131,069 research outputs found

    Profile-Based Ad Hoc Social Networking Using Wi-Fi Direct on the Top of Android

    Get PDF
    Ad-hoc Social Networks have become popular to support novel applications related to location-based mobile services that are of great importance to users and businesses. Unlike traditional social services using a centralized server to fetch location, ad-hoc social network services support infrastructure less real-time social networking. It allows users to collaborate and share views anytime anywhere. However, current ad-hoc social network applications are either not available without rooting the mobile phones or don't filter the nearby users based on common interests without a centralized server. This paper presents an architecture and implementation of social networks on commercially available mobile devices that allow broadcasting name and a limited number of keywords representing users' interests without any connection in a nearby region to facilitate matching of interests. The broadcasting region creates a digital aura and is limited by WiFi region that is around 200 meters. The application connects users to form a group based on their profile or interests using peer-to-peer communication mode without using any centralized networking or profile matching infrastructure. The peer-to-peer group can be used for private communication when the network is not available

    When social links are network links: The dawn of peer-to-peer social networks and its implications for privacy

    Get PDF
    International audienceDespite the success they enjoy among Internet users today, social networking tools are currently subject to several controversies, notably concerning the uses their administrators make of users' private data. Today, many projects and applications propose decentralised alternatives to such services, among which one of the most promising appears to be the construction of the social network on a peer-to-peer (P2P) architecture. This paper addresses and analyses the "first steps" of applications at the crossroads between social networks and P2P networks. More specifically, it discusses how such applications anticipate modifications in the management of users' right to privacy, by harnessing both anonymity and knowledge of identity - aspects generally identified with P2P networks and social networks, respectively - depending on the different functionalities and layers of the application

    Adaptive Applications over Active Networks: Case Study on Layered Multicast

    Full text link
    peer reviewedIn this paper we study the potential and limitations of active networks in the context of adaptive applications. We present a survey of active networking research applied to adaptive applications, and a case study on a layered multicast active application. This active application is a congestion control protocol that selectively discards data in the active routers, and prunes multicast tree branches affected by persistent congestion. Our first results indicate that active networks can indeed help such an application to adapt to heterogeneous receivers, with a minimum amount of state overhead, equivalent to that of a single IP multicast group

    The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols

    Get PDF
    One of the most successful applications of peer-to-peer communication networks is in the context of blockchain protocols, which—in Satoshi Nakamoto\u27s own words—rely on the nature of information being easy to spread and hard to stifle. Significant efforts were invested in the last decade into analyzing the security of these protocols, and invariably the security arguments known for longest-chain Nakamoto-style consensus use an idealization of this tenet. Unfortunately, the real-world implementations of peer-to-peer gossip-style networks used by blockchain protocols rely on a number of ad-hoc attack mitigation strategies that leave a glaring gap between the idealized communication layer assumed in formal security arguments for blockchains and the real world, where a wide array of attacks have been showcased. In this work we bridge this gap by presenting a Byzantine-resilient network layer for blockchain protocols. For the first time we quantify the problem of network-layer attacks in the context of blockchain security models, and we develop a design that thwarts resource restricted adversaries. Importantly, we focus on the proof-of-stake setting due to its vulnerability to Denial-of-Service (DoS) attacks stemming from the well-known deficiency (compared to the proof-of-work setting) known as nothing at stake. We present a Byzantine-resilient gossip protocol, and we analyze it in the Universal Composition framework. In order to prove security, we show novel results on expander properties of random graphs. Importantly, our gossip protocol can be based on any given bilateral functionality that determines a desired interaction between two adjacent peers in the networking layer and demonstrates how it is possible to use application-layer information to make the networking-layer resilient to attacks. Despite the seeming circularity, we demonstrate how to prove the security of a Nakamoto-style longest-chain protocol given our gossip networking functionality, and hence, we demonstrate constructively how it is possible to obtain provable security across protocol layers, given only bare-bone point-to-point networking, majority of honest stake, and a verifiable random function

    Peer-to-Peer Distributed SyD Directory Synchronization in a Proximity-based Environment

    Get PDF
    Distributed directory services are an evolving paradigm in the distributed computing arena. They are a shift from the centralized directory that causes delay and does not scale well to widespread peer-to-peer networks. With networking becoming more pervasive, there is a need to integrate the heterogeneity of device, data and network with the applications that are built on them. SyD or System on Mobile Devices is a middleware that is being used to implement such a distributed directory service. To provide a persistent global view of data, we serialize and synchronize the distributed directories. The SyD APIs provide a high-level environment to rapidly develop collaborative applications for such networks in a systematic manner. An intervehicle communication application that notifies the driver of a vehicle of the available parking spots in the vicinity, allows us to see the practical working and benefits of the distributed directory paradigm

    Algorithms for interactive, distributed and networked systems

    Get PDF
    In recent years, massive growth in internet usage has spurred the emergence of complex large-scale networking systems to serve growing user bases, bandwidth and computation requirements. For example, data center facilities -- workhorses of today's internet -- have evolved to house upward of several hundreds of thousands of servers; content distribution networks with high capacity and wide coverage have emerged as a de facto content dissemination modality, and peer-to-peer applications with hundreds of thousands of users are increasingly becoming popular. At these scales, it becomes critical to operate at high efficiencies as the price of idling resources can be significant. In particular, the interaction between agents (servers, peers etc.) is a defining factor of efficiency in these systems -- applications are often communication intensive, whereas agents share links of only limited bandwidth. This necessitates the use of principled algorithms, as efficient communication to a large extent depends on the interaction protocols. We study data center networks and peer-to-peer networks as canonical examples of modern-day large-scale networking systems. Server-to-server interaction is an integral part of the data center's operation. The latency of these interactions is often a significant bottleneck toward overall job completion times. We study complementary approaches toward reducing this latency: (i) design of computation algorithms that minimize interaction and (ii) optimal scheduling algorithms to maximally utilize the network fabric. We also consider peer-to-peer networks as an emerging mode of content distribution and sharing. Unlike data centers, these networks are flexible in their network structure and also scale well, but require decentralized algorithms for control. Of central importance here is the design of a network topology that enables efficient peer interactions for optimal application performance. We propose novel topology designs for two popular applications: (i) multimedia streaming and (ii) anonymity in Bitcoin's peer-to-peer network

    The evaluation of an active networking approach for supporting the QOS requirements of distributed virtual environments

    Get PDF
    This paper describes work that is part of a more general investigation into how Active Network ideas might benefit large scale Distributed-Virtual-Environments (DVEs). Active Network approaches have been shown to offer improved solutions to the Scalable Reliable Multicast problem, and this is in a sense the lowest level at which Active Networks might benefit DVEs in supporting the peer-to-peer architectures considered most promising for large scale DVEs. To go further than this, the key benefit of Active Networking is the ability to take away from the application the need to understand the network topology and delegate the execution of certain actions, for example intelligent message pruning, to the network itself. The need to exchange geometrical information results in a type of traffic that can place occasional, short-lived, but heavy loads on the network. However, the Level of Detail (LoD) concept provides the potential to reduce this loading in certain circumstances. This paper introduces the performance modelling approach being used to evaluate the effectiveness of active network approaches for supporting DVEs and presents an evaluation of messages filtering mechanisms, which are based on the (LoD) concept. It describes the simulation experiment used to carry out the evaluation, presents its results and discusses plans for future work

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Caring About the Plumbing: On the Importance of Architectures in Social Studies of (Peer-to-Peer) Technology

    No full text
    International audienceThis article discusses the relevance, for scholars working on social studies of network media, of "caring about the plumbing" (to paraphrase Bricklin, 2001), i.e., addressing elements of application architecture and design as an integral part of their subject of study. In particular, by discussing peer-to-peer (P2P) systems as a technical networking model and a dynamic of social interaction that are inextricably intertwined, the article introduces how the perspective outlined above is particularly useful to adopt when studying a promising area of innovation: that of "alternative" or "legitimate" (Verma, 2004) applications of P2P networks to search engines, social networks, video streaming and other Internet-based services. The article seeks to show how the Internet's current trajectories of innovation increasingly suggest that particular forms of architectural distribution and decentralization (or their lack), impact specific procedures, practices and uses. Architectures should be understood an "alternative way of influencing economic systems" (van Schewick, 2010), indeed, the very fabric of user behavior and interaction. Most notably, the P2P "alternative" to Internet-based services shows how the status of every Internet user as a consumer, a sharer, a producer and possibly a manager of digital content is informed by, and shapes in return, the technical structure and organization of the services (s)he has access to: their mandatory passage points, places of storage and trade, required intersections. In conclusion, this article is a call to study the technical architecture of networking applications as a "relational property" (Star & Ruhleder, 1996), and integral part of human organization. It suggests that such an approach provides an added value to the study of those communities, groups and practices that, by leveraging socio-technical dynamics of distribution, decentralization, collaboration and peer production, are currently questioning more traditional or institutionalized models of content creation, search and sharing
    • …
    corecore