lies in two neighboring intervals, then random values nw.N(3), . . . , nw.N(j),
. . . , nw.N(Nw) in Nw − 2 noise intervals are described by Poisson’s law with the parameter
nd.N = N × ξd × τw, and in neighboring intervals are the numbers nw.N(1) and nw.N(2),
respectively, with parameters nw1.N = N × ξd × τw + N × ns1 and nw2.N = N × ξd × τw +
N × ns2. Here ns1 = ns × (1 − τw/t1) and ns2 = ns − ns1 are, respectively, the average
number of photons registered in neighboring intervals with the condition that the moment
of occurrence of single-photon pulse (t1) belongs to the first interval. Noise intervals
should be understood as analyzed intervals in which the signal is not recorded. In such
intervals, noise values can be recorded—the DCP of the photodetector [12,13]. To analyze
the process of detecting a synchronizing signal using single-photon pulses, the laws of
probability of the distribution density are applied [14].

The analytical expression (2) is used for calculating the probability of correct detection
of the signaling interval (PD).

PD =
∞

∑
nw.N=1

(nw.N)
nw.N

nw.N!
·exp[−nw.N ]·Pd.N{nw.N} (2)

Here

Pd.N{nw.N} =

(
nw.N−1

∑
nd.N=0

nd.N
nd.N

nd.N!
·exp(−nd.N)

)Nw−1

(3)

represents the probability of registering no more than (nw.N − 1) DCP in all (Nw − 1)
noise time intervals during the analysis, provided that nw.N photoelectrons and DCP are
registered in the signal time interval for a selection of size N. Taking into account the
value Nw, the average number of DCP per sample in the noise interval tends to zero. This
allows summation in the formula only for 2 values of nd.N equal to 0 and 1. Simplifying
expression (2), we get

PD = exp(−Nw·nd.N + nd.N)nw.N ·exp(−nw.N)

+[1 − exp(−nw.N)− nw.N ·exp(−nw.N)]·(1 + nd.N)
Nw−1.

(4)

The simulation results show that the divergence of the calculation results for
Equations (2)−(4) do not exceed 0.02% over the entire variation range in the number
of time intervals. The registration validity condition for no more than one photoelectron
and/or DCP is typical for a single-photon avalanche photodiode. This proves that it is
possible to use expression (4) to calculate the probability of correctly detecting the time
interval during the synchronization of the QKDS, provided that nw.N � 1. An important
parameter of the avalanche photodiode is the recovery time of the operating mode (τdead).
In the proposed method, the time interval poll is performed sequentially in each frame,
i.e., one-time interval is analyzed for the repetition period (T); here T � τdead. This ap-
proach allows the recovery time of the working mode of the photodetector to be ignored
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when calculating. Another distinctive feature of the single-photon mode of operation of
the photodetector is the quantum efficiency coefficient of the photocathode (k), which must
be taken into account when simulating. Let us look at the graphs in Figure 7, which demon-
strate the dependence of the probability of correctly detecting the time interval with signal
on the selection size. Dependencies are plotted using Equation (4). The developed method
involves the use of a weakened optical synchronizing pulse with an average number of
photons 0.1 < m < 1. Thus, given the critical values of the average number of photons per
pulse, the frequency of DCP and the quantum efficiency of the photocathode, the variable
value is only the selection size in each time interval. Let us explain that the DCP of the
photodetector are its shot-noise, which can cause an avalanche effect [15–17].

Figure 7. Dependence of the probability of correct detection on the selection size.

The graphs show that the probability of correct detection reaches maximum values
(PD > 99.3%) already at the selection size N = 30 (without taking into account quantum
efficiency) and at N = 150 with taking into account quantum efficiency. Note that the
typical selection size of the current Clavis2 3110 system is 800. Next, let us consider the
simulation results that show the influence of the frequency of DCP and the selection size
on the probabilistic characteristics of detecting the signaling time interval. The task of
simulation is to find the optimal values of N and DCP, at which the maximum probability
of detection is achieved. Calculations were made taking into account the above average
quantum efficiency of the photocathode (k = 25%). Figure 8 shows the results of simulation
of the algorithm for detecting a single-photon signal. The graphs show the dependence of
the probability of correct detection of the signaling interval on selection size for different
values of DCP.
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Figure 8. Probability of correct detection of a single-photon signal.

The average amount of photoelectrons (m) in a pulse is 0.1. The graph shows that
at the minimum values of the selection size (128 < N < 32), the probability of detection
(PD) is no more than 80%, and the number of DCP does not matter. This behavior of the
curves is explained by a small difference in the number of DCP and photoelectrons in
time intervals. The divergence is leveled when the selection size increases. On the other
hand, if the value of DCP > 200, the selection size does not matter, since the probability of
detection (PD) over the entire range of values does not exceed 98%. The optimal values of
DCP and N for achieving high probability values (PD > 99.3%) are the limits of N > 256 for
DCP < 150. Consider Figure 9, where calculations of the probability of erroneous detection
of a signaling time interval with a single-photon pulse are presented.

Figure 9. Probability of erroneous detection of a single-photon signal.

The figure is made for three values of the selection size (N = 256, 512, 1024) and
the range of values of DCP ∈ {25 : 400}. It is apparent that the selection size N = 1024
has a significant impact on the probability at the maximum values of DCP. Thus, in the
single-photon mode, the probability of erroneous detection increases sharply at DCP > 200.
This is due to the fact that with the statistical accumulation of summands in Equation (4),
an increase in the direct dependence of the number of DCP and the selection size causes
an increase in noise signals, which are interpreted as “false positives” of single-photon
avalanche photodiode. Note that the average value of DCP for the photodiodes used in
QKD systems is within the range of 25 < DCP < 100. For example, the typical DCP value for
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id210 and id230 photodetectors is 40 and 50 Hz, respectively [18,19]. Such photodetectors
are used in the Clavis2 and Clavis3 QKDS [20–24]. We applied the real characteristics
of the id230 photodetector to our calculations (see Figure 10). The average number of
photoelectrons m = 0.1 was achieved by attenuating the signal in the receiver station. The
quantum efficiency of the photocathode k = 25%.

Figure 10. Calculating the detection probability for id230.

4. Discussion

The experimental part was strongly considered in this work. Due to the lack of a
QKD system, most research groups are concerned with theoretical research. Our research
team conducted theoretical research based on real experiences and found weak points by
exploring real systems. By conducting experiments, we can demonstrate that this weakness
can be very critical for practical application. Then, we proposed a new theoretical method
to reduce the possibility of this vulnerability. The synchronization process is not part of the
quantum protocol, but as shown in practice, the attacker can also access the hardware if
they can access the synchronization. This can have serious consequences in real situations.

In addition, during the experiment, it was found that a new synchronization method
can protect the system from quantum channel attacks. This does not represent an attack on
quantum protocols but means an attack on optical communication circuits. The purpose of
this attack is to destroy the key distribution.

5. Conclusions

Results of research show that an attack on the QKDS synchronization system can
be successfully implemented. A method to counter this type of attack is presented. An
important feature is that this is not a classic attack on a quantum protocol. We show
that quantum key distribution systems have vulnerabilities not only in the operation of
protocols. The described type of attack does not affect the cryptographic strength of the
received keys, but it allows disrupting the operation of the QKDS. We are disrupting the
quantum channel, but we are not interfering with the quantum protocol. Here is a simple
example: if an attacker simply damages the optical cable (cuts it), the system will easily
detect it; if we use our method, then the system does not detect an intruder in the quantum
channel. We also propose a method that protects synchronization data from unauthorized
access. The method is based on the use of sync pulses attenuated to a photon level in
the process of detecting a time interval with a signal. Note that the classical attack by a
compressed powerful light pulse cannot be realized, since we use an avalanche photodiode
in the Geiger mode.

Synchronizing pulses are registered by single-photon avalanche photodiodes in Geiger
mode. The algorithm for detecting an optical signal is described, and analytical expres-
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sions are presented for calculating probabilistic characteristics that show the undiminished
dynamics of correct detection of an optical synchronizing signal. The method is simulated
for optical communication systems that operate according to a two-pass scheme. The
paper presents the results of experimental studies that show the vulnerability of the syn-
chronization process in autocompensation quantum key distribution systems with phase
encoding of states. An additional measure of control against unauthorized interference is
the use of variable power synchronizing pulse at varying lengths of the quantum channel.
Together with controlled signal attenuation, this measure will increase the security of the
QKD system from unauthorized access. The results of the experiment show that the system
uses pulses of the same power regardless of the length of the quantum channel. Simple
calculations of sufficient synchronizing pulse power will allow the intensity of the emission
source to be adjusted and pulses of calculated power to be generated depending on the
length of the quantum channel.
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Abstract: This paper introduces a novel entanglement-based QKD protocol, that makes use of a
modified symmetric version of the Bernstein-Vazirani algorithm, in order to achieve secure and
efficient key distribution. Two variants of the protocol, one fully symmetric and one semi-symmetric,
are presented. In both cases, the spatially separated Alice and Bob share multiple EPR pairs, each
one qubit of the pair. The fully symmetric version allows both parties to input their tentative secret
key from their respective location and acquire in the end a totally new and original key, an idea
which was inspired by the Diffie-Hellman key exchange protocol. In the semi-symmetric version,
Alice sends her chosen secret key to Bob (or vice versa). The performance of both protocols against
an eavesdroppers attack is analyzed. Finally, in order to illustrate the operation of the protocols in
practice, two small scale but detailed examples are given.

Keywords: quantum cryptography; quantum key distribution; the Bernstein-Vazirani algorithm;
EPR pairs; quantum entanglement; quantum information theory

1. Introduction

In the course of the last century, the scientific community experimented with different
ideas and forms of computation, trying to harness the power of nature and create machines
that allowed us to process immeasurable amounts of information in mere seconds, thus rad-
ically changing the world around us in the span of a few decades. However, in the present
era classical computers are reaching a point where it will be infeasible to substantially
enhance their efficiency due to the physical limitations of transistors. This has started a new
incentive to resurrect previous attempts concerning research of new types of computation.
Out of all the different proposals for a viable substitute to classical computing, undoubtedly
the most promising of them all is quantum computation, mainly due to the fact that it
allows the exploitation of the most fundamental properties of physics.

1.1. Related Work

As technology comes closer to the realization of this goal, it appears that certain
profound adaptations regarding different branches of computer science need to take place
in order to achieve a smoother transition from the classical to the quantum era. One of the
most important such branches is the field of cryptography, due to the vulnerability of the
current security algorithms against quantum computers [1,2]. This inherent weakness in
the modern security protocols and the race for building a resilient security infrastructure
against quantum computers [3] before they become a reality, were the two catalysts that
resulted in a schism of the field into two sub-fields, which are based on two different
philosophies and ideologies. The first sub-field, known as post-quantum cryptography or
quantum-resistant cryptography, relies on the complexity of mathematics as its security ba-
sis. It is an attempt to develop cryptographic systems that are secure against both quantum
and classical computers and can also be interpreted within the already existing communica-
tions protocols and networks. The second sub-field, which is called quantum cryptography,
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is being built upon the implementation of the properties of quantum mechanics and, thus,
takes advantage of nature’s own fundamental laws in order to achieve security.

The sub-field of quantum cryptography, on which the primary interest of the current
paper lies upon, has seen enormous growth of both theoretical and practical nature. Two
landmark papers, the BB84 protocol [4] and the E91 protocol [5], were the first papers that
proved that key distribution between two parties relying on the properties of quantum
mechanics was possible. These two protocols have established the two schemes that all
quantum key distribution (QKD) protocols are based on, the prepare-and-measure-based
scheme and the entanglement-based scheme. After the publications of these two protocols, a
plethora of interesting proposals for different QKD protocols based on these two schemes
were suggested, further expanding the field on a theoretical level. At the same time,
some truly remarkable real life implementations of some protocols were demonstrated as
in [6–11]. These implementations have demonstrated that quantum cryptography is not
just a mere theoretical experiment, but a possible reality in the near future.

Over the last few years, there was a noticeable increase in the effort to find new viable
applications for well-known quantum algorithms, such as the Deutsch-Jozsa algorithm [12],
the Bernstein-Vazirani algorithm [13] and Simon’s periodicity algorithm [14]. Many of these
proposals have been made in the field of quantum cryptography, using these algorithms
as viable QKD protocols [15–17]. Motivated from these attempts, this paper proposes two
novel variants of an entanglement-based QKD protocol that makes use of the Bernstein-
Vazirani algorithm. The novelty of this work lies on the fact that it uniquely combines some
key ingredients. Starting with entanglement, which is an integral part of the protocol, the
corresponding qubits in Alice and Bob’s input registers are maximally entangled. Thus, the
proposed protocols exhibit all the inherent advantages that an entanglement-based QKD
protocol provides in terms of security against an eavesdropper, as first demonstrated in
the E91 protocol [5]. Additionally, the Bernstein–Vazirani algorithm [13], a fast and useful
quantum algorithm that guarantees the creation of the key using just one application of
the appropriate function, is used in a critical manner. Furthermore, the fully symmetric
variant is inspired by the Diffie-Hellman idea [18] of deriving the final key from a random
combination of two separate keys. This idea is not just cosmetic, as the ability to obtain
a key that neither Alice or Bob know from the start, adds an additional layer of security,
further improving the strength of the protocol. Finally, the proposed protocol can be
implemented in two versions: the fully symmetric version and the semi-symmetric one.
In the fully symmetric variant, both Alice and Bob can input their tentative secret keys
from their respective locations and acquire in the end a totally new and original key. In
the semi-symmetric one, Alice (alternatively Bob) constructs the secret key that she (or he)
communicates securely to the other party.

The protocol is described as a quantum game, which despite the rather playful name,
it is another noteworthy field that has emerged due to the transition to the quantum era
and is used to address difficult and interesting problems within the quantum realm. This
approach was chosen in an effort to make the presentation more mnemonic and easier to
follow, due to the close connection that both fields share and the fact that any cryptographic
situation can be conceived as a game between the two fictional heroes Alice and Bob, who
play the roles of two remote parties that are trying to communicate, and the enemy Eve
who tries to eavesdrop the conversation, a case which becomes apparent with the quantum
game of coin tossing and the BB84 protocol [4,19] and references therein. This situation
has been generalized in [20] to quantum dice rolling. For the reader striving for a more
rounded understanding of the connection of the two fields, one can start with the two
important works in the field of quantum game theory dating back to 1999, which were
instrumental for the creation of the field: Meyer’s PQ penny flip game [21], which can be
regarded as the quantum analogue of the classical penny flip game, and the introduction of
the Eisert-Wilkens-Lewenstein scheme [22] that is widely used in the field. Regarding the
PQ penny flip game, some recent results can be found in [23,24], were its connection to the
dihedral groups was established. As for the Eisert-Wilkens-Lewenstein scheme, it proved
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fruitful in providing many interesting results. For example, it led to quantum adaptations
of the famous prisoners’ dilemma in which the quantum strategies are better than any
classical strategy ([22]), as well as extensions of the classical repeated prisoners’ dilemma
conditional strategies to a quantum setting ([25]).

1.2. Organization

The paper is structured as follows. Section 1 provides a brief introduction to the
subject and gives the most relevant references. Section 2 introduces and explains the
tools used for the formulation of the protocols in this article. Section 3 presents and
thoroughly analyzes the fSEBV and sSEBV protocols, so that their functionality can be
completely understood. Section 4 contains two detailed examples, one for each protocol, to
demonstrate their operation. Finally, Section 5 summarizes the proposed protocols and
discusses their potential applications in various situations.

2. Preliminaries

2.1. Quantum Entanglement and Bell States

Quantum entanglement is one of the fundamental principles of quantum mechanics
and can be described mathematically as the linear combination of two or more product
states. The Bell states are specific quantum states of two qubits, sometimes called an EPR
pair, that represent the simplest examples of quantum entanglement. From the perspective
of quantum computation, an EPR pair can be produced by a circuit with two qubits, in
which a Hadamard gate is applied to the first qubit and subsequently a CNOT gate is
applied to both qubits. These states can be elegantly described by the following equation
taken from [26].

|βx,y〉 = |0〉 |y〉+ (−1)x |1〉 |ȳ〉√
2

, (1)

where |ȳ〉 is the negation of |y〉.
In a more detailed manner, the Bell states can be described as follows.

|Φ+〉 = |β00〉 = |0〉 |0〉+ |1〉 |1〉√
2

(2)

|Φ−〉 = |β10〉 = |0〉 |0〉 − |1〉 |1〉√
2

(3)

|Ψ+〉 = |β01〉 = |0〉 |1〉+ |1〉 |0〉√
2

(4)

|Ψ−〉 = |β11〉 = |0〉 |1〉 − |1〉 |0〉√
2

(5)

The main advantage of quantum entanglement is that if one qubit of the pair is mea-
sured, then the other will collapse immediately despite the distance between the two. This
unique characteristic of quantum entanglement can be used on quantum key distribution
as first described by Ekert in the E91 protocol. Therefore, in order to achieve quantum
key distribution, multiple EPR pairs will be needed. For this reason, the mathematical
representation of multiple EPR pairs will be expedient. If one starts with the entangled Bell
state |Φ+〉, which can be cast as

|Φ+〉 = 1√
2
(|0〉A |0〉B + |1〉A |1〉B) , (6)
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some easy computations show that

|Φ+〉⊗n
=

1√
2n ∑

x∈{0,1}n
|x〉A |x〉B , (7)

which will be required in the presentation of Section 3.

2.2. A Brief Description of the Bernstein-Vazirani Algorithm

Regarded as one of the earliest quantum algorithms, along with the Deutsch-Josza
algorithm and Simon’s periodicity algorithm, the Bernstein-Vazirani algorithm, first intro-
duced by Ethan Bernstein and Umesh Vazirani, can be considered to be a useful extension
of the Deutsch-Josza algorithm, due to the fact that it was directly inspired by it and shared
multiple common characteristics on both structure and implementation. Yet, despite the
similarities, it has proved its value by demonstrating that the superiority of a quantum com-
puter can be successfully used for more complex problems than the Deutsch-Josza problem.

The Bernstein-Vazirani problem can be described as the ensuing game between two
players, namely Alice and Bob, who are spatially separated. Alice in Athens is correspond-
ing with Bob in Corfu using letters. Alice starts the game by selecting a number x from 0 to
2n − 1 and mails its binary n-bit representation x to Bob. After Bob receives this message,
he calculates the value of some function

f : {0, 1, . . . , 2n − 1} → {0, 1} , (8)

and replies with the result, which is either 0 or 1. The rules of the game dictate that Bob
must use a function fs(x), where s = sn−1 . . . s1s0 and x = xn−1 . . . x1x0 are n-bit binary
numbers representing integers in the range 0, 1, . . . , 2n − 1, such that

fs(x) = s · x mod 2 . (9)

The inner product modulo 2 is defined as

s · x mod 2 = sn−1xn−1 ⊕ · · · ⊕ s0x0 , (10)

where ⊕ is the exclusive-or operator. Therefore, the function is guaranteed to return the
bitwise product of Alice’s input x with a secret key s that Bob has chosen. Alice’s goal in
this game is to determine with certainty the secret key s that Bob has picked, corresponding
with him as little as possible. How fast can she succeed?

In the classical version of this problem, Alice can find the secret key s by taking
advantage of the nature of the function fs(x) and, in particular, by sending Bob the inputs
shown in Table 1.

Table 1. Alice must communicate with Bob n times in order find the secret key s.

The Evolution of the Bernstein-Vazirani Game

Alice’s Input x Bob’s Response

x = 10 . . . 00 sn−1

...
...

x = 00 . . . 10 s1

x = 00 . . . 01 s0

In that way, Alice will discover a bit of the string s (the bit si) with each query she
sends. For example, with x = 10 . . . 0 she can obtain the most significant bit of s, with
x = 01 . . . 0 she will find the next most significant bit of s, and by following the same
procedure, when she reaches x = 00 . . . 1, she will have finally managed to reveal the entire
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string s. Despite, the efficiency of this method, Alice is still limited by sending to Bob only
one query at a time. Therefore, the best possible classical scenario requires from her to
correspond with Bob at least n times, in order for her to succeed in her goal.

By observing the core attributes of the aforementioned game, we can divide it into the
following three big steps, which are:

• Alice provides an input,
• Bob applies the function fs(x), and
• after multiple repetitions of the previous two steps, Alice is finally able to reveal the

secret key s.

It can be seen from the above steps that the game can easily become more efficient
by implementing certain tools from quantum mechanics. If Alice and Bob were able to
exchange information with the use of qubits instead of classical bits, then Alice could send
the superposition of these qubits to Bob with only one message. Furthermore, if Bob was
using a unitary transformation Uf instead of a function fs(x), then Alice would be able to
achieve her goal with only one communication.

The quantum version of the Bernstein-Vazirani algorithm, can be described by the
following quantum game. The game initially starts with Alice preparing two quantum
registers, one of size n to store her query in and one of size 1, in which Bob will store his
answer in. We will refer to these registers as Alice’s input and output registers, respectively.
Next, she applies the Hadamard gate to every qubit, in order to acquire the even superposi-
tion state of each register and then she sends both registers to Bob. Right after Bob receives
the contents of the registers, he applies the unitary transform Uf and sends them back to
Alice. In the final stage of the game, Alice concludes the algorithm by measuring her input
register and obtaining the secret key s. The whole process of the game, is summarized in
Figure 1 below.

|0〉⊗n

|1〉

H⊗n

H

UfA

H⊗n

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

|s〉

The Bernstein-Vazirani algorithm

Figure 1. This figures gives a schematic representation of the Bernstein-Vazirani algorithm.

Now, in order to obtain a better understanding of the nature of the algorithm, let
us examine the evolution of the quantum states more closely. First, Alice starts with the
initial state

|ψ0〉 = |0〉⊗n |1〉 . (11)

The n qubits of her input register are all prepared at state |0〉 and the qubit of the
output register is prepared at state |1〉. Next, Alice applies the Hadamard transform to
both registers and the state becomes

|ψ1〉 = 1√
2n ∑

x∈{0,1}n
|x〉

( |0〉 − |1〉√
2

)
. (12)
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The derivation of the previous equation is based on the fact that

H⊗n |0〉⊗n =
1√
2n ∑

x∈{0,1}n
|x〉 , (13)

a standard result in the literature (for its derivation see [26,27]). At this point the input
register is in an even superposition of all possible states and the output register is in an
evenly weighted superposition of |0〉 and |1〉. Thus, Alice is now ready to send both
registers to Bob so he may apply the function fs(x) using

Uf : |x, y〉 → |x, y ⊕ f (x)〉 , (14)

which results in the next state

|ψ2〉 = 1√
2n ∑

x∈{0,1}n
(−1) f (x) |x〉

( |0〉 − |1〉√
2

)
. (15)

The appearance of (−1) f (x) in Equation (15) is due to the fact that if |y〉 = |0〉−|1〉√
2

, then

|y ⊕ f (x)〉 =
⎧⎨⎩

|0〉−|1〉√
2

if f (x) = 0
|1〉−|0〉√

2
if f (x) = 1

⇒ |y ⊕ f (x)〉 = (−1) f (x)
( |0〉 − |1〉√

2

)
. (16)

In view of (9) and (15) becomes

|ψ2〉 = 1√
2n ∑

x∈{0,1}n
(−1)s·x |x〉

( |0〉 − |1〉√
2

)
, (17)

which is the state returned back to Alice.
Let us now recall the following well-known equation that gives in a succinct form the

result of the application of the Hadamard transformation to an arbitrary n-qubit basis ket
|x〉 (see [26,27]).

H⊗n |x〉 = 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉 . (18)

Thus, after Alice receives the registers back, she applies the Hadamard transform to
the input register for a second time. Via the use of Equation (18), the resulting state can be
written as

|ψ3〉 = 1√
2n ∑

x∈{0,1}n
(−1)s·x H⊗n |x〉

( |0〉−|1〉√
2

)
= 1√

2n ∑
x∈{0,1}n

(−1)s·x
(

1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉

)( |0〉−|1〉√
2

)
= 1

2n ∑
x∈{0,1}n

∑
z∈{0,1}n

(−1)s·x⊕z·x |z〉
( |0〉−|1〉√

2

)
= 1

2n ∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(s⊕z)·x |z〉
( |0〉−|1〉√

2

)
= |s〉

( |0〉−|1〉√
2

)
(19)

The last equation is due to the following fact: if s = z, then ∀ x ∈ {0, 1}n (s⊕ z) · x = 0,
otherwise for exactly half of the inputs x the exponent will be 0 and for the remaining half
the exponent will be 1. This is typically written in a more concise manner as follows:

∑
x∈{0,1}n

(−1)(s⊕z)·x = 2nδs,z . (20)
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The algorithm terminates with the final measurement of the input register by Alice
whereby she obtains the secret key s and concludes the whole process.

3. QKD Based on Symmetric Entangled B-V

In this section, the two versions of the proposed symmetric entangled QKD protocol
based on the Bernstein-Vazirani algorithm are presented and described in great detail.
These are the fully symmetric version of the protocol, or fSEBV for short, and the semi-
symmetric version of the protocol, or sSEBV for short.

3.1. The fSEBV Protocol

Starting with the fSEBV protocol we consider a slight alteration of the aforementioned
Bernstein-Vazirani game. As before, the game starts with the two players Alice and Bob
who are spatially separated. This time, instead of using normal qubits in a separable state,
they use maximally entangled EPR pairs, and they both share a qubit from each pair. An
important rule of the game is that there are no limitations on which entity will actually
create the EPR pairs in the first place. The pairs can be created and distributed accordingly
by Alice or Bob, or they can be acquired from a third party source. This last situation
is depicted in Figure 2. Exactly as in the previous game, the goal of the current game
is to acquire a secret key s. However, in this specific protocol symmetry plays a crucial
role, as Alice and Bod behave in a perfectly symmetrical way by both having their own
secret keys, which they will attempt to input into the system, exactly as in the original
algorithm. Alice’s key is denoted by sA, Bob’s key by sB and they both take identical
actions. Please note that neither Alice nor Bob need apply the Hadamard transform onto
their input registers because they are already in the desired even superposition of all basis
states, as they are populated by n pairs in the |Φ+〉 Bell state. In this respect the fSEBV
protocol differs from the vanilla Bernstein-Vazirani algorithm.

Source of |Φ+〉 pairs

Alice BobQuantum Channel

Public Channel

|q0〉A |q0〉B

. . . . . .
|qn−1〉A |qn−1〉B

Figure 2. Alice and Bob are spatially separated. A third party, the source, creates n pairs of |Φ+〉
entangled photons and sends one qubit from every pair to Alice and the other qubit to Bob.

Following the aforementioned steps of the fSEBV protocol, a valid question may arise
regarding what will Alice and Bob acquire after they both apply their starting secret keys
sA and sB into their own pieces of the EPR pairs? To provide the answer, let us examine
the algorithm more closely. With the help of Equation (7), the initial state of the protocol
can be written as

|ψ0〉 = |Φ+〉⊗n |1〉A |1〉B =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B |1〉A |1〉B . (21)
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Subscripts A and B are consistently used to designate Alice’s and Bob’s registers
respectively. Alice and Bob initiate the protocol by applying the Hadamard transform to
their output registers, which produces the ensuing state

|ψ1〉 = 1√
2n ∑

x∈{0,1}n
|x〉A |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

. (22)

Now, both Alice and Bob can apply their functions on their registers using the
standard scheme

Uf : |x, y〉 → |x, y ⊕ f (x)〉 . (23)

Consequently, the next state becomes

|ψ2〉 = 1√
2n ∑

x∈{0,1}n
(−1) fA(x) |x〉A (−1) fB(x) |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

. (24)

At this stage, let us recall that Alice’s and Bob’s functions are

fA(x) = sA · x mod 2 (25)

fB(x) = sB · x mod 2 , (26)

where sA and sB are the keys chosen by Alice and Bob, respectively. Based on (24)–(26) can
be written as

|ψ2〉 = 1√
2n ∑

x∈{0,1}n

(−1)sA ·x |x〉A (−1)sB ·x |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1√
2n ∑

x∈{0,1}n

(−1)sA ·x⊕sB ·x |x〉A |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

(27)

=
1√
2n ∑

x∈{0,1}n

(−1)(sA⊕sB)·x |x〉A |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

.

Subsequently, both Alice and Bob apply the Hadamard transformation to their input
registers. This drives the system into the next state, which, by utilizing Equation (18) twice,
can be written as

|ψ3〉 = 1√
2n ∑

x∈{0,1}n
(−1)(sA⊕sB)·x H⊗n |x〉A H⊗n |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)(sA⊕sB)·x

⎛⎝ 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉A

⎞⎠⎛⎝ 1√
2n ∑

w∈{0,1}n
(−1)w·x |w〉B

⎞⎠
( |0〉 − |1〉√

2

)
A

( |0〉 − |1〉√
2

)
B

(28)

=
1

(
√

2n)3 ∑
x∈{0,1}n

∑
z∈{0,1}n

∑
w∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1

(
√

2n)3 ∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

.

When z ⊕ w = sA ⊕ sB, then ∀x ∈ {0, 1}n, the expression (−1)(sA⊕sB⊕z⊕w)·x becomes
(−1)0 = 1 and the sum ∑x∈{0,1}n(−1)(sA⊕sB⊕z⊕w)·x = 2n.

150



Entropy 2021, 23, 870

Whenever z ⊕ w �= sA ⊕ sB, the sum is just 0 because for exactly half of the inputs x

the exponent will be 0 and for the remaining half the exponent will be 1. Hence, one may
write that

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x = 2nδsA⊕sB ,z⊕w . (29)

Using Equation (29), and ignoring for the moment the two factors
( |0〉−|1〉√

2

)
A

and( |0〉−|1〉√
2

)
B

, the following two equivalent and symmetric forms can be derived

∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
z∈{0,1}n

|z〉A |sA ⊕ sB ⊕ z〉B , (30)

and

∑
w∈{0,1}n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
w∈{0,1}n

|sA ⊕ sB ⊕ w〉A |w〉B . (31)

By combining (28) with (30) and (31), state |ψ3〉 can be written in two different ways:

|ψ3〉 = 1√
2n ∑

z∈{0,1}n
|z〉A |sA ⊕ sB ⊕ z〉B

( |0〉−|1〉√
2

)
A

( |0〉−|1〉√
2

)
B

= 1√
2n ∑

w∈{0,1}n
|sA ⊕ sB ⊕ w〉A |w〉B

( |0〉−|1〉√
2

)
A

( |0〉−|1〉√
2

)
B

.
(32)

Finally, Alice and Bob measure their EPR pairs in the input registers, obtaining

|ψ4〉 = |z0〉A |sA ⊕ sB ⊕ z0〉B = |sA ⊕ sB ⊕ w0〉A |w0〉B , for some z0, w0 ∈ {0, 1}n . (33)

Please note that in general z0 �= w0. The quantum part of the protocol is now complete.
The final secret key is the string sA ⊕ sB ⊕ z0 that Bob measured in his input register. In the
highly unlikely event that |sA ⊕ sB ⊕ z0〉 = |0〉⊗n, Bob should inform Alice through the
use of the public channel that the whole procedure must be repeated once again, since such
a key is clearly unacceptable. However, for a n-bit key the probability of this happening
is negligible, specifically 1

2n , which rapidly tends to 0 as n → ∞. Hence, it may be safely
assumed that Bob possesses a viable secret key, namely sA ⊕ sB ⊕ z0. Now the final step is
for Alice to obtain the secret key too. This is easily achieved by simply having Bob publicly
announce his tentative secret key sB to Alice via the use of the public channel. Alice, who
has measured the binary string z0 and she is already aware of her initial secret key sA,
can easily obtain the final key, by simply calculating the XOR of sA, her measurement z0
and Bob’s initial key sB, which she learns from the public channel. This concludes the
fSEBV protocol.

The symmetry inherent in this protocol, enables the seamless reversal of roles. The
protocol, as stated above, grants the initiative to Bob: it is his measurement sA ⊕ sB ⊕ z0
that produces the secret key and it is his task to send his initial key sB to Alice, in order
to successfully complete the procedure. It is equally feasible to have Alice instead of Bob
drive the whole process by taking her measurement sA ⊕ sB ⊕ w0 to be the secret key, as
shown in (33). In such an implementation of the fSEBV protocol, Alice must reveal her
initial key sA to Bob via the public channel.

During the transmission of Bob’s key sB using a public channel, any potential eaves-
dropper, namely Eve, does not gain any advantage by listening to the public channel. Due
to the fact that she is oblivious of z0 and sA, she has no way of knowing or computing the
final secret key. Hence, the fSEBV protocol ensures that if Alice and Bob can create their
keys using a random number generator, in order to avoid possible patterns in the keys, Eve
will be left with 2n different combinations to test in order to find the secret key.
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The steps of the protocol from Alice’s and Bob’s side are shown below in an algorithmic
manner. Figure 3 depicts the protocol graphically in the form of a quantum circuit.

Figure 3. This figures gives a schematic representation of the proposed protocol.

Protocol fSEBV: Alice’s actions
Alice’s input register is populated with entangled qubits
• Alice’s output register is set to |1〉
• Alice applies the Hadamard transform to her output register
• Alice applies her tentative key sA
• Alice applies the Hadamard transform to her input register
• Alice measures her input register to find the random binary string z0
• Alice receives information from Bob whether the process was a success or must
be repeated
• If the procedure was successful, Alice receives from Bob his key sB and, by
already knowing sA and z0, she computes the final key sA ⊕ sB ⊕ z0

Protocol fSEBV: Bob’s actions
• Bob’s input register is populated with entangled qubits
• Bob’s output register is set to |1〉
• Bob applies the Hadamard transform to his output register
• Bob applies his tentative key sB
• Bob applies the Hadamard transform to his input register
• Bob measures his input register to find the final secret key sA ⊕ sB ⊕ z0
• In the unlikely event that |sA ⊕ sB ⊕ z0〉 = |0〉⊗n, Bob informs Alice that the
process must be repeated from the start
• Otherwise Bob communicates his tentative key sB to Alice via the public channel

3.2. The sSEBV Protocol

The sSEBV protocol explores a special but important case of the fSEBV protocol, which
differs from the latter in one important aspect. Alice possesses her random initial key
sA, but Bob’s key sB is not a random binary string anymore; it is specifically taken to be
0 = 0 . . . 0. Essentially, sSEBV protocol answers the question of what will happen, if one
of the players, either Alice or Bob, decides not to send a key. As before Alice and Bob are
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spatially separated and they both share n EPR pairs. In this variant, Alice and Bod behave
in a semi-symmetrical way. Alice still uses her random initial key sA, but Bob is obliged to
use 0 as his initial key.

In this case, by using Equation (7), it can seen that the initial state of the system
is the following

|ψ0〉 = |Φ+〉⊗n |1〉A |1〉B =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B |1〉A |1〉B . (34)

Similarly, Alice and Bob initiate the protocol by applying the Hadamard transform to
their output registers, which produces the ensuing state

|ψ1〉 = 1√
2n ∑

x∈{0,1}n
|x〉A |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

. (35)

Next Alice and Bob apply their corresponding functions on their registers via the
standard scheme

Uf : |x, y〉 → |x, y ⊕ f (x)〉 , (36)

only now the situation is quite different because Bob must necessarily use 0:

fA(x) = sA · x mod 2 (37)

fB(x) = 0 · x mod 2 = 0 . (38)

In view of Equations (37) and (38), the next state becomes

|ψ2〉 = 1√
2n ∑

x∈{0,1}n
(−1) fA(x) |x〉A (−1)0 |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)sA ·x |x〉A |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

. (39)

Subsequently, both Alice and Bob apply the Hadamard transformation to their input
registers. Taking into account Equation (18), one can see that their combined actions drive
the system into the next state

|ψ3〉 = 1√
2n ∑

x∈{0,1}n
(−1)sA ·x H⊗n |x〉A H⊗n |x〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)sA ·x

⎛⎝ 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉A

⎞⎠⎛⎝ 1√
2n ∑

w∈{0,1}n
(−1)w·x |w〉B

⎞⎠
( |0〉 − |1〉√

2

)
A

( |0〉 − |1〉√
2

)
B

(40)

=
1

(
√

2n)3 ∑
x∈{0,1}n

∑
z∈{0,1}n

∑
w∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

=
1

(
√

2n)3 ∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B

( |0〉 − |1〉√
2

)
A

( |0〉 − |1〉√
2

)
B

.

When z ⊕ w = sA, then ∀x ∈ {0, 1}n, the expression (−1)(sA⊕z⊕w)·x becomes
(−1)0 = 1 and the sum ∑x∈{0,1}n(−1)(sA⊕z⊕w)·x = 2n. Whenever z ⊕ w �= sA, the sum is
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just 0 because for exactly half of the inputs x the exponent will be 0 and for the remaining
half the exponent will be 1. Therefore, again one may write that

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x = 2nδsA ,z⊕w . (41)

Using Equation (41), and ignoring for the moment the two factors
( |0〉−|1〉√

2

)
A

and( |0〉−|1〉√
2

)
B

, the following two equivalent and symmetric forms can be derived

∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
z∈{0,1}n

|z〉A |sA ⊕ z〉B , (42)

and

∑
w∈{0,1}n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B = 2n ∑
w∈{0,1}n

|sA ⊕ w〉A |w〉B . (43)

By combining (40) with (42) and (43), state |ψ3〉 can be written in two different ways:

|ψ3〉 = 1√
2n ∑

z∈{0,1}n
|z〉A |sA ⊕ z〉B

( |0〉−|1〉√
2

)
A

( |0〉−|1〉√
2

)
B

= 1√
2n ∑

w∈{0,1}n
|sA ⊕ w〉A |w〉B

( |0〉−|1〉√
2

)
A

( |0〉−|1〉√
2

)
B

.
(44)

Now, when Alice and Bob measure their input registers, they will obtain

|ψ4〉 = |z0〉A |sA ⊕ z0〉B = |sA ⊕ w0〉A |w0〉B , for some z0, w0 ∈ {0, 1}n . (45)

As in the fSEBV protocol, here also holds that z0 �= w0 in general. This time, there are
two ways in which the final part of the protocol can unfold. One way, exactly like before,
is to take Bob’s measurement as the new secret key. The other, equally viable choice, is to
take Alice’s initial key sA as the final secret key. In that case Alice must publicly announce
z0 to Bob via a public channel, so that he can compute sA. This is a suitable choice in
cases where, for whatever reason, Alice must set the secret key herself, not wanting to
leave anything to chance. In that way she may securely communicate her chosen key to
Bob. As before, during the transmission of Alice’s measurement z0 using a public channel,
Eve does not gain any advantage by eavesdropping on their communication. Due to the
fact that she is oblivious to sA, she has no way of knowing or computing the final secret
key. Hence, the sSEBV protocol also ensures that if Alice devises her key using a random
number generator, in order to avoid possible patterns in the keys, Eve will be left with 2n

different combinations to test in order to find the secret key.
The detailed actions for the implementation of the sSEBV protocol from Alice’s and

Bob’s side are given below. Although the sSEBV protocol is not perfectly symmetric,
reversal of Alice’s and Bob’s roles is still trivially easy. As can be seen from the following
description, not only is Alice the one to choose the secret key, but it is also she that sends
the final measurement z0 to Bob so that he can successfully derive the secret key. It is
equally feasible to have Bob instead of Alice choose the secret key and have Alice use 0 in
the first stage. In such a realization of the sSEBV protocol, Bob must also reveal his final
measurement w0 to Alice via the public channel.

4. Examples Illustrating the Operation of the Protocols

This section presents and analyzes two small scale but detailed examples in order to
illustrate the operation of the fSEBV and sSEBV protocols in practice. The fSEBV and sSEBV
protocols were simulated using IBM’s Qiskit open source SDK ([28]). Specifically, the Aer
provider using the high performance qasm simulator for simulating quantum circuits [29]
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in its default settings was used. Please note that during our tests it was not possible to
simulate in Qiskit Alice and Bob being spatially separated or a third party source providing
the entangled EPR pairs. So these important assumptions cannot be accurately reflected in
the simulation and for that reason the examples do not represent a real life environment. As
a result Alice and Bob appear in the same circuit. Specifically, Alice’s input register consists
of the qubits |q2q1q0〉 and her output register is |q3〉. Symmetrically, Bob’s input register
consists of the qubits |q6q5q4〉 and his output register is |q7〉. Moreover, the entangled EPR
pairs are created by the circuit itself. This is depicted in Figures 4, where in the initial stage
of the corresponding circuits Hadamard and CNOT gates are used to populate Alice’s and
Bob’s input registers with entangled EPR pairs, exactly as explained in Section 2.

Protocol sSEBV: Alice’s actions
• Alice’s input register is populated with entangled qubits
• Alice’s output register is set to |1〉
• Alice applies the Hadamard transform to her output register
• Alice applies her chosen key sA
• Alice applies the Hadamard transform to her input register
• Alice measures her input register to find the random binary string z0
• Alice announces the binary string z0 to Bob via the public channel

Protocol sSEBV: Bob’s actions
• Bob’s input register is populated with entangled qubits
• Bob’s output register is set to |1〉
• Bob applies the Hadamard transform to his output register
• Bob applies his key 0
• Bob applies the Hadamard transform to his input register
• Bob measures his input register to find the binary string sA ⊕ z0
• Bob receives z0 and computes the key sA

4.1. Example for the fSEBV Protocol

In this example it is assumed that sA = 101 and sB = 110. The resulting circuit in
displayed in Figure 4.

Figure 4. The circuit for the fSEBV protocol.

The final measurement by Alice and Bob will produce one of the 8 outcomes shown in
Figure 5 along with their corresponding probabilities as given by running the qasm simula-
tor for 2048 shots. A simple inspection of the possible outcomes confirms Equation (33).
This is because every possible outcome can be written either as |z0〉A |sA ⊕ sB ⊕ z0〉B or as
|sA ⊕ sB ⊕ w0〉A |w0〉B, for some, generally different, z0, w0 ∈ {0, 1}n. Hence, Bob, after
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measuring (and accepting) the secret key sA ⊕ sB ⊕ z0, just needs to send his secret key
sB = 110 to Alice so that she too can derive the secret key.

Figure 5. The possible outcomes of the measurement and their corresponding probabilities for the
circuit in Figure 4.

To avoid any confusion, we clarify that the measurements shown in Figure 5 depict
both Alice’s and Bob’s input registers as |q6q5q4q2q1q0〉. In particular, every one of the
eight possible outcomes is shown along with the probability of measuring this outcome, as
computed by the qasm simulator. The three most significant bits represent Bob’s measure-
ment or |sA ⊕ sB ⊕ z0〉B and the three least significant bits represent Alice’s measurement
or |z0〉A. Thus, for this specific example, if Bob announces his initial key sB = 110 to Alice,
and Alice performs a XOR operation upon her measurement with Bob’s initial key and
her own initial key sA = 101, then Alice will obtain Bob’s final measurement, which is the
secret key.

4.2. Example for the sSEBV Protocol

In this example too, the entangled EPR pairs are created by the circuit itself. In the
initial stage of the corresponding circuits Hadamard and CNOT gates are used to populate
Alice’s and Bob’s input registers with entangled EPR pairs, as explained in Section 2.
Moreover, it is assumed that sA = 101 and sB = 000. The resulting circuit in displayed in
Figure 6.

Figure 6. The circuit for the sSEBV protocol.
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This time the final measurement by Alice and Bob will produce one of the 8 outcomes
shown in Figure 7 along with their corresponding probabilities as given by running the
qasm simulator for 2048 shots. As noted in the previous case, it suffices to inspect the
possible outcomes in order to confirm Equation (45). Now the correct interpretation of the
outcomes means viewing them either as |z0〉A |sA ⊕ z0〉B or as |sA ⊕ w0〉A |w0〉B, for some,
generally different, z0, w0 ∈ {0, 1}n. Hence, Alice, after making her final measurement and
finding a random binary string z0, she just needs to send z0 to Bob. Then Bob will be able
to derive Alice’s chosen secret key sA = 101.

Figure 7. The possible outcomes of the measurement and their corresponding probabilities for the
circuit in Figure 6.

Again, all of the eight possible outcomes are shown along with the probability of
measuring each one of them, as computed by the qasm simulator. The measurements
shown in Figure 7 depict both Alice’s and Bob’s input registers as |q6q5q4q2q1q0〉, that is
the three most significant bits represent Bob’s measurement or |sA ⊕ z0〉B and the three
least significant bits represent Alice’s measurement or |z0〉A. In this specific example, if
Alice announces her measurement |z0〉A to Bob, and Bob performs a XOR operation upon
his measurement, with Alice’s measurement, then Bob will obtain the secret key sA = 101
chosen by Alice.

5. Discussion and Conclusions

QKD protocols have surely proved by now that they are the future of key distribu-
tion. Their advantage stems from the fact that they allow us to harness the power of
quantum-mechanics and nature’s own laws, without having to rely on the complexity
of certain mathematical problems. In this paper, we tried to further expand the field of
quantum cryptography, by proposing a novel use for the Bernstein-Vazirani algorithm as a
symmetrical entanglement-based QKD protocol, coming in two flavors.

These two flavors differ on the degree of symmetry employed by the protocol. In the
fully symmetric variant, Alice and Bob take completely identical actions. This variant has
the ability to create a totally new and original key, a key that both Alice and Bob were
initially oblivious of. This can be useful in many situations as it ensures an additional
advantage security wise. Furthermore, it provides a degree of fairness, by putting both
parties on an equal footing, in the sense that neither Alice nor Bob can solely determine the
secret key.
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On the other hand, the semi-symmetric variant, which can technically be viewed as a
special case of the first protocol, deviates from this symmetry. In effect, the semi-symmetric
protocol answers the question of what will happen if one of the two players wants to
specify the secret key. In the presentation given in Section 3 it was Alice that chose the
secret key, but it is trivial to adjust the protocol so that Bob can be the party to decide the
secret key. This protocol can be useful in situations where a specific key must be chosen by
either Alice or Bob, and this key must be securely transmitted to the other party.

Additionally, we demonstrated two small scale but comprehensive examples, illus-
trating the operation of the two protocols in practice. Finally, we explained the protocols
strength against an eavesdropping attack by Eve. Both variants exhibit the inherent ro-
bustness of entanglement-based protocols against Eve’s attacks, as originally described
by Ekert. Moreover, the use of extra inputs in order to acquire the final secret key, adds
another layer of security.

In closing, we remark that we also believe that the rest of the old quantum algo-
rithms, such as the Deutsch-Jozsa algorithm and Simon’s periodicity algorithm, can all
be implemented as a symmetrical entanglement-based QKD protocols, posing a viable
suggestion for future work, along with the performance of these proposals against different
quantum attacks.
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Abstract: Lightweight session key agreement schemes are expected to play a central role in building
Internet of things (IoT) security in sixth-generation (6G) networks. A well-established approach
deriving from the physical layer is a secret key generation (SKG) from shared randomness (in the
form of wireless fading coefficients). However, although practical, SKG schemes have been shown
to be vulnerable to active attacks over the initial “advantage distillation” phase, throughout which
estimates of the fading coefficients are obtained at the legitimate users. In fact, by injecting carefully
designed signals during this phase, a man-in-the-middle (MiM) attack could manipulate and control
part of the reconciled bits and thus render SKG vulnerable to brute force attacks. Alternatively, a
denial of service attack can be mounted by a reactive jammer. In this paper, we investigate the impact
of injection and jamming attacks during the advantage distillation in a multiple-input–multiple-
output (MIMO) system. First, we show that a MiM attack can be mounted as long as the attacker has
one extra antenna with respect to the legitimate users, and we propose a pilot randomization scheme
that allows the legitimate users to successfully reduce the injection attack to a less harmful jamming
attack. Secondly, by taking a game-theoretic approach we evaluate the optimal strategies available to
the legitimate users in the presence of reactive jammers.

Keywords: physical layer security; secret key generation; injection attacks; jamming attacks;
pilot randomization

1. Introduction

The increasing interest in physical layer security (PLS) has been stimulated by many
practical needs, particularly in the context of Internet of things (IoT) applications [1].
For example, in [2,3], secret key generation (SKG) from wireless fading coefficients was
analyzed, showing its potential as a lightweight alternative to standard security schemes.
In fact, the SKG scheme allows two legitimate parties (Alice and Bob) to extract on-the-
fly secret keys, without the need for significant infrastructure. Furthermore, it has been
information-theoretically proven that by following the SKG process, Alice and Bob can
extract a shared secret over unauthenticated channels [4–6]. Building on that, numerous
practical experiments have demonstrated the feasibility of the scheme [7,8]. Moreover, it has
been shown that SKG can be combined with authenticated encryption (AE) schemes [9,10]
in order to overcome trivial man-in-the-middle (MiM) attacks, similarly to known MiM
attacks on unauthenticated Diffie–Hellman schemes.

The success of the SKG scheme relies on the reciprocity and variability of wireless
channels. On the one hand, the reciprocity property allows both Alice and Bob to measure
an identical channel impulse response during the coherence time of the channel [11–13],
while on the other hand, the variability property of the wireless channel directly affects the
key generation rates [14–17].
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However, the exchange of pilots during the channel estimation phase between Alice
and Bob could allow an adversary (Mallory) to estimate the channels Alice–Mallory and
Bob–Mallory. Having this information, Mallory could inject suitably precoded signals
during the SKG process and could potentially control a significant part of the reconciled
sequence while remaining undetected. To overcome this, instead of transmitting publicly
known pilot signals, we propose a two-way randomized pilot transmission between Alice
and Bob. An earlier work studied this problem for an orthogonal frequency-division
multiplexing (OFDM) system [18]. Here, we investigate the scenario of a multiple-input–
multiple-output (MIMO) system. We prove that if Mallory has one extra antenna with
respect to Alice and Bob, she could always launch an injection attack. Next, through
theoretical analysis, we show that the proposed pilot randomization scheme successfully
reduces an injection attack to a less harmful uncorrelated jamming attack, ensuring that
the extracted key bits are secret from both active and passive adversaries.

In the second part of this paper, we delve deeper into jamming attacks over MIMO
systems. In particular, we focus on denial of service (DoS) in the form of reactive jamming.
We derive the optimal strategies for both the attacker and the legitimate users. Through
numerical evaluation, we demonstrate that, depending on their capabilities, reactive
jammers could provoke legitimate users to transmit at full power in order to achieve a
positive SKG rate.

2. System Model

In this work, we consider a time-division duplex MIMO (TDD–MIMO) system con-
sisting of two legitimate nodes and an active adversary, namely, Alice, Bob, and Mallory,
respectively. On the one hand, Alice and Bob are generating secret keys using the wireless
SKG procedure, while on the other hand, Mallory performs an injection attack on the
MIMO links Mallory–Alice and Mallory–Bob. The number of antennas at Alice NA and
Bob NB are assumed to be equal, i.e., NA = NB = N. To better illustrate the considered
scenario, we give a brief overview of the SKG procedure, and show how an injection attack
could affect the process.

2.1. Secret Key Generation from Fading Coefficients

As illustrated in Figure 1, the standard SKG procedure consists of three phases [19]:
(1) advantage distillation: the legitimate nodes exchange pilot signals, each using N
transmit and N receive antenna elements, in order to estimate their reciprocal channel state
information (CSI).

zA = Hx + nA (1)

zB = HTx + nB, (2)

where H represents the channel matrix of size Nr × Nt = N × N such that its (i, j) entry
represents the channel linking the i-th receive antenna, and the j-th transmit antenna, z

represents the received vector of length Nr, x denotes the transmitted vector consisting of
Nt = Nr = N elements, nA and nB are the received noise vectors at Alice and Bob, each of
length Nr, respectively. Note that, due to the reciprocity of the wireless channel, Alice and
Bob observe H and HT , respectively. To conclude this step, zA and zB are passed through
suitable quantizers [20], generating binary vectors rA and rB, respectively; (2) information
reconciliation: discrepancies, due to imperfect channel estimation in the quantizer local
outputs, are reconciled through a public exchange of helper data sA (see Figure 1), e.g.,
by using Slepian–Wolf reconciliation techniques [10,21]; (3) privacy amplification: the
legitimate nodes apply universal hash functions to the reconciled information rA and
obtain key k. This step ensures that the generated key k is uniformly distributed and
completely unpredictable by an adversary.
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During the process above, an eavesdropping adversary could obtain channel observa-
tions, given as follows:

zAM = HAMx + nAM, (3)

zBM = HBMx + nBM, (4)

where the channel matrices in the links Alice–Mallory and Bob–Mallory are denoted by
HAM and by HBM, respectively, while the received noise vectors are demoted by nAM and
nBM. Afterward, the SKG capacity between Alice and Bob is expressed as the conditional
mutual information between the observations of Alice, Bob, and Mallory.

I(zA; zB|zAM, zBM). (5)
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Figure 1. Secret key generation process between Alice and Bob.

2.2. Injection Attacks during SKG

One of the most critical threats to the SKG model, given in Figure 1, is MiM in the
form of an injection attack [11,22,23]. The main components of the injection attack are
captured in Figure 2. While, the legitimate nodes Alice and Bob exchange pilot signals
during the advantage distillation phase, Mallory injects signals p. Based on the results
in [22], we assume that Mallory has perfect knowledge of the channel vectors in the MIMO
links Mallory–Alice, HMA = HT

AM and Mallory–Bob, HMB = HT
BM. This is a reasonable

assumption since Mallory can estimate the channel vectors while Alice and Bob exchange
pilot signals, as long as the channel’s coherence time is respected (a plausible scenario in
slow-fading, low-mobility environments). Finally, Mallory chooses the vector p such that
the same signal is “injected“ at both Alice and Bob, i.e., HMAp = HMBp.
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Figure 2. Injection attack performed by Mallory: While Alice and Bob exchange pilot signals x over a
Rayleigh fading channel with realization H, Mallory injects a signal p such that the received signals
at both Alice and Bob coincide w = HMAp = HMBp.

3. Analysis of Injection Attacks in MIMO SKG

In this section, we first prove that if Mallory has one extra antenna, with respect to
Alice and Bob, she could always launch an injection attack. Next, we propose a pilot
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randomization scheme and show that when employed, legitimate users could successfully
reduce the attack to a jamming attack.

Lemma 1. While Alice and Bob perform advantage distillation using N antennas, Mallory could
always launch an injection attack, as long as she has at least N + 1 antennas.

Proof. The precoding vector of Mallory p of size (N + 1)× 1 is represented as

p =

⎡⎢⎣ p1
...

pN+1

⎤⎥⎦. (6)

The channel matrices HMA and HMB have size N × (N + 1), such that

HMA =

⎡⎢⎣HMA1,1 · · · HMA1,N+1
... · · · ...

HMAN,1 · · · HMAN,N+1

⎤⎥⎦, (7)

and

HMB =

⎡⎢⎣HMB1,1 · · · HMB1,N+1
... · · · ...

HMBN,1 · · · HMBN,N+1

⎤⎥⎦. (8)

Next, we can represent the equation

HMAp = HMBp, (9)

as
(HMA − HMB)p = 0, (10)

where HM = HMA − HMB is equal to:

HM =

⎡⎢⎣ HMA1,1 − HMB1,1 · · · HMA1,N+1 − HMB1,N+1
... · · · ...

HMAN,1 − HMBN,1 · · · HMAN,N+1 − HMBN,N+1

⎤⎥⎦. (11)

Given the above, Equation (10) can be rewritten as HMp = 0, where HM is given in
Equation (11). The equality HMp = 0 is equivalent to solving the following linear system
of equations: ⎧⎪⎨⎪⎩

HM1,1 p1 + HM1,2 p2 + · · ·+ HM1,N+1 pN+1 = 0
...

HMN,1 p1 + HMN,2 p2 + · · ·+ HMN,N+1 pN+1 = 0.

(12)

Due to the fact that Mallory has an additional degree of freedom (one extra antenna), as
compared to Alice and Bob, she can treat one of the elements in p as a constant and solve
for the others in terms of it. Based on this, we let pN+1 be a constant and rewrite the system
in (12) as ⎧⎪⎨⎪⎩

HM1,1 p1 + HM1,2 p2 + · · ·+ HM1,N pN = −HM1,N+1 pN+1
...

HMN,1 p1 + HMN,2 p2 + · · ·+ HMN,N pN = −HMN,N+1 pN+1.

(13)

The system of equations in (13) can be represented as Ax = b, where the N × N matrix A is
the N × N matrix containing the first N lines and N columns of HM, x = (p1, p2, . . . , pN)

T, and
b contains the right-hand side of the system, i.e., b = (−HM1,N+1 pN+1, . . . ,−HMN,N+1 pN+1)

T .
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Finally, since det(A) �= 0 almost surely, (i.e., under the assumptions in Section 2, det(A)
is a continuous random variable, hence det(A) �= 0 with probability 1) and therefore the
system’s solution is unique and given by

(p1, p2, . . . , pN)
T = A−1b. (14)

Note that if Mallory has the same number of antennas as Alice and Bob, she will not have
one extra degree of freedom and the transition from the system in Equation (12) to the
system in Equation (13) would not be possible. However, as shown here, if Mallory has
one extra antenna, with respect to Alice and Bob, she can treat one of the elements in p

as constant, which allows her to find the rest of the elements as in Equation (14). This
concludes the proof of Lemma 1.

Based on Lemma 1, the observations of Alice and Bob are now given by

zA = Hx + w + nA (15)

zB = HTx + w + nB, (16)

where w = HMAp = HMBp denotes the observed injected signals at Alice and Bob, which
are identical due to the precoding vector p. By injecting w, Mallory controls the secret key
rate, which is now upper bounded by [18,24]

L ≤ I(zA, zB; w). (17)

Pilot Randomization as a Countermeasure to Injection Attacks

It has been shown that a countermeasure to injection attacks can be built by random-
izing the pilot sequence exchanged between Alice and Bob [18,23,24]. In this work, we
propose a MIMO pilot randomization scheme in which pilots are drawn from a (scaled)
QPSK modulation. Specifically, Alice and Bob do not transmit the same pilot signal x;
instead, they transmit independent, random pilot signals x and y drawn from i.i.d. zero-
mean discrete uniform distributions in which the individual elements of the vectors have
probability mass functions as U ({±r ± jr}, . . . , {±r ± jr}), where j =

√−1, r =
√

P/2, so
that E[x] = E[y] = (0, . . . , 0)T , (E

[|x1|2
]
, . . . ,E

[|xN |2
]
)T = (E

[|y1|2
]
, . . . ,E

[|yN |2
]
)T =

(P, . . . , P)T and (E[x1y1], . . . ,E[xNyN ])
T = (0, . . . , 0)T , i.e., the pilots are randomly chosen

QPSK signals. Given that Alice’s and Bob’s observation zA and zB are modified as

zA = Hy + w + nA, (18)

zB = HTx + w + nB. (19)

Finally, to generate shared randomness, Alice and Bob post-multiply zA and zB by
their own randomized pilot signals, such as z̃A = xTzA and z̃B = yTzB (unobservable by
Mallory). Given this, the modified observations are expressed as

z̃A = xTHy + xTw + xTnA, (20)

z̃B = yTHTx + yTw + yTnB, (21)

where the shared randomness between Alice and Bob is now represented by xTHy =
xHTyT . Furthermore, the independence of x and y ensures the following:

L ≤ I(z̃A, z̃B; w) = 0. (22)

4. Jamming Attacks on SKG

In this section, we focus on reactive jamming attacks in SKG systems and examine the
scenario in which Mallory reactively jams Alice (note that the scenario in which Mallory
jams Bob is identical). A reactive jamming attack is an intelligent approach in which the
jammer initially senses the spectrum and jams only if a transmission is detected. Due to
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the difficulty to be detected, reactive jamming attacks are considered to be a great threat
to legitimate transmission [25,26]. Next, we assume that Alice and Bob perform SKG
in a TDD–MIMO system with a spatially uncorrelated channel. It has been proven that
the optimal power strategy for Alice and Bob in this scenario is to employ equal power
distribution [27], which is also assumed for this study, i.e.,(

E

[
|x1|2

]
, . . . ,E

[
|xN |2

])T
= (p, . . . , p)T with p ∈ [0, P]. (23)

In the following, we assume that Mallory has N antennas, and as a reactive jammer,
she senses the spectrum and jams in the link Mallory–Alice only if she detects a power
greater than a certain threshold pth. Thus, instead of considering Mallory’s power allocation
matrix, we work with the sum jamming power for all antennas, which can be represented
as a power allocation vector γ = (γ1, . . . , γN). By denoting the available jamming power
by NΓ, the following short-term power constraint is considered:

γ ∈ R
N
+ ,

N

∑
i=1

γi ≤ NΓ. (24)

Assuming that H is uncorrelated with HAM, HBM and that all channel matrices have
independent and identically distributed elements that are drawn from circularly symmetric
zero-mean Gaussian distributions of variances σ2 and σ2

J , respectively, then the SKG
capacity can be expressed as [27]

CK(p, γ) = N
N

∑
i=1

log

⎛⎜⎝1 +
pσ2

2(1 + γiσ
2
J ) +

(1+γiσ
2
J )

2

pσ2

⎞⎟⎠. (25)

4.1. Optimal Power Allocation Strategies

In the following, we take a game-theoretic approach in order to evaluate the optimal
strategies of Alice, Bob and Mallory. Throughout the following Alice and Bob’s common
objective is to maximize CK(p, γ) with respect to (w.r.t.) p, while Mallory wants to minimize
CK(p, γ) w.r.t. γ. Due to the reversed objectives, we formulated a noncooperative zero-sum
game, which studies the strategic interaction between the legitimate users and the jammer:
G = ({L, J}, {AL,AJ(p)}, CK(p, γ)). The game G has three components: (i) there are two
players, namely, L, denoting the legitimate users (Alice and Bob act as a single player), and
J being the jammer (Mallory); (ii) player L has a set of possible actions AL = [0, P], while
player J’s set of actions is

AJ(p)=

{ {(0, . . . , 0)}, if p ≤ pth,{
γ ∈ RN

+ |∑N
i=1 γi ≤ NΓ

}
, if p > pth.

(26)

Lastly, CK(p, γ) denotes the payoff function of player L.
Given the fact that player J is a reactive jammer, i.e, first observes the transmit power of

player L and subsequently chooses a strategy, we study a hierarchical game in which player
L is the leader, and player J is the follower. In this game, the solution is the Stackelberg
equilibrium (SE)—rather than Nash—and it is defined as a strategy profile (pSE, γSE) where
player L chooses their optimal strategy first, by anticipating the strategic reaction of player
J (i.e., its best response). This is expressed as:

pSE � arg max
p∈AL

CK(p, γ∗(p)), and γSE � γ∗(pSE), (27)

where γ∗(p) defines the best response (BR) of player J to any strategy p ∈ AL chosen by
player L, and it is defined as follows:
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γ∗(p) � arg min
γ∈AJ(p)

CK(p, γ). (28)

Finally, based on the detection capabilities at player L, two scenarios are considered:
(i) when the detection threshold pth is fixed (defined by the sensing capability of Mallory’s
receiver); (ii) when pth is part of player L’s strategy and could vary.

4.2. Stackelberg Equilibrium with Fixed Detection Threshold

In this section, we evaluate SE, when player J’s detection threshold pth is predefined
and constant. Note that the case P ≤ pth is trivial as γSE = (0, . . . , 0), and the legitimate
users will optimally use their maximum available power, i.e., (pSE = P). Indeed, due
to the poorly chosen threshold pth or low sensing capabilities of Mallory, the legitimate
transmission will not be detected and therefore will not be jammed. In the following, we
assume that P > pth.

Lemma 2. The BR of player J for any p ∈ AL chosen by player L defined in (28) is the uniform
power allocation, given as

γ∗(p) �
{

(Γ, . . . , Γ), if p > pth,
(0, . . . , 0), if p ≤ pth.

(29)

Proof. Note that CK(p, γi) is a monotonically decreasing convex function w.r.t γi, i =
1, . . . , N for any p > 0. Based on the principles of convexity in order to minimize CK,
Mallory has to transmit with full power from all antennas. The detailed proof can be found
in [18].

Based on the result from Lemma 1, the SKG rate can have the following two forms:

CK(p, γ∗(p)) =
{

CK(p, (0, . . . , 0)), if p ≤ pth,
CK(p, (Γ, . . . , Γ)), if p > pth,

(30)

which simplifies the players’ options.

Theorem 1. Depending on their available power P for SKG, Alice and Bob will either transmit at
P or pth. The SE point of the game is unique when P �= pth(Γσ2

J + 1) and is given by

(pSE, γSE)=

{
{(pth, (0, . . . , 0))}, if P < pth(σ

2
J Γ+1),

{(P, (Γ, . . . , Γ))}, if P > pth(σ
2
J Γ+1).

(31)

When P = pth(σ
2
J Γ+ 1), the game G has two SEs: (pSE, γSE) ∈ {(pth, (0, . . . , 0)), (P, (Γ, . . . , Γ))}.

Proof. Given the BR of player J defined in (29), the legitimate users want to identify their
optimal p ∈ AL that maximizes

CK(p, γ∗(p)) =
{

CK(p, (0, . . . , 0)), if p ≤ pth,
CK(p, (Γ, . . . , Γ)), if p > pth,

(32)

Given the fact that CK(p, γ) is monotonically increasing with p for fixed γ, two cases are
distinguished: (a) p ∈ [0, pth], (b) p ∈ (pth, P]. The optimal p in each case is given by
(a) arg max

p∈[0,pth]

CK(p, γ∗(p)) = arg max
p∈[0,pth]

CK(p, (0, . . . , 0) = pth,

(b) arg max
p∈(pth,P]

CK(p, γ∗(p)) = arg max
p∈(pth,P]

CK(p, (Γ, . . . , Γ) = P.
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From (a) and (b), it can be concluded that the overall solution is pSE =

arg max
p∈AL

CK(p, γ∗(p)) =

⎧⎨⎩
pth, if CK(P, Γ) < CK(pth, 0),
P, if CK(P, Γ) > CK(pth, 0),
{pth, P}, if CK(P, Γ) = CK(pth, 0).

To simplify the above possibilities, we focus on the case when the utility function
CK(P, Γ), i.e., being detected and jammed, equals the utility function when player L is
transmitting at threshold pth (player J is silent), i.e., CK(P, Γ) = CK(pth, 0). Using this
equality, by substituting appropriately into (25), we obtain a quadratic equation in P.

P2(2σ2 pth+1)−P(2pth
2σ2+2σ2

J Γpth
2σ2)− (1+σ2

J Γ)2 pth
2=0.

Note that Equation (33) has a unique positive root equal to pth(σ
2
J Γ + 1). Furthermore,

due to the fact that the leading coefficient of (33): (2σ2 pth + 1) ≥ 0 and P > 0, we can
state that the inequalities CK(P, Γ) > CK(pth, 0) and CK(P, Γ) < CK(pth, 0) are equivalent
to P > pth(σ

2
J Γ + 1) and P < pth(σ

2
J Γ + 1), respectively.

A numerical evaluation of the SKG rate is presented in Figure 3. The parameters used
are N = 10, pth = 2, Γ = 3, and σ2 = σ2

J = 1. Figure 3 compares the achievable SKG rates
of the SE strategy, i.e., p = pSE with the two alternative strategies, i.e., p = P or p = pth. It
can be seen that if player L deviates from the SE point the achievable SKG rate can decrease
by up to 40%.

Figure 3. SE policy, compared to always transmitting with either full power or with pth. Used
parameters pth = 2, Γ = 3, N = 10, σ2 = σ2

J = 1.

4.3. Stackelberg Equilibrium with Strategic pth

Finally, we investigate the case when Mallory could optimally adjust pth and show
how her choice impacts Alice’s and Bob’s strategies. Allowing pth to vary modifies the
game under study as follows Ĝ = ({L, J}, {AL, ÂJ(p)}, CK(p, γ, pth)), where

ÂJ(p) �
{{((0, . . . , 0), pth), pth ≥ 0}, if pth ≥ p,{

(γ, pth) ∈ RN
+ | ∑N

i=1 γi ≤ NΓ
}

, if pth < p.
(33)
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The BR of the jammer can then be defined as

(γ̂∗(p), p̂th
∗(p)) � arg min

(γ,pth)∈ÂJ(p)
CK(p, γ, pth). (34)

Lemma 3. Mallory’s BR in this scenario is a set of strategies as follows:

(γ̂∗(p), p̂th
∗(p)) ∈ { ((Γ, . . . , Γ)ε), ε ∈ [0, p)}. (35)

Proof. The problem that the jammer wants to solve is min
(γ,pth)∈ÂJ(p)

CK(p, γ, pth), which can

be split as follows:

min
pth≥0

min
γ∈ÂJ(p)

CK(p, γ(p), pth). (36)

The solution of the inner minimization is known from (29). For the outer problem, we have
to find the optimal pth ≥ 0 that minimizes CK(p, γ̂∗(p), pth). Given that

min
pth≥0

CK(p, γ̂∗(p), pth)=

{
CK(p, Γ, pth), if pth < p,
CK(p, 0, pth), if pth ≥ p,

(37)

and that CK(p, Γ, pth) < CK(p, 0, pth), player J can optimally choose any pth such that
pth = ε, ∀ε < p. This allows the jammer to detect any ongoing transmission and to
perform a jamming attack.

Theorem 2. The game Ĝ has an infinite number of SEs as follows:

( p̂SE, γ̂SE, p̂th
SE) ∈ { (P, (Γ, . . . , Γ)ε), ∀ε < P}. (38)

Proof. Given Mallory’s BR, we evaluate the SE of the game Ĝ. The definition for p̂SE is
given as follows:

p̂SE � arg
p∈AL

max CK(p, γ̂∗(p), p̂th(p)∗). (39)

Since Mallory will act as in (35), we have

CK(p, γ̂∗(p), p̂th(p)∗) = CK(p, Γ, ε), ∀ε < p, (40)

and the fact that CK(p, Γ, ε) is monotonically increasing with p results in p̂SE = P.

Figure 4 illustrates the achievable SKG rate when pth is part of player J’s strategy. As
in Figure 3, the parameters are chosen as Γ = 3, N = 10 and σ2

J = 1. It can be seen that due
to a strategically chosen threshold from player J the legitimate users have no other choice
but to transmit at full power p = P = pSE. In fact, if the legitimate users deviate from the
SE strategy and transmit with low power p = pth, player J could successfully disrupt their
SKG process and decrease their achievable SKG rate by up to 97%.
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Figure 4. The effect to the SE policy when pth is part of player J strategy. Comparison of the
achievable SKG rate when player L chooses p = pSE with the case when transmitting with power pth.
Used parameters Γ = 3, N = 10, σ2 = σ2

J = 1.

5. Conclusions

In this study, injection and reactive jamming attacks were analyzed in MIMO SKG
systems. With respect to injection attacks, the study demonstrated that a trivial advantage in
the form of one extra antenna allows a MiM to mount such an attack. As a countermeasure,
we showed that a pilot randomization scheme can successfully reduce injection attacks to
jamming attacks. With respect to jamming attacks, using a game-theoretic approach, we
showed that an intelligent reactive jammer should optimally jam with full power when a
transmission is sensed. Finally, by strategically choosing her jamming threshold, i.e., just
below the power level used by the legitimate users, Mallory could perform a much more
effective attack. In fact, our theoretical analysis suggests that in this case, Alice and Bob
have no choice but to use their full power available for SKG. An important topic for further
research in this area is an examination of these initial findings in practical scenarios.
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Abstract: Quantum key distribution (QKD) systems provide a method for two users to exchange
a provably secure key. Synchronizing the users’ clocks is an essential step before a secure key can
be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to
achieve synchronization and thus avoid the need for additional classical synchronization hardware.
Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly,
and all known qubit-based synchronization protocols do not efficiently use all publicly available
information published by the users. Here, we introduce a Bayesian probabilistic algorithm that
incorporates all published information to efficiently find the clock offset without sacrificing any
secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify
our confidence in the synchronization. For demonstration purposes, we present a model system
with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with
decoy states. We use our algorithm to exploit the correlations between Alice’s published basis and
mean photon number choices and Bob’s measurement outcomes to probabilistically determine the
most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only
4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in
this example when simulating this system with a dark count probability per communication bin
width of 8 × 10−4 and a received mean photon number of 0.01.

Keywords: quantum key distribution (QKD); clock synchronization; Bayesian statistics

1. Introduction

Introduced in 1984 [1], quantum key distribution (QKD) is a symmetric encryption
protocol that promises unconditional information security founded on the fundamental
laws of physics, rather than on the difficulty of computational problems. Bennett and
Brassard established the first QKD protocol (BB84), which used the polarization degree of
freedom of single photons to transmit information. Subsequently developed protocols have
extended QKD to different types of systems [2] and relaxed the requirement for a true single-
photon source [3], paving the way for practical implementations of quantum cryptography.

For the sake of concreteness, we consider a polarization-based prepare-and-measure
protocol. Here, one user (Alice) prepares and transmits a periodic sequence of quantum
states with period τA encoded in at least two mutually unbiased orthonormal bases. In our
example system, we use two bases: horizontal/vertical (H/V) polarization and left cir-
cular/right (L/R) circular polarization. We also use the decoy-state protocol where Alice
occasionally sends the vacuum quantum state. A second user (Bob), measures each quan-
tum state randomly in one of the two bases and records the result. After the measurement
phase is complete, Alice and Bob publish their basis choices for each measurement and
keep only the measurements where Bob registers a click with his single-photon counting
detectors and they use the same basis. This process, called sifting, allows distilling a raw
key, which, after error correction and privacy amplification [4], becomes the secret classical
key securely shared between Alice and Bob. Because qubits are lost to the environment via
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transmission loss and environmental radiation is detected due to stray light and thermal
effects, our system is formally considered open. However, the security of the system is
still guaranteed using privacy amplification based on the quantum bit error rate (QBER).
Our example system uses a pulsed stochastic photonic source with decoy states [3], where
the decoys are photonic wavepackets with a lower mean photon number. To simplify the
example system and make it more efficient, we only transmit one state in the monitoring
basis, which gives an equivalent secure key rate in comparison to transmitting both states
in this basis [5,6].

A practical issue in quantum communication protocols is synchronizing Alice and
Bob’s two data streams. If Bob does not know precisely when Alice begins data transmis-
sion, he must begin recording measurements early or else risk missing some of Alice’s
transmission. In either case, because some signals do not arrive at Bob due to channel loss,
and extraneous events are caused by stray light and detector dark counts, the first event
Bob records is unlikely to be the first event Alice sends, resulting in some timing offset
that must be determined. Correcting this offset is an essential precursor to sifting: If Alice
and Bob do not agree on the timing of the events, they will compare basis choices from
different events, resulting in a high QBER and likely share no information. In addition,
determining which time bins correspond to Alice’s wavepacket arrival and which do not
allows timing-based noise filtering.

Further complicating the communication protocol is that the relative clock offset may
not be a constant due to drift in the relative phase and frequency between the transmitter
and receiver clocks. Alice has a communication protocol temporal bin width τA that may
be different from Bob’s bin width τB. The timing offset between their clocks Δ at the nth
communication time bin since the most recent clock synchronization is given by

Δ = t0 + (τA − τB)n + ε (1)

for an initial timing offset t0 and higher-order timing error ε. In this way, small differences
in clock frequencies can gradually change the clock offset so that a previously calculated
synchronization is no longer valid. Other timing errors, such as clock jitter and frequency
drift, also contribute to the need for a more robust synchronization solution. We denote the
time over which synchronization is maintained as Tb, i.e., the time over which the error in
Δ � τA.

Clock synchronization is sometimes achieved by directly sending Alice’s clock sig-
nal to Bob over a separate channel via an optical link or using a radio-frequency sig-
nal [7–16]. However, this introduces additional hardware requirements and increases
the cost and complexity of the setup. One way to avoid these additional resource re-
quirements is to use the quantum channel itself to transmit the information necessary to
perform the synchronization [17–20]. One such qubit-based synchronization protocol was
introduced and demonstrated by Calderaro et al. [17]. Their protocol uses a dedicated
clock-synchronization phase followed by a key distribution phase. In the synchronization
phase, a pre-agreed synchronization string is transmitted to Bob and the clocks are aligned
during post-processing.

The pre-agreed synchronization string is used to find the initial offset between Alice
and Bob’s clocks. Because it must be public knowledge, it cannot be used to generate a
secure key. If the clock frequencies are not consistent, simple clock offset recovery only
temporarily aligns until the clock drift becomes of-the-order-of the communication protocol
temporal bin width τA. Correcting for this clock frequency drift using only clock offset
recovery requires repeated synchronization/key distribution phases with a regularity that
depends on the stability of the clocks used in the experiment. This reduces the overall secure
key rate because no QKD states can be sent while the synchronization states are being sent,
which may result in zero key rate due to finite-key effects [21,22]. However, to account
for this drift without needing to send regular synchronization strings, Calderaro et al.
performs clock frequency recovery using the periodic arrival times of Alice’s qubits. Unlike
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the clock offset recovery, this does not require a pre-agreed synchronization string and thus
does not decrease the amount of key that can be sent.

While our method only uses clock offset recovery at this time, it avoids these potential
impacts on secure key rate by synchronizing the clocks using only information that is
already publicly sent over the insecure classical channel by Alice and Bob for sifting and
security analysis: The basis choices and the mean photon number of the transmitted signal.
Because we are transmitting only one state in the monitoring basis, the basis choices provide
information about which of Bob’s measurement outcomes are more likely. The decoy state
choices, which determine Alice’s mean photon number for each wavepacket, also contain
information about Bob’s measurement outcomes. For example, Bob is unlikely to record
any detections if Alice sends the vacuum decoy state.

By comparing this information to his measurement outcomes, Bob can probabilistically
determine the timing offset. To account for potential clock drift, Bob can perform this
synchronization in subsets of length Tb. Thus, Bob can find the up-to-date timing offset
and ensure that the basis choices he publishes are properly lined up with the ones sent to
him by Alice, but this requires an efficient analysis method to reduce the data requirements.
Of course, our approach as well as Calderaro’s requires low enough channel loss so that
there are enough events received by Bob over a drift interval as discussed below.

Another example of a qubit-based synchronization protocol for continuously-pumped
entanglement-based QKD systems was introduced by Ho et al. [20]. Here, they correlate
Alice and Bob’s detection events without considering basis information. Their synchro-
nization method relies on Alice’s knowledge that some communication time bins are
empty (assuming essentially unit detection efficiency for Alice’s setup) and hence Bob’s
corresponding time bin should also be empty. There is a single dominant peak in the
correlation function that identifies Δ assuming a large enough number of Bob’s detection
events. Because the detection timing information must already be shared publicly, this
strategy does not sacrifice any secure key. This method fails when the probability of Alice
generating a photon per communication time bin approaches unity because every time bin
is likely to be filled and hence the correlation function will have multiple high-value peaks
that create timing ambiguity.

In the next section, we outline our synchronization algorithm and its advantages, and de-
rive a formula for the synchronization probability using Bayesian analysis. In Section 3 we
introduce a model system, and in Section 4 we simulate data in this model system to
demonstrate the effectiveness of our method. In Section 5 we present our conclusions and
the potential applicability of this work to other QKD systems.

2. Qubit-Based Synchronization Algorithm

Similar to previous approaches, our algorithm uses a cross-correlation of Alice’s
periodically transmitted data and Bob’s received data to find the number of each type
of event pairing, where the cross-correlation is computed efficiently using a Fast Fourier
Transform (FFT). One complication of a prepare-and-measure scheme is that Alice attempts
to send a quantum state every communication time bin, corresponding to the high-photon-
probability limit of the Ho et al. [20] method discussed above. This problem is addressed
here using the decoy-state protocol [3], which must be used anyway to prevent a photon-
number-splitting attack.

Decoy states are sent by Alice randomly and correspond to wavepackets with a mean
photon number smaller than the signal state and often includes sending the vacuum state.
The vacuum state is particularly effective in the synchronization process because Alice
has high certainty that she sent no photons, limited by her ability to completely block the
source. Bob should then also see no photons, limited by the source of detection clicks from
non-ideal effects such as detector dark counts, detector afterpulsing, stray light, and the
bleed through of light from Alice’s source.

Beyond the decoy states, there are additional sources of correlation that can be ex-
ploited to help improve the synchronization process. For example, Alice’s use of the

175



Entropy 2021, 23, 988

efficient three-state protocol, where she only sends one state in the monitoring basis, gives
useful information if Alice and Bob also share basis-state information, which is already
required for sifting. We use a Bayesian statistical method, described below, that uses all
prior knowledge of the system characteristics, such as the state fidelities, the mean photon
numbers, the channel loss, the fractional sorting of Bob’s device for the two bases, and the
detector efficiency, to generate a lookup table of Bob’s detection probabilities for Alice’s
different inputs. With these, we can easily compute the synchronization probabilities of
different possible offsets using Bayesian statistics. Alice and Bob’s data is most correlated
when they are synchronized.

A significant advantage of our approach is that it does not sacrifice any secure key:
We only use the information that is already sent publicly over the insecure classical channel.
This is an improvement over synchronization protocols that share some fraction of the
raw data for synchronization purposes, as well as protocols that have a dedicated clock-
synchronization phase [17] during which no QKD states can be sent.

Bayesian analysis is a logical choice for synthesizing all available information and
using it to make accurate predictions about Δ. It also has the advantage that it predicts
the probability that Δ̂ is the best estimate of synchronization offset. This allows us to
quantitatively express our level of confidence in the synchronization estimate. Furthermore,
the additional information we incorporate in the protocol allows us to make a decision
with fewer received qubits, which makes the system more robust to clock drift.

Our algorithm uses FFTs to compute cross-correlations between Alice’s inputs and
Bob’s outputs, allowing us to count the number of each type of input-output pairing for
the different time offsets. The computational complexity of our algorithm is dominated
by these FFTs, which go as O(N log N) where N is the number of sampling bins. Each
cross-correlation requires three FFT computations, so the number of FFTs that must be
performed is 3 × nin × nout for a number of distinct inputs nin and distinct outputs nout.
In this example, nin = 5 (H/V signal, H/V decoy, L/R signal, L/R decoy, and vacuum) and
nout = 4 (H,V,L, and R), thus maintaining the computational complexity of O(N log2 N).

Synchronization Probability

Here we will use the strings of Alice and Bob’s data. A string of Bob’s data consists
of the results of each of his detectors at each sampling bin. Typically, Bob’s strings are
very sparse because there are many sampling bins in which he registers no detections.
A string of Alice’s data consists of her published information at each sampling bin. If the
communication time bin width is greater than the sampling time bin width, Alice will
have multiple string entries for each state she sends, each corresponding to what she
is sending at that part of her duty cycle. Determining the synchronization probability
consists of comparing different strings of Bob’s data (starting at different temporal offsets)
to strings of Alice’s data and calculating which of Bob’s strings D is most likely to be the
one generated by Alice’s corresponding string. We determine, for a particular string of
Bob’s, the probability that it could have been generated by Alice’s published string.

Mathematically, we phrase this as the likelihood p(D|S) of generating Bob’s string D
given the assumption that its generating string is the one Alice has published, denoted
by S. The uninformed assumption, which we will denote as S̄, is that Bob’s string D has
been generated by a random string other than Alice’s published string (from some other
portion of Alice’s sent data), with the stipulation that the other string is also periodic. This
mathematical framework will consider a subset of Alice’s data of N sampling bin widths
compared against a subset of Bob’s data of N + M sampling bin widths, meaning there
will be M possible offsets to consider.

To begin in our protocol formalism, we note that D is a string of length M + N of
Bob’s measurements at each sampling bin (including sampling bins where no detections
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were received). Each measurement Bi in Bob’s string consists of the click or no-click results
at all of Bob’s detectors. Bob’s string D can be written as

D = {B1, ..., BM+N}, (2)

which we can rewrite as
D = {B1, D′}, (3)

where
D′ = {B2, ..., BM+N}. (4)

We prefer to write the likelihood p(D|S) in terms of known quantities such as the
p(B1|S), the conditional probability of a time bin measurement B1 given S. Using this
notation, p(D|S) is given by

p(D|S) = p(B1, D′|S) = p(B1|D′, S)p(D′|S), (5)

where the final equality is a result of the product rule. Because we have assumed that B1 is
generated from Alice’s string, knowing D′ gives us no additional information about B1.
At best, it informs us whether S is true, which is already assumed; the bits are otherwise
independent because Alice’s sequence is random. Using these observations, we obtain

p(B1|D′, S) = p(B1|S), (6)

and, by extension,

p(D|S) =
N+M

∏
i=1

p(Bi|S), (7)

allowing us to write the likelihood as the product of the measurement probabilities at
each sampling bin. We note that even in the example where Alice only sends one state in
the monitoring basis, Bob must still measure both states in each basis to detect potential
eavesdropper attacks [5,6]. For computational ease, we also determine each sampling bin
measurement probability as the product of the probabilities of the outcomes at the four
different detectors b�, which are given by

p(Bi|S) =
4

∏
�=1

p(b�|S) (8)

Again, because the detectors’ events are assumed to be generated by independent
random processes, these probabilities can be considered independent when the generating
string is known.

When the generating string is not known (under the uninformed assumption S̄),
the detection probabilities can be approximated as independent when the received mean
photon number is low. Because the synchronization task is most difficult in low-signal
regimes, we use this approximation going forward. Thus,

p(D|S̄) =
N+M

∏
i=1

p(Bi|S̄) (9)

and

p(Bi|S̄) =
4

∏
�=1

p(b�|S̄). (10)

For a given input from Alice, each of Bob’s four detectors has an opportunity to detect
a photon above the detection clicks arising from non-ideal behaviors. Naturally, we will
use our knowledge of the system (the state fidelities, the quality of the polarization sorting,
the dark count rates, the detector efficiencies, and the signal and decoy received mean
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photon number) to estimate the detection probabilities as accurately and efficiently as
possible. Using a lookup table of the detection probabilities for the different inputs from
Alice, these likelihoods can be calculated using standard statistical methods.

However, the likelihood of generating D from Alice’s published string is not the same
as the probability that Alice’s published string is the one that generated D, which is given
by p(S|D) and is the most relevant quantity to determine synchronization. Bayes’ theorem
allows us to rewrite this quantity, called the posterior, as

p(S|D) =
p(D|S)p(S)

p(D)
. (11)

In addition, we must also include the information that we expect exactly one correct
synchronization offset (not just one on average).

To formulate the problem as an exclusive synchronization, we must find the probability
that some discreet timing offset, given by the time-bin index j, is the correct synchronization
offset, and that all the other offsets are incorrect. In other words, the probability that, for a
given string of length N published by Alice, all the measurements before the jth bin
are generated randomly, the measurements from j to j + N are generated from Alice’s
published string, and the measurements after j + N are generated randomly. Under these
assumptions, we can write p(B1, ..., BM+N |Sj) as a product of the likelihoods of these three
sections as

p(B1, ..., BM+N |Sj) = p(B1, ..., Bj−1|S̄j)p(Bj, ..., Bj+N |Sj)p(Bj+N+1, ..., BM+N |S̄j). (12)

Here we introduce S̄j, the assumption that the data is produced by a random string
other than the synchronization string in question, but one with the same phase (i.e.,
the signal arrives at the same time bin in each period as it does for Sj).

We can find the conditional probability for matching Alice’s string to Bob’s string at a
potential synchronization index j in this framework using Equation (11), which gives

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)p(Sj)

p(B1, ..., BM+N)
. (13)

Equation (13) is our main result and is the quantity of interest to identify clock
synchronization between Alice and Bob. We determine the optimum synchronization index
based on the value of j that maximizes this quantity, and the quantity itself gives us our
confidence in that choice.

The denominator in Equation (13) can be written in terms of known quantities using
marginalization. Marginalization consists of rewriting a probability as a sum of the com-
prehensive conditional probabilities; in this case, the different possible synchronization
indices written as

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)p(Sj)

M

∑
i=1

p(B1, ..., BM+N |Si)p(Si)

, (14)

where the i denotes the other potential synchronization indices.
To evaluate Equation (13), the likelihoods p(B1, ..., BM+N |Sj) and p(B1, ..., BM+N |Si)

can be determined using Equations (7), (9) and (12). The quantity p(Sj), called the prior, is
the ad hoc probability that D corresponds to Alice’s published string. That is, p(Sj) is the
probability that we are at the correct synchronization index. We use a uniform prior, which
assumes each candidate has a naïve 1/M probability of being the correct one given that we
have M candidate indices, which means that

p(Si) = p(Sj) =
1
M

(15)
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so that the prior terms cancel, giving us

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)

M

∑
i=1

p(B1, ..., BM+N |Si)

. (16)

Next, we apply Equation (12) to obtain

p(Sj|B1, ..., BM+N) = (17)

p(B1, ..., Bj−1|S̄j)p(Bj, ..., Bj+N |Sj)p(Bj+N+1, ..., BM+N |S̄j)

M

∑
i=1

p(B1, ..., Bi−1|S̄i)p(Bi, ..., Bi+N |Si)p(Bi+N+1, ..., BM+N |S̄i)

and use Equations (7) and (9) (of which the latter uses a low received mean photon number
approximation) to write everything in terms of known quantities as

p(Sj|B1, ..., BM+N) ≈

j−1

∏
k=1

p(Bk|S̄j)
j+N

∏
k=j

p(Bk|Sj)
M+N

∏
k=j+N+1

p(Bk|S̄j)

M

∑
i=1

(
i−1

∏
k=1

p(Bk|S̄i)
i+N

∏
k=i

p(Bk|Si)
M+N

∏
k=i+N+1

p(Bk|S̄i)

) (18)

Equation (18) is our master equation for the synchronization probability of an index j.
The numerator consists of the probability of an N-length string of Bob’s data starting at j
being produced by Alice’s published string, along with the probability that the remaining
data was produced by an unknown string of Alice’s data. The denominator sums this
same quantity over all possible synchronization indices, ensuring normalization. We take
the value of j that maximizes this quantity to be the optimum synchronization index,
and the value of p(Sj|B1, ..., BM+N) gives us the probability that we are correct. We can
compute this conditional probability using FFTs to count the number of each unique bin
measurement along with a lookup table of the probabilities of the events.

3. Model System

To illustrate our protocol, we simulate a model QKD system using a polarization-
based prepare-and-measure protocol with decoy states and only sending one state in the
monitoring basis. We set Alice’s repetition rate to be fA = 1/τA and a wavepacket duration
of Δt = τA/m with m = 8 for a duty cycle of 12.5 percent. We set Bob’s sampling rate to
n fA with n = 8 so that his sample period is matched to the wavepacket duration. These
conditions are illustrated in Figure 1. Alice generates a pseudorandom sequence such that
four quantum states L/R/H and a vacuum decoy state (a decoy state with mean photon
number equal to zero) are sent in equal parts on average.

For our numerical experiments, we simulate a QKD session by generating data that
emulates the state preparation and measurement, including aspects such as the received
mean photon number μ, probability of a detector dark count d over one communication
bin width τA, and variation in Δ due to clock drift, assumed to be constant over Tb. This
allows us to test how these factors impact the synchronization performance. We assume
a transmitted mean photon number μA = 1 where the received mean photon number
μ = ημA for a channel transmission η. While this μA is on the upper end of values used
in typical experiments, it allows us to explore the performance and limitations of our
algorithm at or beyond the greatest received mean photon number one would realistically
use: μA = 1 with zero loss.
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Figure 1. Illustration of the relative times used in the QKD protocol. Here, the signal (red) straddles
bins 1–2 due to an offset of Δ, and we do not consider bins 3–8. We take τA = τB, which is
approximately correct for a short enough data subset.

Assuming a Poisson distribution for Alice’s source, the probability of Bob registering
a click p(click, �) over a period τA at a particular detector � is given by

p(click, �) = 1 − (1 − d)e−μ� (19)

where μ� is the mean photon number received by detector �. The portion of the total mean
photon number μ that goes to the different detectors depends on which polarization state is
sent. We use ideal BB84 sorting in our model system so that all states have an equal chance
of being measured in either basis. States measured in the same basis as they are prepared
are detected accurately, while states measured in the opposite basis have an equal chance
of being measured in either opposite-basis state. For example, if Alice prepared an H-state
that Bob receives μ = 0.8, Bob’s measures μH = 0.4, μv = 0, and μL = μR = 0.2.

We assume that the observation window is long enough so that the p’s and μ’s can
be estimated accurately from the finite number of observations. This means the average
click probability can be extracted from the Bob’s raw data and we rewrite Equation (19) as
a function of p(click, �) so that

μ� = ln
(

1 − d
1 − p(click, �)

)
(20)

The mean photon numbers of the constituent pulses incident at the four detectors sum
to the average mean photon number of the main pulse just before it enters Bob’s detection
apparatus, so we can estimate the received mean photon number of a signal state as

μ =
4
3

4

∑
�=1

ln
(

1 − d
1 − p(click, �)

)
, (21)

where the factor of 4/3 accounts for the fact that we are sending vacuum states 25% of
the time.

We divide the data set into subsets duration Tb and perform synchronization and
sifting on each subset. Bob can record up to eight events (each of which may or may not
include a detection event or dark count) assuming that the detector deadtime is less than
Bob’s sampling time. However, because the clocks can only be synchronized to a resolution
of Bob’s sampling bin width, we expect Alice’s wavepacket to straddle 2 bins as illustrated
in Figure 1, with the end bins only having a partial wavepacket. The remaining six bins
only contain dark counts, which can be discarded after we determine Δ to reduce noise.
This amounts to detector time-gating in the post-analysis.

We assume that Bob begins recording before Alice begins transmitting, and continues
to record after she stops sending, so our received data is bookended by low signal regions.
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We find a best-fit step function to identify where the transmission begins and ends, which
gives us a coarse approximation of the synchronization index. For a range of different
string lengths N that determine the number of sampling bin widths in each synchronization
subset, we examine a window of M = 4000 nearby potential synchronization indices.
This value is chosen based on the typical precision of the coarse approximation of the
synchronization given by the best-fit step function.

4. Synchronization Simulations

To verify that our algorithm returns an accurate probability of synchronization, we
run 1000 simulated trials with a known synchronization index and compare the average cal-
culated probability of synchronization p(Sj|B1, ..., BM+N) to the average rate of finding the
correct index, which we denote by f (Sj|B1, ..., BM+N), in Figure 2. If our model is accurate,
then p(Sj|B1, ..., BM+N) ∼ f (Sj|B1, ..., BM+N), in which case we can take p(Sj|B1, ..., BM+N)
to be a reliable metric for quantifying our confidence in obtaining the correct Δ.

Figure 2. Bob’s required data record length needed to determine synchronization for two different
channel transmissions of (a) η = 0.05, corresponding to μ = 0.05 and (b) η = 1, corresponding
to μ = 1. We also show the probability of not obtaining synchronization, which better highlights
transition to high-certainty synchronization.

We see that p(Sj|B1, ..., BM+N) ∼ f (Sj|B1, ..., BM+N) to within our errorbars for mod-
erate channel loss (Figure 2a). However, p(Sj|B1, ..., BM+N) is consistently larger than
f (Sj|B1, ..., BM+N) for the case of zero channel loss (Figure 2b), a condition that is unlikely
to be encountered in an experiment but highlights the limitation of our algorithm. This
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result is not surprising given that our derivation given in Section 2 assumes low μ to arrive
at Equation (9). Assuming a transmitted mean photon number of 1, Figure 2b corresponds
to a zero channel loss system. This represents an upper limit on μ encountered in a typical
decoy state protocol where μA � 1 and thus, also serves as a lower bound on the accuracy
of our calculated synchronization probability.

A lower received mean photon number means a lower density of detected events.
Because detected events provide more information than no-detection events, a lower
μ requires us to consider a larger set of sampling bin widths N to achieve the same
synchronization confidence. Despite the fact that p(Sj|B1, ..., BM+N) does not match
f (Sj|B1, ..., BM+N) as well at higher values of μ, we can still achieve equivalent average
values of f (Sj|B1, ..., BM+N) at lower values of N. This fact is also illustrated in Figure 3,
where we see a direct correlation between μ and the N at which the synchronization
probabilities converge to one. The higher values of μ converge at lower values of N.

Figure 3. Average calculated synchronization probability as a function of string length on a logarith-
mic scale for different received mean photon numbers. The probability of registering a dark count
during one communication bin width is d = 8 × 10−4.

Another way to view this relation between μ, N, and p(Sj|B1, ..., BM+N) is to consider
the string length N required to achieve a particular synchronization confidence as a function
of μ as shown in Figure 4. For high μ and low N, we observe an approximately linear
relation between log10μ and log10N with a slope of ∼−1, which means that N ∼ 1/μ.
For lower μ, where there are fewer events and dark counts play a larger role, the probability
curves exhibit steeper slopes, demonstrating that synchronization becomes increasingly
difficult. This data can be used to estimate whether it is possible to synchronize over an
experimentally measured temporal block length Tb and, if it is possible, how low a value
of μ can be tolerated while still synchronizing reliably. As a concrete example, Bob needs
33,110 sampling bin widths, or about 4140 communication bin widths, to achieve a 95%
confidence for clock synchronization for μ = 0.01 and d = 8 × 10−4. This means we can
tolerate clock drifts approaching 1 part in 4140, or 242 μs of drift per second, because our
method assumes that the clock drift is much less than one communication bin width.
For context, we measure the rate of clock drift between two phase lock loops driven
by crystal oscillator clocks on DE10 Standard field programmable gate arrays (FPGAs),
and find the average clock drift rate to be 13.5 μs per second. Thus, our algorithm can
tolerate realistic clock drift rates in this example.

182



Entropy 2021, 23, 988

Figure 4. Dependence of string length threshold to achieve 95 percent synchronization confidence on
received mean photon number on a logarithmic scale, parameterized by different dark count probabilities.

5. Conclusions

In conclusion, we develop a novel probabilistic approach to qubit-based clock syn-
chronization using Bayesian analysis. By exploiting correlations between information Alice
shares publicly, such as basis and decoy state choices, and Bob’s detection events, we can
find the correct synchronization clock offset without sacrificing any secret key. Additionally,
our algorithm is more robust to noise, loss, and clock drift in comparison to other protocols
by incorporating all publicly available information using the Bayesian framework. Finally,
we demonstrate that our algorithm is successful and robust using a simulated BB84 com-
munication scheme, which confirms that our synchronization metric corresponds to the
probability of synchronization, especially in the low-μ limit. Our algorithm is applicable to
other QKD systems that use other degrees-of-freedom of the photon for which it is possible
to divulge some timing information.
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Abstract: Secure computation is a powerful cryptographic tool that encompasses the evaluation
of any multivariate function with arbitrary inputs from mutually distrusting parties. The obliv-
ious transfer primitive serves is a basic building block for the general task of secure multi-party
computation. Therefore, analyzing the security in the universal composability framework becomes
mandatory when dealing with multi-party computation protocols composed of oblivious transfer
subroutines. Furthermore, since the required number of oblivious transfer instances scales with the
size of the circuits, oblivious transfer remains as a bottleneck for large-scale multi-party computation
implementations. Techniques that allow one to extend a small number of oblivious transfers into a
larger one in an efficient way make use of the oblivious transfer variant called randomized oblivious
transfer. In this work, we present randomized versions of two known oblivious transfer protocols,
one quantum and another post-quantum with ring learning with an error assumption. We then
prove their security in the quantum universal composability framework, in a common reference
string model.

Keywords: oblivious transfer; quantum cryptography; post-quantum cryptography; universal
composability

1. Introduction

Oblivious transfer (OT), first introduced by Rabin in 1981 [1], is an important primitive
in modern cryptography. The OT primitive is known to be a basic building block for other
cryptographic tasks, including secure Multi-Party Computation (MPC), Bit Commitment
(BC), Coin-Tossing, and Zero-Knowledge Proofs [2–7].

A 1-out-of-2 OT protocol [8] consists of two parties, a sender with two input messages
(m0, m1) and a receiver with a choice bit b ∈ {0, 1}. The goal of the protocol is to output
only the message mb to the receiver, with no information about m1−b, and the sender
remains oblivious to the receiver’s input bit b. Note that, in the original work by Rabin,
called all-or-nothing OT [1], the sender has a single input message, while the receiver
has none. The protocol outputs the message to the receiver with probability 1

2 , such that
the receiver has no information whether or not the receiver obtained the message. It was
shown that one can construct 1-out-of-2 OT from all-or-nothing OT [9]. Another OT variant
is that of Randomized Oblivious Transfer (ROT), where neither of the parties have any
inputs. The ROT protocol, instead, outputs the messages (m0, m1) to the sender and (b, mb)
to the receiver, with (m0, m1, b) chosen uniformly at random from their domains.

MPC [10,11], which is an extremely useful cryptographic tool to compute arbitrary
functionalities, can be reduced to the OT primitive; i.e., having access to a secure OT is
sufficient [2]. MPC implementations based on oblivious-circuit evaluation techniques
require a large number of OT (one per input wire for Yao [10], and one per AND gate for
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GMW [11]). Since classical OT schemes (being based on asymmetric-key cryptography) are
relatively slow, the development of large-scale MPC implementations has been severely
hindered by the required OT rates. In order to deal with this issue of OT efficiency,
the concept of OT extension was introduced by Ishai et al. in 2003 [12]. This technique
refers to extending a small number of computationally expensive base OTs into a larger
number of OTs, using only cheap symmetric cryptography primitives. For proving the
security of these OT extension techniques in the malicious-adversary setting [13], it turns
out that one is required to use ROT instances as the base OTs. Additionally, ROT finds
direct application in designing efficient Private Set Intersection (PSI) protocols [14], one of
the most popular MPC techniques.

Moreover, even though the efficiency issue can be solved by the use of OT extensions
for MPC applications, there is the underlying threat that asymmetric-key based schemes
(e.g., integer-factorization or discrete-logarithm problems) will be faced with the arrival
of quantum computers [15]. The research initiatives for developing quantum-resistant
solutions have been following two paths. The first being on the development of more
hard-to-break classical cryptography algorithms that will remain secure even against a
quantum adversary. These solutions include the approximate Shortest Vector Problem
(SVP) on ideal lattices [16], the Learning with Errors (LWE) problem [17] and its ring
version, Ring Learning with Errors (RLWE) [16], constituting a new area of research,
called post-quantum cryptography. The second approach is that of quantum cryptography,
where solutions for Quantum Key Distribution (QKD), BC, and OT already exist [18].
While unconditional security for QKD has been proven [19], there are impossibility results
to achieve for the case of BC and OT [20–22]. Nevertheless, practical solutions for BC and
OT were proposed under the assumption of physical limitations on the devices, such as
noisy storage and bounded quantum memories [23–27].

Our Contribution

In this work, we explore the construction of two ROT protocols in the quantum
Universal Composability (UC) framework, in the Common Reference String (CRS) model:

• A quantum protocol based on the UC construction by Unruh [28] and augmented
with an additional subroutine to enforce randomized outputs.

• A classical protocol based on a variant of the RLWE assumption that adapts the one
presented in [29,30] but does not require a random oracle model and, instead, uses a
composable commitment scheme and a composable non-interactive zero knowledge
(NIZK) protocol.

In both cases, the basic idea is to build upon existing non-randomized OT protocols in
such a way as to force the values of all of the protocol’s outputs to be influenced by both
parties. This allows us to randomize both the messages m0, m1 and the choice bit b as long
as at least one party is honest, leading to a ROT protocol. Furthermore, we prove that the
resulting protocols are secure in the quantum UC framework.

This paper is organized in five sections. In Section 2, we briefly review some definitions
and functionalities relevant for the description and analysis of the protocols. In Section 3, we
present the generic construction of ROT from OT and afterwards present the commitment
scheme and OT protocols that we will be using to achieve the quantum security we need.
The security of the protocols are then shown in Section 4. Finally, in Section 5, we present
the main results of this work.

2. Background

The problems regarding Ring Learning with Errors are conjectured to be hard on
both classical and quantum computers. Before defining the RLWE distribution and its
decision problem, we first present the notation used. Let Rq = Zq[X]/ f (X) be a ring,
where q > 2 is a prime, and f (X) is a cyclotomic polynomial of degree n. Let β ∈ N and
χ be the error distribution that outputs elements of Rq with a norm greater than β with
negligible probability.
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Definition 1 (RLWE distribution). Let q, Rq and χ be as above. The RLWE distribution As,χ is
obtained by sampling a ∈ Rq uniformly, choosing e ←$ χ and outputting (a, b = as + e mod q)
for a secret s ∈ Rq.

Definition 2 (decision-RLWE). Let q, Rq, χ and As,χ be as above. For s ←$ Rq, given many
polynomial samples, the goal is to distinguish between As,χ and a uniform distribution over Rq × Rq.

By using the the RLWE variant of the LWE problem we are able to not only work with
smaller keys but also increase the speed of the operations by using the Number Theoretic
Transform (NTT). The protocol we will be analyzing uses a variant of the RLWE problem,
the Hermite Normal Form of the RLWE problem (HNF-RLWE), in which the secret s is
sampled from the error distribution χ instead of being chosen uniformly at random from
the ring Rq. This version of the problem is assumed to be hard as well, since RLWE reduces
to it [31].

Often times studying the standalone security of protocols is not enough, since they
will be frequently used as subroutines in more complex tasks, as is the case of OT, as well
as Coin Tossing, Commitment schemes, Zero-Knowledge proofs, etc. In order to ensure
that protocols are secure in any computational environment, Canetti [32] introduced the
Universal Composability (UC) framework, which we define next.

Let π be an n-party protocol and F be an ideal functionality. We denote as IDEALF ,S ,Z
the output of the environment Z at the end of the ideal-world execution of functionality
F with adversary S , and as EXECπ,A,Z the output of the environment Z at the end of the
real-world execution of π with adversary A. The notion of a protocol securely emulating
some ideal functionality is as follows:

Definition 3 (UC-secure). We say that π UC-emulates F if for any adversary A there exists a
simulator S , such that, for all environment Z ,

IDEALF ,S ,Z ≈ EXECπ,A,Z .

When discussing UC security, we can consider either a bounded (computational) or
unbounded (statistical) approach. In computational UC security, we restrict the adversary,
simulator, and environment to polynomial-time machines, and this approach is used when
showing security based on computational assumptions. On the other hand, in statistical UC
security, we quantify over all adversaries, simulators, and environments; as such, we can
model statistical security.

In this work, we consider malicious adversaries, that is, adversaries that can deviate in
any way from the protocol. However, we assume that the corruption of a party happens
before the start of the protocol, and both the sender or the receiver may be corrupted.

In Figures 1–5 we present the functionalities that will be relevant in this work.

Functionality FOT
Parameters: String size �.
Parties: The sender S and the receiver R.

1. Upon receiving inputs (m0, m1) ∈ {0, 1}� × {0, 1}� from S and b ∈ {0, 1} from R,
FOT sends mb to R.

Figure 1. OT functionality .
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Functionality FROT
Parameters: String size �.
Parties: The sender S and the receiver R.

1. Upon receiving message START from both S and R, FROT samples m0, m1
$←− {0, 1}�

and b $←− {0, 1}. It then sends (m0, m1) to S and (b, mb) to R.

Figure 2. ROT functionality.

Functionality FCOM
Parameters: Commitment size � (for bit commitment, � = 1).
Parties: The sender S and the recipient R.

1. Upon input (COMMIT, x) with x ∈ {0, 1}� from S, FCOM records x and sends a
receipt to R.

2. Upon input OPEN from S, send (OPEN, x) to R.

Figure 3. Commitment functionality.

Functionality FCRS
Parameters: Distribution D.

1. When activated for the first time on input VALUE, FD
CRS chooses a value d $←− D and

sends d back to the activating party. Every other activation will return the same d to
the activating party.

Figure 4. Common Reference String functionality.

Functionality FNIZK
Parameters: Common statement x.
Parties: The verifier V and the prover P.

• Proof: On input (x, w) from P, if R(x, w) = 1, then send p(w) to P.
• Verification: On input (x, p(w)) from V, send R(x, w) to V.

Figure 5. Non-Interactive Zero-Knowledge functionality.

We stress that the definition of FROT presented here is stronger than the one presented
in Unruh’s original paper [28], in which the outputs are only random if the parties are
both honest. In the same paper, the UC framework is extended to the quantum setting
by allowing the protocol π, the adversary A, the simulator S , and the environment Z to
be quantum.

Unruh [28] also showed that, when π is a classical protocol and π statistically UC-
emulates F , then π statistically quantum-UC-emulates F , providing a lift from statisti-
cal classical-UC to statistical quantum-UC. A similar result exists for the computational
case [28], but it is required that the adversary in the classical case is given the same com-
putational power as in the quantum setting; in other words, we need to guarantee that
the classical machines present in the proof of UC security are as powerful as quantum-
polynomial-time machines.

Consider protocols π and σ, we denote the protocol where σ invokes instances of π
by σπ . A usual situation would be σF , being a protocol that uses some ideal functionality
F , and σπ would then be the protocol that results from implementing that functionality
with some protocol π. Composition has been shown to be secure, both in the classical [32]
and quantum settings [28].
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Theorem 1 (Universal Composition Theorem [28]). Let F ,G be ideal functionalities. Let π be
an n-party protocol that UC-emulates G in the F -hybrid model, and let η be an n-party protocol
that UC-emulates F . Protocol πη then UC-emulates G.

3. Protocols

In this section, we start by presenting the generic construction of ROT from OT, using a
commitment scheme, and afterwards describe the commitment scheme and the quantum
OT protocol that will allow our ROT protocol to computationally quantum-UC-emulate
FROT . Finally, we describe a post-quantum approach, a ROT protocol based on the RLWE
assumption, inspired by the recent work of [30], with a small tweak to avoid using random
oracles, which misbehave against quantum adversaries.

3.1. Generating an UC-Secure Random OT

The protocol πOT→ROT is presented in Figure 6. We consider the two parties: the sender
S and the receiver R. It begins with R sampling two strings r0, r1 ∈ {0, 1}� and com-
mitting them to S. R then chooses a random bit c, and S chooses two random strings,
w0, w1 ∈ {0, 1}�. With these, the parties invoke the FOT functionality. Following that,
S chooses a random bit d and sends it over to R. Finally, R opens his commitment, and S
checks if it matches the initial commit. If it does not, it aborts; otherwise, it outputs
(M0 = wd ⊕ rd, M1 = wd⊕1 ⊕ rd⊕1). R outputs (b = c ⊕ d, Mb = wc ⊕ rc).

Protocol πOT→ROT
Sender S Receiver R

r0, r1 ←$ {0, 1}�
commit(r0, r1)←−−−−−−−−−−−−−−−−−−−−−−−

w0, w1 ←$ {0, 1}� c ←$ {0, 1}
(w0, w1)−−−−−−−−→ c←−−−−−−−−

FOT
wc−−−−−−−−→

d ←$ {0, 1}
d−−−−−−−−−−−−−−−−−−−−−−−→

open(r0, r1)←−−−−−−−−−−−−−−−−−−−−−−−
Abort if r0, r1 do not verify their commit

output: output:

(M0 = wd ⊕ rd, (b = c ⊕ d,

M1 = wd⊕1 ⊕ rd⊕1) Mb = wc ⊕ rc)

Figure 6. ROT protocol based on secure commitments.

3.2. UC-Secure Commitment Scheme

Canetti [33] showed that UC-secure commitment schemes are impossible in the plain
model, and the same result was later proven for the quantum setting as well [22]. With that
in mind, we will be working on the Common Reference String (CRS) model defined in
Figure 4.

The protocol πCOM in Figure 7 has been shown to be computationally UC-secure in the
CRS model [33]. The key to this protocol’s composability is the use of a trapdoor pseudo-
random generator (PRNG) Gpk, which is described by its public key pk. This generator Gpk
stretches n-bit inputs to 4n-bit outputs, and has a trapdoor td. Having access to both pk
and td, we can easily check if a given string y ∈ {0, 1}4n is in the range of Gpk.
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Protocol πCOM
Sender S Recipient R
input: b ∈ {0, 1}

(commitment phase)
value−−−−−−−−→ value←−−−−−−−−

FD
CRS

(pk0, pk1, σ)←−−−−−−−− (pk0, pk1, σ)−−−−−−−−→
r ←$ {0, 1}n

y ← Gpk0 (r) if b = 0

y ← Gpk1 (r)⊕ σ if b = 1
y−−−−−−−−−−−−−−−−−−−−−−−−−−→

output: receipt

(opening phase)
(b, r)−−−−−−−−−−−−−−−−−−−−−−−−−−→

Check if y = Gpk0 (r) for b = 0 or
y = Gpk1 (r)⊕ σ for b = 1.

If verification passes, accept.
Otherwise, reject.

Figure 7. UC-secure BC scheme in the One-Time CRS Model [32].

Note that the protocol πCOM is a bit commitment protocol, and for string commitment,
an instance of πCOM is needed to run for each bit of the string.

3.3. UC-Secure Quantum OT Protocol

The protocol in Figure 8 was proposed by Yao and has been shown to be statistically
quantum-UC-secure with ideal commitments [28].

We describe the logical qubit states |0〉 and |1〉 (representing the computational basis),
and the states |+〉 = (|0〉+ |1〉)/√2, |−〉 = (|0〉 − |1〉)/√2 (representing the Hadamard
basis). We use the following notation to define the states |(si, ai)〉 for si, ai ∈ {0, 1}:

|(0, 0)〉 = |0〉 |(0, 1)〉 = |+〉,
|(1, 0)〉 = |1〉 |(1, 1)〉 = |−〉.

The protocol begins with the sender S preparing qubit states and sending them to the
receiver R, which then samples a random string ã. For every qubit received, R measures the
i-th state on a computational basis if ãi = 0 or, on the Hadamard basis, if ãi = 1. Therefore,
approximately half of R’s measurement results will be correlated with the prepared states by
S, while the rest will be uncorrelated. To ensure security against a dishonest R, it is required
to commit information on all of his measurement bases and outcomes to S, which then picks
a random subset of them and tests for correlations. The passing of this test (statistically)
ensures that R measured its qubits honestly. Next, S shares with R the bases it used for her
state-preparation and, with this information, R knows which of its results are correlated
with the sender’s. The receiver, then, creates two sets: I0, with indices where it is measured
on the same basis as S, and I1, where their measuring bases differ. Following that, R uses
its choice bit b to select the order in which it sends the two sets to S. The sender samples
two hash functions f0, f1 at random, from a 2-universal family of hash functions F, in order
to generate uniform keys of appropriate size, as that of the messages m0, m1. S sends the
encrypted messages w0, w1 to R, which can only decrypt the message corresponding to the
set I0.
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Protocol πQOT
Sender S Receiver R

input: m0, m1 ∈ {0, 1}� input: b ∈ {0, 1}

(Oblivious key distribution phase)
s, a ←$ {0, 1}n+m

for i < n + m:

|φi〉 ← |(si , ai)〉
|φ〉 ← |φ1φ2 . . . φn+m〉 ã ←$ {0, 1}n+m

|φ〉−−−−−−−−−−−−−−−−−−−−−−−→
for i < n + m:

measure |φi〉 on the computa-
tional basis if ãi = 0
measure |φi〉 on the Hadamard

basis if ãi = 1
s̃i ← 0 if |φi〉 = |0〉

or |φi〉 = |+〉
s̃i ← 1 if |φi〉 = |1〉

or |φi〉 = |−〉
s̃ ← s̃1 s̃2 . . . s̃n+m

commit(s̃i , ãi) for i < n + m←−−−−−−−−−−−−−−−−−−−−−−−
Choose T ⊂ {1, . . . , n + m}
such that |T| = m

T−−−−−−−−−−−−−−−−−−−−−−−→
open(s̃j, ãj) for j ∈ T←−−−−−−−−−−−−−−−−−−−−−−−

for all j ∈ T check if

sj = s̃j whenever aj = ãj

Abort if the test fails

a∗ ← a|T
κ ← s|T

a∗−−−−−−−−−−−−−−−−−−−−−−−→
x ← a∗ ⊕ ã|T
κ̃ ← s̃|T

(Oblivious transfer phase)
I0 = {i|xi = 0}
I1 = {i|xi = 1}

(Ib, Ib⊕1)←−−−−−−−−−−−−−−−−−−−−−−−
f0, f1 ←$ F

for i ∈ {0, 1}:

wi = mi ⊕ fi( κ|Ib⊕i
)

( f0, f1, w0, w1)−−−−−−−−−−−−−−−−−−−−−−−→
output:

mb = wb ⊕ fb( κ̃|I0 )

Figure 8. Quantum UC-secure Quantum OT Protocol based on secure commitments [28].

3.4. Post-Quantum UC-Secure ROT Protocol

The protocol in Figure 9 is based on the recently proposed protocol by [30] (which was
based on [29]), which has been shown to be UC-secure under the RLWE assumption in the
Random Oracle Model (ROM). However, UC security using ROM does not directly lift to
UC security against quantum adversaries. Taking that into consideration, our idea is to
replace the random oracle calls, which are used to either commit to a string or to generate a
random string.
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In order to understand the protocol πROT , we need to provide some preliminary
definitions. A signal function Sig and an extraction function Ext are described as in the key
exchange protocol using RLWE of [34], to be used by the involved parties to reconcile a
shared key.

Let σ0, σ1 : Zq → {0, 1}. We define σ0, σ1 as follows:

σ0(a) =

{
0, a ∈ [−⌊ q

4
⌋
, � q

4�]
1, otherwise

and σ1(a) =

{
0, a ∈ [−⌊ q

4 + 1
⌋
, � q

4 + 1�]
1, otherwise

Next, we need to extend σ0, σ1 to the ring case. For any a = ∑n−1
i=0 aiXi ∈ Rq, we define

σ0, σ1 : Rq → R2 as follows:

σ0(a) =
n−1

∑
i=0

σ0(ai)Xi and σ1(a) =
n−1

∑
i=0

σ1(ai)Xi

The signal function Sig : Rq → R2 can now be defined as Sig(a) = σb(a), where b ←$ {0, 1},
while the extraction function Ext : Rq × R2 → R2 is

Ext(a, σ) =

(
a + σ

q − 1
2

mod q
)

mod 2.

We can now describe the ROT protocol based on the RLWE assumption, Figure 9,
which can be seen as a tweaked version of the protocol of [30], where we replace the
random oracles by a commitment scheme and a NIZK protocol, modeled as functionalities.

Let χ and q be as in Definition 2 and � be the security parameter. Let (m, h) be the
common string, where m, h ∈ Rq, and let Ext and Sig be the algorithms defined above.

The protocol starts with both parties generating an RLWE sample. The sender S
generates pS = msS + 2eS mod q, and the receiver R generates pc

R = msR + 2eR mod q,
where c is a bit randomly chosen by R. If the sampled bit c = 1, then R computes p0

R = p1
R−

h mod q. The receiver then samples two strings t0, t1 ←$ {0, 1}�, commits both strings,
and sends p0

R to S. The sender uses the common string h and p0
R to compute p1

R = p0
R + h

mod q and uses both values p0
R, p1

R to generate two RLWE samples. ki
S = sSpi

R + 2e′S
mod q for i ∈ {0, 1}. S now computes σi = Sig(ki

S) and ski
S = Ext(ki

S, σi), for i ∈ {0, 1},
and sends pS, σ0, σ1 to R. The receiver then generates an RLWE sample kR = sRpS + 2e′R
mod q from pS and computes skR = Ext(kR, σc). The key exchange protocol guarantees
that skc

S = skR with overwhelming probability, so as to guarantee that R did not cheat
(and indeed the computed skR). Both parties engage in a NIZK protocol. If the proof fails,
S aborts; otherwise, he samples a bit a and two strings r0, r1 ←$ {0, 1}� and sends a, r0, r1
to R. The receiver opens his initial commitment to S, and if the test passes, both parties
output their messages: S outputs (M0 = ska

S ⊕ ra ⊕ ta, M1 = ska⊕1
S ⊕ ra⊕1 ⊕ ta⊕1), and R

outputs (b = a ⊕ c, Mb = skR ⊕ rc ⊕ tc).
To simplify the description of πROT in Figure 9, we represent FNIZK with a single

input from the prover R (the witness w) and a single output to the verifier S, where this
output is 1 if w satisfies R or 0 otherwise. Let the binary relation R be such that

R(x, w) = 1 ⇐⇒ w = sk0
S ∨ w = sk1

S,

where x = Enc(sk0
S, sk1

S) for a given public key encryption scheme.
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Protocol πROT
Sender S Receiver R

value−−−−−−−−−→ value←−−−−−−−−−
FCRS

(m, h)←−−−−−−−−− (m, h)−−−−−−−−−→
sR, eR, e′R ←$ χ

c ←$ {0, 1}
t0, t1 ←$ {0, 1}�

sS, eS, e′S ←$ χ pc
R ← msR + 2eR mod q

pS ← msS + 2eS mod q p0
R ← p1

R − h mod q (if c=1)
(p0

R, commit(t0, t1))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p1
R ← p0

R + h mod q
for i ∈ {0, 1}:

ki
S ← sSpi

R + 2e′S mod q

σi ← Sig(ki
S)

ski
S ← Ext(ki

S, σi)

(pS, σ0, σ1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
kR ← sRpS + 2e′R mod q
skR ← Ext(kR, σc)

skR←−−−−−−−−−
FNIZK

answer←−−−−−−−−−
a ←$ {0, 1}
r0, r1 ←$ {0, 1}�

(a, r0, r1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
open(t0, t1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Abort if t0, t1 do not verify
their commit
output: output:

(M0 = ska
S ⊕ ra ⊕ ta, (b = a ⊕ c,

M1 = ska⊕1
S ⊕ ra⊕1 ⊕ ta⊕1) Mb = skR ⊕ rc ⊕ tc)

Figure 9. UC ROT protocol in the CRS model based on the RLWE assumption.

The FNIZK functionality can, for instance, be instantiated using the protocol described
in [35]. This protocol is shown to be quantum-composable in the CRS model, based on the
LWE assumption.

4. Security

In this section, we establish the quantum-UC security of the proposed protocols in
the CRS model. We begin by analyzing the quantum protocol first and proving that
πOT→ROT is quantum-UC-secure when instantiated with πCOM and π

πCOM
QOT . We then prove

the quantum-UC security of the πROT .

4.1. Quantum-UC Security of the Quantum ROT Protocol

Theorem 2. Protocol πOT→ROT quantum-UC-emulates FROT in the 〈FOT ,FCOM〉-hybrid model.

Proof. We start by describing how the simulator S behaves in each of the possible cases
for the execution of the protocol when an adversary A is present.

Corrupted Sender. In this case, S simulates the view of the sender, effectively controlling
the inputs to FCOM and the input bit to FOT . In order to do so, we start by replacing
FCOM by a commitment functionality FFakeCOM, which allows the receiver to cheat. In the
commit phase, FFakeCOM expects a message COMMIT instead of (COMMIT, x); in the open
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phase, FFakeCOM expects a message (OPEN, x) instead of OPEN, which is then sent to the
sender. We now change the receiver’s implementation to match with the new functionality;
that is, when committing to message m, the receiver stores that message and later gives it
to FFakeCOM when opening the commitment.

We can now describe how the simulator works. S starts by receiving (M0, M1) from
FROT ; afterwards, it sends COMMIT to FFakeCOM, samples c ←$ {0, 1}, and sends c to
FOT . Upon receiving d, the simulator extracts w0, w1 from observing the sender’s call to
FOT and computes rd = M0 ⊕ wd and rd⊕1 = M1 ⊕ wd⊕1. Finally, it sends (OPEN,(r0, r1))
to FFakeCOM.

Corrupted Receiver. Now, S simulates the view of the receiver, controlling the input mes-
sages to FOT . The simulator starts by receiving (b, M) from FROT . After receiving the
commitment message, S extracts the strings r0, r1 and the bit c from observing the receiver’s
call to FCOM and FOT , respectively. It then computes wc = rc ⊕ M and d = b ⊕ c and
samples wc⊕1 ←$ {0, 1}�; afterwards, send (w0, w1) to FOT and d to A. When FCOM replies
with open(r0, r1), it checks if the values received match the original commitments and
aborts if they do not.

Both/None parties corrupted. When both parties are corrupted, S internally runs A, which
generates the messages for both parties.

When the adversary does not corrupt any party, the simulator does not have an
input from the ideal functionality FROT . As such, S runs the honest receiver and the
honest sender, executing the needed algorithms when a dummy party is called in the ideal
execution. The simulator forwards the messages of the honestly simulated protocol to A.

To finish the proof, it remains to show that the simulated executions of the protocol
are indistinguishable from the real one.

Claim 1. If the adversary A corrupts the sender, then the real execution of the protocol πOT→ROT
is indistinguishable from the simulated one.

Proof. The real world execution can be viewed as a game that proceeds as follows:

1. Sample values r0, r1 ←$ {0, 1}� and commit to values r0, r1.
2. Sample bit c ←$ {0, 1} and run the OT protocol with the choice bit c.
3. Open the commitment to values r0, r1.

The ideal world execution can be viewed as a game that proceeds as follows:

1. Send COMMIT to FFakeCOM.
2. Sample bit c ←$ {0, 1} and send c to FOT .
3. Send (OPEN, (r0, r1)) to FFakeCOM, where rd = M0 ⊕ wd and rd⊕1 = M1 ⊕ wd⊕1.

The differences between the two traces are the commitment functionality and how the
values r0, r1 are generated. However, since the commitments are opened in the same way,
replacing FCOM by FFakeCOM leads to a perfectly indistinguishable network. Regarding
r0, r1, since M0, M1 are uniform random values, which come from FROT , the values r0, r1
are also statistically indistinguishable from uniform random values. Therefore, the two
executions are statistically indistinguishable.

Claim 2. If the adversary A corrupts the receiver, then the real execution of the protocol πOT→ROT
is indistinguishable from the simulated one.

Proof. The real world execution can be viewed as a game that proceeds as follows:

1. Sample strings w0, w1 ←$ {0, 1}� and run the OT protocol with w0, w1.
2. Sample bit d and send it to R.
3. Check if the received values verify their commitment.

The ideal world execution can be viewed as a game that proceeds as follows:
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1. Sample string wc⊕1 ←$ {0, 1}� and compute wc = rc ⊕ M; afterwards, send (w0, w1)
to FOT .

2. Compute d = b ⊕ c and send it to R.
3. Check if the received values verify their commit.

In this case, the difference between both traces is in how wc and d are generated.
Since M and b are uniform random values, which come from FROT , both the string wc and
the bit d are statistically indistinguishable from a uniform random string and a uniform ran-
dom bit, respectively. Thus, the above two executions are statistically indistinguishable.

Finally, it is trivial to conclude that, when both parties are corrupted and when neither
parties are corrupted, the simulated executions of the protocol are indistinguishable from
the real execution. This concludes the proof.

We have shown that, with πOT→ROT , we can transform πQOT into a ROT. We now
need to prove that πCOM remains UC-secure when working in a quantum setting.

Theorem 3. Let Gpk be a quantum robust PRNG. πCOM then (computationally) quantum UC-
emulates FCOM in the CRS model.

Proof. We start by briefly describing the UC security proof of πCOM by Canneti in [33].
The simulation starts with the simulator S by generating pk0, pk1, sampling random

r0, r1 ∈ {0, 1}n, and setting σ = Gpk0(r0) ⊕ Gpk1(r1). With this fake string, S tells the
adversary A that the sender is committed to y = Gpk0(r0). By later sending r0 or r1,
the simulator is able to open the commitment to either b = 0 or to b = 1, respectively.
If it were possible to distinguish the fake string from the real one, it would contradict the
pseudo-randomness of the generator.

When working in a quantum setting, the indistinguishability of the fake string reduces
to the pseudo-randomness of the generator; that is, the environment can only distinguish
between the real world and ideal world executions if it is possible to distinguish the fake
string σ from the real one. As such, if the generators are quantum robust, the environment
will not be able to distinguish between both strings. Therefore, the arguments used in the
classical UC security proof follow for quantum UC security as well.

Finally, we analyze the security of the proposed composition of protocols. Let πQROT
denote πOT→ROT instantiated with πCOM and π

πCOM
QOT .

Theorem 4. Protocol πQROT quantum-UC-emulates FROT.

Proof. First, we analyze the UC security of π
πCOM
QOT . Protocol πQOT with ideal commit-

ments is known to be universally composable [28]; as such, since πCOM is a composable
commitment scheme, we have that π

πCOM
QOT quantum-UC-emulates FOT .

Finally, as was shown in Theorem 2, πOT→ROT with ideal commitments and an ideal
OT is universally composable. Since both πCOM and π

πCOM
QOT are universally composable,

the result follows directly.

A downside of using πCOM as the commitment scheme is that we require a call
to πCOM for each bit of the string we intend to commit, which will affect the protocol’s
efficiency. However, since a composable commitment is required, this is our best suggestion
in the CRS model.

4.2. Quantum-UC Security of the Post-Quantum ROT Protocol

We now analyze the security of πROT . The simulator will use its ability to program
the CRS and extract the NIZK witness in order to obtain the desired UC security.

Theorem 5. Protocol πROT (computationally) quantum-UC-emulates FROT in the CRS model,
given that the HNF-RLWE assumption holds.
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Proof. Once again, we describe the behavior of the simulator S in each of the possible
cases for the execution of the protocol when an adversary A is present.

Corrupted Sender. The simulator S simulates the view of the sender, meaning that it controls
the communication with R as well as the inputs of FCOM and FNIZK. As in the proof of
security for πQROT , we will be replacing FCOM by the functionality FFakeCOM and changing
the receiver’s implementation to match FFakeCOM.

S starts by receiving (M0, M1) from FROT . It then samples c ←$ {0, 1} and
t0, t1 ←$ {0, 1}�, as an honest receiver would. Next, it computes two RLWE samples,
p0
R = ms0

R + 2e0
R mod q and p1

R = ms0
R + 2e0

R mod q, sets h = p1
R − p0

R, and programs
FCRS to return (m, h) when queried. Following that, it sends p0

R to A and sends COMMIT

to FFakeCOM.
After receiving (pS, σ0, σ1), S computes ski

R = Ext(si
RpS + 2e′R

i, σi), for i ∈ {0, 1}, and
sends skc

R to FNIZK. Finally, upon receiving a, r0, r1, S computes ta = M0 ⊕ ska
S ⊕ ra and

ta⊕1 = M1 ⊕ ska⊕1
S ⊕ ra⊕1 and sends (OPEN, (t0, t1)) to FFakeCOM.

Corrupted Receiver. In this case, S simulates the view of the receiver, controlling the com-
munication with S. The simulator starts by receiving (b, M) from FROT . It computes pS
as an honest sender; after receiving p0

R as well as the receipt of the commitment, it com-
putes ski

S, σi honestly, for i ∈ {0, 1}, and sends pS, σ0, σ1 to A. After receiving the reply
from FNIZK, if the test passed, S extracts c from observing the call made to FNIZK and
comparing skR to sk0

S and sk1
S. Finally, it computes a = b ⊕ c and rc = M ⊕ skc

S ⊕ tc,
samples rc⊕1 ←$ {0, 1}� and sends a, r0, r1 to A. At the end, it checks if t0, t1 match the
initial commitment, aborting if they do not.

Both/None parties corrupted. Here, both cases work as in the previous UC security proof.
When both parties are corrupted, the adversary is ran internally by S . When neither of
the parties are corrupted, S runs the honest receiver and sender, sending all the messages
between them to A.

Again, we now need to show that the real execution of the protocol is indistinguishable
from the simulated ones.

Claim 3. If the adversary A corrupts the sender, then the real execution of the protocol πROT is
indistinguishable from the simulated one.

Proof. The real world execution can be viewed as a game that proceeds as follows:

1. Sample bit c ←$ {0, 1} and strings t0, t1 ←$ {0, 1}�.
Generate RLWE sample pR and, if c = 1, compute p0

R = p1
R − h.

Send p0
R and commit to values t0, t1.

2. Compute skR = Ext(sRpS + 2e′R, σc) and run the NIZK protocol with skR.
3. Open the commitment to values t0, t1.

The ideal world execution can be viewed as a game that proceeds as follows:

1. Sample bit c ←$ {0, 1}.
Generate RLWE samples p0

R, p1
R and program FCRS to return (m, p1

R − p0
R).

Send p0
R to A and send COMMIT to FFakeCOM.

2. Compute ski
R = Ext(si

RpS + 2e′R
i, σi), for i ∈ {0, 1}, and send skc

R to FNIZK.
3. Send (OPEN,(t0, t1)) to FFakeCOM, where ta = M0 ⊕ ska

S⊕ ra and ta⊕1 = M1 ⊕ ska⊕1
S ⊕

ra⊕1.

The first difference between both games is in p0
R and p1

R. In the real world game,
only pc

R is an RLWE sample (pc⊕1
R is a uniform random sample), while in the ideal world

game, both p0
R and p1

R are RLWE samples. Given that the RLWE assumption holds,
both situations are indistinguishable.

Once again, replacing FCOM by FFakeCOM leads to an indistinguishable network,
since the commitments are opened in the same way. Finally, in the real world, t0, t1 are
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uniform random values, while in the ideal world, they are not. However, since M0, M1 are
uniform random values that come from FROT , the values in the ideal world are statistically
indistinguishable from uniform random values.

Thus, the two executions are indistinguishable, assuming the RLWE assumption
holds.

Claim 4. If the adversary A corrupts the receiver, then the real execution of the protocol πROT is
indistinguishable from the simulated one.

Proof. The real world execution can be viewed as a game that proceeds as follows:

1. Generate RLWE sample pS.
2. Compute p1

R = p0
R + h mod q. Compute σi and ski

S, for i ∈ {0, 1}.
Send (pS, σ0, σ1).

3. Run the NIZK protocol and check if the test passes; abort if it does not.
Sample a ←$ {0, 1} and r0, r1 ←$ {0, 1}�. Send (a, r0, r1).

4. Check if the received values verify their commitment; abort if they do not.

The ideal world execution can be viewed as a game that proceeds as follows:

1. Generate RLWE sample pS.
2. Compute p1

R = p0
R + h mod q. Compute σi and ski

S, for i ∈ {0, 1}.
Send (pS, σ0, σ1).

3. Check if the received answer from FNIZK is 1; abort if it is not.
Send (a, r0, r1), where a = b ⊕ c, rc = M ⊕ skc

S ⊕ tc, and r1−c ←$ {0, 1}�.
4. Check if the received values verify their commitment; abort if they do not.

The games differ in how a and rc are generated; however, since b and M are uniform
random values that come from FROT , both rc and a are statistically indistinguishable from
a uniform random string and a uniform random bit, respectively. Hence, the real world
execution and the ideal world execution are indistinguishable, assuming that the RLWE
assumption holds.

It remains to be seen whether the simulated executions where both parties are cor-
rupted and when no party is corrupted are also indistinguishable. As in the previous proof,
both are trivial, which concludes the proof.

5. Conclusions

In view of the usefulness of MPC and the steady evolution of both quantum technology
and post-quantum cryptography techniques, as well as recognizing the potential threat
quantum computers can present in the landscape of information security, we have proposed
two potential solutions for quantum secure implementations of ROT.

Both of these protocols have in common that they use a commitment scheme based on
quantum-secure pseudo-random generators, which is universally composable in the CRS
model. The CRS assumption has the advantage of being weaker and better understood
than the quantum random oracle, and it is independent of technological limitations as
opposed to the noisy storage assumptions, which are two of the most common models in
which the security of OT protocols is studied.

The first construction is based on a quantum OT protocol composed with a quantum
secure bit commitment, which is then transformed into a ROT protocol. The usage of a
PRNG, which is secure against any poly-time quantum distinguisher, is the key to the com-
mitment scheme’s quantum composability. The second construction is based on a highly
efficient UC-secure ROT protocol from the RLWE assumption, initially proposed in the
ROM. Our protocol differs in that we remove the random oracle’s requirement, replacing it
by a commitment scheme and non-interactive zero knowledge protocol, which allows us
to make a quantum-secure UC protocol, but in the CRS model instead.

Potential future work directions include the following:
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• Further optimization of the commitment scheme to reduce the number of CRS calls and
PRNG computations per committed bit in the context of a string commitment scheme.

• The implementation of both protocols and a comparison of their performance, taking
available (quantum) technologies into account. This poses a challenge, as the limita-
tions of quantum technologies are much less known than traditional computational
power and communication.
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