8,760 research outputs found

    Aircraft state estimation using cameras and passive radar

    Get PDF
    Multiple target tracking (MTT) is a fundamental task in many application domains. It is a difficult problem to solve in general, so applications make use of domain specific and problem-specific knowledge to approach the problem by solving subtasks separately. This work puts forward a MTT framework (MTTF) which is based on the Bayesian recursive estimator (BRE). The MTTF extends a particle filter (PF) to handle the multiple targets and adds a probabilistic graphical model (PGM) data association stage to compute the mapping from detections to trackers. The MTTF was applied to the problem of passively monitoring airspace. Two applications were built: a passive radar MTT module and a comprehensive visual object tracking (VOT) system. Both applications require a solution to the MTT problem, for which the MTTF was utilized. The VOT system performed well on real data recorded at the University of Cape Town (UCT) as part of this investigation. The system was able to detect and track aircraft flying within the region of interest (ROI). The VOT system consisted of a single camera, an image processing module, the MTTF module and an evaluation module. The world coordinate frame target localization was within ±3.2 km and these results are presented on Google Earth. The image plane target localization has an average reprojection error of ±17.3 pixels. The VOT system achieved an average area under the curve value of 0.77 for all receiver operating characteristic curves. These performance figures are typical over the ±1 hr of video recordings taken from the UCT site. The passive radar application was tested on simulated data. The MTTF module was designed to connect to an existing passive radar system developed by Peralex Electronics Pty Ltd. The MTTF module estimated the number of targets in the scene and localized them within a 2D local world Cartesian coordinate system. The investigations encompass numerous areas of research as well as practical aspects of software engineering and systems design

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Robust Multi-target Tracking with Bootstrapped-GLMB Filter

    Get PDF
    This dissertation presents novel multi-target tracking algorithms that obviate the need for prior knowledge of system parameters such as clutter rate, detection probabilities, and birth models. Information on these parameters is unknown but important to tracking performance. The proposed algorithms exploit the advantages of existing RFS trackers and filters by bootstrapping them. This configuration inherits the efficiency of tracking target trajectories from the RFS trackers and low complexity in parameter estimation from the RFS filters

    Tracking Testing Framework at BAE

    Get PDF
    For this project the team created a testing framework for the tracking and fusion domain. This framework allows for automated testing of tracking engines and integrates with the Jenkins continuous integration server. The framework has components that generate truth data, add error to the truth to create modeled data, transform the modeled data into an estimate of the truth, calculate metrics by comparing this estimate to the actual truth, and display the metrics in a human readable format on Jenkins. The team also produced a user guide that provides documentation and instruction for use of the framework

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore