39,556 research outputs found

    DSpot: Test Amplification for Automatic Assessment of Computational Diversity

    Full text link
    Context: Computational diversity, i.e., the presence of a set of programs that all perform compatible services but that exhibit behavioral differences under certain conditions, is essential for fault tolerance and security. Objective: We aim at proposing an approach for automatically assessing the presence of computational diversity. In this work, computationally diverse variants are defined as (i) sharing the same API, (ii) behaving the same according to an input-output based specification (a test-suite) and (iii) exhibiting observable differences when they run outside the specified input space. Method: Our technique relies on test amplification. We propose source code transformations on test cases to explore the input domain and systematically sense the observation domain. We quantify computational diversity as the dissimilarity between observations on inputs that are outside the specified domain. Results: We run our experiments on 472 variants of 7 classes from open-source, large and thoroughly tested Java classes. Our test amplification multiplies by ten the number of input points in the test suite and is effective at detecting software diversity. Conclusion: The key insights of this study are: the systematic exploration of the observable output space of a class provides new insights about its degree of encapsulation; the behavioral diversity that we observe originates from areas of the code that are characterized by their flexibility (caching, checking, formatting, etc.).Comment: 12 page

    Elliptic harbor wave model with perfectly matched layer and exterior bathymetry effects

    Get PDF
    Standard strategies for dealing with the Sommerfeld condition in elliptic mild-slope models require strong assumptions on the wave field in the region exterior to the computational domain. More precisely, constant bathymetry along (and beyond) the open boundary, and parabolic approximations–based boundary conditions are usually imposed. Generally, these restrictions require large computational domains, implying higher costs for the numerical solver. An alternative method for coastal/harbor applications is proposed here. This approach is based on a perfectly matched layer (PML) that incorporates the effects of the exterior bathymetry. The model only requires constant exterior depth in the alongshore direction, a common approach used for idealizing the exterior bathymetry in elliptic models. In opposition to standard open boundary conditions for mild-slope models, the features of the proposed PML approach include (1) completely noncollinear coastlines, (2) better representation of the real unbounded domain using two different lateral sections to define the exterior bathymetry, and (3) the generation of reliable solutions for any incoming wave direction in a small computational domain. Numerical results of synthetic tests demonstrate that solutions are not significantly perturbed when open boundaries are placed close to the area of interest. In more complex problems, this provides important performance improvements in computational time, as shown for a real application of harbor agitation.Peer ReviewedPostprint (author's final draft

    Dependable reconfigurable multi-sensor poles for security

    Get PDF
    Wireless sensor network poles for security monitoring under harsh environments require a very high dependability as they are safety-critical [1]. An example of a multi-sensor pole is shown. Crucial attribute in these systems for security, especially in harsh environment, is a high robustness and guaranteed availability during lifetime. This environment could include molest. In this paper, two approaches are used which are applied simultaneously but are developed in different projects. \u

    Electronics and control technology

    Get PDF
    Until recently, there was no requirement to learn electronics and control technology in the New Zealand school curriculum. Apart from isolated pockets of teaching based on the enthusiasm of individual teachers, there is very little direct learning of electronics in New Zealand primary or secondary schools. The learning of electronics is located in tertiary vocational training programmes. Thus, few school students learn about electronics and few school teachers have experience in teaching it. Lack of experience with electronics (other than using its products) has contributed to a commonly held view of electronics as out of the control and intellectual grasp of the average person; the domain of the engineer, programmer and enthusiast with his or her special aptitude. This need not be true, but teachers' and parents' lack of experience with electronics is in danger of denying young learners access to the mainstream of modern technology

    Semiconductor Electronic Label-Free Assay for Predictive Toxicology.

    Get PDF
    While animal experimentations have spearheaded numerous breakthroughs in biomedicine, they also have spawned many logistical concerns in providing toxicity screening for copious new materials. Their prioritization is premised on performing cellular-level screening in vitro. Among the screening assays, secretomic assay with high sensitivity, analytical throughput, and simplicity is of prime importance. Here, we build on the over 3-decade-long progress on transistor biosensing and develop the holistic assay platform and procedure called semiconductor electronic label-free assay (SELFA). We demonstrate that SELFA, which incorporates an amplifying nanowire field-effect transistor biosensor, is able to offer superior sensitivity, similar selectivity, and shorter turnaround time compared to standard enzyme-linked immunosorbent assay (ELISA). We deploy SELFA secretomics to predict the inflammatory potential of eleven engineered nanomaterials in vitro, and validate the results with confocal microscopy in vitro and confirmatory animal experiment in vivo. This work provides a foundation for high-sensitivity label-free assay utility in predictive toxicology

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Instrumentation and Control for a Microprocessor-Based Coronary Perfusion System

    Get PDF
    corecore