7 research outputs found

    A review on IoT based precision irrigation planning and scheduling

    Get PDF
    Global warming and climate change are warnings showcasing water crisis. At the same time ever growing population is ultimatum to the food security. In span of such times, world has to be made a sustainable habitat. It is only possible when each ounce of resources is being measured and used judiciously. Maximum responsibility is on farmers and researchers of the world. In times of advanced technologies, Internet of Things (IoT) has surfaced as a saviour. IoT based systems have been stated as success in monitoring and control mechanisms. Thus, this paper was intended to review the control strategies and monitoring systems based on IoT. The literature incorporates basic information as well as recent trends in the field of irrigation management based on IoT

    Surface and Underground Water Level Monitoring Using Wireless Sensor Node with Energy Harvesting Support

    Get PDF
    In this paper development and testing of a wireless sensor node that is powered by solar energy harvesting is described. Implemented wireless sensor node is characterized by low cost and consumption, long mean time between maintenance, simplicity, flexibility, modularity and miniature design in applications for monitoring of environmental parameters. As a replacement for relatively expensive battery supply and in order to minimize maintenance costs, energy harvesting solution that uses a miniature solar panel and supercapacitor is tested. This node is used for measurements of water levels of surface and underground waters for application in agriculture. For this purpose the node is expanded with a capacitive sensor for measurement of water levels, which is particularly discussed in this paper as simple and innovative solution

    Signal Enhancement Strategies in Classical Electrochemiluminescence Techniques for Modern Biosensing

    Get PDF
    With the ascent of IT, and since Ashton has invented the term Internet of Things (IoT) in 1999, this future idea of connected machines that can do tasks and perform decision-control cycles without human input has become more and more attractive and is today an established future scenario. Obviously, in an IoT, “sensors for everything” are one crucial corner stone of its existence and Analytical chemistry can and must deliver them. While many challenges towards a functioning IoT remain, we are on the verge of its beginning. This can be also seen with “Analytics 4.0” in research and on the market, tending to more IT-connected, portable, easier-controllable and integrated solutions. The entrance of mobility in the health sector or Point-of-Care (POC) diagnostics trends are alike influencing biosensing. Whether in mobile solutions or lab- and clinical environments, versatile, powerful and easy-to-adapt detection strategies like Electrochemiluminescence (ECL) are an attractive option. The ECL molecules [Ru(bpy)3]2+ and luminol represent the most prominent and most abundantly investigated luminophores for ECL since Bard’s accomplishment to make ECL a well-known technique. Because both are also two of the most efficient ECL emitters that can be well-handled in bioanalysis, and are available on the market, they are still today frequently used in research and also commercial applications. To cope with current benchmarks of sensitive detection, however a combination with a certain signal enhancement strategy is recommended. Several different routes can here be employed and one option is dendrimers. PAMAM dendrimers can function as ECL coreactant in [Ru(bpy)3]2+-ECL via their amino groups and at the same time expose primary amino groups as possible bioconjugation elements. Exploring this multi-functionality of the dendrimers was investigated here. This was done on a model system employing PAMAM dendrimers with [Ru(bpy)3]2+-ECL together with biotin/streptavidin as biorecognition element and analyte, respectively. The dendrimer’s bi-functionality was successfully proven and a joint-role of a biorecognition element and a possible reporter function suggests an optimum application in homogeneous assays. A different toolset for ECL signal enhancement is offered by liposomes. Numerous signaling molecules can be encapsulated inside the inner cavity of these synthetic vesicles, while they provide protection from the environment and connection-functionality to probes via lipids and surface groups on the outside. That application was here explored, together with a newly synthesized luminol derivative obtained by a simple synthesis route from commercial starting materials and exhibiting a four times increased ECL efficiency versus standard luminol. That was necessary as a liposome enhancement was denied for the standard luminol through its poor aqueous solubility. The new m-carboxy luminol considerably improved this feature which allowed its own encapsulation in liposomes. The superior signal generation with this dual system was proven in a model sandwich hybridization assay which yielded a 150-times better detection performance than the equal fluorescence-based assay while being almost zero affected through matrices like serum, soil or river water. As such the good performance of luminol ECL together with liposomes for highly sensitive detection applications was demonstrated. A further necessary element with liposomal amplification, are surfactants to set free the signaling molecules. However, this case depicts only one example of a multitude of applications of surfactants in bioassays and biochemical methods. Hence, surfactants are commonly present solution constituents which also have to be considered in general with ECL because they can influence the ECL signals positively or negatively. This was further investigated for luminol ECL by exploring the effect of 13 different surfactants on the luminol ECL efficiency on four different electrode materials. A deeper understanding of the distinct effects was obtained by looking into ECL emission behavior, electrochemical effects, the surfaces and Chemiluminescence effects. After all, the revelation of a complicated mechanism that involves many contributing factors and as such directs signal quenching or enhancement is an important finding for assay design. In this way, the selection of a suitable surfactant is possible to exploit maximum reachable signal efficiencies. A combination of signal enhancement tools like a better ECL molecule derivative, dendrimers, liposomes or surfactants has proven to boost the ECL performance considerably. A further means of signal enhancement is offered via miniaturization, which also makes the detection method better suited towards common application as liquid handling and easier automation are on hand. This can be used for single ECL assays or combinations of different ECL reagents in one system for multi-detection. Different strategies for the miniaturization of an ECL readout-capable system were investigated, taking requirements for [Ru(bpy)3]2+ and luminol as ECL reporters into account. This includes materials, electrochemical demands and simple design. Here, ITO electrodes – while advantageous for luminol ECL could not convince with their performance in [Ru(bpy)3]2+-ECL. Alternatively, laser scribed graphene electrodes have shown to be promising candidates for a future miniaturized system encompassing both, luminol and [Ru(bpy)3]2+ as ECL systems. Ultimately, the different signal amplifying strategies, investigated in this work that can be applied standalone or combined, offer a great toolset for state-of-the-art ECL detection applications in research and also for possible commercial applications

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: • To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. • To provide a working basis on “new generation” technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WP’s. Objectives & Rationale The objectives of deliverable 2.1 are: • To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized

    Wireless Sensor Network Node with Energy Harvesting for Monitoring of Environmental Parameters

    Get PDF
    U disertaciji je opisan namenski projektovan bežični senzorski čvor namenjen za praćenje parametara životne sredine. Razvijeno rešenje se odlikuje malom cenom i dimenzijama, širokom primenom i minimalnim utocajem na životnu sredinu u poređenju sa primerima iz literature. Koristi se prikupljanje energije sunca iz okoline i superkondenzator za napajanje, što utiče na povećanje životnog veka i smanjivanje troškova održavanja. Izvršena testiranja su potvrdila funkcionalnost predloženog rešenja i mogućnost praćenja različitih parametara korišćenjem komercijalnih i namenski projektovanih senzora. Unapređeno, modularno, rešenje rešava uočena ograničenja i povećava broj parametara životne sredine koji se mogu pratiti.The dissertation describes a specially designed WSN node for application in environmental monitoring. The developed solution is characterized by low price and dimensions, wide application and minimal environmental impact compared to example in literature. Solar energy harvesting and supercapacitor are used as power supply, which increase node lifetime and reduce maintenance costs. The performed tests confirmed the functionality of the proposed solution and the ability to monitor various environmental parameters using commercial and specially designed sensors. The new enhanced solution, with modular design, solves the observed limitations and increases the number of environment parameters that can be monitored

    Aplicaciones de SWE en entornos industriales

    Full text link
    [EN] This thesis has been created within the framework of the interoperability of the networks of sensors in industrial environments, using standard SWE (Sensor Web Enablement). It has developed from the participation in different research projects, within the research group SATRD (Distributed Real Time Systems and Applications) of the Communications Department of the UPV. Has gone a long time since the appearance of the first sensors that were only able to respond to a stimulus, to the concept of sensor web, where sensors can be remotely configured, perform actions and process and integrate data from other sensors. Nowadays, the use of networks of sensors or WSN (Wireless Sensor Networks) is widespread in several fields, to gather information, which can then be used by other applications. As it increases its use, it is necessary to combine or add data from sensors of different WSN, which is not always possible, due to the lack of interoperability between different manufacturers. That is why OGC (Open Geospatial Consortium) founded SWE, in order to develop standards for access to sensors via the Internet and thus improve the interoperability. For these reasons, in this thesis is specified an IoT architecture (Internet of Things) generically, so that it can be extended to multiple environments. The I3WSN architecture is designed for monitoring and control systems, ensuring interoperability between the different elements through the integration of SWE standards. After the design, the application of the architecture is carried out in three different contexts, associated with three research projects. The first of them, in order to monitor and manage the workers' health in industrial environments, based on environmental and medical data, within the project FASyS (Fabrica Absolutamente Segura y Saludable). Secondly, to ensure the level of assurance of a smart grid environment, from the capture of the security information of all its elements, in the UniverSEC project. Finally, to manage efficiently and intelligently transport freight containers, from traffic data in real time, in the project STIMULO.[ES] Esta tesis se ha creado en el marco de la interoperabilidad de las redes de sensores en entornos industriales, mediante la utilización del estándar SWE (Sensor Web Enablement). Se ha desarrollado a partir de la participación en diferentes proyectos de investigación, dentro del grupo de investigación SATRD (Sistemas y Aplicaciones de Tiempo Real Distribuidos) del Departamento de Comunicaciones de la UPV. Ha pasado mucho tiempo desde la aparición de los primeros sensores que únicamente eran capaces de responder frente a un estímulo, hasta el concepto de sensor web, donde los sensores pueden ser configurados de forma remota, realizar acciones y procesar e integrar datos de otros sensores. Hoy en día, la utilización de redes de sensores o WSN (Wireless Sensor Networks) está ampliamente extendida en diversos ámbitos, para recopilar información, que luego pueda ser utilizada por otras aplicaciones. A medida que aumenta su utilización, surge la necesidad de combinar o agregar datos de sensores de distintas WSN, lo cual no siempre es posible, debido a la falta de interoperabilidad entre los distintos fabricantes. Es por ello que OGC (Open Geospatial Consortium) fundó SWE, con el fin de desarrollar estándares para el acceso a sensores a través de Internet y así mejorar la interoperabilidad. Por estos motivos, en esta tesis se ha especificado una arquitectura IoT (Internet of Things) de forma genérica, para que se pueda extender a múltiples entornos. La arquitectura I3WSN se ha diseñado para la monitorización y el control de sistemas, garantizando la interoperabilidad entre los distintos elementos gracias a la integración de los estándares de SWE. Tras el diseño, se ha llevado a cabo la aplicación de la arquitectura en tres contextos distintos, asociados a tres proyectos de investigación. El primero de ellos, con el objetivo de monitorizar y gestionar la salud de los trabajadores en entornos industriales, a partir de datos del entorno y datos médicos, dentro del proyecto FASyS (Fabrica Absolutamente Segura y Saludable). El segundo, para garantizar el nivel de aseguramiento de un entorno smart grid, a partir de la captura de la información de seguridad de todos sus elementos, en el proyecto UniverSEC. Y por último, para gestionar de forma eficiente e inteligente el transporte de contenedores de mercancías, a partir de los datos de tráfico en tiempo real, en el proyecto STIMULO.[CA] Aquesta tesi ha estat creada en el marc de la interoperabilitat de les xarxes de sensors en entorns industrialitzats, utilitzant l'estàndard SWE (Sensor Web capacitació). S'ha desenvolupat des de la participació en diversos projectes d'investigació, dins del grup d'investigació SATRD (Sistemes i Aplicacions de Temps Real Distribuïts) del Departament de Comunicació de la UPV. Ha passat molt temps des de l'aparició dels primers sensors que només eren capaços de respondre a un estímul, fins al concepte de sensor web, on els sensors es poden configurar remotament, realitzar accions i processar i integrar les dades d'altres sensors. Avui en dia, l'ús de xarxes de sensors o WSN (Wireless Sensor Networks) està àmpliament estesa en diversos àmbits, per a recollir informació, que desprès puga ser utilitzada per altres aplicacions. A mesura que augmenta el seu ús, sorgeix la necessitat de combinar o afegir dades de sensors de diferents WSN, que no sempre és possible, degut a la falta d'interoperabilitat entre els diferents fabricants. És per això que OGC (Open Geospatial Consortium) va fundar SWE, per desenvolupar estàndards per l'accés de sensors a Internet i així millorar la interoperabilitat. Per aquests motius, en aquesta tesi s'ha especificat una arquitectura IoT (Internet of Things) de forma genèrica, per tal que es puga estendre a múltiples entorns. L'arquitectura I3WSN s'ha dissenyat per la monitorització i el control de sistemes, garantint la interoperabilitat entre els diferents elements gràcies a la integració dels estàndards de SWE. Després el disseny, s'ha dut a terme l'aplicació de l'arquitectura en tres contextos diferents, associats amb tres projectes d'investigació. El primer d'ells, amb la finalitat de monitoritzar i gestionar la salut dels treballadors en entorns industrials, a partir de dades ambientals i dades mèdiques, dins del projecte FASyS (Fabrica Absolutamente Segura y Saludable). El segon, per garantir el nivell d'assegurament d'un entorn de smart grid, a partir de la captura de la informació de seguretat de tots els seus elements, en el projecte UniverSEC. I finalment, per gestionar de manera eficient i intel·ligent el transport de contenidors de mercaderies, a partir de les dades de trànsit en temps real, en el projecte STIMULO.Giménez Salazar, P. (2015). Aplicaciones de SWE en entornos industriales [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/51282TESI

    Application of ISFET Microsensors with Mobile Network to Build IoT for Water Environment Monitoring

    No full text
    corecore