

Edinburgh Research Explorer

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols
Citation for published version:
Coretti, S, Kiayias, A, Russell, A & Moore, C 2022, The Generals’ Scuttlebutt: Byzantine-Resilient Gossip
Protocols. in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery (ACM), pp. 595-608, The 29th ACM Conference on
Computer and Communications Security, Los Angeles, California, United States, 7/11/22.
https://doi.org/10.1145/3548606.3560638

Digital Object Identifier (DOI):
10.1145/3548606.3560638

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2022

https://doi.org/10.1145/3548606.3560638
https://doi.org/10.1145/3548606.3560638
https://www.research.ed.ac.uk/en/publications/264e8af3-3776-4eb0-8226-db3179d7b3d3

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols
Sandro Coretti

IOG

Zurich, Switzerland

sandro.coretti@iohk.io

Aggelos Kiayias

University of Edinburgh

IOG

Edinburgh, UK

Aggelos.Kiayias@ed.ac.uk

Alexander Russell

University of Connecticut

IOG

Storrs, USA

acr@uconn.edu

Cristopher Moore

Santa Fe Institute

Santa Fe, USA

moore@santafe.edu

ABSTRACT
One of the most successful applications of peer-to-peer communica-

tion networks is in the context of blockchain protocols, which—in

Satoshi Nakamoto’s own words—rely on the “nature of informa-

tion being easy to spread and hard to stifle.” Significant efforts

were invested in the last decade into analyzing the security of

these protocols, and invariably the security arguments known for

longest-chain Nakamoto-style consensus use an idealization of this

tenet. Unfortunately, the real-world implementations of peer-to-

peer gossip-style networks used by blockchain protocols rely on a

number of ad-hoc attack mitigation strategies that leave a glaring

gap between the idealized communication layer assumed in formal

security arguments for blockchains and the real world, where a

wide array of attacks have been showcased.

In this work we bridge this gap by presenting a Byzantine-

resilient network layer for blockchain protocols. For the first time

we quantify the problem of network-layer attacks in the context of

blockchain security models, and we develop a design that thwarts

resource-restricted adversaries. Importantly, we focus on the proof-

of-stake setting due to its vulnerability to Denial-of-Service (DoS)

attacks stemming from the well-known deficiency (compared to

the proof-of-work setting) known as nothing at stake.
We present a Byzantine-resilient gossip protocol, and we ana-

lyze it in the Universal Composition framework. In order to prove

security, we show novel results on expander properties of random

graphs. Importantly, our gossip protocol can be based on any given

bilateral functionality that determines a desired interaction between

two “adjacent” peers in the networking layer and demonstrates

how it is possible to use application-layer information to make the

networking-layer resilient to attacks. Despite the seeming circular-

ity, we demonstrate how to prove the security of a Nakamoto-style

longest-chain protocol given our gossip networking functionality,

and hence, we demonstrate constructively how it is possible to

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/3548606.3560638

obtain provable security across protocol layers, given only bare-

bone point-to-point networking, majority of honest stake, and a

verifiable random function.

CCS CONCEPTS
• Security andprivacy→Cryptography;Distributed systems
security.

KEYWORDS
proof of stake, gossiping, Byzantine-resilience

ACM Reference Format:
Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore.

2022. The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.3560638

1 INTRODUCTION
1.1 Gossip Protocols and Byzantine Attackers

Gossip protocols. Gossip protocols [12, 16] provide an efficient

mechanism to distribute information to a large set of parties. The

key feature of such algorithms is their peer-to-peer operation that

load balances the effort of information propagation in a way that

individual nodes are only investing a modicum of effort when

contributing to the delivery of a message network-wide.

As communication infrastructure for multiparty cryptography,

gossip protocols have recently found wide-spread application in the

context of blockchain protocols, notably with the introduction of

the Bitcoin blockchain [22]. Among other things, gossip protocols

are used by blockchain participants to diffuse newly found blocks.

In the words of Nakamoto, blockchain protocols rely on the “nature

of information being easy to spread and hard to stifle,” underscoring

the relevance of gossip as the underlying communication layer.
1

The “security” of gossip protocols. Deploying gossip protocols as

the communication layer of blockchain protocols adds a crucial

new dimension to their design: their “security.”

1
Note that the security guarantees of gossip protocols are weaker than Byzantine-

resilient Broadcast aka the Byzantine Generals problem [19] because they do not

guarantee any kind of agreement on or consistent ordering of messages gossiped

among parties.

https://doi.org/10.1145/3548606.3560638
https://doi.org/10.1145/3548606.3560638

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

At the very least, gossip protocols underlying blockchains must

deal with the fact that the resources (e.g., network bandwidth, com-

putation time and space) of each peer are limited, and exhausting

them will lead to denial-of-service (DoS) attacks. As such, the afore-

mentioned consideration of keeping the complexity for each peer

small (sublinear, preferably constant, in the number of total partici-

pants) is therefore not only relevant for efficiency but also essential

for security.

For this reason, gossip protocols currently used in practice incor-

porate an array of (typically ad-hoc) measures to protect informa-

tion propagation against DoS attacks. In the setting of blockchain

protocols in particular, the most salient feature of such DoS mitiga-

tions is the fact that the adversary is resource-bounded (e.g., has

limited hashing power, in the context of the Bitcoin protocol, or

stake, in the context of proof-of-stake protocols), and peers can

exploit this to manage network-wide message propagation. Tech-

niques include rejecting previously seen proof-of-work messages

and skipping content downloads that will not result in a local state

update (such as skipping the download of a block’s contents when

the block header indicates that it cannot be adopted based on the

local state of the client).

It should be stressed that such measures are far from perfect,

as exemplified by a number of attacks that have been described,

including eclipse attacks [15] and routing attacks [2]. Moreover,

the proof-of-stake setting poses additional difficulties stemming

from the possibility of reusing keys to issue numerous conflicting

messages [23] and the fact that the whole stakeholder set should be

at hand for proof-of-stake verification to work, in sharp contrast to

proof of work, which only needs the current difficulty level.

However, the security issues extend far beyond just the per-peer

complexity. Most crucially, the design, setup, and maintenance of

the overlay used for gossiping must be such that it resists Byzantine
attackers—who make participants actively and maliciously deviate

from the prescribed protocol—that command a large number of

peers in the network. Despite all of the above shortcomings, in

practice the information-propagation guarantees of the deployed

networking layers of blockchain protocols are generally postulated

to be sufficient for the higher-level protocol to maintain its security

and correctness.

On the theory side, blockchain consensus protocols—be they

Nakamoto-style (e.g., [11, 22]) or inspired by Byzantine fault-tolerant

computing (e.g., [6]), based on proof of work (PoW) or proof of stake

(PoS)—all crucially rely on the reliable and timely delivery of pro-

tocol messages (blocks, votes, etc.) to achieve liveness and many

also to be safe. However, while the consensus layers of all these

protocols have received considerable attention, with a number of

them achieving provable security against Byzantine attackers, the

design and security of the network layer are usually an afterthought

at best.

Specifically, all previous formal security analyses of PoS proto-

cols (e.g., [6, 10, 11]) use (over-)idealized message-passing abstrac-

tions that essentially promise that honest messages are distributed

undisturbed to all honest parties within a reasonable delay window

and ignore the fact that these abstractions must be implemented in

the real world.

More broadly, there exists surprisingly little published work that

considers the problem of extending Byzantine resilience to the

communication layer of blockchains or gossip protocols in general.

The above state of affairs highlights serious shortcomings of the

approaches taken both in theory and in practice and also suggests

a significant gap between the two. Given that gossip is a critical

piece of the protocol stack for any permissionless distributed-ledger

protocol, the lack of a thorough, formal security treatment of its

properties is a critical deficiency in the understanding of the security

of these protocols. This the main motivation behind the present

paper.

1.2 Our Results
This work takes a systematic and principled approach to allevi-

ating the issues explained above and provides a novel design for

Byzantine-resilient gossiping in the context of PoS blockchain pro-

tocols. The results are presented in the Universal Composability

framework [4].

AByzantine-resilient network layer for blockchains. The first main

contribution of this work is a protocol for “synchronizing chains”

globally among participants of PoS blockchain consensus.
2
The

protocol is designed to work over a standard, Internet-like network

with (bounded-delay) message passing.

Crucially, the security of the network layer is based on the same

assumption as that of the consensus layer, namely that the majority

of stake in the system is controlled by honest parties. This may

seem circular at first, as the proper operation of the network layer

is conditioned on agreement on the stake distribution. The way to

break this “cycle” is as follows: Commonly, Nakamoto-style PoS

blockchains anyway split the execution of the consensus protocol

into epochs and use the stake distribution SDi−1 at the end of an

epoch i−1 as a basis for consensus in epoch i+1 (under the assump-

tion of bounded stake drift during epochs). The same approach can

be taken for the network layer, i.e., SDi−1 underpins the execution

of the network layer in epoch i + 1. Specifically, in the new protocol

parties use a verifiable random function (VRF) to, based on SDi−1,

create a stake-weighted random-graph overlay in which the degree

of each party is constant in the number of participants. The use of

VRFs allows parties to reject connection requests from participants

that are not supposed to be in their neighbor set.
3

Because the node degrees in the network protocol are constant,

it is easy for an (adaptive) attacker to isolate a (bounded) fraction

of the stake by corrupting all neighbors of parties making up said

stake. To that end, edges in the graph have an expiration time, at

which point replacements are sampled. In addition to helping parties

recover from eclipses, this also allows the overlay to gradually adapt

to changing stake distributions.

It may seem tempting to now simply perform run-of-the-mill

block gossiping over the above overlay. Such an approach, however,

2
This work focuses on synchronizing chains; similar approaches can be taken to

synchronize other protocol messages, such as votes, transactions, etc.

3
Non-Nakamoto blockchains sometimes do not have the notion of an epoch

built into the consensus protocol, e.g., because they finalize blocks and use the stake

distribution of the finalized block as a basis for agreeing on the next block. However,

for the purpose of equipping them with the network design presented here, such a

notion can easily be added to them. Moreover, note that it seems that any reasonable

design of a network layer for PoS protocols needs to assume bounded stake drift.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

seems to be unsuitable (at least) for Nakamoto blockchains: For

example, it is an impractical and insecure design to ask parties to

keep all received blocks around, as many of them could be adver-

sarial in the PoS setting (an attacker may—in principle—generate

as many blocks as they like, in particular as slot leader). There-

fore, with block gossip, a party should delete blocks unless they

extend its current local chain. During a fork event, however, the

party may require previously deleted blocks for which the gossip is

“over.” Similar issues apply if a party misses blocks, e.g., due to an

eclipse. In general, which blocks are needed by a particular party

to synchronize with the system is highly dependent on the party’s

local state.

Therefore, stateless solutions, i.e., solutions in which neighbors

do not share state, do not appear to be a good fit and will not

yield DoS-resilient and scalable blockchain protocols in practice.

A more suitable approach is to have each pair of neighbors run a

bilateral chain synchronization (chain sync) protocol, which allows

them to keep each other informed about their locally preferred

chains. When a party discovers a better chain in one of these chain-

sync instances or when it produces a better one, it informs all of its

current chain-sync instances of the new chain.

This work abstracts this bilateral chain sync as a functionality

Fbilateral. The actual implementation of such a protocol is outside

the scope of and irrelevant for this work.
4
It is merely important to

note that chain sync is stateful and instances thereof take time to

set up in the real world (establishing the connection, initial synchro-

nization of blocks, etc.). Hence, bilateral chain sync is intended to

run between two parties for an extended (albeit bounded) amount

of time. These facts are captured by Fbilateral in that there is an

initial synchronization delay δinit, which may be much larger than

the delay δsync occurring once a chain sync instance has been set

up.

Finally, observe that in the blockchain context particularly (but

also in general), the attacker must be prevented from interrupting

the propagation of any specific message; otherwise, the attacker

can, e.g., prevent honest chain updates from spreading through the

network. Unfortunately, with an efficient gossip protocol, in which

nodes have constant degrees, the (adaptive) attacker can simply

corrupt all neighbors of a block leader and thereby halt propagation.

It is therefore unavoidable to consider a model in which corruption

requests by the attacker only take effect after a certain amount of

time.

The ideal global chain-sync functionality. The security guaran-

tees of the protocol above are captured by a functionality Fsync, the
second main contribution of this work. Similarly to the network

functionalities assumed in prior work, Fsync provides global chain
“propagation” within some time bound ∆sync. However, there are

several important differences stemming from the fact Fsync is im-

plemented and not assumed. The two most crucial ones are the

following:

• Fsync allows the attacker to “eclipse” parties and exclude

them from the provided guarantees, as long as the fraction

of eclipsed stake does not exceed a certain bound. Note that

the adversary is allowed to be “mobile” w.r.t. which parties

4
Secure and practical implementations of chain sync exist, e.g., [9] and [8, Section

3.7].

are eclipsed, i.e., every party can potentially be eclipsed at

some point during the execution of the protocol. Note that

there is an eclipse delay ξecl ≥ ∆sync in Fsync. This ensures
that the attacker cannot stop the propagation of specific

chains.

• Due to the use of chain sync, Fsync’s guarantees are slightly
weaker than those offered by the assumed network func-

tionalities in prior work: instead of a particular chain C
“propagating” through the network within ∆, Fsync may also

instead deliver different chains C ′
that are not worse (i.e.,

equal length or longer) than C .

Security proof. In order to show that the new network protocol

securely realizes ideal functionality Fsync, this work derives a new

result on expander graphs: Consider the stake-weighted random

graph formed by parties in the protocol. Then, even after removing

all corrupted nodes form the graph, leaving behind some fraction

α of honest stake, there exists a subgraph of honest parties, the

backbone, corresponding to at least an (α − β)-fraction of the total

stake, for some β , and this backbone is an expander graph (with

overwhelming probability). Most importantly, the result holds even

if the attacker chooses which nodes to remove with full knowl-
edge of the entire graph. The expander property guarantees that

the diameter in the backbone is small, and therefore timely chain

“propagation” is possible therein.

Fully Byzantine-resilient PoS. As a final contribution, this work
demonstrates how to utilize the synchronization functionality in

the context of a proof-of-stake protocol. Specifically, [11] is used to

illustrate the result. First, note that the original analysis is insuffi-

cient: despite the fact that the networking model of [11] allows a

Byzantine adversary controlling a minority of stake, Fsync permits

a “mobile” eclipsing strategy that would deplete the adversarial

budget of any straightforward reduction to the adversary of [11].

To circumvent this issue, a revamped analysis is presented showing

that adaptive eclipsing does not disturb the forkable-string analysis

of [11], which can be recovered to demonstrate that the protocol re-

mains secure even against an adversary that exploits the enhanced

capabilities of the adversarial interface of Fsync. This gives rise to
a new analysis of [11] in an adversarial setting where in addition

to party corruption, some degree of message suppression is also

permitted.

1.3 Related Work
The use of gossip or epidemic algorithms in the context of dis-

tributed systems was put forth in [13] and explored at length both

in networking systems [18] but also from theoretical angles [17].

The study of Byzantine fault tolerance in a network of a bounded

degree was initiated in [14] and further refined in [25], where it

is shown that if the adversary is bounded by O(n/logn) or O(n),
respectively, there exist graphs of bounded degree that facilitate

broadcast.

In terms of total communication, it is known that the communi-

cation complexity of Byzantine broadcast is Ω(n2), and assuming

some type of delay in the corruption model is necessary to break

the communication complexity barrier to sublinear [1].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

In the context of peer-to-peer networking for blockchains, a

“structured” approach in the organization of the peer-to-peer net-

work can be used to reduce communication complexity further, but

at the expense of adaptive security [24].

Our protocols, viewed from the lens of multiparty computation,

exhibit a “communication locality,” which has also been studied

more broadly in the context of general secure multiparty computa-

tion [5]. We also remark that message suppression as an enhanced

adversarial capability was also studied in the general secure MPC

setting in the context of “omission corruptions” [26].

Finally, concurrently and independently of our work, [20, 21]

studied the related problem of stateless flooding amongst a set of

participants, also motivated in part by the blockchain setting. Their

flooding protocol has peers connecting to a bounded-size, randomly

chosen neighborhood for each message transmission. This can

be seen as creating a separate random graph for every message.

However, as mentioned above, stateless flooding is unsuitable in

practice for blockchain protocols. Moreover, their protocol does

not use any mechanism to resource bound the adversary (e.g., as

a VRF) and hence there is no mitigation that can prevent honest

parties from being flooded with messages by the adversary.

2 PRELIMINARIES AND NOTATION
UC security. Protocols are described and proven secure in the

Universal Composability (UC) framework [4]. In UC, the security

of a particular protocol is captured by comparing a real-world

execution of the protocol to an ideal-world execution in which

the protocol is replaced by an ideal functionality. In rough terms,

a protocol π securely realizes a functionality F , if for every real-

world attackerA attacking π , there exists an ideal-world simulator

S attacking F such that the real and ideal experiments become

indistinguishable to all environmentsZ.
5

A protocol (in the real world) may itself make calls to so-called

hybrid functionalities. These hybrid functionalities may serve to ei-

ther model assumptions (e.g., Fnet below) or are themselves realized

by protocols. The UC framework guarantees that the security of a

protocol is maintained when hybrids are replaced by the protocols

that realize them.

Round structure. All functionalities/protocols proceed in rounds

(not made explicit) and are assumed to have access to the current

time, denoted T. Generally, the round structure is such that parties

first use a fetch-type command to retrieve information, followed

by a send/set-type command to distribute information.

Attacker and corruption delay. The attacker considered is poly-

nomially bounded and may corrupt parties, thereby learning their

internal state, and make them deviate from the prescribed protocol

arbitrarily. The attacker is adaptive, i.e., it may choose whom to

corrupt on the fly during the execution of the protocol and based

on all the information observed. However, there is a corruption

delay of ξcorr, i.e., a corruption request issued by the attacker takes

effect after a delay of ξcorr rounds only.

5
The environment both acts as distinguisher and controls the attacker/simulator

as well as the inputs to the parties.

Parameters: δnet: maximum delay.

Variables: The functionality keeps track of the following variables,

initialized to the following values: array IPs[P] := ∅: set of IPs owned

by parties P ; array M[mid]: message records, indexed by message IDs

(MIDs) mid.

IP addresses: Upon (getIP) from P : Output (getIP, P) to S and ask S

for a unique address IP. Add IP to IPs[P] and output (getIP, IP) to P .

Malicious IPs Registration: Upon (regIP, IP) from S: if IP is unique,

add it to IPs[S].

Message send: Upon (send, IP, IP′,m) from P with IP ∈ IPs[P]:
(1) Store M[mid] := (mid, IP, IP′, T,m).

(2) Output (send,mid, IP, IP′,m) to S.

Malicious message send: Upon (send, IP, IP′,m) from S where

IP ∈ IPs[S] or P with IP ∈ IPs[P] is corrupted: Pick a unique mid and

store M[mid] := (mid, IP, IP′,∞,m). Output (send,mid) to S.

Fetching: Upon (fetch, IP) from P with IP ∈ IPs[P]:
(1) Output (fetch, P , IP) to S and ask S for a set M of MIDs.

(2) Let M ′
be the set of MIDs corresponding to records (·, ·, IP, t , Û)

with T − t ≥ δnet.
(3) Let

˜M := M[M ∪M ′] and set M[M ∪M ′] := ⊥.

(4) Output (fetch, ˜M′) to P , where ˜M′
is the set

˜M with MID and

time stamp removed in each tuple.

Functionality Fnet

Figure 1: Network/Internet functionality Fnet.

Underlying network. This work considers parties P with so-called

relays, identified by their IP addresses IP. Having the actual node—

holding the key material—firewalled by relays is common practice

as a first line of defense against intrusion attacks.
6

Communication between relays is modeled by functionality Fnet
(cf. Figure 1), which captures a simple, Internet-like network. Parties

can obtain (unique) IP addresses for their relays. Fnet guarantees
bounded-delay message transmission between any two relays. The

attacker sees all messages sent and may send messages on behalf

of any relay IP owned by a corrupted party; it is, however, not

permitted to interfere with message transmission between honest

relays (beyond inducing a bounded delay).

Master index. A master indexMI is made up of:

• the network directoryND, which consists of tuples (P, IP,v),
where P is a party ID, IP is an IP address, and v is a VRF

public key (see below);

• the stake distribution SD, which consists of tuples (P,α),
where α ∈ (0, 1] denotes P ’s stake fraction; and

• a seed value R.

A master index is valid if (a) the same parties appear in ND and SD,
and each party appears at most once, (b) values IP and v appear

only once in ND, and (c) the values α in SD sum up to 1. All master

indices appearing in this work are tacitly assumed to be valid.

6
Note, however, that for the purposes of this work, the attacker corrupts parties,

at which point it gains control over (all of) their relays.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Observe that the MI format defined above restricts each party to

having only one IP address. This choice was made for simplicity;

the definition of master indices as well as all protocols and func-

tionalities can easily be adapted to allow multiple IP addresses per

party, thereby modeling the fact that in practice parties often have

multiple relays.

Verifiable random functions. A verifiable random function (VRF)
is a cryptographic primitive that allows a party P to create key pair

consisting of a secret evaluation key and a public verification key

such that: (a) with the secret key, P can evaluate the VRF at any

input x , obtaining a random-looking output y and a proof π ; (b)
given the public key of P , anyone is able to verify, using π , that y is

indeed the output corresponding to x . Importantly, even a malicious

P cannot bias the output of the VRF on any particular input x (for

any fixed public key).

The above guarantees are abstracted by an idealized function-

ality Fvrf (cf. Figure 2). The main commands offered by Fvrf are (i)
(getKey), answered by (getKey,v) for an (adversarially chosen)

idealized public keyv , (ii) (eval,v, x), answered by (eval,y, π), and
(iii) (Verify,v, x,y, π), answered by (Verify,ϕ) with ϕ ∈ {0, 1} in-

dicating whether π is a valid proof for the input/output pair (x,y)
under public key v .

3 BYZANTINE-RESILIENT NETWORKING
3.1 Overview
One of the main contributions of this work is to define and realize a

synchronization functionality Fsync that can be used by participants

of proof-of-stake (PoS) consensus layers to globally synchronize

their blockchains. A most crucial feature of Fsync is that it is real-
izable under the same assumptions as the consensus protocol that
builds on top of it.

In rough terms, the idea underpinning the protocol realizing

Fsync is as follows: Each consensus participant P samples ΘP ·

d neighbors in a stake-based fashion based on the output of a

verifiable random function (VRF); d is a small constant, and ΘP is

a multiplier that depends on the amount of stake of P itself. The

use of a VRF guarantees that parties can verify whether they were

indeed supposed to be chosen as neighbors by other participants.

Once the neighbors are sampled, chains are synchronized glob-

ally by each party engaging in bilateral chain synchronization with

all its neighbors. Due to the fact that the resulting communication

overlay is essentially a random graph, using expander theory, one
can show that even with all adversarial nodes removed, there re-

mains a large connected backbone with small diameter. This enables
timely synchronization (TS), which is crucial to the security of many

consensus protocols.

Of course, with a constant number of neighbors, it is unavoidable

that some parties end up being connected solely to corrupted parties,

which means that they are eclipsed. Consequently, Fsync will have
to grant eclipsing power to the adversary and can only guarantee

TS to non-eclipsed parties.

Functionality Fsync will be realized (cf. Section 3.4) from a func-

tionality Fbilateral (cf. Section 3.2), which models bilateral chain

synchronization, as well as from network functionality Fnet (cf.
Section 2) and (standard) functionality Fvrf (cf. Section 2).

Variables: The functionality keeps track of the following variables,

initialized to the values below:

(1) an array Keys[P] := ∅: set of keys owned by P ;
(2) an array T [v , x] := ⊥, where v is a key and x a domain value: pair

(y, S), where y is a range value and S a set of proofs π ;
(3) a set E := ∅: contains triples (v , x , y) to keep track of all VRF

evaluations.

Keys: Upon (getKey) from P : Output (getKey, P) to S and ask S for

a unique key v . Add v to Keys[P] and output (getKey, v) to P .

Register Keys: Upon (regKey, v) from S: if v is unique, add it to

Keys[S].

Evaluation: Upon (Eval, v , x) from P with v ∈ Keys[P]: Output
(Eval, P , v , x) to S, and upon obtaining (Eval, π) from S:

(1) If π is not unique, exit the procedure.

(2) If T [v , x] is undefined, pick y uniformly at random from the range

and set S := ∅; otherwise, let (y, S) := T [v , x].
(3) Set T [v , x] := (y, S ∪ {π }) and add (v , x , y) to E .
(4) Output (Eval, y, π) to P .

Malicious evaluation: Upon (Eval, v , x) from S:

• Case 1: There exists an uncorrupted P with v ∈ Keys[P]: If
(y, S) := T [v , x] is defined, return (Eval, y) to S; otherwise, do

nothing.

• Case 2: There exists a corrupted P with v ∈ Keys[P] or
v ∈ Keys[S]: If T [v , x] is not defined, pick y uniformly at random

from the range, let S := ∅ and set T [v , x] := (y, S); otherwise, let
(y, S) := T [v , x]. Return (Eval, y) to S.

• Else: Do nothing.

Verification: Upon (Verify, v , x , y, π) from any ITI: Send

(Verify, v , x , y, π) to S, and upon receiving (Verify, ϕ) from S:

• If v ∈ Keys[·] and T [v , x] = (y, S) is defined:
(1) If π ∈ S , set f := 1.

(2) Else, if ϕ = 1 and π is unique—i.e., if for all (v ′, x ′) , (v , x)
with T [v ′, x ′] = (·, S), π < S—set T [v , x ′] := (y, S ∪ {π })

and f := 1.

(3) Else, set f := 0.

• Else, set f := 0.

Output (Verify, f) to P .

Adversarial leakage: Upon (Leak) from S: return (Leak, E) to S.

Functionality Fvrf

Figure 2: VRF functionality Fvrf .

3.2 Bilateral Chain Synchronization
Functionality Fbilateral (cf. Figure 3) models bilateral chain synchro-

nization between two parties A and B. In Fbilateral, each party has a

local chain, and the functionality allows them to learn their coun-

terparty’s chain as it evolves. A party’s local chain evolves by use

of the setC command, under the restriction that local chains are

only replaced by “better” chains as determined by a strict partial

order prefer(·, ·), where prefer(C,C ′) (also denoted by C > C ′
) if

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

Parameters: δinit: initial delay; δsync: synchronization delay;

prefer(·, ·): strict partial order.

Parties and session ID: Involves two parties A and B . Below,
whenever P ∈ {A, B }, P ′

refers to the other party. The parties use

sid = (A, IP, B, IP′, t , j) as session ID (for some t and j).

Variables: The functionality keeps track of the following variables,

initialized to the values below for both parties P ∈ {A, B } and all

rounds t :
(1) C[P , t] := ⊥: local chain of P in round t ;
(2) Ptr[P] := −∞: time pointer of P into C[P ′, ·];

(3) tstart[P] (derived from C and Ptr): smallest t such that C[P , t] , ⊥.

Fetch chain: Upon (fetch) from P :
(1) Output (fetch, P) to S and ask S for time pointer Ptr < T.
(2) If T −max{tstart[P], tstart[P ′]} < δinit, set d := ∞; else, set

d := δsync.
(3) Let Ptr[P] := max{Ptr, Ptr[P], T − d }.
(4) Output (fetch,C[P ′, Ptr[P]]) to P .

Set local chain: Upon (setC,C) from P : if prefer(C ,C[P , T − 1]), set

C[P , T] := C .

Functionality Fbilateral

Figure 3: Bilateral chain-sync functionality Fbilateral.

and only if C is strictly preferable to C ′
;
7 prefer is a parameter of

the functionality.

Both parties are informed about changes to their counterparty’s

local chain with a delay of at most δsync. However, initially, i.e., until
both parties have used setC at least once (thereby indicating that

they are ready to start chain synchronization), the delay may be up

to δinit; this models the fact that in reality chain synchronization can

take significant time between two parties who have just established

a connection.

This work leaves the exact mechanism employed to realize

Fbilateral open and simply assumes Fbilateral as a hybrid. In gen-

eral, the approach to realizing Fbilateral is along the following lines:

Upon establishing a connection, two parties first determine the

point at which their local chains diverge;
8,9

subsequently, they

inform each other about changes to their local chains.

In practice, highly optimized implementations of Fbilateral are
used in order to improve synchronization time even further. For an

example of such an implementation, see [9] and [8, Section 3.7].

7
Commonly, C is strictly preferable to C ′

if it is longer.

8
For the sake of offering a concrete description: In order to figure out the common

prefix, party A sends block hashes of suffixes of length 1, 2, 4, 8, . . . to party B until

B finds that one of these hashes corresponds to a block on their chain. Thereafter,

the exact point of divergence is located by binary search. In the worst case, this takes

O (δnet · logk), where k is the common prefix parameter. Note that this is independent

of the length of the parties’ chains. Furthermore, on average, in a longest chain protocol,

due to the exponential decay in the probability of divergence (as a function of the size

of the divergence), synchronization time is much shorter (typically a small constant)

between up-to-date peers.

9
In a BFT-style blockchain like Algorand [6], one local chain is normally a prefix

of the other, which simplifies this step.

3.3 Synchronization Functionality
Functionality Fsync, whose realization is the main focus of this work,

allows parties to synchronize their chains with the rest of the partic-

ipants. It is parametrized by an initial delay ∆init, a synchronization

delay ∆sync, an eclipse delay ξecl ≥ ∆sync, a “lookback” parameter

µ ≥ ∆sync, as well as an upper bound λ on the amount of eclipsed

honest stake.

Note that parties have to agree on the round number in which

they start using Fsync. For convenience, in this section, initialization
of Fsync begins in round−∆init, and parties actually start using Fsync
in round 0.

IP and key management. Since Fsync is realized from Fnet and
Fvrf , interfaces for IP and key registration are also provided by Fsync.
The reason these are not abstracted away is that IPs and VRF keys

must be known by the (higher-level) consensus protocol (e.g., to

generate the genesis block).
10

Master index and setup. As previously mentioned, in the synchro-

nization protocol parties will sample neighbors based on their stake.

The stake distribution, however, is an object that emanates from

the consensus layer, which itself relies on the synchronization func-

tionality. This apparent cycle is broken as follows: Fsync expects
each party to input its view on themaster index (cf. Section 2) in the

beginning via command setup, and Fsync only provides guarantees
if (a) all honest parties (i) agree on the master index and (ii) input

chains originating from the same genesis block, and (b) all honest

parties are represented in the master indexMI = (ND, SD,R) they
input; a party is represented in MI if one of its IP addresses IP and

one of its keys v appear in ND, i.e., (P, IP,v) ∈ ND.
When all of the above conditions are satisfied, Fsync has valid

setup. If the setup is not valid, Fsync shuts down. Note that it is

the responsibility of the consensus protocol (i.e., the environment

in the diffusion context) to ensure that the setup is valid. This is

commonly achieved via the genesis block (which is assumed to be

available to all parties) initially and later on based on the epoch-

wise consensus properties of the protocol. More details on this

relationship are provided in Section 5.

Eclipsing. Due to the fact that in practically feasible and scalable

protocols for realizing Fsync, each party is connected only to a

small subset of all participants, it is unavoidable that the adversary

may eclipse certain honest parties by (adaptively) corrupting all of

their neighbors. Consequently, Fsync offers an eclipse command

by which the attacker can exclude any honest party from the TS

guarantees (see below).

There are two limitations on the attacker’s use of the eclipse

command. The first one is that eclipse commands only take effect

after a delay of ξecl. The second limitation is based on the following

notion of t-free party:

Definition 3.1. A t-free party is an honest party that was not

eclipsed during rounds t − 1, t − 2, . . . , t − µ.

10
Observe that the keys in the networking layer need not necessarily be VRF keys:

any type of “public key” could potentially be used as an ID instead. Fsync is sufficiently

general to support any such use case since the keys are only used to determine “valid

setup” (see below).

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Parameters: ∆init: initial delay; ∆sync: synchronization delay; ξecl ≥ ∆sync: eclipse delay; µ ≥ ∆sync: non-free lookback parameter; λ: maximum fraction

of non-free honest stake; prefer(·, ·): strict partial order.

Admin
Variables: The functionality keeps track of the

following variables, initialized to the values

below for all parties P and rounds t :
(1) IPs[P] := ∅: set of IPs owned by P ;
(2) Keys[P] := ∅: set of keys owned by P ;
(3) C[P , t] := ⊥: local chain of P in round t ;
(4) E[P , t] := false: eclipse status of P in

round t ;
(5) MI[P] := ⊥: master index as seen by P ;

recall that MI = (ND, SD, R) (cf. Section 2).

Setup: Upon (setup,MI,C) from P (in round

−∆init): set C[P , < 0] := C andMI[P] := MI.

IP addresses: Upon (getIP) from P : Output
(getIP, P) to S and ask S for a unique address

IP. Add IP to IPs[P] and output (getIP, IP) to P .

Keys: Upon (getKey) from P : Output
(getKey, P) to S and ask S for a unique key v .
Add v to Keys[P] and output (getKey, v) to P .

Fetch & Set

Fetch chains: Upon (fetch) from P :

(1) Output (fetch, P) to S and ask S for a set

D of chains.

(2) For any C with C[P ′, T − ∆sync] = C for

some T-core node P ′
: if P is a T-core node

and prefer(C ,C[P , T − 1]) as well as

prefer(C ,C′) for all chains C′
in D , add C to

a set D′
.

(3) Output (fetch, D ∪ D′) to P .

Set local chain: Upon (setC,C) from P : if
prefer(C ,C[P , T − 1]), set C[P , T] := C .

Adversarial

Eclipsing: Upon (eclipse, P) from S—after all

honest parties have set master index in current

round T: If eclipsing P in round T would result

in the fraction of (T + ξecl + 1)-non-free stake
remaining below λ, set E[P , T + ξecl] := true.

Register IPs: Upon (regIP, IP) from S: if IP is

unique, add it to IPs[S].

Register keys: Upon (regKey, v) from S: if v
is unique, add it to Keys[S].

Notions

Representation: P is represented if

(P , IP, v) ∈ ND for IP ∈ IPs[P] and
v ∈ Keys[P].

Eclipsed: P is eclipsed in round t if
E[P , t] = true.

Core and free parties: P is a t -core party (resp.

t -free party) if it was not eclipsed in rounds

t − ∆sync, . . . , t − 1 (resp. t − µ , . . . , t − 1).

Valid setup: Fsync has valid setup if (a) all honest
parties use setup with (i) chains originating

from the same genesis block and (ii) the sameMI,
and (b) all honest parties are represented.

If Fsync’s setup is not valid, it halts.

Functionality Fsync

Figure 4: Functionality Fsync for global chain synchronization among participants of PoS consensus.

The eclipse restriction is that at any time t , the fraction of stake

corresponding to t-non-free honest parties may not exceed parame-

ter λ.
Formulating an eclipse restriction in this way prevents the at-

tacker from eclipsing a completely different subset of parties in each

round since a party eclipsed in round t essentially blocks a fraction

corresponding to its stake in the attacker’s eclipse budget λ for µ
slots. Note, however, that it is absolutely possible for the adversary

to eclipse a particular party for an unlimited amount of time. This

must be dealt with by the higher-level consensus protocol using

Fsync.

Main operation and timely synchronization (TS). Similarly to

Fbilateral, a party uses setC to switch their local chain to a strictly

better one according to a predicate prefer (cf. Section 3.2). Moreover,

parties use fetch in order to receive information about chains of

other participants.

The TS guarantee offered by Fsync is based on the following

notion of t-core:

Definition 3.2. A t-core party is an honest party that was not

eclipsed during rounds t − 1, t − 2, . . . , t − ∆sync.

Thus, the t-core notion is very similar to that of t-free parties,
except with less “lookback” (as ∆sync ≤ µ).11

11
The reason for having two parameters ∆sync and µ here is that Fsync is more

“useful” the smaller ∆sync is and the larger µ is.

The TS guarantee is now the following: Suppose an honest party

P sets its local chain to some chain C at time t . Then, by time

t + ∆sync, provided P is in the (t + ∆sync)-core, the following holds

for all (t + ∆sync)-core parties P
′
,

• either P ′ has already switched their local chain to C ′
, or

• the fetch command returns C ′
,

where C ′
is a chain with ¬prefer(C,C ′), i.e., incomparable to or

better than C .12

3.4 Synchronization Protocol
Overview. Protocol πsync (cf. Figure 5), realizing Fsync in the hy-

brid model with Fnet, Fvrf , and Fbilateral, follows the stake-weighted
random-graph approach outlined in Section 3.1. The protocol uses

a VRF to determine the random graph and to ensure that honest

parties only accept connections from parties they are neighbors of

in the graph. A party runs instances of Fbilateral with each neighbor

in order to keep track of their local chain. Whenever a party learns

of a valid chainC ′
better than their current local one, the idea is that

they switch to C ′
. However, as elaborated below, validity checks

and the decision to switch occur in the environment; therefore,

πsync will only realize Fsync w.r.t. to a (very reasonably) restricted

class of environments.

12
Note that since prefer is a strict partial order, C ′ = C is also possible.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

Parameters: d : degree paremeter; r : refresh parameter; αmin: minimum core-party stake; prefer(·, ·): strict partial order.

Hybrids: Fnet: network functionality; Fvrf : VRF functionality; Fbilateral: functionality for bilateral chain synchronization.

Admin

Variables: The protocol is described from the

point of view of a party P ; it keeps track of the

following items, initialized to the values below:

(1) IPs := ∅: set of IPs owned by P ;
(2) Keys := ∅: set of keys owned by P ;
(3) Clocal := ⊥: local chain of P ;
(4) MI := ⊥: master index; recall that

MI = (ND, SD, R) (cf. Section 2).

(5) (implicitly) instances of Fbilateral involving P .

Setup: Upon (setup,MI′,C) from P (before

round 0): set Clocal := C andMI := MI′.
Moreover, let IP and v be P ’s IP and VRF keys in

ND, i.e., (P , IP, v) ∈ ND.

IP addresses: Upon (getIP) from Z: Output

(getIP, P) to Fnet, receive (getIP, IP) from Fnet,
add IP to IPs, and output (getIP, IP) to Z.

Keys: Upon (getKey) from P : Output
(getKey, P) to Fnet, receive (getKey, v) from
Fvrf , add v to Keys, and output (getKey, v)
to Z.

Fetch & Set

Fetch chains: Upon (fetch) from Z:

(1) Let D := ∅. For all instances of Fbilateral:
output (fetch) to Fbilateral and receive

(fetch, D′) from Fbilateral; add D′
to D .

(2) Let Dpref be all C ∈ D with prefer(C ,Clocal).

Output (fetch, Dpref) to Z.

Set local chain: Upon (setC,C) from Z: If

prefer(C ,Clocal), set Clocal := C . For all instances

of Fbilateral, output (setC,C) to Fbilateral.

Overlay Management
Multiplier: The degree multiplier for P is

defined as ΘP := ⌈αP /αmin ⌉, where αP is P ’s
stake according to SD.

Initialization: (Run as part of the setup

command.) For t = −(d − 1)r , −(d − 2)r , . . . ,
−r , 0 and j = 1, . . . , ΘP , run SamCon(t , j).

Refresh Operation: (Run as part of the fetch

command.) When T is a positive multiple of r :
Stop Fbilateral instances with time stamps t that
have expired (i.e., T − t = dr). For j ∈ 1, ..., ΘP :
run SamCon(T, j).

Procedure SamCon(t , j): Proceed as follows:

(1) Output (eval, v , R | |t | |j) to Fvrf and receive

(eval, y, π) from Fvrf .

(2) Let (P ′, IP′) := pick(y) and let IP be the IP

with (P , IP, ·) ∈ ND. Send message

(P , IP, P ′, IP′, t , j , y, π) to IP′ using Fnet.
Start Fbilateral instance with
sid = (P , IP, P ′, IP′, t , j).

Procedure pick(y): Using y as random coins,

pick a party P ′
proportionally to its stake in SD.

Output (P ′, IP′), where IP′ is such that

(P ′, IP′, ·) ∈ ND.

Handling incoming connections: (Run as

part of the fetch command.) Proceed as follows:

(1) Let IP be the IP with (P , IP, ·) ∈ ND.
(2) Fetch messages from Fnet. For each message

(P ′, IP′, P , IP, t , j , y, π):
(a) Check that t has not expired (i.e.,

T − t < dr) and is not from the future or

non-positive (i.e., t ≤ T ∨ t ≤ 0).

(b) Check j ∈ {1, ..., ΘP ′ }.

(c) Output (verify, v ′, R | |t | |j , y, π) to
Fvrf , where (P ′, ·, v ′) ∈ ND, and check

that Fvrf answers with (verify, 1).

Check that pick(y) = (P , IP).
If all checks pass, run Fbilateral instance with
sid = (P ′, IP′, P , IP, t , j).

Protocol πsync

Figure 5: Protocol πsync, implementing functionality Fsync.

Admin. Protocol πsync handles requests for IPs and keys by sim-

ply forwarding them to Fnet and Fvrf , respectively, and the subse-

quent replies back to the environment.

Upon receiving (setup,MI′,C) from the environment, πsync
stores these values internally for later use.

Overlay. The most crucial part of πsync deals with establishing

and updating the random-graph overlay. A party P initially samples

ΘP neighbors for each time stamp t = −(d−1)r ,−(d−2)r , . . . ,−r , 0
independently and based on their stake, where ΘP is a multiplier

that depends on the stake αP of P itself; specifically,

ΘP := ⌈αP /αmin⌉ ,

for some parameter αmin.

Connections to neighbors expire after dr slots; thus, in each

round that is a multiple of r , ΘP new neighbors are sampled. Up-

dating the overlay in this fashion helps parties recover from eclipse

events in practice; in the context of this work, however, the adaptive

attacker considered here may simply corrupt all new neighbors of

a party. Hence, with such a powerful adversary, there is no upper

bound on the duration of an eclipse for a particular party (short of

the adversary exhausting its corruption budget, of course). Further-

more, refreshing neighbors also allows gradual adaptation of the

overlay to changing stake distributions.

The actual sampling performed by a party P is described as a

procedure SamCon(t, j) in Figure 5, where t is a time stamp and j =
1, . . . ,ΘP . The procedure uses a subroutine pick(y) which, using
VRF output y as random coins, chooses a party P ′ proportionally
to its stake in SD. Note that the inputs to the VRF are (apart from

P ’s public key) the random nonce R (part of MI), t , as well as j.
Subsequent to the above sampling, P sends a connection request

to P ′ via Fnet and immediately begins a corresponding instance of

Fbilateral. Conversely, P
′
will start the instance upon receiving the

connection request (after performing the obvious checks).

Chain management. Upon receiving (setC,C) from the environ-

ment, if C is better than P ’s current local chain, P updates the

corresponding variable and inputs (setC,C) to all running Fbilateral
instances.

Upon receiving (fetch) from the environment, P sends (fetch)

to all running Fbilateral instances and collects the answer chains

in a set D; all chains in D preferable to P ’s current local chain are

returned to the environment.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Chain validity and switching. With the application of blockchain

consensus in mind, observe that in the context of πsync (or, in the

ideal world, of Fsync) there is no notion of “chain validity.” This

is a concept from the higher-level consensus layer. Consequently,

πsync (Fsync) cannot possibly check a chain for its validity and

“automatically” switch to the best valid chain. This task therefore

falls upon the environment.

At this point it is also important to observe that successful

chain “propagation” through the network crucially depends on

the environment—in each round—using setC to make each party

switch to the best valid chain received so far. In order to circum-

vent the application-specific nature of the notion of “validity,” the

following proxy for it is used:

Definition 3.3. In an execution of πsync (or Fsync), a chain C is

endorsed if the environment at some point inputs (setC,C) on
behalf of an honest party P .

The notion of endorsed chains allows to define the class of envi-

ronments Z w.r.t. which πsync must realize Fsync:

Definition 3.4. An environment Z is H-improving if in each

round t , every honest party P inputs (setC,C) for a chain C which

is maximal w.r.t. prefer among all endorsed chains received by P
via fetch in rounds up to t .

The above finally leads to the following main theorem:

Theorem 3.5. Let

• n ∈ N,
• α > β > 0, δ > 0, cmin, and cmax be constants satisfying
0 < cmin < 1 < cmax and (α − β)/2 ≥ β + cmin/n, and

• r ∈ N.

Then, for all sufficiently large d , there exists a constant γ > 0 such
that protocol πsync[d + 1, r , cmin/n] ε-securely realizes Fsync[∆init,

∆sync, µ, ξecl, λ] in the {Fnet[δnet], Fvrf, Fbilateral[δinit, δsync]}-hybrid
model w.r.t. H-improving environments that (1) input anMI with n
parties in which no party owns more than a cmax/n fraction of stake,
(2) corrupt at most an α -fraction of stake, (3) run for at most L rounds,
where

• ∆init = δnet + δinit,
• ∆sync = 8ℓ for ℓ := ⌈− log

1+γ (2cmin/n) + 1⌉,
• ∆sync ≤ ξecl ≤ min(ξcorr, r),
• µ = r ,
• δinit ≤ r ,
• λ = 2(β + cmin), and
• ε = L/r · e−δn .

Remarks. A simple Chernoff bound can be used to show that if

there are no small-stake nodes (with less than cmin/n stake), the de-

grees of all parties are constant. In case there are many small-stake

nodes, the degrees of large nodes are beyond constant. However,

one can show that by having small-stake node pick their peers

uniformly (instead of based on stake), all node degrees go back to

constant again.

The security error ε is exponentially small in the number of

parties n. It is, of course, important in practice to ensure by suitable

means that there are sufficiently many parties participating. One

possible way to achieve this by having so-called stake-pool opera-

tors (SPOs), to which parties can delegate stake, run the blockchain

and use incentive mechanisms to control the total number of SPOs.

Furthermore, there are also several ways of enforcing the maxi-

mum-stake restriction in Theorem 3.5. In a system with SPOs, one

may restrict the maximum delegated stake on the consensus level.

Alternatively, one can again set incentives in such a way that SPOs

do not attract more than a certain amount of stake. For more infor-

mation, see [3].

4 SECURITY PROOF
This section presents the security proof of the synchronization

protocol πsync (cf. Section 3.4).

The most crucial part of the security argument is a new result on

stake-based expander graphs. Specifically, given a graphG wherein

each vertex v has assigned to it some stake αv ∈ (0, 1], where∑
v αv = 1, and each vertex chooses its neighbors in the stake-

based fashion adopted by protocol πsync, the results in Section 4.1

show that even after removing all adversarial nodes fromG , leaving
behind at least some α-fraction of honest stake, there exists an

honest “backbone” holding at least α − β stake, for some β , such
that the backbone is an expander graph.

As shown in Section 4.2, the above translates to πsync realizing

Fsync with roughly a β-fraction of honest stake being eclipsed,
13

while due to the expander property of the backbone, the remaining

“core” of honest parties are at most O(logn) hops apart from each

other, where n is the total number of parties. It should be noted

that the this core only approximately corresponds to the backbone

above, the reason for this being that (a) the backbone cannot be

efficiently computed (and thus, an approximation has to be used),

and (b) backbone nodes with less than cmin/n stake need to be

excluded from the core (because the expander property cannot be

used to bound their distance from other nodes in the backbone).

4.1 Expanders Resisting Vertex Deletion
It is a well-known fact that random graphs—with a wide variety of

edge distributions—form expanders with high probability and hence

have small diameter and other desirable properties. This section

shows that the random graphs produced by the protocol possess

such strong properties even if an adversary with full knowledge of
the graph is permitted to remove a constant fraction of the nodes.

As outlined above, we show that for any two constantsα > β > 0,

there is a degree parameter d for which the following holds: so long

as an α fraction of nodes remain after adversarial deletion, there is a

subset (the “backbone”) consisting of an α − β fraction of the nodes

that is a strong expander. Typically, one would choose β ≪ α so

that the backbone consists of almost all of the remaining vertices.

These results are motivated by a classical theorem of Upfal [25],

which uses different methods to establish a similar property of

Ramanujan graphs (which achieved fixed constants α and β). Thus,
our results expand on this theory by (i) handling random graphs,

and (ii) establishing that any constants can be achieved by appropri-

ate choice of d . A final remark before transitioning to the technical

13
More precisely, the non-free parameter λ is roughly β (cf. Section 3.3).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

survey: we also work directly with weighted graphs (with a weight-

ing corresponding to stake) so that we can define and treat a natural

notion of “stake-weighted” expansion.

Our protocol directly motivates the following family of distribu-

tions of random directed graphs.

Definition 4.1. Let d and n be positive integers and let D be a

probability distribution on [n] with the property that dv = ndD(v)
is an integer for every vertex v . We let Gn,d ;D denote the probabil-

ity law on directed multigraphs withV = [n] obtained by selecting,

for each v , dv outgoing neighborsw1, . . . ,wdv independently ac-

cording to D and defining the multiset of directed edges to be

E =
⋃
v
⋃dv
i=1(v,wi).

14

We let Gn,d denote the special case when D is the uniform

distribution, in which case dv = d for all v .

We wish to show that Gn,d ;D is typically a “stake expander”:

that is, that sets S ⊂ V have a number of neighbors outside them,

or edges leaving them, proportional to their total stake.

Definition 4.2. Let G = (V , E) be a directed graph. For a subset

S ⊂ V , we define the (outer) boundary of S as

∂(S) = {w < S | ∃s ∈ S : (s,w) ∈ E or (w, s) ∈ E} .

Let D be a distribution on the set V and γ > 0. We say that G is

a (D,γ)-expander if for every subset of vertices S ⊂ V for which

D(S) ≤ 1/2,

D(∂(S)) ≥ γD(S) ,

where we use the notation D(S) to denote

∑
s ∈S D(s).

Theorem 4.3. Let α > β > 0 and δ > 0 be positive constants,
and let cmin and cmax be positive constants satisfying cmin < 1 <

cmax. For sufficiently large d there is a constant γ > 0 for which
the following holds: Let D be a distribution on V = [n] for which
cmin/n ≤ D(v) ≤ cmax/n and dv ≜ ndD(v) is an integer for each
v ∈ V . ConsiderG = (V , E) drawn according to Gn,d ;D . Then, except
with probability p

fail
≤ e

−δn , for every subset H ⊆ V for which
D(H) ≥ α , there is a subset H ′ ⊂ H for which D(H ′) ≥ α − β and
the subgraph induced by H ′ is a (D ′,γ)-expander, where D ′ is the
distribution D scaled by 1/D(H ′).

The proof is provided in the full version of this paper [7].

Remark. The condition in Definition 4.1 and Theorem 4.3 that

ndD(v) is an integer for all v is a mere convienience so that the

out-degree of each vertex will be a fixed integer dv . We can also

define dv = ⌈ndD(v)⌉. This changes the effective stake of each

player by a factor of 1 ± O(1/d). In fact we only need an upper

bound on the stake each vertex has, as we can hand over all the

vertices with very low stake to the adversary.

4.2 Security of the Synchronization Protocol
This section uses the results from Section 4.1 to finally prove the

security of protocol πsync.

14
In our main application, we are actually interested in the properties of the

undirected version of such graphs; however, for analytic purposes it is convenient to

distinguish the source and sinks for each edge.

Simulation basics. Simulator S internally simulates instances of

the protocol and of hybrids Fnet, Fvrf , and Fbilateral as well as the
adversaryA (which acts as the interface to the environment); in the

following, this ensemble is referred to as the simulated real world
(SRW). Specifically, S reacts as follows when receiving messages

from Fsync:

• Upon (setup, P,MI,C): in the SRW, input (setup,MI,C) on
behalf of P .

• Upon (getIP, P): in the SRW, input (getIP) on behalf of P ;
wait to receive (getIP, IP) on behalf of P ; return IP to Fsync.

• Upon (getKey, P): in the SRW, input (getKey) on behalf of

P ; wait to receive (getKey,v) on behalf of P ; return v to

Fsync.
• Upon (fetch, P): in the SRW, input (fetch) on behalf of P ;
wait to receive (fetch, D̃); return D̃ to Fsync.

• Upon (setC, P,C): in the SRW, input (setC,C) on behalf

of P .

Messages from A are handled as follows:

• Upon (regIP, IP): input (regIP, IP) to Fsync.
• Upon (regKey,v): input (regKey,v) to Fsync.

Notation. Fix the master index MI = (ND, SD,R) input by the

honest parties at the beginning; recall that n denotes the number of

parties inMI. In the following, for a subset S of the parties inMI,
denote by αS := SD(S) the amount of stake held by parties in S .

Determining whom to eclipse. A crucial part of S is to ensure that

when handling fetch commands, Fsync does not enforce delivery
guarantees that contradict the SRW. To that end, S determines

which honest parties are “eclipsed” and relays this information to

Fsync. Recall that Fsync will not offer any guarantees to non-core

parties, where a party is in the core in round t if and only if it has

not been eclipsed in rounds t − 1, t − 2, . . . , t − ∆sync.

Towards understanding which parties to eclipse at a particular

time t , consider the graph G formed by all parties in MI and the

connections implied by the use of the VRF at time t , but ignore the
edges added to it during the latest refresh (i.e., in the largest round

t ′ ≤ t that is a multiple of r). This graph follows the distribution

Gn,d ;SD.

LetH denote the set of honest parties in at time t . By Theorem 4.3,

there exists a setH ′ ⊆ H with αH ′ ≥ αH −β , such that the subgraph
ofG induced by H ′

is an (SD′,γ)-expander, where SD′
is SD scaled

by 1/αH ′ . This expander property allows to bound the diameter

between parties in H ′
with a certain minimum amount of stake, a

fact used to show:

Claim 4.4. From each party in H ′ with stake at least cmin/n in
SD, one can reach more than (αH − β)/2 of honest stake in at most ℓ
steps.

Proof. Consider a party P ∈ H ′
with stake αP ≥ cmin/n. Its

stake according to SD′
is equal to

αP /αH ′ ≥
cmin

αH ′n
.

By the expander property on H ′
, one can reach more than 1/2 of

the stake in H ′
from P (according to SD′

) in ℓ′ steps if

cmin

αH ′n
(1 + γ)ℓ

′

>
1

2

.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

This is satisfied for

ℓ′ :=

⌈
log

1+γ

(
αH ′n

2cmin

)
+ 1

⌉
≤

⌈
log

1+γ

(
n

2cmin

)
+ 1

⌉
= ℓ .

Reaching half of the stake in H ′
according to SD′

translates to

reaching

αH ′

2

≥
αH − β

2

of stake according to SD. □

Since the security argument in Theorem 4.3 is non-constructive,

it is unclear whether set H ′
can be efficiently determined. Instead,

consider the set

It := {h ∈ H | can reach β + cmin/n HS in ℓ steps from h} ,

where HS stands for “honest stake.” The subscript is dropped from

I whenever clear from the context.

Claim 4.5. αI ≥ αH − β − cmin.

Proof. First, observe that (αH − β)/2 ≥ (α − β)/2 ≥ β + cmin/n,
where the last inequality is by assumption. By Claim 4.4, all parties

inH ′
with stake at least cmin/n are therefore in I . The claim follows

by observing that at most cmin of the total stake is held by parties

with more than cmin/n stake. □

As the subgraph induced by H ′
, that induced by I also has

bounded diameter:

Claim 4.6. There is a path of length at most 4ℓ between any two
parties in I .

Proof. By definition of I , from any node in I , one can reach at

least β + cmin/n stake in H in ℓ steps, and, therefore, cmin/n stake

in H ′
. The argument in the proof of Claim 4.4 suggests there is a

path of length at most 2ℓ between any two nodes with stake at least

cmin/n in H ′
. One concludes that there must be a path of length at

most 4ℓ between any two nodes in I . □

Given the above, the eclipse strategy of S is to, in each round

t , use (eclipse, P) to eclipse all parties P < It . However, due to the

eclipse-delay property of Fsync, S is forced to set eclipsed status

based on It at or before time t − ξecl. This is, however, possible:

• Since ξecl ≤ r and the edges added during the latest round

t ′ ≤ t that was a multiple of r are ignored, the topology of

G in round t is known by round t − ξecl.
• Since ξcorr ≥ ξecl, which parties are honest/corrupted is also

known by round t − ξecl.

Bounding synchronization time. The next step in the proof con-

sists of arguing that Fsync never has to add any chain C to set D ′

during a fetch call by party P in some round t .
To that end, assume first that there is no multiple of r in {t −

4ℓ, . . . , t − 1}, i.e., the underlying graph G does not change in this

period. Consequently, It−4ℓ ⊇ It−(4ℓ−1) ⊇ . . . ⊇ It−1, where the
only reason elements are dropped from I over time is corruption.

Consider now the fetch command by P in round t . Recall that
a chain C is added to D ′

only if

(i) C was held by some honest party P ′ in round t − ∆sync,

(ii) neither P nor P ′ were eclipsed in rounds t − 1, . . . , t − ∆sync,

(iii) C is preferable to the chain held by P ′ in round t − 1 and to

all chains in set D (during the fetch call).

Observe that ∆sync ≥ 4ℓ; thus, that the fact that (ii) holds (i.e., S

did not issue, in advance, eclipse commands for P or P ′ for rounds
t − 1, . . . , t − ∆sync) means that both parties P and P ′ were in sets I
during rounds t − 1, . . . , t − 4ℓ.

Therefore, by the monotonicity of the sets I , there has been a

path of length at most 4ℓ between P ′ and P , which, combined with

the facts thatZ is H-improving and (again) ∆sync ≥ 4ℓδsync, means

that by time t , either P ’s local chain will already be set to a chain

C ′ ≮ C or a chain C ′ ≮ C is in set D at time t . In either case, C is

not added to D ′
.

Finally, for intervals including changes to G, observe that since
∆sync = 8ℓ, there are at least 4ℓ rounds either before or after the

change to G.

Amount of non-free stake. The fact that the amount of non-free

stake remains below λ = 2(β + cmin) follows from Claim 4.5, not-

ing that the extra factor of 2 is required for ∆sync-sized intervals

containing a multiple of r .

Proof (of Theorem 3.5). In order to complete the proof based

on the above, note that it remains merely to apply a union bound

over all refresh periods (which are of length r). □

5 FULLY SECURE POS CONSENSUS
This section discusses the application of running a PoS consensus

protocol on top of the chain synchronization functionality Fsync. For
concreteness, the protocol considered here is Ouroboros Praos [11]

which is a longest chain Nakamoto-style blockchain PoS protocol

and is described first. This is followed by a comparison of the

“diffusion” functionality Fdiff used in [11] and Fsync. Based on this

comparison, the changes to Ouroboros Praos’ security proof are

presented and discussed; in particular, as a contribution of possibly

independent interest, a generalized version of the so-called forkable-
string analysis is provided.

5.1 Ouroboros Praos
Ouroboros Praos (or, simply, Praos) proceeds in so-called slots. In

each slot, each party P first checks whether it has “received” valid

chains that are longer than its current local chain; if so, it switches

to a longest one among those. Subsequently, based on the stake

distribution used in the current epoch, P checks whether it is the

slot leader. This determination is made based on the output y of a

VRF evaluated on (in addition to P ’s key) the slot number and the

so-called epoch randomness; if y ends up below a certain threshold,

which is a monotonically increasing function of P ’s stake, P is a

slot leader. As such, it creates a new block extending its current

local chain C; the block consists of the hash of the last block of C ,
the slot number, P ’s identity, the VRF output and VRF proof, a data

payload, as well as a signature. The resulting chain C ′
is then “sent

to everyone.”

5.2 Diffusion vs. Synchronization
In [11], parties share a diffusion functionality Fdiff , parametrized

by a value ∆, with the simple intuitive property that any chain

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

Parameters: k : common-prefix parameter; prefer(·, ·): strict partial order.

Hybrids: Finit: generates initial master index and genesis block; Fvrf : used to determine slot leadership; Fkes: used for key-evolving signatures; Fsync:
allows to synchronize chains.

Admin & Initialization

Variables: The protocol is described from the

point of view of a party P ; it keeps track of the

following items, initialized to the values below:

(1) Clocal := ⊥: local chain of P ;
(2) η := ⊥: VRF salt value.

Initialization: Initially, P proceeds as follows:

(1) Use Fsync to obtain an IP address and a

network (VRF) key.

(2) Use Fkes to obtain a signature public key.

(3) Use Fvrf to obtain a VRF key (for slot

leadership).

(4) Pass the above values to Finit and obtain the

initial master index MI, genesis chain

Cgenesis, and epoch randomness η′; set
Clocal := Cgenesis and η := η′.

(5) Input (setup,MI,Cgenesis) to Fsync.

Main Operation

In each slot s ≥ 1, execute the following steps:

Fetch chains: Input (fetch) to Fsync and obtain

a set D of chains. Pick a maximal (w.r.t. prefer)
chain among the valid chains C′ ∈ D with

prefer(C′,Clocal) and set Clocal := C′
; if no such

chain C′
exists, leave Clocal unchanged. A chain

is valid if (1) it has the same genesis block as

Clocal, (2) all hashes are correct, (3) slot numbers

of blocks are strictly increasing, (4) all VRF

values y and proofs π are valid and y is below

the threshold for the issuing party, (5) all

signatures are valid.

Chain extension: Send (eval, v , η ∥s) to Fvrf ,
where v is P ’s VRF key (stored in the genesis

block), and obtain a VRF value y as well as a

proof π . If y is below P ’s leadership threshold,

create a block B = (h, s , P , y, π , d , σ), where h
is a hash of the last block in Clocal, d is a data

payload, and σ is a signature, obtained via Fkes,
on (h, s , P , y, π , d). Set Clocal := Clocal ∥B .

Chain synchronization: Input (setC,Clocal)

to Fsync.

Ledger: Output as the ledger the concatenation
of all data d contained in blocks of depth at least

k in Clocal.

Protocol πpraos

Figure 6: Protocol πpraos.

an honest party diffuses via Fdiff will “arrive” at all other honest

parties with a delay of no more than ∆ slots.

Consider now using Fsync, in order to “synchronize” rather than

“diffuse” chains. Figure 6 contains a description of the (static-stake)

Praos protocol using Fsync. The protocol additionally uses hybrids

Fvrf for slot leadership as well as the following two hybrids, which

are only described on a high-level sufficient for the context of this

section:

• Finit is used for master-index and genesis-block generation;

more precisely, parties initially send information such as

keys, IPs, etc. to Finit, which then generates the initial master

index and the genesis block.

• Fkes is a functionality idealizing key-evolving signatures and,
in particular, allows parties to create keys as well as to issue

and verify signatures.

Due to the fact that it is implemented by a protocol—rather than

merely assumed—the guarantees offered by Fsync are weaker in

several ways:

• A λ-fraction of the total stake may be eclipsed, and the cor-

responding parties are excluded from the timely synchro-

nization (TS) guarantees.

• The TS properties of Fsync are weaker compared to those

offered by Fdiff : instead of a particular chain C “propagat-

ing” through the network within ∆ slots, Fsync may deliver

different chains C ′
that are not worse (i.e., equal length or

longer).

• In order to replace Fsync by its implementation, the environ-

ment must be H-improving (cf. Section 3.4).

The next section details how to update the security proofs of

Praos in order to deal with these weaker guarantees of Fsync.

5.3 Updated Proofs for Praos
5.3.1 Characteristic Strings and Forks. At the heart of the Praos
security proof (with functionality Fdiff) [11] are the notions of char-
acteristic strings, forks, and margin, which capture the security-

relevant information about events in an execution of Praos. Charac-

teristic strings indicate the relevant information about the sequence

of elected leaders in an execution of the protocol. The analysis

shows that consistency violations can be controlled by (i) distilling

the family of possible blocktrees that can arise for a given sequence

of leader elections (as determined by a characteristic string) into a

single numeric metric of interest called margin and (ii) an analysis

of the stochastic process that governs generation of characteristic

strings and the resulting behavior of margin. The final result is ar-

ticulated as a large-deviation bound for margin, which establishes

consistency with high probability. In this section, we discuss how

that analysis can be adapted to our setting with a finer-grained

view of networking and block delivery.

Characteristic strings in Praos have the formw = w1w2 . . . and

record information about slot leadership in an execution. Each

character in the string is a symbolwi ∈ {A,H,⊥}, where

wi =


A if slot i has an adversarial or multiple leaders,

H if slot i has a single honest leader,

⊥ if slot i has no leader.

A ∆-fork F for a characteristic stringw is a directed, rooted tree,

intended to represent the topology of all chains observed during

an execution of Praos: Each vertex v of F corresponds to a block

in a particular chain and has a label ℓ(v) ∈ N, which records the

block’s slot number. The genesis block is represented by the root

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

of the tree. The edges of a fork are directed “away from” the root

so that there is a unique directed path from the root to any vertex.

Based on the description of Praos, it is easy to see that a fork

satisfies the following properties:

(i) The root r ∈ V has label ℓ(r) = 0 and is considered honest

by fiat.

(ii) The sequence of labels ℓ(·) along any directed path is strictly

increasing. Reason: this is enforced by the protocol.

(iii) If wi = H, there is a unique vertex v for which ℓ(v) = i .
Reason: honest parties do not create multiple blocks.

(iv) For any pair of honest vertices v,v ′
(i.e., wℓ(v) = wℓ(v ′) =

H) with ℓ(v) + ∆ ≤ ℓ(v ′), their lengths (i.e., distance from

root) len(v) and len(v ′) satisfy len(v) < len(v ′). Reason:

As per the guarantees of Fdiff , during the creation of the

block corresponding to vertex v ′
in slot ℓ(v ′), the block

corresponding to v was available to build on since it was

created in slot ℓ(v), which was at least ∆ slots before v ′
;

hence, len(v ′) must be strictly larger than len(v).

The analysis proceeds by defining a notion of margin for a fork,

which reflects the presence of pairs of paths (chains) in the fork

that diverge prior to a particular slot and exceed the length of the

deepest honest block. Intuitively, such pairs of paths correspond to

a consistency failure and, indeed, the precise definition of margin

ensures that the quantity is positive exactlywhen such a consistency

failure exists. This notion is extended to characteristic strings by

maximizing over all forks consistent with the string. The analysis

then shows that margin satisfies a recurrence relation in terms

of the characteristic string (corresponding to an execution of the

protocol) and, finally, that the probability of observing a positive

margin is small.

5.3.2 Accounting for Eclipsed Parties. Clearly, the∆-fork formalism

above does not consider cases where (a) the leader is out of sync and

potentially fails to build on some longest chain C whose last block

is more than ∆ slots old or (b) the leader’s block takes longer than

∆ to reach the next slot leader; naturally, an eclipse event can cause

both (a) and (b).
15

In the following, an honest leader not suffering
from (a) is called current, and an honest leader not suffering from (b)

is called relayed. An honest leader that is both current and relayed

is called synchronized.
In order to update the forkable-string analysis to account for non-

relayed parties, the following changes are introduced to it. First, the

characteristic string is now over an alphabetwi ∈ {A,CR,C,R,⊥},
where

wi =



A if slot i has an adversarial or multiple leaders,

CR if slot i has a single synchronized leader,

C if slot i has a single current leader,

R if slot i has a single relayed leader,

⊥ if slot i has no leader.

Second, condition (iv) for forks is amended as follows:

15
Note that there are implementations of the network layer in which the connec-

tions to peers are unidirectional. In such cases, it is possible that due to an eclipse

event (a) occurs but (b) does not (or vice versa).

(iv) For any pair v,v ′
withwℓ(v) ∈ {R,CR} andwℓ(v ′) ∈ {C,CR}

and where ℓ(v)+∆ ≤ ℓ(v ′), their lengths (i.e., distance from

root) len(v) and len(v ′) satisfy len(v) < len(v ′).

The definition of margin is essentially unchanged with this new

definition of fork. However, the recursive behavior depends on the

new semantics of these richer characteristic string symbols and

exhibits some rather interesting properties: in particular, the effect

of the C and R symbols depends on whether the worst-case margin

is currently negative or positive. This is discussed in detail in the

full version of this paper [7].

5.3.3 Alternative chains and H-improving. It is easy to see that (1)

condition (iv) of the forks is not violated if instead of a chain C
non-worse chains C ′

are delivered after ∆sync slots and (2) Praos is

an H-improving environment for Fsync.

5.4 Multi-Epoch Praos
There are two approaches to running Praos with Fsync in a multi-

epoch setting with an evolving stake distribution: (a) use a different

instance of Fsync in every epoch or (b) define a version of Fsync that
allows for changing stake distributions.

The conceptually simpler approach is, of course, (a). The idea is

to, ∆init before the end of each epoch, begin a new instance of Fsync.
At that point, the master index (including the network directory, the

stake distribution, and the randomness) to be used in the new epoch

is determined.
16

Taking approach (a) would mean that the random

overlay is completely re-sampled for each new epoch. In practice,

this may constitute an unacceptable overhead. Using approach (b)

avoids this issue, but makes the definition, realization, and proofs

of Fsync somewhat more cumbersome.

Observe that in either case it is important to properly deal with

honest parties that have been eclipsed for more than an epoch.

The issue with these parties is that once they have been eclipsed

long enough for their master index to be out of date, they will face

difficulties ever reconnecting to the network since the choice of

neighbors via the VRF is based on an up-to-date stake distribution.

While in practice such a scenario is unlikely to occur due to

the evolving nature of the random-graph overlay, in theory the

adaptive attacker can keep corrupting a party’s neighbors until

it exhausts its corruption budget, thereby keeping it eclipsed for

a long period of time. This issue can be mitigated by assuming

a checkpointing functionality (realized, e.g., via some light-client

infrastructure) that supplies parties, sufficiently in advance of an

epoch’s beginning, with the relevant master index.

6 ACKNOWLEDGEMENTS
Cristopher Moore was partially supported by National Science

Foundation grant 1838251. Alexander Russell was partially sup-

ported by National Science Foundation grant 1801487.

REFERENCES
[1] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling

Ren, and Elaine Shi. 2019. Communication Complexity of Byzantine Agreement,

Revisited. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, Peter

16
Of course, parameters such as epoch length, common prefix, etc. need to be

suitably chosen for this to be the case.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher Moore

Robinson and Faith Ellen (Eds.). ACM, 317–326. https://doi.org/10.1145/3293611.

3331629

[2] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:

Routing Attacks on Cryptocurrencies. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,

375–392. https://doi.org/10.1109/SP.2017.29

[3] Lars Brünjes, Aggelos Kiayias, Elias Koutsoupias, and Aikaterini-Panagiota

Stouka. 2020. Reward Sharing Schemes for Stake Pools. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020.
IEEE, 256–275. https://doi.org/10.1109/EuroSP48549.2020.00024

[4] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

https://doi.org/10.1109/SFCS.2001.959888

[5] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,

Rafail Ostrovsky, and Vassilis Zikas. 2015. The Hidden Graph Model: Commu-

nication Locality and Optimal Resiliency with Adaptive Faults. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, Tim Roughgarden (Ed.). ACM, 153–162.

https://doi.org/10.1145/2688073.2688102

[6] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theor. Comput. Sci. 777 (2019), 155–183. https://doi.org/10.1016/j.tcs.2019.

02.001

[7] Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell. 2022.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols. Cryptology

ePrint Archive, Paper 2022/541. https://eprint.iacr.org/2022/541

[8] D. Coutts, N. Davies, K. Knutsson, M. Fontaine, A. Santos, M. Szamotulski, and

A. Vieth. 2022. The Shelley Networking Protocol. https://hydra.iohk.io/build/

13272760/download/2/network-spec.pdf.

[9] D. Coutts, N. Davies, M. Szamotulski, and P. Thompson. 2020. Introduc-

tion to the design of the Data Diffusion and Networking for Cardano Shel-

ley. https://hydra.iohk.io/job/Cardano/ouroboros-network/native.network-docs.

x86_64-linux/latest/download/1.

[10] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-

urable Consensus and Applications to Provably Secure Proof of Stake. In Financial
Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes
in Computer Science), Ian Goldberg and Tyler Moore (Eds.), Vol. 11598. Springer,

23–41. https://doi.org/10.1007/978-3-030-32101-7_2

[11] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018, Part II (LNCS), Jesper Buus Nielsen and Vincent

Rijmen (Eds.), Vol. 10821. Springer, Heidelberg, 66–98. https://doi.org/10.1007/

978-3-319-78375-8_3

[12] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. 1987.

Epidemic Algorithms for Replicated Database Maintenance. In 6th ACM PODC,
Fred B. Schneider (Ed.). ACM, 1–12. https://doi.org/10.1145/41840.41841

[13] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. 1987.

Epidemic Algorithms for Replicated Database Maintenance. In Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver,
British Columbia, Canada, August 10-12, 1987, Fred B. Schneider (Ed.). ACM, 1–12.

https://doi.org/10.1145/41840.41841

[14] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. 1988. Fault

Tolerance in Networks of Bounded Degree. SIAM J. Comput. 17, 5 (1988), 975–988.
https://doi.org/10.1137/0217061

[15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

Attacks on Bitcoin’s Peer-to-Peer Network. In 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015, Jaeyeon Jung and

Thorsten Holz (Eds.). USENIX Association, 129–144. https://www.usenix.org/

conference/usenixsecurity15/technical-sessions/presentation/heilman

[16] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking.

2000. Randomized Rumor Spreading. In 41st FOCS. IEEE Computer Society Press,

565–574. https://doi.org/10.1109/SFCS.2000.892324

[17] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking.

2000. Randomized Rumor Spreading. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California,
USA. IEEE Computer Society, 565–574. https://doi.org/10.1109/SFCS.2000.892324

[18] Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed

systems. ACM SIGOPS Oper. Syst. Rev. 41, 5 (2007), 2–7. https://doi.org/10.1145/

1317379.1317381

[19] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–401. https:

//doi.org/10.1145/357172.357176

[20] Chen-Da Liu-Zhang, Christian Matt, Ueli Maurer, Guilherme Rito, and Søren Eller

Thomsen. 2022. Practical Provably Secure Flooding for Blockchains. Cryptology

ePrint Archive, Paper 2022/608. https://eprint.iacr.org/2022/608

[21] Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. 2022. Formal-

izing Delayed Adaptive Corruptions and the Security of Flooding Networks.

Cryptology ePrint Archive, Paper 2022/010. https://eprint.iacr.org/2022/010

[22] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

http://bitcoin.org/bitcoin.pdf.

[23] Joachim Neu, Srivatsan Sridhar, Lei Yang, David Tse, and Mohammad Alizadeh.

2021. Securing Proof-of-StakeNakamoto Consensus Under Bandwidth Constraint.

CoRR abs/2111.12332 (2021). arXiv:2111.12332 https://arxiv.org/abs/2111.12332

[24] Elias Rohrer and Florian Tschorsch. 2019. Kadcast: A Structured Approach to

Broadcast in Blockchain Networks. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23,
2019. ACM, 199–213. https://doi.org/10.1145/3318041.3355469

[25] Eli Upfal. 1992. Tolerating Linear Number of Faults in Networks of Bounded

Degree. In Proceedings of the Eleventh Annual ACM Symposium on Principles of
Distributed Computing (PODC ’92). Association for Computing Machinery, New

York, NY, USA, 83–89. https://doi.org/10.1145/135419.135437

[26] Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. 2009. Realistic Failures in Secure

Multi-party Computation. In Theory of Cryptography, 6th Theory of Cryptography
Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings
(Lecture Notes in Computer Science), Omer Reingold (Ed.), Vol. 5444. Springer,

274–293. https://doi.org/10.1007/978-3-642-00457-5_17

https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/EuroSP48549.2020.00024
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2688073.2688102
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://eprint.iacr.org/2022/541
https://hydra.iohk.io/build/13272760/download/2/network-spec.pdf
https://hydra.iohk.io/build/13272760/download/2/network-spec.pdf
https://hydra.iohk.io/job/Cardano/ouroboros-network/native.network-docs.x86_64-linux/latest/download/1
https://hydra.iohk.io/job/Cardano/ouroboros-network/native.network-docs.x86_64-linux/latest/download/1
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://doi.org/10.1137/0217061
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://eprint.iacr.org/2022/608
https://eprint.iacr.org/2022/010
https://arxiv.org/abs/2111.12332
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/135419.135437
https://doi.org/10.1007/978-3-642-00457-5_17

	Abstract
	1 Introduction
	1.1 Gossip Protocols and Byzantine Attackers
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries and Notation
	3 Byzantine-Resilient Networking
	3.1 Overview
	3.2 Bilateral Chain Synchronization
	3.3 Synchronization Functionality
	3.4 Synchronization Protocol

	4 Security Proof
	4.1 Expanders Resisting Vertex Deletion
	4.2 Security of the Synchronization Protocol

	5 Fully Secure PoS Consensus
	5.1 Ouroboros Praos
	5.2 Diffusion vs. Synchronization
	5.3 Updated Proofs for Praos
	5.4 Multi-Epoch Praos

	6 Acknowledgements
	References

