Context: Computational diversity, i.e., the presence of a set of programs
that all perform compatible services but that exhibit behavioral differences
under certain conditions, is essential for fault tolerance and security.
Objective: We aim at proposing an approach for automatically assessing the
presence of computational diversity. In this work, computationally diverse
variants are defined as (i) sharing the same API, (ii) behaving the same
according to an input-output based specification (a test-suite) and (iii)
exhibiting observable differences when they run outside the specified input
space. Method: Our technique relies on test amplification. We propose source
code transformations on test cases to explore the input domain and
systematically sense the observation domain. We quantify computational
diversity as the dissimilarity between observations on inputs that are outside
the specified domain. Results: We run our experiments on 472 variants of 7
classes from open-source, large and thoroughly tested Java classes. Our test
amplification multiplies by ten the number of input points in the test suite
and is effective at detecting software diversity. Conclusion: The key insights
of this study are: the systematic exploration of the observable output space of
a class provides new insights about its degree of encapsulation; the behavioral
diversity that we observe originates from areas of the code that are
characterized by their flexibility (caching, checking, formatting, etc.).Comment: 12 page