11,824 research outputs found

    A Pre-screening Procedure for Pollution Source Identification in Sewer Systems

    Get PDF
    Illicit intrusions in Sewer Systems (SSs), modifying the wastewater characteristics, may create problems to the treatment plant and/or to the final recipient water body. For this reason, the source identification (SI) problem is becoming an important issue also in SSs. For large real systems, the computational burden might make the SI methodologies impractical. In this paper a prescreening procedure, based on the pollution matrix concept, is introduced and applied before the SI methodology. Selecting a group of possible candidate nodes and cutting consequently the scheme, a significant improvement both in terms of time and the accuracy is obtained

    Multi criteria decision support system for watershed management under uncertain conditions, A

    Get PDF
    2012 Summer.Includes bibliographical references.Nonpoint source (NPS) pollution is the primary cause of impaired water bodies in the United States and around the world. Elevated nutrient, sediment, and pesticide loads to waterways may negatively impact human health and aquatic ecosystems, increasing costs of pollutant mitigation and water treatment. Control of nonpoint source pollution is achievable through implementation of conservation practices, also known as Best Management Practices (BMPs). Watershed-scale NPS pollution control plans aim at minimizing the potential for water pollution and environmental degradation at minimum cost. Simulation models of the environment play a central role in successful implementation of watershed management programs by providing the means to assess the relative contribution of different sources to the impairment and water quality impact of conservation practices. While significant shifts in climatic patterns are evident worldwide, many natural processes, including precipitation and temperature, are affected. With projected changes in climatic conditions, significant changes in diffusive transport of nonpoint source pollutants, assimilative capacity of water bodies, and landscape positions of critical areas that should be targeted for implementation of conservation practices are also expected. The amount of investment on NPS pollution control programs makes it all but vital to assure the conservation benefits of practices will be sustained under the shifting climatic paradigms and challenges for adoption of the plans. Coupling of watershed models with regional climate projections can potentially provide answers to a variety of questions on the dynamic linkage between climate and ecologic health of water resources. The overarching goal of this dissertation is to develop a new analysis framework for the development of optimal NPS pollution control strategy at the regional scale under projected future climate conditions. Proposed frameworks were applied to a 24,800 ha watershed in the Eagle Creek Watershed in central Indiana. First, a computational framework was developed for incorporation of disparate information from observed hydrologic responses at multiple locations into the calibration of watershed models. This study highlighted the use of multiobjective approaches for proper calibration of watershed models that are used for pollutant source identification and watershed management. Second, an integrated simulation-optimization approach for targeted implementation of agricultural conservation practices was presented. A multiobjective genetic algorithm (NSGA-II) with mixed discrete-continuous decision variables was used to identify optimal types and locations of conservation practices for nutrient and pesticide control. This study showed that mixed discrete-continuous optimization method identifies better solutions than commonly used binary optimization methods. Third, the conclusion from application of NSGA-II optimization followed by development of a multi criteria decision analysis framework to identify near-optimal NPS pollution control plan using a priori knowledge about the system. The results suggested that the multi criteria decision analysis framework can be an effective and efficient substitute for optimization frameworks. Fourth, the hydrologic and water quality simulations driven by an extensive ensemble of climate projections were analyzed for their respective changes in basin average temperature and precipitation. The results revealed that the water yield and pollutants transport are likely to change substantially under different climatic paradigms. And finally, impact of projected climate change on performance of conservation practice and shifts in their optimal types and locations were analyzed. The results showed that performance of NPS control plans under different climatic projections will alter substantially; however, the optimal types and locations of conservation practices remained relatively unchanged

    Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study

    Get PDF
    Forecasting the power production from renewable energy sources (RESs) has become fundamental in microgrid applications to optimize scheduling and dispatching of the available assets. In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV power production in a microgrid, addressing the specific criticalities of this environment. The proposed approach has to validate measured data properly, through an effective algorithm and further refine the power forecast when newer data are available. The procedure is fully implemented in a facility of the Multi-Good Microgrid Laboratory (MG(Lab)(2)) of the Politecnico di Milano, Milan, Italy, where new Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach as a robust and accurate procedure for microgrid applications

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry
    • …
    corecore