46,830 research outputs found

    Maintenance Knowledge Management with Fusion of CMMS and CM

    Get PDF
    Abstract- Maintenance can be considered as an information, knowledge processing and management system. The management of knowledge resources in maintenance is a relatively new issue compared to Computerized Maintenance Management Systems (CMMS) and Condition Monitoring (CM) approaches and systems. Information Communication technologies (ICT) systems including CMMS, CM and enterprise administrative systems amongst others are effective in supplying data and in some cases information. In order to be effective the availability of high-quality knowledge, skills and expertise are needed for effective analysis and decision-making based on the supplied information and data. Information and data are not by themselves enough, knowledge, experience and skills are the key factors when maximizing the usability of the collected data and information. Thus, effective knowledge management (KM) is growing in importance, especially in advanced processes and management of advanced and expensive assets. Therefore efforts to successfully integrate maintenance knowledge management processes with accurate information from CMMSs and CM systems will be vital due to the increasing complexities of the overall systems. Low maintenance effectiveness costs money and resources since normal and stable production cannot be upheld and maintained over time, lowered maintenance effectiveness can have a substantial impact on the organizations ability to obtain stable flows of income and control costs in the overall process. Ineffective maintenance is often dependent on faulty decisions, mistakes due to lack of experience and lack of functional systems for effective information exchange [10]. Thus, access to knowledge, experience and skills resources in combination with functional collaboration structures can be regarded as vital components for a high maintenance effectiveness solution. Maintenance effectiveness depends in part on the quality, timeliness, accuracy and completeness of information related to machine degradation state, based on which decisions are made. Maintenance effectiveness, to a large extent, also depends on the quality of the knowledge of the managers and maintenance operators and the effectiveness of the internal & external collaborative environments. With emergence of intelligent sensors to measure and monitor the health state of the component and gradual implementation of ICT) in organizations, the conceptualization and implementation of E-Maintenance is turning into a reality. Unfortunately, even though knowledge management aspects are important in maintenance, the integration of KM aspects has still to find its place in E-Maintenance and in the overall information flows of larger-scale maintenance solutions. Nowadays, two main systems are implemented in most maintenance departments: Firstly, Computer Maintenance Management Systems (CMMS), the core of traditional maintenance record-keeping practices that often facilitate the usage of textual descriptions of faults and actions performed on an asset. Secondly, condition monitoring systems (CMS). Recently developed (CMS) are capable of directly monitoring asset components parameters; however, attempts to link observed CMMS events to CM sensor measurements have been limited in their approach and scalability. In this article we present one approach for addressing this challenge. We argue that understanding the requirements and constraints in conjunction - from maintenance, knowledge management and ICT perspectives - is necessary. We identify the issues that need be addressed for achieving successful integration of such disparate data types and processes (also integrating knowledge management into the “data types” and processes)

    European retrievable carrier (Eureca) and evolutionary space carrier for microgravity, Earth observation and technology demonstration

    Get PDF
    The Spacelab relatively short stay-time in orbit has led to consideration of the European Retrievable Carrier (EURECA) concept as a reusable carrier. The EURECA concept is a free-flying carrier of experiments which is launched and recovered by the space shuttle. It is commensurate with the size of payloads that can be economically developed in Europe and combines the advantages of Spacelab (high mass and power capability, recovery) with those of a free flyer (extended operating time in a non-polluted environment). The launch of the first EURECA mission is scheduled for October 1987. The Eureca spacecraft will be deployed from the Shuttle cargo bay in orbit, will operate in a free-flying mode for about six months, and will then be retrieved, together with its payloads, returned to Earth by the Space Shuttle and prepared for the next mission. The first mission of EURECA is dedicated to research in the fields of life sciences and material sciences. The experimental hardware of the first mission consist of a variety of processin chambers for crystal growth and equipment for biological investigations viz plant growth and protein crystallization, and there is the possibility to perform experiments in the field of exobiology

    Investigation using data from ERTS-1 to develop and implement utilization of living marine resources

    Get PDF
    The author has identified the following significant results. This 15-month ERTS-1 investigation produced correlations between satellite, aircraft, menhaden fisheries, and environmental sea truth data from the Mississippi Sound. Selected oceanographic, meteorological, and biological parameters were used as indirect indicators of the menhaden resource. Synoptic and near real time sea truth, fishery, satellite imagery, aircraft acquired multispectral, photo and thermal IR information were acquired as data inputs. Computer programs were developed to manipulate these data according to user requirements. Preliminary results indicate a correlation between backscattered light with chlorophyll concentration and water transparency in turbid waters. Eight empirical menhaden distribution models were constructed from combinations of four fisheries-significant oceanographic parameters: water depth, transparency, color, and surface salinity. The models demonstrated their potential for management utilization in areas of resource assessment, prediction, and monitoring

    A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    Get PDF
    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    Conceptual definition of a high voltage power supply test facility

    Get PDF
    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented

    Remote sensing for oceanography: Past, present, future

    Get PDF
    Oceanic dynamics was traditionally investigated by sampling from instruments in situ, yielding quantitative measurements that are intermittent in both space and time; the ocean is undersampled. The need to obtain proper sampling of the averaged quantities treated in analytical and numerical models is at present the most significant limitation on advances in physical oceanography. Within the past decade, many electromagnetic techniques for the study of the Earth and planets were applied to the study of the ocean. Now satellites promise nearly total coverage of the world's oceans using only a few days to a few weeks of observations. Both a review of the early and present techniques applied to satellite oceanography and a description of some future systems to be launched into orbit during the remainder of this century are presented. Both scientific and technologic capabilities are discussed

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    Tethers in space handbook

    Get PDF
    The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended
    corecore