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ABSTRACT

In recent years, massive growth in internet usage has spurred the emergence

of complex large-scale networking systems to serve growing user bases, band-

width and computation requirements. For example, data center facilities –

workhorses of today’s internet – have evolved to house upward of several

hundreds of thousands of servers; content distribution networks with high

capacity and wide coverage have emerged as a de facto content dissemina-

tion modality, and peer-to-peer applications with hundreds of thousands of

users are increasingly becoming popular. At these scales, it becomes critical

to operate at high efficiencies as the price of idling resources can be signif-

icant. In particular, the interaction between agents (servers, peers etc.) is

a defining factor of efficiency in these systems – applications are often com-

munication intensive, whereas agents share links of only limited bandwidth.

This necessitates the use of principled algorithms, as efficient communication

to a large extent depends on the interaction protocols.

We study data center networks and peer-to-peer networks as canonical ex-

amples of modern-day large-scale networking systems. Server-to-server inter-

action is an integral part of the data center’s operation. The latency of these

interactions is often a significant bottleneck toward overall job completion

times. We study complementary approaches toward reducing this latency:

(i) design of computation algorithms that minimize interaction and (ii) opti-

mal scheduling algorithms to maximally utilize the network fabric. We also

consider peer-to-peer networks as an emerging mode of content distribution

and sharing. Unlike data centers, these networks are flexible in their net-

work structure and also scale well, but require decentralized algorithms for

control. Of central importance here is the design of a network topology that

enables efficient peer interactions for optimal application performance. We

propose novel topology designs for two popular applications: (i) multimedia

streaming and (ii) anonymity in Bitcoin’s peer-to-peer network.
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CHAPTER 1

INTRODUCTION

This past decade has seen several transformational changes in content gen-

eration, dissemination and consumption over the internet. Proliferation of

numerous applications such as Google, Facebook, Netflix, Twitter etc. into

the mainstream, together with rapid advancements in internet infrastructure

have led to an explosive growth in end-user traffic. Services such as data

storage, analytics, cloud computing offered by such applications, have also

resulted in the emergence of data centers with massive scale and complexity.

These are facilities housing in upward of one-hundred thousand servers under

a single roof [1, 2]. Multimedia distribution (video, music etc.) has also seen

a sharp increase in the number of content distribution networks [3, 4]. In

yet other applications, such as cryptocurrencies [5], decentralized modalities

based on peer-to-peer (p2p) networking are used. These networks offer the

distinct advantage of not having to rely on any one centralized server [6].

For a continued sustenance of growth and demand in the future, in ad-

dition to infrastructural innovations, strong and principled algorithms are

required that can optimally operate the network. However many of the re-

cent developments mentioned previously have, at their core, stemmed as basic

engineering solutions with an emphasis on execution rather than optimality.

This has been necessary, in part due to the fast pace of developments and

the corporate race. The end result is that networks today suffer several prob-

lems, such as over-provisioning, and inadequate reliability. For example, it is

reported that over 30% of data center servers worldwide remain idle [7]. On

the other hand, even major providers experience capacity overload and out-

ages during popular television events [8]. With an unceasing growth in scale,

such events emphasize a stark need for more principled research in order to

(a) understand and optimize existing infrastructure and (b) offer solutions

that are better scalable.

Toward these objectives, in this dissertation we study the fundamental
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limits and propose optimal algorithms across a canonical set of modern-day

networking systems. While such a study is useful within the context of each

of various sub-disciplines, such as power management, pricing, storage, com-

puting, etc.,1 our focus will specifically be on the communication protocols

and the networking stack in these systems. This is an important avenue

that is often algorithmically challenging even within simplified models of

real-world networks. Indeed many practical algorithms deployed today are

heuristics and may not be optimal. Moreover in several applications these

systems are essentially communication limited, which further necessitates the

development of better protocols and infrastructure.

Our results naturally categorize into algorithms for two-party and multi-

party communication systems. In two-party communication, we investigate

a setting where two interacting parties seek to jointly evaluate a function;

whereas in the multi-party setting we study large-scale systems with poten-

tially thousands of agents that interact with each other.

1.1 Two-Party Communication

Computing architectures today predominantly achieve performance scaling

by aggregating multiple distinct processing entities and then interconnect-

ing them. For example, data centers are built by networking several thou-

sand servers each with dedicated compute and storage; whereas in high-

performance micro-processor chips there could be multiple cores that are

interconnected. Computation in these distributed processing frameworks of-

ten occurs in multiple interleaving stages of computation, and communication

between individual processing units (e.g. map and reduce stages in MapRe-

duce [9]). In general such an interactive exchange is necessary, however the

communication phase is often slow and constitutes a key bottleneck in the

overall execution latency. Hence it becomes imperative to design protocols

such that communication exchange is minimized.

One-way communication, in which a transmitter seeks to send bits over

a noisy channel, has been traditionally studied under the purview of infor-

mation theory [10, 11]. Abstracting out the semantics of the data, from

the transmission problem itself, is a fundamental tenet of this subject. An

1Or indeed even across intersections of multiple disciplines.
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analogous theory for interactive communication is studied under the topic of

communication complexity, where a more general problem of (i) what to com-

municate (protocols, semantics etc.) and (ii) how to communicate (coding

etc.) are considered.

The most basic setting here is the two-party communication model in-

troduced by Yao [12] in 1978. In this model, there are two players, Alice

and Bob, who observe inputs x and y respectively. Their goal is to com-

pute a function f(x, y) by sending messages back and forth to each other

over a noiseless channel while using the fewest bits. This leads to the no-

tion of a communication protocol, which is a formal specification of how

the messages should be exchanged. Since its introduction in [12], a lot

of research has been done by the theoretical computer science community

on developing techniques to lower bound the communication complexity of

problems [13]. However from an algorithms perspective, optimal solutions

for a general function computation problem in the two-party communication

model still remains an unsolved problem [13]. Understanding this basic two-

party problem is essential for designing communication-efficient protocols in

multi-party distributed computing frameworks. Toward this goal, we study

the closely related interactive protocol compression problem [14, 15, 16, 17] in

Chapter 2, that asks: Given an interactive communication protocol, can we

find another protocol that “simulates” the given protocol while consuming

fewer communication rounds?

1.2 Multi-Party Communication

While the two-party problem is a useful baseline, practical systems on the

internet often consist of a significantly greater number of interacting agents

– data centers house several 100,000s of servers [1, 2], content distribution

networks have upward of 60,000 servers [18], and popular p2p networks such

as the Bitcoin network have more than 8000 nodes [19]. The interaction be-

tween such agents occurs over a network (e.g. internet, LAN), with the rules

of interaction specified by protocols and algorithms (e.g. TCP/IP). Proto-

cols may be required to coordinate a variety of networking operations, such

as scheduling, rate-control etc., across agents. However, practical networks

have often strict resource constraints (e.g. bandwidth, number of connec-
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tions) that tightly couples the network-states as seen by different agents,

making algorithm design a non-trivial problem. This is particularly true of

modern large-scale systems, which despite having structural similarities to

networking-systems of the past, exhibit combinatorics where prior-works of-

ten cannot be directly applied. We focus on two such systems – the data

center network and p2p network – as discussed below.

Data center networks. Server-to-server interaction plays a crucial role

in today’s data centers. A vast majority of the jobs are structured to uti-

lize services across multiple different servers, leading to heavy cross-flow of

traffic. To facilitate such interactions, a fast, dynamic and economic inter-

connect is required at the physical level. Typically, data center networks

use multi-rooted tree designs in which the servers are arranged in racks and

an Ethernet switch at the top of the rack (ToR) connects the racks to one

or more aggregation layers [1]. The designs use multiple-paths between the

ToRs to deliver a uniform high bisection bandwidth and consist of a large

number of electronic switches, but with poor speed to cost ratios. Recently

there have been proposals to use high-speed circuit switches [20], to provide

a higher aggregate capacity at a reduced cost, power and cabling complex-

ity. However, circuit switches suffer from a key drawback of having a much

slower switching time than their electronic counterpart. Depending on the

switching technology, this delay can range from 10s of microseconds to a few

milliseconds. As such, the scheduling algorithms currently used for packet

switching do not directly apply to circuit switches and new algorithms are

needed. In Chapter 3 we study this scheduling problem, and propose efficient

near-optimal algorithms.

P2P networks. In p2p networks participating clients (peers) directly in-

teract with each other, for content downloads and uploads, in a dynamic

fashion rather than through a central server. This makes them attractive

as a scalable content distribution modality, in which the available network

capacity proportionately increases with the number of users. Since the late

1990s, p2p networks have been widely used over the internet, albeit pre-

dominantly for file-sharing applications [6]. However, today they are also

increasingly being used for other applications such as multi-media streaming

(live TV, video-on-demand etc.) and cryptocurrencies (Bitcoin, Ethereum

etc.). Increased availability of bandwidth in the last mile is a key contributer
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to this; cryptocurrencies such as Bitcoin also explicitly rely on decentralized

networks for their operation. In these applications, the underlying topology

over which the p2p protocol works is of crucial importance [21]. For example

in p2p streaming, the underlying topology must be such that users receive a

high streaming rate, low delay and minimal stream interruptions. Whereas

in Bitcoin’s p2p, the network must also provide good anonymity in addition

to a low latency. How to construct p2p networks having these properties

forms the subject matter of Chapters 4 and 5 respectively. Unlike data cen-

ter networks discussed previously, the nodes (peers) in a p2p network can be

geographically far apart necessitating protocols that are decentralized. This

makes their design and implementation challenging.

1.3 Outline and Contributions

We present a summary of problems and results in the following.

Chapter 2. We consider a protocol compression problem, in which two par-

ties – Alice and Bob – with inputs X and Y respectively, seek to simulate a

given interactive protocol π to within a fixed statistical distance ε while using

the fewest number of bits for exchange. This problem has received significant

attention in recent years, where an information theoretic quantity called the

information complexity IC(π) is used to bound communication complexity.

This quantity plays a similar role in the simulation of protocols as H(X)

plays in the compression of Xn or H(X|Y ) in compression with side infor-

mation Y . Perhaps motivated by this analogy, recent works have proposed

simulation protocols requiring communication of length depending on IC(π).

For example, a protocol requiring Õ(
√
IC(π)‖π‖) bits was proposed in [16]

where ‖π‖ denotes the length of the protocol tree of π. In another work [17]),

a compression scheme requiring 2O(IC(π)) bits has been proposed. However,

there are still several questions that remain unanswered such as: (a) Can

we find a lower bound for D(π)? or (b) Does the information complexity

IC(π) have an operational role in simulating πn besides being the leading

asymptotic term?

In Chapter 2 we answer these questions in the affirmative. Our first main

result presents a general lower bound for the distributional communication

complexity of an ε-simulation of a protocol π. The key quantity here is the
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ε-tail of the information complexity density of the protocol π. The main

idea here is to reduce the ε-simulation protocol to generate an information

theoretically secure secret key for X and Y . Then using an upper bound

in [22, 23] for the maximum possible length of the secret key that can be

generated using interactive communication, we can get our desired lower

bound on the communication complexity.

The next main result is a new simulation protocol that simulates the given

protocol π one round at a time. In each round, we use an interactive version

of the classical Slepian-Wolf compression, followed by further reduction in

the message size using public randomness. This is possible since we are not

required to recover the random variable Π but rather only simulate it to

within a fixed statistical distance.

Using the above lower and upper bounds, we also derive a tight (up to

the second-order term) characterization of the distributional communication

complexity of simulating an n-fold product protocol. This refers to a protocol

πn obtained by applying π to each coordinate (Xi, Yi) for inputs Xn and Y n

which are independently and identically generated from a joint distribution

PXY .

Chapter 3. In Chapter 3 we consider the problem of scheduling circuit

switches in data center networks. Commodity circuit switches (based on ei-

ther wireless or optics) make for a faster and more economic cross-connect

(compared to traditional packet switches), but have a very slow reconfigura-

tion time. This makes their scheduling challenging, and conventional algo-

rithms (such as MaxWeight scheduling) cannot be directly applied. Under

a crossbar model for the circuit switch, our main result here is an approxi-

mately optimal, fast and efficient algorithm for computing the circuit switch

schedule. Equivalently, the algorithm can also be seen as a fast method

for computing a sparse representation of a point on the Birkhoff polytope.

The main technical contribution here is the identification of a submodularity

structure in the problem, the use of which enables us to make a connection

to submodular function maximization.

We also consider a different routing paradigm, in which packets are allowed

to reach their destinations after (potentially) transiting through intermedi-

ate nodes. Such an indirect routing can be particularly useful for switches

with large reconfiguration delay. We again identify submodularity, but the
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constraints in the maximization are no longer linear and efficient solutions

are hard to find. However for a special case, where the schedule is partially

fixed, we provide a fast greedy algorithm that is near optimal.

Chapter 4. Next, in Chapter 4 we study live-streaming of multimedia (audio

or video) over a p2p network. In this setting, a low-capacity server uploads

content in an online-fashion to a small number of clients, who then share it

with other clients in the network. The key algorithmic challenge here is to

distributedly construct a p2p overlay that (i) effectively utilizes bandwidth to

guarantee an optimal streaming rate and (ii) minimizes the diameter of the

network to reduce delay. Peers can also arrive or depart from the system at

will (churn), and hence the network needs to be self-stabilizing. We propose

a novel distribution structure and algorithm that is fully deterministic and

yet requires only constant repair time for peer arrivals and departures. The

main idea here is to allocate a small portion of the upload capacity to add

redundancy to the network. This leads to a loss in the maximum possible

streaming rate and delay, but we show that the penalties suffered are small.

We also show that for a class of algorithms with redundancies such as in our

algorithm, the above delay bound is essentially tight.

Chapter 5. This chapter considers protocols for providing anonymity in

Bitcoin’s p2p network. Bitcoin and other cryptocurrencies have surged in

popularity over the last decade. Although Bitcoin does not claim to provide

anonymity for its users, it enjoys a public perception of being a “privacy-

preserving” financial system. In reality, cryptocurrencies publish users’ entire

transaction histories in plaintext, albeit under a pseudonym; this is required

for transaction validation. Therefore, if a user’s pseudonym can be linked to

their human identity, the privacy fallout can be significant.

Recently, researchers have demonstrated deanonymization attacks that ex-

ploit weaknesses in the Bitcoin network’s p2p networking protocols. In par-

ticular, the p2p network currently forwards content in a structured way that

allows observers to deanonymize users. In this chapter, we redesign the

p2p network from first principles with the goal of providing strong, prov-

able anonymity guarantees. We propose a simple networking policy which

provides quasi-optimal, network-wide anonymity, with minimal cost to the

network’s utility. We also discuss practical implementation challenges and

propose heuristic solutions.
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CHAPTER 2

INTERACTIVE COMMUNICATION

Two parties observing random variables X and Y seek to run an interactive

protocol π with inputs X and Y . The parties have access to private as well as

shared public randomness. What is the minimum number of bits that they

must exchange in order to simulate π to within a fixed statistical distance

ε? This question is of importance to the theoretical computer science and

information theory communities. On the one hand, it is related closely to

the communication complexity problem [24], which in turn is an important

tool for deriving lower bounds for computational complexity [25] and for

space complexity of streaming algorithms [26]. On the other hand, it is a

significant generalization of the classical information theoretic problem of

distributed data compression [27], replacing data to be compressed with an

interactive protocol and allowing interactive communication as opposed to

the usual one-sided communication.

In recent years, it has been argued that the distributional communication

complexity for simulating a protocol π is related closely to its information

complexity1 IC(π) defined as follows:

IC(π)
def
= I(Π ∧X|Y ) + I(Π ∧ Y |X),

where I(X∧Y |Z) denotes the conditional mutual information between X and

Y given Z (cf. [10, 28]). For a protocol π with communication complexity

‖π‖ (the depth of the binary protocol tree), a simulation protocol requiring

Õ(
√
IC(π)‖π‖) bits of communication was given in [29] and one requiring

2O(IC(π)) bits of communication was given in [17]. A general version of the

simulation problem was considered in [30], but only bounded round simula-

tion protocols were considered. Interestingly, it was shown in [15] that the

1For brevity, we do not display the dependence of IC(π) on the (fixed) distribution
PXY .
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amortized distributional communication complexity of simulating n copies

of a protocol π for vanishing simulation error is bounded above by2 IC(π).

While a matching lower bound was also derived in [15], it is not valid in

our context – [15] considered function computation and used a coordinate-

wise error criterion. Nevertheless, we can readily modify the lower bound

argument in [15] and use the continuity of conditional mutual information to

formally obtain the required lower bound and thereby a characterization of

the amortized distributional communication complexity for vanishing simula-

tion error. Specifically, denoting by D(πn) the distributional communication

complexity of simulating n copies of a protocol π with vanishing simulation

error, we have

lim
n→∞

1

n
D(πn) = IC(π).

Perhaps motivated by this characterization, or a folklore version of it, the

research in this area has focused on designing simulation protocols for π

requiring communication of length depending on IC(π); the results cited

above belong to this category as well. However, the central role of IC(π) in the

distributional communication complexity of protocol simulation is far from

settled and many important questions remain unanswered. For instance: (a)

Does IC(π) suffice to capture the dependence of distributional communication

complexity on the simulation error ε? (b) Does information complexity have

an operational role in simulating πn besides being the leading asymptotic

term?

The quantity IC(π) plays the same role in the simulation of protocols as

H(X) in the compression of Xn [10] and H(X|Y ) in the transmission of Xn

by the first to the second party with access to Y n [27]. The questions raised

above have been addressed for these classical problems (cf. [32]). In this

chapter, we answer these questions for simulation of interactive protocols. In

particular, we answer all these questions in the negative by exhibiting another

quantity that plays such a fundamental role and can differ from information

complexity significantly. To this end, we introduce the notion of information

complexity density of a protocol π with inputs X and Y generated from a

2Braverman and Rao [15] actually used their general simulation protocol as a tool
for deriving the amortized distributional communication complexity of function compu-
tation. This result was obtained independently by Ma and Ishwar in [31] using standard
information theoretic techniques.
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fixed distribution PXY .

Definition 2.1. Information complexity density. The information com-

plexity density of a private coin protocol π is given by the function

ic(τ ;x, y) = log
PΠ|XY (τ |x, y)

PΠ|X (τ |x)
+ log

PΠ|XY (τ |x, y)

PΠ|Y (τ |y)
,

for all observations x and y of the two parties and all transcripts τ , where

PΠXY denotes the joint distribution of the observation of the two parties and

the random transcript Π generated by π.

Note that IC(π) = E [ic(Π;X, Y )]. We show that it is the ε-tail of the

information complexity density ic(Π;X, Y ), i.e., the supremum3 over values

of λ such that Pr (ic(Π;X, Y ) > λ) > ε, which governs the communication

complexity of simulating a protocol with simulation error less than ε and

not the information complexity of the protocol. The information complexity

IC(π) becomes the leading term in communication complexity for simulating

π only when roughly

IC(π)�
√

Var(ic(Π;X, Y )) log(1/ε).

This condition holds, for instance, in the amortized regime considered in [15].

However, the ε-tail of ic(Π;X, Y ) can differ significantly from IC(π), the

mean of ic(Π;X, Y ). The results in this chapter are based on our work [33,

34].

Summary of Results

Our main results are bounds for distributional communication complexity

Dε (π) for ε-simulating a protocol π. The key quantity in our bounds is the

ε-tail λε of ic(Π;X, Y ).

Lower bound. Our main contribution is a general lower bound for Dε (π).

We show that for every private coin protocol π, Dε (π) & λε. In fact, this

3Formally, our lower bound uses lower ε-tail sup{λ : Pr (ic(Π;X,Y ) > λ) > ε} and the
upper bound uses upper ε-tail inf{λ : Pr (ic(Π;X,Y ) > λ) < ε}. For many interesting
cases, the two coincide.
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bound does not rely on the structure of random variable Π and is valid for

the more general problem of simulating a correlated random variable.

Prior to this work, there was no lower bound that captured both the de-

pendence on simulation error ε as well as the underlying probability distri-

bution. On the one hand, the lower bound above yields many sharp results

in the amortized regime. It gives the leading asymptotic term in the commu-

nication complexity for simulating any sequence of protocols, and not just

product protocols. For product protocols, it yields the precise dependence

of communication complexity on ε as well as the exact second-order asymp-

totic term. On the other hand, it sheds light on the dependence of Dε (π)

on ε even in the single-shot regime. For instance, our lower bound can be

used to exhibit an arbitrary separation between Dε (π) and IC(π) when ε is

not fixed. Specifically, evaluating our lower bound for the example protocol

in [34] for ε = 1/n3 we get Dε (π) = Ω(n), which is far more than 2IC(π) since

IC(π) = Õ(n−2). Remarkably, [35, 36] exhibited exponential separation be-

tween the distributional communication complexity of computing a function

and the information complexity of that function even for a fixed ε, thereby

establishing the optimality of the upper bound Dε (π) ≤ O(2IC(π)) given in

[17]. Our simple example shows a much stronger separation between Dε (π)

and IC(π), albeit for a vanishing ε.

Upper bound. To establish our asymptotic results, we propose a new

simulation protocol, which is of independent interest. For a protocol π with

bounded rounds of interaction, using our proposed protocol we can show that

Dε (π) . λε. Much as the protocol of [15], our simulation protocol simulates

one round at a time, and thus, the slack in our upper bound does depend on

the number of rounds.

Note that while the operative term in the lower bound and the upper

bound is the ε-tail of ic(Π;X, Y ), the lower bound approaches it from below

and the upper bound approaches it from above. It is often the case that

these two limits match and the leading term in our bounds coincide. See

Figure 2.1 for an illustration of our bounds.

Amortized regime: Second-order asymptotics. Denote by πn the n-

fold product protocol obtained by applying π to each coordinate (Xi, Yi)

for inputs Xn and Y n. Consider the communication complexity Dε(π
n) of

ε-simulating πn for independent and identically distributed (IID) (Xn, Y n)

11



Lower bound Upper Bound

Pr(ic(⇧; X, Y )) > �) < ✏Pr(ic(⇧; X, Y )) > �) > ✏

Distribution of ic(⇧; X, Y )

Figure 2.1: Illustration of lower and upper bounds for Dε (π).

generated from Pn
XY . Using the bounds above, we can obtain the follow-

ing sharpening of the results of [15]: With V(π) denoting the variance of

ic(Π;X, Y ),

Dε(π
n) = nIC(π) +

√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random vari-

able exceeds x and Q−1(ε) ≈
√

log(1/ε). On the other hand, the arguments

in [15]4 or [30] give us

Dε(π
n) ≥ nIC(π)− nε[‖π‖+ log |X ||Y|]− ε log(1/ε).

But the precise communication requirement is not less but
√
nV(π) log(1/ε)

more than nIC(π).

Proof Techniques

Proof for the lower bound. We present a new method for deriving lower

bounds on distributional communication complexity. Our proof relies on a

reduction argument that utilizes an ε-simulation to generate an information

theoretically secure secret key for X and Y (for a definition of the latter,

see [39, 40]). Heuristically, a protocol can be simulated using fewer bits of

communication than its length because of the correlation in the observations

X and Y . Due to this correlation, when simulating the protocol, the par-

ties agree on more bits (generate more common randomness) than what they

communicate. These extra bits can be extracted as an information theo-

retically secure secret key for the two parties using the leftover hash lemma

4The proof in [15] uses the inequality IC(π) ≤ ‖π‖, a multiparty extension of which is
available in [37, 38].
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(cf. [41, 42]). A lower bound on the number of bits communicated can be

derived using an upper bound for the maximum possible length of a secret

key that can be generated using interactive communication; the latter was

derived recently in [22, 23].

Protocol for the upper bound. We simulate a given protocol one round

at a time. Simulation of each round consists of two subroutines: Interac-

tive Slepian-Wolf compression and message reduction by public randomness.

The first subroutine is an interactive version of the classical Slepian-Wolf

compression [27] for sending X to an observer of Y which is of optimal in-

stantaneous rate. The second subroutine uses an idea that appeared first

in [43] (see, also, [44, 45]) and reduces the number of bits communicated in

the first by realizing a portion of the required communication by the shared

public randomness. This is possible since we are not required to recover a

given random variable Π, but only simulate it to within a fixed statistical

distance.

The proposed protocol is closely related to that proposed in [15]. However,

there are some crucial differences. The protocol in [15] also uses public

randomness to sample each round of the protocol, before transmitting it using

an interactive communication of size incremented in steps. However, our

information theoretic approach provides a systematic method for choosing

this step size. Furthermore, our protocol for sampling the protocol from

public randomness is significantly different from that in [15] and relies on

randomness extraction techniques. In particular, the protocol in [15] does

not attain the asymptotically optimal bounds achieved by our protocol.

Technical approach. While we utilize new, bespoke techniques for de-

riving our lower and upper bounds, casting our problem in an information

theoretic framework allows us to build upon the developments in this classic

field. In particular, we rely on the information spectrum approach of Han and

Verdú, introduced in the seminal paper [46] (see the textbook [32] for a de-

tailed account). In this approach, the classical measures of information such

as entropy and mutual information are viewed as expectations of the corre-

sponding information densities, and the notion of “typical sets” is replaced

by sets where these information densities are bounded uniformly. The set of

values taken by an information density (such as h(x) = − log PX (x)) is called

its spectrum. Coding theorems of classical information theory consider IID

13



repetitions and rely on the so-called asymptotic equipartition property [11]

which essentially corresponds to the concentration of spectrums on small in-

tervals. For single-shot problems such concentrations are not available and

we have to work with the whole span of the spectrum.

Our main technical contribution is the extension of the information spec-

trum method to handle interactive communication. Our results rely on the

analysis of appropriately chosen information densities and, in particular, will

rely on the spectrum of the information complexity density ic(Π;X, Y ). As

is usually the case, different components of our analysis require bounds on

these information densities in different directions, which in turn renders our

bounds loose and incurs a gap equal to the length of the corresponding infor-

mation spectrum. To overcome this shortcoming, we use the spectrum slicing

technique of Han [32]5 to divide the information spectrum into small portions

with information densities closely bounded from both sides. While in our up-

per bounds spectrum slicing is used to carefully choose the parameters of the

protocol, it is required in our lower bounds to identify a set of inputs where

a given simulation will require a large number of bits to be communicated.

2.1 Protocol Simulation

Two parties observe correlated random variables X and Y , with Party 1

observing X and Party 2 observing Y , generated from a fixed distribution

PXY and taking values in finite sets X and Y , respectively. An interactive

protocol π (for these two parties) consists of shared public randomness U ,

private randomness6 UX and UY , and interactive communication Π1, ...,Πr.

The parties communicate alternatively with Party 1 transmitting in the odd

rounds and Party 2 in the even rounds. Specifically, Πi is a string of bits de-

termined by the previous transmissions Π1, ...,Πi−1 together with (X,UX , U)

for odd i and (Y, UY , U) for even i. For simplicity, we assume that the re-

alizations of Πi constitute a prefix-free code, i.e., no realizations of Πi is a

prefix of another realization of Πi. The number of rounds of communication

r is a random stopping-time such that the event {r = t} is determined by

5The spectrum slicing technique was introduced in [32] to derive the error exponents
of various problems for general sources and a rate-distortion function for general sources.

6The random variables U,UX , UY are mutually independent and independent jointly of
(X,Y ).
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the transcript Π1, ...,Πt; we denote the overall transcript of the protocol7 by

Π. The length of a protocol π, ‖π‖, is the maximum number of bits that are

communicated in any execution of the protocol.

A random variable F is said to be recoverable by π for Party 1 (or Party

2) if F is function of (X,U, UX ,Π) (or (Y, U, UY ,Π)).

A protocol with a constant U is called a private coin protocol, with a con-

stant (UX , UY) is called a public coin protocol, and with (U,UX , UY) constant

is called a deterministic protocol.

When we execute the protocol π above, the overall view of the parties

consists of random variables (XYΠΠ), where the two Πs correspond to the

transcript of the protocol seen by the two parties. A simulation of the proto-

col consists of another protocol which generates almost the same view as that

of the original protocol. We are interested in the simulation of private coin

protocols, using arbitrary8 protocols; public coin protocols can be simulated

by simulating for each fixed value of public randomness the resulting private

coin protocol.

Definition 2.2. ε-Simulation of a protocol. Let π be a private coin

protocol. Given 0 ≤ ε < 1, a protocol πsim constitutes an ε-simulation of π

if there exist ΠX and ΠY , respectively, recoverable by πsim for Party 1 and

Party 2 such that

dvar
(
PΠΠXY ,PΠXΠYXY

)
≤ ε, (2.1)

where dvar (P,Q) = 1
2

∑
x |Px − Qx| denotes the variational or the statistical

distance between P and Q.

Definition 2.3. Distributional communication complexity. The ε-

error distributional communication complexity Dε (π|PXY ) of simulating a

private coin protocol π is the minimum length of an ε-simulation of π. The

distribution PXY remains fixed throughout our analysis; for brevity, we shall

abbreviate Dε (π|PXY ) by Dε (π).

7We allow Πi to be constant and allow it to depend only on the local observation
(and not on the previous communication Π1, ...,Πi−1). This description of an interactive
protocol is very general and is equivalent to the usual protocol-tree based description (cf.
[29, 15]).

8Since we are not interested in minimizing the amount of randomness used in a sim-
ulation, and private randomness can always be sampled from public randomness, we can
restrict ourselves to public protocols for simulating.
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Problem. Given a protocol π and a joint distribution PXY for the observa-

tions of the two parties, we seek to characterize Dε (π).

Remark 1. Deterministic protocols. Note that a deterministic protocol

corresponds to an interactive function, and for such protocols,

dvar
(
PΠΠXY ,PΠXΠYXY

)
= 1− Pr (Π = ΠX = ΠY) .

Therefore, a protocol is an ε-simulation of a deterministic protocol if and

only if it computes the corresponding interactive function with probability

of error less than ε. Furthermore, randomization does not help in this case,

and it suffices to use deterministic simulation protocols. Thus, our results

below provide tight bounds for distributional communication complexity of

interactive functions and, in fact, of all functions which are information theo-

retically securely computable for the distribution PXY , since computing these

functions is tantamount to computing an interactive function [47] (see, also,

[48, 49]).

Remark 2. Compression of protocols. A protocol πcom constitutes an

ε-compression of a given protocol π if it recovers ΠX and ΠY for Party 1 and

Party 2 such that

Pr (Π = ΠX = ΠY) ≥ 1− ε.

Note that randomization does not help in this case either. In fact, for deter-

ministic protocols simulation and compression coincide. In general, however,

compression is a more demanding task than simulation and our results show

that in many cases, (such as the amortized regime), compression requires

strictly more communication than simulation. Specifically, our results for

ε-simulation can be modified to get corresponding results for ε-compression

by replacing the information complexity density ic(τ ;x, y) by

h(τ |x) + h(τ |y) = − log PΠ|X (τ |x) PΠ|Y (τ |y) .

The proofs remain essentially the same and, in fact, simplify significantly.
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2.2 Lower, Upper Bounds and Asymptotic Optimality

We derive a lower bound for Dε (π) which applies to all private coin pro-

tocols π and, in fact, applies to the more general problem of communi-

cation complexity of sampling a correlated random variable. For proto-

cols with bounded number of rounds of interaction, i.e., protocols with

r = r(X, Y, U, UX , UY) ≤ rmax with probability 1, we present a simulation

protocol which yields upper bounds for Dε (π) of similar form as our lower

bounds. In particular, in the asymptotic regime our bounds improve over

previously known bounds and are tight. The proofs for results in this section

have been presented in Appendix A.

2.2.1 Lower Bound

We prove the following lower bound.

Theorem 2.1. Given 0 ≤ ε < 1 and a protocol π, for arbitrary 0 < η < 1/3

Dε (π) ≥ sup{λ : Pr (ic(Π;X, Y ) > λ) ≥ ε+ ε′} − λ′, (2.2)

where the fudge parameters ε′ and λ′ depend on η as well as appropriately

chosen information spectrums and will be described below in Equations (2.4)

and (2.5).

(Proof in Section A.2)

The appearance of fudge parameters such as ε′ and λ′ in the bound above

is not surprising since the techniques to bound the tail probability of ran-

dom variables invariably entail such parameters, which are tuned based on

the specific scenario being studied. For instance, the Chernoff bound has a

parameter that is tuned with respect to the moment generating function of

the random variable of interest. More relevant to the problem studied here,

such fudge parameters also show up in the evaluation of error probability of

single-party non-interactive compression problems (cf. [46, 32]).

When the fudge parameters ε′ and λ′ are negligible, the right-side of the

bound above is close to ε-tail of ic(Π;X, Y ). Indeed, the fudge parameters

turn out to be negligible in many cases of interest. For instance, for the amor-

tized case ε′ can be chosen to be arbitrarily small. The parameter λ′ is related
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to the length of the interval in which the underlying information densities lie

with probability greater than 1 − ε′, the essential length of spectrums. For

the amortized case with product protocols, by the central limit theorem the

related essential spectrums are of length Λ = O(
√
n) and λ′ = log Λ. On the

other hand, λε is O(n). Thus, the log n order fudge parameter λ′ is negligible

in this case. Finally, it should be noted that similar fudge parameters are

ubiquitous in single-shot bounds; for instance, see [32, Lemma 1.3.2].

Remark 3. The result above does not rely on the interactive nature of

Π and is valid for simulation of any random variable Π. Specifically, for

any joint distribution PΠXY , an ε-simulation satisfying Equation (2.1) must

communicate at least as many bits as the right-side of Equation (2.2), which is

roughly equal to the largest value λε of λ such that Pr (ic(Π;X, Y ) > λ) > ε.

The fudge parameters. The fudge parameters ε′ and λ′ in Theorem 2.1

depend on the spectrums of the following information densities:

(i) Information complexity density: This density is described in Defini-

tion 2.1 and will play a pivotal role in our results.

(ii) Entropy density of (X, Y ): This density, given by h(X, Y ) =

− log PXY (X, Y ), captures the randomness in the data and plays a

fundamental role in the compression of the collective data of the two

parties (cf. [32]).

(iii) Conditional entropy density of X given YΠ: The conditional entropy

density h(X|Y ) = − log PX|Y (X|Y ) plays a fundamental role in the

compression of X for an observer of Y [50, 32]. We shall use the

conditional entropy density h(X|YΠ) in our bounds.

(iv) Sum conditional entropy density of (XΠ, YΠ): The sum conditional

entropy density is given by h (X4Y ) = − log PX|Y (X|Y ) PY |X (Y |X)

has been shown recently to play a fundamental role in the communi-

cation complexity of the data exchange problem [51]. We shall use the

sum conditional entropy density h (XΠ4YΠ).

(v) Information density of X and Y is given by i(X∧Y )
def
= h(X)−h(X|Y ).

Let [λ
(1)
min, λ

(1)
max], [λ

(2)
min, λ

(2)
max], and [λ

(3)
min, λ

(3)
max] denote the “essential” spec-

trums of information densities ζ1 = h(X, Y ), ζ2 = h(X|YΠ), and ζ3 =
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h (XΠ4YΠ), respectively. Concretely, let the tail events Ei =

{ζi /∈ [λ
(i)
min, λ

(i)
max]}, i = 1, 2, 3, satisfy

Pr (E1) + Pr (E2) + Pr (E3) ≤ εtail, (2.3)

where εtail can be chosen to be appropriately small. Further, let Λi =

λ
(i)
max − λ(i)

min, i = 1, 2, 3, denote the corresponding effective spectrum lengths.

The parameters ε′ and λ′ in Theorem 2.1 are given by

ε′ = εtail + 2η, and (2.4)

λ′ = 2 log Λ1Λ3 + log Λ2 − log(1− 3η) + 9 log 1/η + 3, (2.5)

where 0 < η < 1/3 is arbitrary. If Λi = 0, i = 1, 2, 3, we can replace it with 1

in the bound above. Thus, our spectrum slicing approach allows us to reduce

the dependence of λ′ on spectrum lengths Λi’s from linear to logarithmic.

2.2.2 Upper Bound

We prove the following upper bound.

Theorem 2.2. For every 0 ≤ ε < 1 and every protocol π,

Dε (π) ≤ inf {λ : Pr (ic(Π;X, Y ) > λ) ≤ ε− ε′}+ λ′,

where the fudge parameters ε′ and λ′ depend on the maximum number of

rounds of interaction in π and on appropriately chosen information spec-

trums.

(Proof in Section A.3)

Remark 4. In contrast to the lower bound given in the previous section,

the upper bound above relies on the interactive nature of π. Furthermore,

the fudge parameters ε′ and λ′ depend on the number of rounds, and the

upper bound may not be useful when the number of rounds is not negligible

compared to ε-tail of the information complexity density. However, we will

see that the above upper bound is tight for the amortized regime, even up

to the second-order asymptotic term.

The simulation protocol. Our simulation protocol simulates the given
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protocol π round-by-round, starting from Π1 to Πr. Simulation of each round

consists of two subroutines: Interactive Slepian-Wolf compression and mes-

sage reduction by public randomness.

The first subroutine uses an interactive version of the classical Slepian-

Wolf compression [27] (see [50] for a single-shot version) for sending X to

an observer of Y . The standard (noninteractive) Slepian-Wolf coding entails

hashing X to l values and sending the hash values to the observer of Y .

The number of hash values l is chosen to take into account the worst-case

performance of the protocol. However, we are not interested in the worst-

case performance of each round, but of the overall multiround protocol. As

such, we seek to compress X using the least possible instantaneous rate. To

that end, we increase the number of hash values gradually, ∆ at a time, until

the receiver decodes X and sends back an ACK. We apply this subroutine to

each round i, say i odd, with Πi in the role of X and (Y,Π1....,Πi−1) in the

role of Y . Similar interactive Slepian-Wolf compression schemes have been

considered earlier in different contexts (cf. [52, 53, 54, 55, 51]).

The second subroutine reduces the number of bits communicated in the

first by realizing a portion of the required communication by the shared public

randomness U . Specifically, instead of transmitting hash values of Πi, we

transmit hash values of a random variable Π̂i generated in such a manner that

some of its corresponding hash bits can be extracted from U and the overall

joint distributions do not change by much. Since U is independent of (X, Y ),

the number k of hash bits that can be realized using public randomness is

the maximum number of random hash bits of Πi that can be made almost

independent of (X, Y ), a good bound for which is given by the leftover hash

lemma. The overall simulation protocol for Πi now communicates l − k

instead of l bits. A similar technique for message reduction appears in a

different context in [43, 44, 45].

The overall performance of the protocol above is still suboptimal because

the saving of k bits is limited by the worst-case performance. To remedy this

shortcoming, we once again take recourse to spectrum slicing to ensure that

our saving k is close to the best possible for each realization (Π, X, Y ).

Note that our protocol above is closely related to that proposed in [15].

However, the information theoretic form here makes it amenable to tech-

niques such as spectrum slicing, which leads to tighter bounds than those

established in [15].
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2.2.3 Amortized Regime: Second-Order Asymptotics

It was shown in [15] that information complexity of a protocol equals the

amortized communication rate for simulating the protocol, i.e.,

lim
ε→0

lim
n→∞

1

n
Dε(π

n|Pn
XY ) = IC(π),

where Pn
XY denotes the n-fold product of the distribution PXY , namely the

distribution of random variables (Xi, Yi)
n
i=1 drawn IID from PXY , and πn

corresponds to running the same protocol π on every coordinate (Xi, Yi).

Thus, IC(π) is the first-order term (coefficient of n) in the communication

complexity of simulating the n-fold product of the protocol. However, the

analysis in [15] sheds no light on finer asymptotics such as the second-order

term or the dependence of Dε(π
n|Pn

XY ) on9 ε. On the one hand, it even

remains unclear from [15] if a positive ε reduces the amortized communication

rate or not. On the other hand, the amortized communication rate yields

only a loose bound for Dε(π
n|Pn

XY ) for a finite, fixed n. A better estimate

of Dε(π
n|Pn

XY ) at a finite n and for a fixed ε can be obtained by identifying

the second-order asymptotic term. Such second-order asymptotics were first

considered in [56] and have received a lot of attention in information theory

in recent years following [57, 58].

Our lower bound in Theorem 2.1 and upper bound in Theorem 2.2 show

that the leading term in Dε(π
n|Pn

XY ) is roughly the ε-tail λε of the random

variable

ic(Πn;Xn, Y n) =
n∑
i=1

ic(Πi;Xi, Yi),

a sum of n IID random variables. By the central limit theorem the first-order

asymptotic term in λε equals

nE [ic(Π;X, Y )] = nIC(π),

recovering the result of [15]. Furthermore, the second-order asymptotic term

depends on the variance V(π) of ic(Π;X, Y ), i.e., on

V(π)
def
= Var [ic(Π;X, Y )] .

9The lower bound in [15] gives only the weak converse which holds only when ε = εn →
0 as n→∞.
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We have the following result.

Theorem 2.3. For every 0 < ε < 1 and every protocol π with V(π) > 0,

Dε(π
n|Pn

XY ) = nIC(π) +
√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random variable

exceeds x.

(Proof in Section A.4.1)

As a corollary, we obtain the so-called strong converse.

Corollary 2.1. For every 0 < ε < 1, the amortized communication rate

lim
n→∞

1

n
Dε(π

n|Pn
XY ) = IC(π).

Corollary 2.1 implies that the amortized communication complexity of sim-

ulating protocol π cannot be smaller than its information complexity even if

we allow a positive error. Thus, if the length of the simulation protocol πsim

is “much smaller” than nIC(π), the corresponding simulation error ε = εn

must approach 1. But how fast does this εn converge to 1? Our next result

shows that this convergence is exponentially rapid in n.

Theorem 2.4. Given a protocol π and an arbitrary δ > 0, for any simulation

protocol πsim with

‖πsim‖ ≤ n[IC(π)− δ],

there exists a constant E = E(δ) > 0 such that for every n sufficiently large,

it holds that

dvar

(
PΠnΠnXnY n ,PΠnXΠnYX

nY n

)
≥ 1− 2−En.

(Proof in Section A.4.2)

A similar converse was first shown for the channel coding problem in in-

formation theory by Arimoto [59] (see [60, 61] for further refinements of this

result), and has been studied for other classical information theory problems

as well. To the best of our knowledge, Theorem 2.4 is the first instance of

an Arimoto converse for a problem involving interactive communication.
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In the theoretical computer science literature, such converse results have

been termed direct product theorems and have been considered in the context

of the (distributional) communication complexity problem (for computing a

given function) [62, 63, 64]. Our lower bound in Theorem 2.1, too, yields

a direct product theorem for the communication complexity problem. We

state this simple result without proof, since it closely mimics Theorem 2.4.

Specifically, given a function f on X × Y , by slight abuse of notations and

terminologies, let Dε(f) = Dε(f |PXY ) be the communication complexity of

computing f . As noted in Remark 3, Theorem 2.1 is valid for an arbitrary

random variables Π, and not just an interactive protocol. Then, by following

the proof of Theorem 2.4 with F = f(X, Y ) replacing Π in the application

of Theorem 2.1, we get the following direct product theorem.

Theorem 2.5. Given a function f and an arbitrary δ > 0, for any function

computation protocol π computing estimates FX ,n and FY,n of fn at the Party

1 and Party 2, respectively, and with length

‖π‖ ≤ n[H(F |X) +H(F |Y )− δ], (2.6)

there exists a constant E = E(δ) > 0 such that for every n sufficiently large,

it holds that Pr (FX ,n = FY,n = F n) ≤ 2−En, where F n = (F1, ..., Fn) and

Fi = f(Xi, Yi), 1 ≤ i ≤ n.

Recall that [15, 31] showed that the first order asymptotic term in the

amortized communication complexity for function computation was shown to

equal the information complexity IC(f) of the function, namely the infimum

over IC(π) for all interactive protocols π that recover f with 0 error. Ideally,

we would like to show an Arimoto converse for this problem, i.e., replace the

threshold on the right-side of Equation (2.6) with n[IC(f) − δ]. The direct

product result above is weaker than such an Arimoto converse, and proving

the Arimoto converse for the function computation problem is an important

future direction. Nevertheless, the simple result above is not comparable

with the known direct product theorems in [62, 63] and can be stronger in

some regimes.10

10The result in [62, 63] shows a direct product theorem when we communicate less than
nIC(f)/poly(log n).
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2.3 Conclusion

In this chapter, we have studied the communication complexity of simulat-

ing an interactive protocol between two-parties. We have presented a general

lower bound that is the ε-tail of the information complexity density of the

protocol. This is done by relating the protocol simulation problem to secret

key agreement. We have also presented a new round-by-round simulation

protocol, that exploits ideas from Slepian-Wolf compression and message size

reduction using public randomness. These lower and upper bounds have then

been used to derive tight bounds (up to second-order term) on the distribu-

tional communication complexity of simulating an n-fold product protocol.

While our results have focused on the theoretical aspects of the canonical

two-party problem, it would be interesting to borrow such ideas from the

rich area of communication complexity and apply them in practical large-

scale distributed processing frameworks. This is a topic for future research.

A complementary approach (to optimizing communication overhead) for re-

ducing application-level latencies in data centers, is to also keep the network-

level latencies low through a faster network fabric and efficient scheduling.

We discuss this in the next chapter.
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CHAPTER 3

DATA CENTER NETWORKS

Modern data centers are massively scaling up to support demanding appli-

cations such as large-scale web services, big data analytics, and cloud com-

puting. The computation in these applications is distributed across tens of

thousands of interconnected servers. As the number and speed of servers in-

creases,1 providing a fast, dynamic, and economic switching interconnect in

data centers constitutes a topical networking challenge. Typically, data cen-

ter networks use multi-rooted tree designs: the servers are arranged in racks

and an Ethernet switch at the top of the rack (ToR) connects the rack of

servers to one or more aggregation (or spine) layers. These designs use mul-

tiple paths between the ToRs to deliver uniform high bisection bandwidth,

and consist of a large number of high-speed electronic packet switches that

provide fine-grained switching capabilities but at poor speed/cost ratios.

Recent work has proposed the use of high-speed circuit switches based on

optical [65, 66, 67] or wireless [68, 69, 70] links to interconnect the ToRs.

These architectures enable a dynamic topology tuned to actual traffic pat-

terns, and can provide a much higher aggregate capacity than a network of

electronic switches at the same price point, consume significantly less power,

and reduce cabling complexity. For instance, Farrington et al. [71] report

2.8×, 6× and 4.7× lower cost, power, and cabling complexity, respectively,

using optical circuit switching relative to a baseline network of electronic

switches.

The drawback of circuit switches, however, is that their switching con-

figuration time is much slower than electronic switches. Depending on the

specific technology, reconfiguring the circuit switch can take a few millisec-

onds (e.g., for 3D MEMS optical circuit switches [65, 66, 67]) to tens of

microseconds (e.g., for 2D MEMS wavelength-selective switches [20]). Dur-

1Servers with 10 Gbps network interfaces are common today and 40/100 Gbps servers
are being deployed.
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ing this reconfiguration period, the circuit switch cannot carry any traffic.

By contrast, electronic switches can make per-packet switching decisions at

sub-microsecond timescales. This makes the circuit switch suitable for rout-

ing stable traffic or bursts of packets (e.g., hundreds to thousands of packets

at a time), but not for sporadic traffic or latency sensitive packets. A nat-

ural approach is then to have a hybrid circuit/packet switch architecture:

the circuit switch can handle traffic flows that have heavy intensity but also

require sparse connections, while a lower capacity packet switch handles the

complementary (low intensity, but densely connected) traffic flows [66].

With this hybrid architecture, the relatively low intensity traffic is taken

care of by the packet switch – switch scheduling here can be done dynamically

based on the traffic arrival and is a well-studied topic [72, 73, 74]. On the

other hand, scheduling the circuit switch, based on the heavy traffic demand

matrix, is still a fundamental unresolved question. Consider an architecture

where a centralized scheduler samples the traffic requirements at each of the

ToR ports at regular intervals (W , of the order of 100 µs—1 ms), and looks

to find the schedule of circuit switch configurations over the interval of W

that is “matched” to the traffic requirements. The challenge is to balance

the overhead of reconfiguring the circuits with the capability to be flexible

and meet the traffic demand requirements.

The centralized scheduler must essentially decide a sequence of matchings

between sending and receiving ToRs which the circuit switch then imple-

ments. For an optical circuit switch, for instance, the switch realizes the

schedule by appropriately configuring its MEMS mirrors. As another exam-

ple, in a broadcast-select optical ring architecture [75], the ToRs implement

the controller’s schedule by tuning in to the appropriate wavelength to receive

traffic from their matching sender as dictated by the schedule.

Hence, we need a scheduling algorithm that decides the state (i.e., match-

ing) of the circuit switch at each time and also a routing protocol to decide

on an appropriate (direct or indirect) route packets can take to reach their

destination ToR port. This is a challenging problem and entails making sev-

eral choices on: (a) number of matchings, (b) choice of matchings (switch

configuration), (c) durations of the matchings and (d) the routing protocol,

in each interval W . Mathematically, this leads to a well-defined optimization

problem, albeit involving both combinatorial and real-valued variables. Even

special cases of this problem [76] are NP hard to solve exactly.
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Central to understanding this scheduling problem is finding a good sparse

representation of the traffic matrix – a fundamental algorithmic question in

Carathéodory’s theorem that has remained largely unanswered so far [77].

Recent papers have proposed heuristic algorithms to address this schedul-

ing problem. In Solstice [78], the authors present a greedy perfect-matching

based heuristic for a hybrid electrical-optical switch. Experimental evalua-

tions show Solstice performing well over a simple baseline (where the sched-

ules are provided by a truncated Birkhoff-von Neumann decomposition of the

traffic matrix), although no theoretical guarantees are presented. Indirect

routing in a distributed setting, but without considerations of configuration

switching costs, is studied in another recent work [75]. This chapter is based

on results from our work [79].

Our Contributions

We first focus on routing policies where packets are sent from the source

port to the destination port only via a direct link connecting the two ports,

leading to direct or single-hop routing.

Approximate Carathéodory’s theorem. Our main result here is an ap-

proximately optimal, very simple and fast algorithm for computing the switch

schedule in each interval. In turn this corresponds to a fast algorithm for

computing a sparse approximate representation of a point on the Birkhoff

polytope [80]. While Carathéodory’s theorem guarantees the existence of

such a representation, an efficient algorithm to compute it has remained elu-

sive so far. Our algorithm, which we christen Eclipse, has a performance that

is at least half that of optimal for every instance of the traffic demands, and

experimentally shows a strict and consistent improvement over the state-

of-the-art [78]. A key technical contribution here is the identification of a

submodularity structure [81] in the problem, which allows us to make con-

nections between submodular function maximization and the circuit switch

scheduling problem with reconfiguration delay.

Indirect routing. Next, we consider routing polices where packets are al-

lowed to reach their destination after (potentially) transiting through many

intermediate ports, leading to indirect or multi-hop routing. This class of

routing policies is motivated by our observation that if the number of match-
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ings is limited, multi-hop routing can exponentially improve the reachability

of nodes – a novel benefit of multi-hop routing distinct from the classical and

well-known load balancing effects [82, 83, 84]. We again identify submodu-

larity in the problem, but the constraints for this submodular maximization

problem are no longer linear and efficient solutions are challenging to find.

However, for the important special case where the sequence of switch con-

figurations have already been calculated (and the indirect routing policy has

to be decided) we propose a simple and fast greedy algorithm that is near-

optimal universally for all traffic requirements. Detailed simulation results

demonstrate strong improvements over direct routing, which are especially

pronounced when the switch reconfiguration delays are relatively large.

The chapter is organized as follows. In Section 3.1, the model, framework

and the problem objective are formally stated along with a succinct summary

of the state of the art. Section 3.2 focuses on direct routing and Section 3.3 on

indirect routing. In Section 3.4, we present a detailed evaluation of the pro-

posed algorithms on a variety of traffic inputs. Section 5.6 closes with a brief

discussion. Technical aspects of the algorithm and its evaluation, including

connections to submodularity and combinatorial optimization problems are

deferred to Appendix B.

3.1 Switch System and Traffic Model

In this section, we present our model for a hybrid circuit-packet switched net-

work fabric, and formally define our scheduling problem. Our model closely

follows [78].

3.1.1 Hybrid Switch Model

We consider an n-port network where each port is simultaneously connected

to a circuit switch and a packet switch as shown in Figure 3.1. A set of

nodes are attached to the ports and communicate over the network. The

nodes could either be individual servers or top-of-rack switches.

We model the circuit switch as an n × n crossbar comprising of n input

ports and n output ports. At any point in time, each input port can send

packets to at most one output port and each output port can receive packets
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Figure 3.1: An illustration of our hybrid switch architecture.

from at most one input port over the circuit switch. The circuit switch can

be reconfigured to change the input-output connections. We assume that the

packets at the input ports are organized in virtual-output-queues [85] (VOQ)

which hold packets destined to different output ports.

In practice, the circuit switch is typically an optical switch [65, 66, 67].2

These switches have a key limitation: changing the circuit configuration im-

poses a reconfiguration delay during which the switch cannot carry any traf-

fic. The reconfiguration delay can range from few milliseconds to tens of

microseconds depending on the technology [20, 86]. This makes the circuit

switch suitable for routing stable traffic or bursts of packets (e.g., hundreds

to thousands of packets at a time), but not for sporadic traffic or latency

sensitive packets. Therefore, hybrid networks also use an (electrical) packet

switch to carry traffic that cannot be handled by the circuit switch. The

packet switch operates on a packet-by-packet basis, but has a much lower ca-

pacity than the circuit switch. For example, the circuit and packet switches

might respectively run at 100 Gbps and 10 Gbps per port.

We divide time into slots, with each slot corresponding to a (full-sized)

packet transmission time on the circuit switch. We consider a scheduling

window of W ∈ Z time units. A central controller uses measurements of the

aggregated traffic demand between different ports to determine a schedule

for the circuit switch at the start of each scheduling window. The schedule

comprises of a sequence of configurations and how long to use each config-

uration (Section 3.1.3). The controller communicates the schedule to the

circuit switch, which then follows the schedule for the next scheduling win-

2Designs based on point-to-point wireless links have also been proposed [68, 69]. Our
abstract model is general.

29



dow (W) without involving the controller. We assume that the delay for each

reconfiguration is δ ∈ Z time units.

3.1.2 Traffic Demand

Let T ∈ Zn×n denote the accumulated traffic at the start of a scheduling

window. We assume T is a feasible traffic demand, i.e., T is such that∑n
j=1 T (i, j) ≤ W and

∑n
i=1 T (i, j) ≤ W for all i, j ∈ {1, 2, . . . , n}. The

(i, j)th entry of T denotes the amount of traffic that is in the VOQ at node

i destined for node j.

We assume that the controller knows T .3 We also assume that non-zero

entries in the traffic matrix T are bounded as 2δ ≤ T (i, j) ≤ εW for all

i, j ∈ [n] : T (i, j) > 0 and some parameter 0 < ε < 1. This is a mild

condition because traffic between pairs of ports that is small relative to δ is

better served by the packet switch anyway.

Previous measurement studies have shown that the inter-rack traffic in pro-

duction data centers is sparse [78, 1, 87, 88]. Over short periods of time (e.g.,

10 s of milliseconds), most nodes communicate with only a small number of

other nodes (e.g., few to low tens). Further, in many cases, a large fraction

of the traffic is sent by a small fraction of “elephant” flows [87]. While our

algorithms and analysis are general, it is important to note that such sparse

traffic patterns are necessary for hybrid networks to perform well (especially

with larger reconfiguration delay).

3.1.3 The Scheduling Problem

Given the traffic demand, T , our goal is to compute a schedule that maximizes

the total amount of traffic sent over the circuit switch during the scheduling

window W . This is desirable to minimize the load on the slower packet

switch. In general, the scheduling problem involves two aspects:

1. Determining a schedule of circuit switch configurations. The al-

gorithm must determine a sequence of circuit switch configurations: (α1, P1),

3Our work is orthogonal to how the controller obtains the traffic demand estimate. For
example, the nodes could simply report their backlogs before each scheduling window, or
a more sophisticated prediction algorithm could be used.
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(α2, P2), . . . , (αk, Pk). Here, αi ∈ Z denotes the duration of the ith switch con-

figuration, and Pi is an n×n permutation matrix, where Pi(s, t) = 1 if input

port s is connected to output port t in the ith configuration. For a valid

schedule, we must have α1 +α2 + . . .+αk + kδ ≤ W since the total duration

of the configurations cannot exceed the scheduling window W .

2. Deciding how to route traffic. The simplest approach is to use only

direct routes over the circuit switch. In other words, each node only sends

traffic to destinations to which it has a direct circuit during the scheduling

window. Alternatively, we can allow nodes to use indirect routes, where some

traffic is forwarded via (potentially multiple) intermediate nodes before being

delivered to the destination. Here, the intermediate nodes buffer traffic in

their VOQs for transmission over a circuit in a subsequent configuration.

In Section 3.2, we begin by formally defining the problem in the simpler

setting with direct routing and developing an algorithm for this case. Then,

in Section 3.3, we consider the more general setting with indirect routing.

Remark 1. Prior work [78, 76] has considered the objective of covering

the entire traffic demand in the least amount of time. For example, the

ADJUST algorithm in [76] takes the traffic demand T as input and computes

a schedule (α1, P1), . . . , (αk, Pk) such that
∑k

i=1 αi + kδ is minimized while∑k
i=1 αiPi ≥ T . Our formulation (and solution) is more general, since an

algorithm which maximizes throughput over a given time period can also

be used to find the shortest duration to cover the traffic demand (e.g., via

binary search).

Remark 2. From a systems viewpoint, the traffic demand estimation can

be done either by directly polling ToR switches or end-host NICs [86, 67],

or indirectly through applications and flow information [66, 89]. For systems

at scale, this represents a non-trivial task (and often taking 100 s of µs [86])

necessitating the need for a window W to compute the schedule (vis-à-vis

dynamic policies; see Section 3.1.4).

3.1.4 Related Work

We briefly summarize related work on this topic. Scheduling in crossbar

switches is a classical and well-studied topic in queuing theory. Tradition-
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ally the crossbar has been used to model packet switches where the recon-

figuration delay is very small. Hence the scheduling solutions proposed –

ranging from centralized Birkhoff-von-Neumann decomposition scheduler [72]

on one end to the decentralized load-balanced scheduler [90] on the other

– did not account for reconfiguration delay. With the proposals on hy-

brid circuit/packet switching systems [66, 67], simplified models that factor

for the reconfiguration delay were considered. A variant of the well-known

MaxWeight algorithm is presented in [91] and is shown to be throughput op-

timal. Fixed-Frame MaxWeight (FFMW) is a frame-based policy proposed

in [92] and has good delay performance. However it requires the arrival

statistics to be known in advance. A hysteresis-based algorithm that adapts

many previously proposed algorithms for crossbar switch scheduling to the

case with reconfiguration delay is presented in [93]. All of these works are

“dynamic” policies where scheduling decisions are made time-slot by time-

slot and the analyses are probabilistic. They also require perfect queue state

information at every instant.

Another research direction is to consider “batch” policies [93] in which

each computational call returns a schedule for an entire window of time.

Research works in this category are often analyzed combinatorially or via

real-world system evaluations. Early works often assumed the delay to be

either zero [94] or infinity [95, 96]. The infinite delay setting corresponds to a

problem where the number of matchings is minimized. However they still re-

quire O(n) matchings. In a different context (satellite-switched time-division

multiple access), works such as [97] also computed schedules that minimized

the number of matchings. Moderate reconfiguration delays are considered in

DOUBLE [95] and other algorithms such as [98, 76, 99] that explicitly take

reconfiguration delay into account. The algorithm ADJUST [76] minimizes

the covering time but still requires around n configurations. All of these

algorithms do not benefit from sparse demands and continue to require O(n)

configurations [78]. In a complementary approach, [100] considers conditions

on the input traffic matrix under which efficient polynomial time algorithms

to compute the optimal schedule exists. Yet other approaches have been to

introduce speedup [74], or randomization in the algorithms [101], however

they do not address the basic optimization problem underlying this scenario

head-on.
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3.2 Direct Routing

The centralized scheduler samples the ToR ports and arrives at the traffic

demand (matrix) T to be met in the upcoming slot. In this section, we

develop an algorithm, named Eclipse, that takes the traffic demand, T , as

input and computes a schedule of matchings (circuit configurations) and their

durations to maximize throughput over the circuit switch; only direct routing

of packets from source to destination ports are allowed here. Eclipse is fast,

simple and nearly-optimal in every instance of the traffic matrix T . Toward

a formal understanding of the notion of optimality, consider the following

optimization problem:

maximize

∥∥∥∥∥min

(
k∑
i=1

αiPi, T

)∥∥∥∥∥
1

s.t. α1 + α2 + . . .+ αk + kδ ≤ W

k ∈ N, Pi ∈ P , αi ≥ 0 ∀i ∈ {1, 2, . . . , k},

(3.1)

where N = {1, 2, . . .} and P is the set of permutation matrices.

This optimization problem is NP-hard [76], and a recent work [78] in the lit-

erature has focused on heuristic solutions. Our proposed algorithm has some

similarities to the prior work in [78] in that the matchings and their dura-

tions are computed successively in a greedy fashion. However, the algorithm

is overall quite different in terms of both ideas and details; we uncover and

exploit the underlying submodularity [102] structure inherent in the problem

to design and analyze the algorithm in a principled way.

We also note that this problem can be viewed as finding permutation ma-

trices P1, . . . , Pk and weightings α1, . . . , αk such that their weighted sum is a

good approximation of the traffic matrix T . Carathéodory’s theorem applied

to the Birkhoff polytope guarantees the existence of such a dual representa-

tion; however to date we do not know of an efficient algorithm to compute this

representation. A recent work [103] proposes an approximation algorithm,

but it relies on an exhaustive search over the vertices of the polytope which

can be very slow (moreover in the case of the Birkhoff polytope, the number

of vertices is also exponential in the dimension). Our approach does not

involve such a search, and is also very efficient in obtaining an approximate

Carathéodory expansion.
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Algorithm 1: A general greedy algorithm template

Input : Traffic demand T , reconfiguration delay δ and scheduling
window size W

Output: Sequence of matchings P1, . . . , Pk and their corresponding
durations α1, . . . , αk:

sch← {} ; // schedule

k ← 0 ;
Trem ← T ; // traffic remaining

while
∑k

i=1(αi + δ) ≤ W do
k ← k + 1;
Decide on a duration α for the matching ;
M ← argmaxM∈M‖min(αM, Trem)‖1 ;
sch← sch ∪ {(α,M)} ;
Trem ← Trem −min(αM, Trem) ;

end

if
∑k

i=1(αi + δ) > W then
sch← sch\{(α,M)};

end
k ← k − 1;

3.2.1 Intuition

Before a formal presentation and analysis of the algorithm, we begin with

an intuitive and less-formal approach to how one might solve this optimiza-

tion problem. Consider greedy algorithms with the template shown in Algo-

rithm 1. The template starts with an empty schedule, and proceeds to add a

new matching to the schedule in each iteration. This process continues until

the total duration of the matchings exceeds the allotted time budget of W , at

which point the algorithm terminates and outputs the schedule computed so

far. In each iteration, the algorithm first picks the duration of the matching,

α. It then selects the maximum weight matching in the traffic graph whose

edge weights are thresholded by α (i.e., edge weights > α are clipped to α).

The traffic graph is a bipartite graph between n input and n output vertices,

with an edge of weight T (i, j) between input node i and output node j. It

remains to specify how to choose α in each iteration.

Consider an exercise where we vary the matching duration α from 0 to W

and compute the maximum weight matching in the thresholded traffic graph

for each α. For a typical traffic matrix, this results in a curve similar to the

solid-blue line in Figure 3.2. Notice that the value of the maximum weight
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Figure 3.2: Throughput of max. weight matching as a function of threshold
duration. The effective utilization curve of the matchings is also shown.

matching is precisely equal to the sum-throughput that can be achieved in

that round of the switch schedule. It is straightforward to see that the

maximum weight matching curve has the following properties: (a) it is non-

decreasing and (b) piecewise linear. These are explained as follows: when

α is very small a lot of the edges in the traffic graph have a weight that is

saturated at α. Hence it is likely to find a perfect matching with total weight

of nα. As such the slope of the curve when α is small is n. However, as α

becomes large there are increasingly fewer edges whose weights are saturated

at α and, correspondingly, the slope reduces. When α is so large that all of

the edge weights are strictly smaller than α, then the value of the maximum

weight matching does not change even with any further increase in α and

the curve ultimately flattens out.

Two operating points of interest, considering Figure 3.2, are (a) the largest

α where the slope of the curve is maximum (= n in the typical case where

every ingress/egress port has traffic) and (b) the smallest α where the value of

the maximum weight matching is the largest. These points have been denoted

by α1 and α2 in Figure 3.2 respectively. Setting α = α1 is interesting because

it results in a matching where the links are all fully utilized. For example,

the Solstice algorithm presented in [78] implicitly adopts this operating point.

On the other hand, α = α2 gives a matching that achieves the largest possible

sum-throughput in that round.
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However we note that both choices of α are less than ideal for the following

reasons. Recall that after every round of switching we incur a delay of δ time

units. As such if the value of α1 is small (say comparable to δ) in each

round, then the number of matchings, and hence the time wasted due to the

reconfiguration delay, becomes large. As a concrete example, consider the

transpose of the traffic matrix T1 = [At1b
t
1] where A1 is a sparse (n− 1)× n

matrix and b = [2δ, 2δ, . . . , 2δ, 0, 0, . . . , 0] comprises of some k entries of value

2δ and n− k entries of value 0. In other words, we are considering an input

where a node or a collection of nodes have a large number of small flows to

a particular node or vice versa. For such an instance it is clear that if we

insist on matchings with 100% utilized links, then the maximum duration of

the matching is 2δ (i.e., α1 = 2δ). Thus, continuing the process described

in Algorithm 1 results in a sequence of k matchings each of which is only

2δ time units long. Hence in the worst case (if k > 1/(3δ)) about one-third

of the entire scheduling window is wasted just due to reconfiguration delay

limiting the maximum possible throughput to 2n/3. On the other hand,

if we had ignored the entries in b, then we could have scheduled just A1

achieving a total throughput of n− 2kδ ≈ n for large n. We point out that

the phenomenon described above happens in a large family of instances, of

which T1 is a specific example. We also emphasize that such instances are

pretty likely to occur in practice; for example, [88, Figure 5-b] shows traffic

measurements in a Facebook data center where the interactions between

Cache and Web servers lead to traffic matrices having this property.

Similarly for the operating point with α = α2, consider the traffic ma-

trix T2 =

[
A2 0

0 B2

]
where A2 is a sparse (n − 2) × (n − 2) matrix and

B2 =

[
0 1

1 0

]
. This is a diametrically opposite situation from T1 where

a small collection of nodes interact only among themselves with no inter-

action outside. Such a situation occurs, for example, in multi-tenant cloud-

computing data centers [104] where individual tenants run their jobs on small

clusters of servers. In such a case, the value of the maximum weight match-

ing can be maximum for a large α. For T2 the maximum value occurs at

α = 1 − δ (i.e., α2 = 1 − δ), resulting in a schedule with just one matching

of duration 1− δ and potentially missing a lot of traffic for A2. For example,

if A2 is uniformly k-sparse, we miss out roughly (k − 1)n/k units of traffic.
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On the other hand, by choosing the duration of the matching to be 1/k − δ
in each step we can achieve a sum throughput of n−O(δ) ≈ n.

In scenarios exemplified by T2, setting α = 1 is bad because the utilization

of the resulting matching is poor, i.e., a vast majority of the matching links

carry only a fraction of their capacity. This can be overcome by insisting

that we choose only those matchings with utilization of at least 75% (say).

However, in the case of T1 we observe a poor performance in spite of all

matchings having a utilization of 100%. The issue in this case is that the

duration of the matchings are small compared to the reconfiguration delay.

Hence to avoid this scenario we can insist on α ≥ 20δ (say) in Algorithm 1.

Our first main observation is that both of the above heuristics are captured

if we consider the effective utilization of the matchings. We define effective

utilization as the ratio mwm(α)/(α+ δ) where mwm(α) denotes the value of

the maximum weight matching at α. This ratio indicates the overall efficiency

of a matching by including the reconfiguration delay into the duration. In

Figure 3.2 we plot the effective utilization of the matchings as the red-dotted

curve. As can be seen there, the effective utilization at both α1 and α2 is

suboptimal. We propose an algorithm that selects α to maximize effective

utilization; a detailed description is deferred to Section 4.3.

The justification for selecting matchings according to the above is further

reinforced by the submodularity structure of the problem (we discuss submod-

ularity in Section 3.2.2). It turns out that for a certain class of submodular

maximization problems with linear packing constraints, greedy algorithms

take a form that precisely matches the intuitive thought process above [81]:

the proposed intuitively correct algorithm is borne out naturally from sub-

modular combinatorial optimization theory. We briefly recall relevant aspects

of submodularity and associated optimization algorithms next.

3.2.2 Submodularity

A set function f : 2[n] → R is said to be submodular if it has the following

property: for every A,B ⊆ [n] we have f(A∪B) + f(A∩B) ≤ f(A) + f(B).

Alternatively, submodular functions are also defined through the property of

decreasing marginal values: for any S, T such that T ⊆ S ⊆ [n] and j /∈ S,
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we have

f(S ∪ {j})− f(S) ≤ f(T ∪ {j})− f(T ).

The difference f(S ∪ {j})− f(S) is called the incremental marginal value of

element j to set S and is denoted by fS(j). For our purpose we will only

focus on submodular functions that are monotone and normalized, i.e., for

any S ⊆ T ⊆ [n] we have f(S) ≤ f(T ) and further f({}) = 0.

Many applications in computer science involve maximizing submodular

functions with linear packing constraints. This refers to problems of the

form:

max f(S) s.t. AxS ≤ b and S ⊆ [n],

where A ∈ [0, 1]m×n, b ∈ [1,∞)m and xS denotes the characteristic vector

of the set S. Each of the Aij’s is a cost incurred for including element

j in the solution. The bi’s represent a total budget constraint. A well-

known example of a problem in the above form is the Knapsack problem

(the objective function in this case is in fact modular).

With the above background, we formulate the optimization problem under

direct routing as one of submodular function maximization. Recall that for

any given input traffic matrix T , the schedule that is computed is described

by a sequence of matchings and corresponding durations. Consider the setM
of all perfect matchings in the complete bipartite graph Kn×n with n nodes in

each partite. Then any round in the schedule is simply (α, P ) ∈ Z×M. The

key observation we make now is to view the schedules as a subset of Z×M.

Formally, define a switch schedule as any subset {(α1,M1), . . . , (αk,Mk)} of

Z×M. The objective function in our case is the sum-throughput defined as

f({(α1,M1), . . . , (αk,Mk)}) =

∥∥∥∥min
( k∑
i=1

αiMi, T
)∥∥∥∥

1

, (3.2)

where the minimum is taken entrywise and ‖ · ‖1 refers to the entrywise

L1-norm of the matrix. We observe that the function f is submodular.

Theorem 3.1. The function f : 2Z×M → R defined by Equation (3.2) is a

monotone, normalized submodular function.
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Algorithm 2: Eclipse: greedy direct routing algorithm

Input : Traffic demand T , reconfiguration delay δ and scheduling
window size W

Output: Sequence of matchings P1, . . . , Pk and their corresponding
durations α1, . . . , αk:

sch← {} ; // schedule

k ← 0 ;
Trem ← T ; // traffic remaining

while
∑k

i=1(αi + δ) ≤ W do
k ← k + 1;

(α,M)← argmaxM∈M,α∈Z
‖min(αM,Trem)‖1

(α+δ)
;

sch← sch ∪ {(α,M)} ;
Trem ← Trem −min(αM, Trem) ;

end

if
∑k

i=1(αi + δ) > W then
sch← sch\{(α,M)};

end
k ← k − 1 ;

(Proof in Section B.1.1)

We have established that optical switch scheduling under the sum-through-

put metric is a submodular maximization problem. With this, we are ready

to present a greedy algorithm that achieves a sum-throughput of at least

a constant factor of the optimal algorithm for every instance of the traffic

matrix.

3.2.3 Algorithm

Algorithm 2 – Eclipse – captures our proposed solution under direct routing.

Eclipse takes the traffic matrix T , the time window W and reconfiguration

delay δ as inputs, and computes a sequence of matchings and durations as the

output. The algorithm proceeds in rounds (the “while loop”), where in each

round a new matching is added to the existing sequence of matchings. The

sequence terminates whenever the sum of the matching durations exceeds the

allocated time window W or whenever the traffic matrix T is fully covered.

Consider any round t in the algorithm; let (α1,M1), . . . , (αt−1,Mt−1) de-

note the schedule computed so far in t−1 rounds (stored in variable sch) and

let Trem(t) denote the amount of traffic yet to be routed. The matching that
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Algorithm 3: Finding the greedy maximum

Input : Traffic demand T , reconfiguration delay δ
Output: (α,M) ∈ Z×M such that

(α,M) = argmaxM∈M,α∈Z
‖min(αM,T )‖1

(α+δ)

H ← distinct entries of T sorted in ascending order;
ilb ← 1 and iub ← length(H);
while ilb < iub do

i← (ilb + iub)/2 ;
T1 ← min{T,H(i)} ; // thresholding T to H(i)
T2 ← min{T,H(i+ 1)} ;
v1 ← (max. weight matching in T1)/(H(i) + δ) ;
v2 ← (max. weight matching in T2)/(H(i+ 1) + δ) ;
if v1 < v2 then

ilb ← i;
else if v1 > v2 then

iub ← i;
else

return (H(i), max. weight matching in T1);
end

end

is selected in the t-th round is the one for which utilization – the percentage

of the total matching capacity that is actually used – is maximum. Mathe-

matically, we choose an (α,M) pair such that ‖min(αM,Trem)‖1
α+δ

is maximized.

In Section B.1.3 we have given a proof that the maximum (for α) occurs

on the support of Trem. Hence this can be easily found by looking at the

support of the (sparse) matrix Trem. We also propose a simple binary-search

procedure, discussed in Algorithm 3, that finds only a local maximum but

performs extremely well in our evaluations (Section 3.4). This process of

selecting a matching is repeated in each round until the sum-duration of the

matchings exceeds the scheduling window W , when the last chosen match-

ing is discarded and the remaining set of matchings are returned. Eclipse is

simple and also fast, a fact the following calculation demonstrates.

Complexity. We begin with the complexity of Algorithm 3. Since iub is

no more than the number of distinct entries of T , we have iub ≤ n2. In

each iteration, the algorithm only considers entries of H that have indices

between ilb and iub. However, binary-search halves the effective size of H

(i.e., those numbers in H with array indices ilb, ilb+1, . . . , iub), and the num-
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ber of iterations of the while loop is bounded by log n2 = 2 log n. Within

the while loop, computing the maximum weight matching can be done in

O(dn3/2 log(Wε)) time (a basic fact of submodular optimization [105, 102])

where dn is the number of edges in bipartite graph formed by T (i.e., d is

the average sparsity). Further (1− ε) approximate maximum weight match-

ing can be computed in linear time, e.g. O(dnε−1 log ε−1) [106], and efficient

implementations in practice have been studied extensively in the literature

[107, 108, 109]. Hence the overall time complexity is O(dn3/2 log n log(Wε)).

Now, in Algorithm 2 the number of iterations in the while loop is bounded

by W/δ. As such the total complexity of the algorithm is Õ(dn3/2W
δ

). An

exact search over the support of Trem in the maximization step results in an

overall complexity of Õ(d2n5/2W
δ

).

Approximation guarantee. Since the proposed direct routing algorithm is

connected to submodular maximization with linear constraints, we can adapt

standard combinatorial optimization techniques to show an approximation

factor of 1−1/e. Let OPT denote the sum-throughput of the optimal algorithm

for given inputs T, δ and W . Let ALG2 denote the sum-throughput achieved

by Eclipse. We then have the following.

Theorem 3.2. If the entries of T are bounded by εW + δ then Eclipse ap-

proximates the optimal algorithm to within a factor of 1 − 1/e(1−ε), i.e.,

ALG2 ≥ (1− 1/e(1−ε))OPT.

(Proof in Section B.1.2)

As a concluding remark, we note that the constant ε in the approximation

factor comes from the requirement that α + δ ≤ εW hold. We observe that

this mild technical condition, required to show that Eclipse is a constant fac-

tor approximation of the optimal algorithm, has an added implication. Infor-

mally, it ensures that no single matching occupies the bulk of the scheduling

window.

3.3 Indirect Routing

In Section 3.2, we focused on direct routing where packets are forwarded to

their destination ports only if a link directly connecting the source port to the

destination port appeared in the schedule – this is essentially a “single-hop”
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protocol. In this section, we explore allowing packets to be forwarded to (po-

tentially) multiple intermediate ports before arriving at its final destination.

In terms of implementing this more involved protocol, we note that there

is no extra overhead needed: the destination of any received packet is read

first upon reception and since the queues are maintained on a per-destination

basis at each ToR port, any received packet can be diverted to the appropri-

ate queue. The key point of allowing indirect routing is the vastly increased

range of ports that can be reached from a small number of matchings.

Consider Figure 3.3 which illustrates a six-port network and a sequence of

three consecutive matchings in the schedule. With direct routing, port 3 can

only forward packets to ports 2, 5 and 4 in rounds 1, 2 and 3 respectively,

i.e., the set of egress ports reachable by port 3 is {2, 4, 5}. In the indirect

routing framework of this section, port 3 can also forward packets to port

1. This can be achieved by first forwarding the packets to port 2 in the first

round where the packets are queued. Then in the second round we let port

2 forward those packets to the destination port 1. Thus the reachability of

the nodes is enhanced by allowing for indirect routing. Indirect routing can

also be viewed as “multi-hop” routing.

Traditionally multi-hop routing has been used as a means of load balancing.

This is known to be true in the context of networks such as the internet

where the benefits of “Valiant load-balancing” are legion [82, 83, 84]. The

benefits of load balancing are also well-known in the switching context – a

classic example is the two-stage load-balancing algorithm in crossbar switches

without reconfiguration delay [110]. The benefit of multi-hop routing in our

context is markedly different: the reachability benefits of indirect routing are

especially well-suited to the setting where input ports are directly connected

to only a few output ports due to the small number of matchings in the

scheduling window. In fact, an elementary calculation shows that over a

period of k matchings in the schedule, indirect routing can allow a node to

forward packets to O(2k) other nodes, compared to only O(k) nodes possible

with direct routing. This is because of the recursion f(k) = 2f(k − 1) + 1

where f(k) denotes the number of nodes reachable by any node in k rounds.

If a node (say, node 1) can reach f(k− 1) nodes in k− 1 rounds, then in the

k-th round (i) there is a new node directly connected to node 1 and (ii) each

of the f(k − 1) nodes can be connected to a new node. Thus the number of

nodes connected to node 1 in the k-th round becomes f(k−1)+(f(k−1)+1).
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Figure 3.3: Reachability of nodes under multi-hop routing.

Figure 3.3 also illustrates this phenomenon where reachability from node 3

is shown. As a corollary we observe that O(log2 n) rounds of matchings are

sufficient to reach all other nodes in a n-port network.

As in the direct routing case, computing the optimal schedule remains a

challenging problem. While it is clear that we can achieve a performance at

least as good as with direct routing, the gain is different for each instance

of the traffic matrix – precisely quantifying the gain in an instance-specific

way appears to be challenging. Our main result is that the submodularity

property of the objective function continues to hold, provided the variables

are considered in an appropriate format. Further, if we restrict some of the

variables (the matchings and their durations), then there is also a natural,

simple and fast greedy algorithm to compute the switching schedules and

routing policies that is approximately optimal for each instance of the traffic

matrix. This algorithm serves as a heuristic solution to the more general

problem of jointly finding number of switchings, their durations, the switch-

ing schedules and routing policies. We present these results, following the

same format as in the direct routing section, leaving numerical evaluations

to a later section. We follow the model as discussed in Section 3.1.

3.3.1 Submodularity of Objective Function

We first adopt an alternative way of describing the switch schedule by spec-

ifying the multi-hop path taken by each packet. Such a formulation serves

us well in the causal structure of the routed traffic patterns that naturally

occur here.

For simplicity let us fix the number of rounds k in the schedule. Consider
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a fully connected k-round time-layered directed graph G consisting of k + 1

partites, V0, V1, . . . , Vk (of n nodes each), with nodes in each partite i having

directed edges to all the nodes in partite i + 1. Let P denote the set of all

paths in G that begin at a node in V0 and end at a node in Vk. Any such p ∈ P
describes a multi-hop route for a packet in the system. If we are able to choose

a path for every packet in the traffic matrix T , subject to capacity constraints,

then we have a valid sequence of switch configurations and routing policy for

the schedule. Now, for a set of paths (β1, p1), . . . , (βm, pm), where βi denotes

the number of packets sharing the same path pi, consider the sum-throughput

given by a function f : 2Z×P → Z defined as f({(β1, p1), . . . , (βm, pm)}) ,

∑
i,j∈[n]

min

(
m∑
l=1

βl1 pl(0)=i,
pl(k+1)=j

, Tij

)
, (3.3)

where p(0) and p(k + 1) denote the starting and ending nodes of path p

and 1{·} is the indicator function. Then the main observation is that f is

submodular.

Theorem 3.3. The function f : 2Z×P → Z defined by Equation (3.3) is

submodular.

The proof is analogous to Theorem 3.1 and is omitted. So far we have not

imposed any restrictions on the set of paths that we choose for the schedule.

This can be incorporated in the form of constraints to the problem, thus

rephrasing the objective as a constrained submodular maximization problem.

Constraints. Since we can choose arbitrary weighted paths, we need con-

straints to ensure that

(i) the set of paths form a matching in each round and

(ii) the total duration of the matchings is at most W − kδ.
This can be written mathematically as follows for any subset of weighted

paths {(β1, p1), . . . , (βm, pm)} ∈ 2Z×P :

∑
e:v∈e,
e∈Ej

1

{
m∑
i=1

1{e∈pi}βi > 0

}
≤ 1 ∀v ∈ Vj−1, j ∈ [k] (3.4)

∑
e:v∈e,
e∈Ej

1

{
m∑
i=1

1{e∈pi}βi > 0

}
≤ 1 ∀v ∈ Vj, j ∈ [k] (3.5)
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k∑
j=1

((
max
e∈Ej

m∑
i=1

1{e∈pi}βi

)
+ δ

)
≤ W (3.6)

where Ej stands for the edges between Vj−1 and Vj in G. Hence we can

express the problem as maximization of Equation (3.3) as objective subject

to Equations (3.4)–(3.6) as constraints.

However, the key challenge here is that the constraints in Equations (3.4)–

(3.6) are nonlinear – it is not clear whether an efficient (approximation)

algorithm exists. The nonlinearities appear only in the sense of membership

tests and a corresponding thresholding function – so it is possible that an

efficient nearly optimal greedy algorithm exists, but we leave this study for

future work. We do note, however, that for the special case in which the

configurations are fixed and we only have to decide on the indirect routing

policies, the constraints take on a linear form – in this setting, we are able

to construct fast and efficient greedy algorithms. This case represents a

composition of direct routing (where switch schedules are computed) and

indirect routing (where the multi-hop routing policies are described), and is

discussed next.

Multi-hop routing policies. Consider a fixed sequence M1, . . . ,Mk of

switch configurations and an input traffic demand matrix T . Let G de-

note the time-layered edge-capacitated graph obtained from the sequence of

matchings, i.e., G consists of k+1 partites V0, . . . , Vk with n nodes each, and

Mi is the matching between partites Vi−1 and Vi. In addition to the matching

edges, there are also edges, with unlimited edge capacities, connecting the j-

th nodes of Vi−1 and Vi for all j ∈ [n], i ∈ [k]. In this setting, by constraining

the total duration of the matchings, we can maximize our required objective

by formulating the following linear program (LP) relaxation,
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maximize
∑
p∈P

xp

s.t.
∑
p∈Pi,j

xp ≤ Ti,j ∀i, j ∈ [n]

∑
p:e∈p

xp ≤ αl ∀ e ∈Ml, ∀ l ∈ [k]

α1 + . . .+ αk ≤ W − kδ

xp ≥ 0 ∀p ∈ P , αi ≥ 0 ∀i ∈ [k],

(3.7)

where Pi,j denotes the set of paths starting from a node i in G and termi-

nating at node j, P denotes the set of all paths ∪i,j∈[n]Pi,j, xp is the flow

along path p and αi is the duration of the i-th matching. We note that

though the present form of the LP can contain an exponential number of

variables, equivalent edge-based formulations exist with only a polynomial

number of variables and constraints. As such one could use a generic LP

solver to obtain the desired schedule. A closely related problem is the clas-

sical multicommodity flow problem [111, 112, 113] that was predominantly

solved using linear programming based approaches. However, despite many

years of research in this direction the proposed algorithms were often too

slow even for moderate-sized instances [114]. Since then there has been a

renewed effort in providing efficient approximate solutions to the multicom-

modity flow problem [115, 116]. The algorithm we present is also a step in

this direction, favoring efficiency over exactness of the solution.

3.3.2 Algorithm: Eclipse++

Consider the graph G discussed above under a fixed matching, duration se-

quence (M1, α1), . . . , (Mk, αk). Let R(e) denote the capacity of edge e ∈ G.

In this setting, the capacity constraints on the end-to-end paths are the sole

constraints to the submodular optimization problem – we consider subsets

{(β1, p1), . . . , (βm, pm)} that obey

m∑
i=1

βi1{e∈pi} ≤ R(e) ∀e ∈ G. (3.8)
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Algorithm 4: Eclipse++ : greedy indirect routing algorithm

Input : Traffic demand T , switch configurations with residue
capacities R1, . . . , Rk, update factor λ

Output: Sequence of paths p1, . . . , pm and corresponding weights
β1, . . . , βm

sch← {} ; // schedule

Trem ← T ; // traffic remaining

we ← 1/R(e) for all e ∈ E;
m← 1;
while

∑
e∈E R(e)we ≤ λ and ‖Trem‖1 > 0 do

(βm, pm)← argmaxp∈P,β∈Z
min(β,Trem(p(0,p(k+1))∑

e∈E β1{e∈p}we
;

sch← sch ∪ {(βm, pm)} ;
Trem(pm(0), pm(k + 1))← Trem(pm(0), pm(k + 1))− β ;

we ← weλ
βm1{e∈p}/R(e) ∀e ∈ G ;

m← m+ 1;

end

if
∑m−1

i=1 βi1{e∈pi} ≤ R(e) ∀e ∈ E then
return sch

else
return sch\(βm−1, pm−1)

end

Notice that the constraints above have a linear form, and there are a total

of kn such constraints (one for each edge). Hence, motivated by [81], which

presents a fast and efficient multiplicative weights algorithm for submodular

maximization under linear constraints, we propose Eclipse++ in Algorithm 4.

The structure of Eclipse++ is similar in spirit to Eclipse (Algorithm 2) in the

sense that (a) the algorithm proceeds in rounds, where one new path is added

to the schedule in each round and (b) we select a path that offers the greatest

utility per unit of cost incurred. However, unlike Algorithm 2 where there

was only one linear constraint, we have multiple linear constraints now. This

is addressed by assigning weights to the constraints and considering a linear

combination of the costs as the true cost in each round. In the following, we

describe the salient features of Eclipse++.

Recall the capacity constraints in Equation (3.8) for each edge e ∈ G; let

we denote the weight assigned to the constraint involving edge e. We set

we = 1/R(e) for all e initially, i.e., edges with a large capacity are assigned

a small weight and vice versa. We can now have another graph Gw (with

same topology as G) whose edges are weighted by we. Now, for any path
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p the “effective cost” of the path per packet is simply the total cost of p in

Gw. Thus for the path (β, p) carrying β packets, the effective cost is given

by
∑

e∈E βwe1e∈p. On the other hand, the benefit we get due to adding

path (β, p) is given by min(β, T (p(0), p(k + 1))) where p(0) and p(k + 1)

stand for the starting and terminating nodes along path p. Thus, the ratio
min(β,T (p(0),p(k+1)))∑

e∈E βwe1e∈p
denotes the benefit of path p per unit cost incurred. In

Algorithm 4 we select p such that the utility per unit cost is maximized.

Now, once we have selected a weighted path (β1, p1) in the first round, we

update the weights we on the edges. This is done as we ← weλ
β1/R(e) for

each edge e ∈ p, where λ is an input parameter. For the remaining edges the

weights remain unchanged. Thus repeating the above iteratively until the

while loop condition
∑

e∈E R(e)we ≤ λ becomes invalid, we get a schedule

that is the output of the algorithm. It can also be shown that if the schedule

returned sch violates any of the constraints (Equation (3.8)) then it must

have happened at the very last iteration and hence we return a schedule

with the last added path removed from it. It only remains to show how the

maximizer of

min(β, Trem(p(0, p(k + 1))∑
e∈E β1{e∈p}we

(3.9)

is computed efficiently in each round (first line inside the while loop). Con-

sider the set of shortest paths in Gw (smallest we-weighted path) from vertices

in V0 to vertices in Vk. Let p∗ denote the shortest among them. Then by set-

ting β∗ ← Trem(p∗(0), p∗(k + 1)) we claim that Equation (3.9) is maximized.

This is because,

min(β, Trem(p(0, p(k + 1))∑
e∈E β1{e∈p}we

≤ β∑
e∈E β1{e∈p}we

≤ 1

min
∑

e∈E 1{e∈p}we
.

If Trem(p∗(0), p∗(k + 1)) = 0 we proceed to the second smallest shortest path

and so on. This allows a very efficient implementation of the internal maxi-

mization step.

Approximation guarantee. We show, as in the direct-routing scenario,

that Eclipse++ has a constant factor approximation guarantee. Specifically,

for a fixed instance of the traffic matrix, let OPT and ALG4 denote the value

of the objectives achieved by the optimal algorithm (under fixed matchings,
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durations) and Eclipse++ respectively. Let η := maxi,j∈[n],e∈E T (i, j)/R(e).

Then one can show that ALG4 = Ω(1/(nk)η)OPT for λ = e1/ηnk; the proof is

analogous to the direct-routing case and follows [81, Theorem 1.1]. Further,

if η = O(ε2/ log(nk)) for some fixed ε > 0 then we get a approximation

ratio of (1− ε)(1− 1/e) by letting λ = eε/(4η) (using [81, Theorem 1.2]). An

interesting regime where this occurs is when the traffic matrices are dense

with small skew. For example, we get a constant factor approximation if

the sparsity of the traffic matrix grows at least logarithmically fast. This is

in stark contrast to direct routing, where sparse matrices generally perform

better.

Complexity. The proposed algorithm is simple and fast. In this subsection,

we explicitly enumerate the time complexity of the full algorithm and show

that the complexity is at most cubic in n and nearly linear in k. Let W

denote a bound on the total incoming or outgoing traffic for a node. In each

iteration of the while loop at least one packet is sent. Therefore there are

at most W iterations of the while loop. Now, in each iteration finding the

shortest paths between nodes in V0 to nodes in Vk takes kn2(log k + log n)

operations using Dijkstra’s algorithm [117]. Sorting the computed distances

takes kn2(log k + log n)2 time and at most n2 more operations to find a pair

i, j such that Trem(i, j) > 0. Finally the weights update step takes kn time.

Therefore overall it takes O(kn2(log k + log n)2) time per iteration. Hence

the time complexity of the complete algorithm is O(Wkn3(log k + log n)2).

3.3.3 Discussion

In a schedule with a small number of matchings, the packets inherently have

to take longer paths (more hops) and thus consume more capacity to reach

their destinations. On the other hand, having a large number of matchings

introduces capacity wastage in the form of reconfiguration delays. Thus,

balancing this trade-off between the number of matchings and the average

number of hops packets take to reach their destinations is a key challenge to

finding a good matching sequence.

Throughout our discussion so far, we have adopted a model where the

scheduling window is of a fixed duration W and has at least one switch-

ing operation per window. From a throughput perspective, this inherently
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causes a rate loss of at least δ/W fraction of capacity. Practical optical circuit

switches, on the other hand, are often able to retain their previous switching

state across adjacent time windows (i.e., without requiring a new configura-

tion at the start of each window). This suggests a natural modification of

our current algorithms where in the first round of each window we either (i)

retain the last matching of the previous round or (ii) switch to a new match-

ing. We believe such a modification will further improve performance; the

precise changes and an evaluation under continuous traffic (such as Bernoulli

arrivals) are left for future work.

3.4 Evaluation

In this section, we complement our analytical results with numerical simu-

lations to explore the effectiveness of our algorithms and compare them to

state-of-the-art techniques in the literature. We empirically evaluate both

the direct routing algorithm (Eclipse: Algorithm 2) and the indirect routing

algorithm (Eclipse++: Algorithm 4).

Metric. We consider the total fraction of traffic delivered via the circuit

switch (sum-throughput) over the duration of a fixed scheduling window as

the performance metric throughout this section. Evaluating our algorithms

under continuous traffic arrival models remains an important future direction.

Schemes compared. Our experiments compare Eclipse against two existing

algorithms for direct routing:

(1) Solstice [78]: This is the state-of-the-art hybrid circuit/packet scheduling

algorithm for data centers. The key idea in Solstice is to choose matchings

with 100% utilization. This is achieved by thresholding the demand matrix

and selecting a perfect matching in each round. The algorithm presented

in [78] tries to minimize the total duration of the window such that the

entire traffic demand is covered. In this chapter, we have considered a more

general setting where the scheduling window W is constrained. To compare

against Solstice in this setting, we truncate its output once the total schedule

duration exceeds W .

(2) Truncated Birkhoff-von-Neumann (BvN) decomposition: The second al-

gorithm we compare against is the truncated BvN decomposition algori-
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thm [80]. BvN decomposition refers to expressing a doubly stochastic matrix

as a convex combination of permutation matrices and this decomposition

procedure has been extensively used in the context of packet switch schedul-

ing [78, 118, 80]. However BvN decomposition is oblivious to reconfiguration

delay and can produce a potentially large (O(n2)) number of matchings.

Indeed, in our simulations BvN performs poorly.

Indirect routing is relatively new and to the best of our knowledge our

work is the first to consider use of indirect routing for centralized schedul-

ing.4 In our second set of simulations, we show that the benefits of indi-

rect routing are in addition to the ones obtained from switch configurations

scheduling. To this end, we compare Eclipse with Eclipse++ to quantify the

additional throughput obtained by performing indirect routing (Algorithm 4)

on a schedule that has been (pre)computed using Eclipse.

Traffic demands. We consider two classes of inputs: (a) Single-block inputs

and (b) Multi-block inputs (explained in Section 3.4.1). Intuitively, single-

block inputs are matrices which consist of one n × n “block” that is sparse

and skewed, and are similar to the traffic demands evaluated in the Solstice

paper [78]. Multi-block inputs, on the other hand, denote traffic matrices

that are composed of many sub-matrices each with disparate properties such

as sparsity and skew.

Network size. The number of ports is fixed in the range of 50–200. We

find that the relative performances stayed numerically stable over this range

as well as for increased number of ports.

3.4.1 Direct Routing

While maintaining the sum-throughput as the performance metric, we vary

the various parameters of the system model to gauge the performance in

different situations.

Single-block inputs. For a single-block input, our simulation setup consists

of a network with 100 ports. The link rate of the circuit switch is normalized

to 1, and the scheduling window length is also 1 (W = 1). We consider

4Indirect routing in a distributed setting but without consideration of switch reconfig-
uration delay was studied in a recent work [75].
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Figure 3.4: Performance comparison of Eclipse under single-block inputs.

traffic inputs where the maximum traffic to or from any port is bounded by

W . Further, we let the reconfiguration delay δ = W/100. The traffic matrix

is generated similar to [78] as follows. We assume 4 large flows and 12 small

flows to each input or output port. The large flows are assumed to carry 70%

of the link bandwidth, while the small flows deliver the remaining 30% of the

traffic. To do this, we let each flow be represented by a random weighted

permutation matrix, i.e., we have

T =

nL∑
i=1

cL
nL
Pi +

nS∑
i′=1

cS
nS
Pi′ +N, (3.10)

where nL(nS) denotes the number of large (small) flows and cL(cS) denotes

the total percentage of traffic carried by the large (small) flows. In this case,

we have nL = 4, nS = 12 and cL = 0.7, cS = 0.3. Further, we have added a

small amount of noise N – additive Gaussian noise with standard deviation

equal to 0.3% of the link capacity – to the non-zero entries to introduce some

perturbation. Each experiment below has been repeated 25 times.

Reconfiguration delay: In Figure 3.4(a) we plot sum-throughput while vary-

ing the reconfiguration delay from W/3200 to 4W/100. Eclipse achieves a

throughput of at least 90% for δ ≤ W/100. We observe Eclipse to be con-

sistently better than Solstice although the difference is not pronounced until

δ > W/100. The BvN decomposition algorithm has a large throughput when

the reconfiguration delay is small. As δ increases, its performance gradually

worsens.

Skew: We control the skew by varying the ratio of the amount of traffic

carried by small and large flows in the input traffic demand matrix (cL/cS in
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Equation (3.10)). Figure 3.4(b) captures the scenario where the percentage

traffic carried by the small flows is varied from 5 to 75. We observe that

Eclipse is very robust to skew variations and is able to consistently maintain

a throughput of about 85%. Solstice has a slightly better performance at low

skew (when small-flows carry ∼ 75% of traffic); but overall, is dominated by

Eclipse.

Sparsity: Finally, we tested the algorithms’ dependence on sparsity and plot-

ted the results in Figure 3.4(c). The total number of flows is varied from 4

to 32, while fixing the ratio of the number of large to small flows at 1:3. As

the input matrix becomes less sparse, the performance of algorithms degrade

as expected. However, for Eclipse, the reduction in the throughput is never

more than 10% over the range of sparsity parameters considered. Solstice,

on the other hand, is affected much more severely by decreased sparsity.

Multi-block inputs. Next, we consider a more complex traffic model for a

200 node network with block diagonal inputs of the form

T =


B1 0

. . .

0 Bm

 ,
where each of the component blocks B1, B2, . . . , Bm can have its own sparsity

(number of flows) and skew (fraction of traffic carried by large versus small

flows) parameters. The different blocks model the traffic demands of different

tenants in a shared data center network such as a public cloud data center.

To begin with, we consider inputs with two blocks T =

[
B1 0

0 B2

]
where

B1 is a n1×n1 matrix with 4 large flows (carrying 70% of the traffic) and 12

small flows (carrying 30% of the traffic) and B2 is a (200− n1)× (200− n1)

matrix with uniform entries (up to sampling noise).

Size of block: Figure 3.5(a) plots the throughput as the block size of B2

is increased from 0 to 70. We observe a very pronounced difference in the

performance of Eclipse and Solstice: Eclipse has roughly 1.5−2× the perfor-

mance of Solstice. These findings are in tune with the intuition discussed in

Section 3.2.1 – the deteriorated performance of Solstice is due its insistence

on perfect matchings in each round.
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Figure 3.5: Performance comparison of Eclipse under multi-block inputs.

Reconfiguration delay: Figure 3.5(b) plots throughput while varying the re-

configuration delay, for fixed size of B2 to be 50 × 50. As expected, the

throughput of Solstice and Eclipse both degrade as the reconfiguration de-

lay δ increases. However, Eclipse throughput degrades at a much slower

rate than Solstice. The gap between the two is particularly pronounced for

δ/W ≥ 0.02, a numerical value that is well within range of practical system

settings.

Varying numbers of flow: In the final experiment we consider block diagonal

inputs with eight blocks of size 25 × 25 each. Each block carries 10 + bσ ∗
(U−0.5))c equi-valued flows where U ∼ unif (0, 1) and σ is a parameter that

controls the variation in the number of flows. When increasing σ from 0 to

20 we see from Figure 3.5(c) that Eclipse is more or less able to sustain its

throughput at close to 80%; whereas Solstice is significantly affected by the

variation.

3.4.2 Indirect Routing

In this section, we consider a 50 node network with traffic matrices having

varying number of large and small flows as before. We compare the perfor-

mance of the direct routing algorithm and the indirect routing algorithm that

is run on the schedule computed by Eclipse. To understand the benefits of

indirect routing, we focus on the regime where the reconfiguration delay δ/W

is relatively large and the scheduling window W is relatively long compared

to the traffic demand. This regime corresponds to realistic scenarios where

the circuit switch is not fully utilized (real data center networks often have

low to moderate utilization; e.g, 10–50% [1]), but the reconfiguration delay is
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Figure 3.6: Performance of Eclipse++ and Eclipse. Here Eclipse++ uses
the schedule computed by Eclipse.

large. In this setting of relatively large δ/W , switch schedules are forced to

have only a small number of matchings, and indirect routing is critical to sup-

port (non-sparse) demand matrices. The following experiments numerically

demonstrate the added gains of indirect routing.

Sparsity: Figure 3.6(a) considers a demand with five large flows and number

of small flows varying from 7 to 49. The large and the small flows each carry

50% of the traffic. We let δ = 16W/100 and consider a load of 20% (i.e.,

W = 5, and traffic load at each port is 1). We observe that the performance

of the Eclipse++ is roughly 10% better than Eclipse.

Load: As the network load increases (Figure 3.6(b)), we see that indirect

routing becomes less effective. This is because at high load, the circuits do

not have much spare capacity to support indirect traffic. However, at low

to moderate levels of load, indirect routing provides a notable throughput

gain over direct routing. For example, we see close to 20% improvement with

Eclipse++ over Eclipse at 15% load.

Reconfiguration delay: Finally, we observe the effect of δ/W on throughput

by varying δ from 3W/100 to 21W/100. At smaller values of reconfiguration

delay δ both Eclipse and Eclipse++ are able to achieve near 100% through-

put. With increasing δ both algorithms degrade with Eclipse++ providing

an additional gain of roughly 20% over Eclipse.

Thus having the capability for indirection can offer a significantly improved

performance over direct routing schemes.
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3.5 Conclusion

We have studied scheduling in hybrid switch architectures with reconfigura-

tion delays in the circuit switch, by taking a fundamental and first-principles

approach. The connections to submodular optimization theory allows us to

design simple and fast scheduling algorithms and show that they are near op-

timal – these results hold in the direct routing scenario and indirect routing

provided switch configurations are calculated separately. However, we note

that the proposed algorithms are not throughput optimal. This is because

the matchings selected in Eclipse are chosen by first thresholding the traffic

matrix and then choosing a maximum weight matching. Such a scheme is

analogous to the maximum size matching studied in [119, 72] and can be

shown to achieve strictly less than 100% throughput. Nevertheless from a

practical point-of-view, where traffic loads are often only a fraction of the

network capacity, the algorithm is still interesting and could offer potentially

a near-optimal delay performance. A systematic study comparing the delay

properties of Eclipse to the state-of-the-art is left for future work.
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CHAPTER 4

PEER-TO-PEER NETWORKS

While data centers are useful in their massive computation and storage ca-

pabilities, they do not scale well as content providers – as the number of

downloading clients increases the capacity of the data center also has to in-

crease. Peer-to-peer (p2p) networks are emerging as an increasingly popular

modality for content dissemination. Unlike the client-server model, in p2p

a low-capacity server uploads content to a small number of clients which,

together with the other clients, then exchange among themselves. Since

each downloading client also simultaneously contributes upload bandwidth,

the overall capacity of the network scales with the number of users. As

such p2p networks are attractive for bandwidth-intensive applications such

as file-sharing, multimedia streaming etc. However, efficient construction

and maintenance of the p2p overlay continues to be a challenging problem.

In this chapter we study this problem, and propose practical solutions in the

context of a canonical p2p application: streaming.

In p2p streaming, a low-capacity server uploads content continuously in

an online fashion to the network (for e.g., a live telecast of a public event).

This is similar to the rumor spreading problem, in which a rumor from a

source node is propagated to all the nodes of an unknown network. However

unlike rumor spreading, where only a single rumor is communicated to neigh-

bors over many rounds, in streaming new “rumors” arrive continuously, and

need to be forwarded fast and effectively in order to prevent message loss.

Limited upload capacity of peers disallows flooding-type message forwarding.

Further, peers can arrive or depart the system at will (peer churn), requiring

scheduling algorithms to be designed in order to effectively utilize the upload

capacity available and to ensure playback continuity with small delay.

A popular method used by some early systems, was to divide the content

into multiple substreams and distribute via multicast trees having disjoint

interior nodes [120, 121, 122, 123, 124]. This way any peer could be an inte-
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rior node in one multicast tree where it utilizes its upload bandwidth. While

trees offer good playback rate and delay, managing trees in a distributed

fashion can be very difficult under peer churn. It is known that the complex-

ity of maintaining trees grows with the number of nodes [125, 126]. Hence,

random sampling by the peers has commonly been used to help maintain

the distribution trees [127]. Another line of work introduced randomness

in the construction of the distribution graphs in order to handle the prob-

lems associated with peer churn [128]. Whenever a neighboring peer leaves,

the peer chooses a new neighbor randomly as its new neighbor. While the

distributed nature of the peer pairing makes unstructured networks robust

to peer churn, connectivity is sacrificed because some of the peers may not

be well-connected due to the inherent randomness. Also, high probability

guarantees are often provided only when the number of nodes is large. Yet

another drawback is the (potentially large) constants hidden in the order

results of many algorithms.

Thus, while structured algorithms promise connectivity to all the peers

and have deterministic O(log n) delay guarantees, a fundamental limitation

is their vulnerability to peer churn. Randomized algorithms, on the other

hand, provide only probabilistic guarantees for delay, convergence time and

connectivity guarantees are weaker. Besides, few algorithms provide a for-

mal guarantee on the transient rates received by the peers (an exception

is [128]). A similar trend can be found in the literature on gossip, where

a long line of algorithms tried to reduce the spreading time for randomized

gossip [129, 130, 131]. It is a priori unclear if deterministic structures could

even exist that satisfy the constraints of our model. However, recently a

deterministic distributed algorithm for gossip was proposed in [132]. Apart

from being faster and more robust than previous randomized algorithms, the

deterministic nature has the advantage of running time guarantees holding

with certainty instead of with high probability. Inspired by this, we pro-

pose and analyze a novel distribution structure for p2p streaming that can

be maintained deterministically, distributedly by the peers and provides a

strong transient rate guarantee under our departure model. The results of

this chapter build on our work [133].
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Summary of Results

Our main result is the design of a distribution structure and algorithm that

is (i) distributed, (ii) deterministic, (iii) has constant repair time to ensure

connectivity and (iv) takes constant time for peer arrival and departure. As

far as the author is aware, no other algorithm in the literature has all of the

above properties. A key innovation is the introduction of redundancy in the

network. Assuming peers are homogeneous with an upload capacity of C

each, the delay provided by our algorithm is given by the following.

Theorem 4.1. In the steady-state with n peers in the system, the streaming

delay is bounded by log2(n+ 1) + 2R
C−R + log2(1− R

C
)−2 for a rate R ∈ (0, C).

(Proof in Section 4.4)

Here each edge of the p2p network is assumed to contribute 1 unit of delay.

The above delay of our algorithm has an additional term of O(1/(C−R)) as

compared to the O(log n) delay of tree-based structures, such as in [121, 127].

However, the latter do not have constant repair time under churn. Peer de-

partures can cause a sudden loss of transmission links and can lead to loss

of connectivity in the multicast graphs. Under such events, the data rate

received by some peers can drop considerably until the trees are repaired.

Having redundancy in the network helps in this regard in ensuring conti-

nuity of streaming without outages under peer churn. The penalties paid

due to the introduction of redundant links facilitate: (i) deterministic graph

management and (ii) ensure continuity of playback under peer churn events.

In our second result, we show that for the amount of redundancy used, the

delay guarantee of the algorithm is order optimal.

Theorem 4.2. For structured streaming in which multiple spanning graphs

each carry partial flows, the maximum delay across the substream graphs is

at least log∆(n)+ R
2(C−R)

+log∆

(
2(C−R)

R

)
− c′, where c′ = (∆−2) log∆

(
∆!
2

)
+

loge(∆−1)+2, for a rate R, degree bound ∆ and n ≥ 3R
C−R , if the partial flow

graphs have enough capacity redundancy to handle arbitrary node departures.

(Proof in Appendix C)

Notice that any structured broadcast streaming can be viewed as an union

of broadcasts of substreams over different spanning graphs, without loss of

generality. Thus, we claim that the R/(C − R) term in the delay is funda-

mental for all algorithms guaranteeing continuity of playback.
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Table 4.1: Summary of comparison with previous work for flow based
streaming.

Flow dissemination Graph maintenance References

graph type algorithm

Centralized [122, 120, 124]

Structured Involves randomness [121, 127, 134, 135, 136, 123]

Deterministic This chapter

Unstructured Random [137, 138, 139, 128, 140, 141]

Transient state characterization. Much of the algorithm is designed to

stabilize the transient state. We also guarantee a transient rate equal to the

original rate under departure events. The transient rate can be traded for

delay as discussed in Section 4.5. Hence apart from providing deterministic

guarantees for delay and churn management, the algorithm offers key insights

into the continuity aspect of the playback rate.

Ramifications of Main Result

P2P networks have several interesting applications such as distributed file

sharing and computation, social networks, multimedia etc. While our algo-

rithm is designed specifically for the p2p one-to-many streaming problem,

several subproblems that we solve are of key interest in-of-themselves.

1. Fast repair. Qualities such as fast addition or removal of nodes, fault

tolerance, and efficient routing are desirable in many p2p systems. Design-

ing a distributed, structured overlay that admits a fast repair time has been

a challenging problem in the p2p domain. Within the class of structured

overlays, even the fastest algorithm takes O(log n) time for node addition

and removal as far as the author is aware (see for example, [142, 143] or the

literature on Skip graphs [144]). On the other hand, ensuring connectivity

after node arrival or departure (even without prior notice) can be performed

as quickly as in two time rounds in our overlay. Further the determinis-

tic structure enables design of very efficient routing algorithms for general

traffic patterns. For example, all-cast streaming – where every node has a

message to be broadcast to all other nodes – can be easily incorporated by

our topology.
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2. Balancing. The balancing algorithm is another problem of independent

interest. For overlays comprised of multiple spanning trees, balancing the

trees to ensure a low depth (under node addition/removal) has been hard to

achieve. However, with a slight modification in the topology, we show that

balancing can be performed fast and efficiently. For example, restoring the

structure after a single node insertion/deletion in the steady-state takes only

a constant number of rounds. A key idea here is to use the other balanced

trees to correct a faulted tree. Thus, being fast, robust and simple, our

algorithm can easily be adapted to fit in other p2p applications.

Related Work

A classical approach in structured streaming involves multicast trees, often

with constant-degree nodes [145, 146]. Algorithms in [122, 120, 124] used

centralized control. Pastry [136], a routing substrate, was used by the Split-

Stream algorithm in [121] for tree construction and maintenance. Other

distributed lookup protocols have also been proposed in [134, 135]. In [127],

an asynchronous distributed algorithm was presented to construct and man-

age multiple distribution trees by means of random sampling done by the

peers. Deterministic overlay topologies have been discussed in [142, 143],

however they do not have constant time for peer arrival or departure.

In the other research direction of unstructured p2p networks, where each

node communicates with a random subset of other peers, much of the pre-

vious theoretical studies of the delay performance have focused primarily

on fully connected networks with homogeneous capacities; examples include

[137, 138, 139] which make interesting connections between p2p streaming

networks, gossip and epidemic models to analyze the maximum streaming

delay. In [128], multiple random Hamiltonian cycles were constructed and

superposed. The distribution is then done over the union of the cycles. A key

idea was to exploit the fact that the superposition of random directed Hamil-

tonian cycles is an expander with high probability. Additionally, Hamiltonian

cycles are easy to maintain in response to peer churn, a fact that was first

noted in the case of undirected graphs in [147]. Some other formats of un-

structured p2p include mesh based streaming in [140, 141], in which packets

were distributed over a randomly constructed mesh. A comparison between
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the previous work discussed above and this work has been presented in Ta-

ble 4.1. We note that the idea of using redundancy to counter transient

effects has been observed in other contexts as well [148, 149].

System issues. Two key real-world issues with p2p networks are peer churn

dynamics and heterogeneity of upload capacities of the participating peers.

We model adversarial and arbitrary peer arrival and departures and show

tight characterizations of the transient behavior under the operation of our

algorithm. In particular, we provide deterministic guarantees toward a very

short transient timeline even due to adversarial peer arrivals and departures.

As such, more intuition on the transient behavior via simulations on synthetic

networks is limited. On the other hand, heterogeneity can be far more nu-

anced in the real world than that represented by the models in this chapter.

For example, user connections in the underlying internet could range from

very fast fiber networks to slow WiFi networks. The impact of such wide

disparities in upload capacities and latencies on transient behavior is hard

to predict analytically or even via synthetic computer simulation – a real

world deployment of the algorithms in this chapter would be better suited

to capture the performance of the system-at-large (stability, delay and rate

guarantees) in the limits of diverse heterogeneity.

4.1 Network Model and Steady-State Topology

4.1.1 Network Model

The p2p overlay network at each time t is modeled as an undirected node

capacitated graph G(t) = (V (t), E(t)), in which all the peers have an uniform

and download upload capacity of C. Peers also have a constant bound ∆ on

the number of links allowed. In practice these could be TCP links made over

the internet. The time t is slotted. In addition to the upload capability, we

let the nodes be able to communicate O(log |V (t)|) bits of information in any

round t as control messages through the edges. We have implicitly assumed

that the cost of communicating polylogarithmic bits of control messages by

the nodes every round (via existing links) is cheap, compared to breaking

and making new connection links. Peers have a constant amount of memory
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for storing M addresses (node IDs).

Churn. We model peer arrival and departure as follows. Whenever a peer

departs, the node and all the edges connected to it are lost immediately; only

the neighbors of the departing peers in G(V (t), E(t)) are aware of this event.

Peer arrivals, in which a new peer becomes part of the overlay, happens at

most one at a time. We also assume communication happens as a flow (or

equivalently as time-shared discrete messages) and do not consider network

coding in this chapter. Note: For any positive integer n, [n] denotes the set

{1, 2, . . . , n}. The terms peer, node and client have been used interchange-

ably. In the above model of peer dynamics, with the network changing to

adapt to peer arrival or departure, we call a network that is in the process

of reconfiguring itself as being in a transient state. A network that is not in

the reconfiguration process will be called as being in a steady-state.

4.1.2 Steady-State Topology

The main idea of the algorithm is to divide the stream of rate R into several

substreams of smaller rates, that are each independently distributed. Such a

division of a stream into many substreams has a twofold advantage: (i) it al-

lows for an easier capacity management of peers and (ii) it reduces the overall

diameter (delay) of the p2p overlay. To distribute individual substreams we

propose a novel tree-like topology which has the logarithmic delay of trees,

while at the same is also easy to repair and maintain under churn. This

is achieved by scaling down the stream rate to less than the optimal (i.e.,

R < C), and using the leftover capacity (C − R) to aid in the repairing

process.

Without loss of generality, assume C = 1 throughout. We consider stream-

ing at a rate R = m/(m + 1) where m ∈ Z is a design parameter – a large

m guarantees a high rate, but the delay also becomes large and vice versa.

For a fixed m, the rate of m/(m+ 1) is divided into m substreams with each

substream carrying a rate of 1/(m + 1). The remaining upload capacity of

1/(m + 1) available at the peers is used to manage the network. We have

assumed each user is interested in receiving all the m substreams; in practice

coding techniques such as Multiple Description Coding (MDC) [121] could

be used to further increase robustness.
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(a) (b) (c)

Figure 4.1: An example showing the directed graphs (a) T1, (b) U1, and (c)
G1 for a network with n = 11 peers and m = 3. S is the stream source,
while the nodes with indices 1 to 11 denote the peers.

Next, we describe how the substreams are forwarded among peers. Let

Gi(t) = (V (t), Ei(t)), for i = 1, . . . ,m, denote the directed graph for broad-

casting the ith substream, where V (t) is the set of all peers in the system

and Ei(t) is the set of links used for the ith substream at time t. An edge

from u to v in Gi(t) means packets from the i-th substream are forwarded

unidirectionally from peer u to peer v at a rate of 1/(m+1); control messages

(of only a few bytes in practice) can be exchanged in both directions from

u to v or from v to u along the link. The overall p2p network is a union of

the substream networks G = G1 ∪G2 ∪ . . . ∪Gm.1 As peers arrive or depart

from the system, the topologies of the Gi’s adjust dynamically according to

our algorithm. These adjustments are strived toward attaining a globally

ideal topology for the substream networks. We refer to this ideal topology as

the steady-state since in the absence of churn the network converges to this

state.

Steady-state. In the steady-state all of the topologies G1, G2, . . . , Gm are

symmetric, and as such we begin by describing the topology of G1. Let n

be the number of peers in the system. Then, G1 is the union of two graphs

T1 and U1 as described below. T1 is a directed binary tree with its root

connected to the server and spans all n nodes. The nodes in T1 have an

(out-)degree of either one or two, with the degree two nodes occurring above

the degree one nodes (i.e., no degree two node occurs in the subtree rooted

at a degree one node in T1). Further, the tree is balanced such that for every

1For ease of notation, we will drop the argument t from Gi(t), V (t), Ei(t) and denote
them simply by Gi, Vi, Ei respectively, with the time aspect implicitly understood.
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(a) (b) (c)

Figure 4.2: An example showing a steady-state topology of (a) G1, (b) G2

and (c) G3 for n = 11 and R = 3/4 (m = 3). As before S is the stream
source and the nodes 1 to 11 are the peers.

degree two node, the height of the left subtree and the right subtree differs

by at most a constant. For a degree two node, the left outgoing edge is

called the primary edge and the right outgoing edge is called the secondary

edge. The corresponding children are called primary and secondary children

respectively. Finally, the chain of degree one nodes leading to a leaf, for every

leaf, consists of at least m−1 nodes and at most 2m−2 nodes (including the

leaf node). In Figure 4.1(a), we have illustrated T1 for n = 11 and m = 3.

Now given T1, U1 consists of edges that connect each leaf node of T1 to a

secondary child in T1. Specifically, each leaf node of T1 has an edge to the

secondary child of the last degree 2 node in the path from the root to the leaf,

such that, the secondary child itself does not lie in the path. For the T1 shown

in Figure 4.1(a), the graph U1 has been illustrated in Figure 4.1(b). These

edges are essentially redundant since the packets forwarded by the leaf nodes

would have been already received at the other end. The overall topology

G1 is the union of T1 and U1 and has been shown in Figure 4.1(c). Thus in

the steady-state each peer in G1 has an upload rate of either 2/(m + 1) or

1/(m+ 1).

The other substream graphs G2, . . . , Gm also have a topology similar to

G1, except with the location of the peers interchanged. A peer with a degree

two in T1 has a degree one in the remaining T2, . . . , Tm. Conversely, a degree

one peer in T1 could be a degree two peer in some other Ti for i 6= 1. Overall,

the substream topologies are such that each peer is a degree two node in at

most one of the Ti’s. This property has been illustrated in Figure 4.2 where

we have shown G1, G2 and G3 for the same example as in Figure 4.1.
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Example of peer churn. Clearly the steady-state p2p topology discussed

above cannot hold if there are node failure or departures. How to cope under

such events forms the content of the rest of this chapter. As a warm-up

example to illustrate a basic repair operation, let us consider an event where

node 4 departs from the network shown in Figure 4.2. In this case, the

substream network G1 remains unaffected since peer 4 was only a leaf node.

In G2, peer 2 which was receiving the stream from peer 4 no longer receives

the stream. However, since peer 3 now has an available upload capacity,

peer 2 can connect to it. Lastly, in G3 both peers 2 and 1 stop receiving

the stream. In this case, peer 2 connects to peer 6, while peer 1 receives

the stream from the redundant edge from peer 3. Thus, under the proposed

topology, we are able to immediately restore connectivity to the peers in this

example. However, the resultant topology is no longer ideal and can cause

a large delay in the stream. Thus, and more generally, the following key

questions arise: (i) How to keep the peers connected to server? (ii) How to

keep the substream topologies balanced under churn, that our algorithm must

take care of?

To answer these questions, we next present a few key properties that will

serve as a guideline for the peers to restore the network to an ideal steady-

state topology. Implementing these guidelines distributedly will form the

basis of our algorithm in Section 4.3.

4.2 Properties to Be Maintained

Before we state the properties, let us first discuss the notion of a cluster.

A cluster refers to a group of peers (ideally between m to 2m − 1 peers)

that are connected to each other and execute protocol as one coherent entity.

Peers within a cluster, by way of constantly exchanging control messages,

are aware of the state of other peers, i.e., whether they are active, have

departed from the network etc., within the cluster.2 Also, a peer can belong

to only one cluster at any time; if a peer becomes isolated, we consider the

peer by itself to form a trivial cluster. Initially, when a peer arrives into

the p2p network it can contact any arbitrary peer and become a member of

2The exact topology of the cluster is irrelevant to the functioning of our algorithm, as
long as the peers are able to learn the state of the other peers sufficiently fast.
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its cluster. However at a later point in time, due to the various operations

required by the algorithm (as we will see in Section 4.3), the membership of

the peer can shift from one cluster to another.

This way of grouping peers into clusters has a twofold benefit: (i) The

cumulative upload capacity available can be evenly distributed across the m

substream graphs and (ii) Network changes due to node failures, departures

within a cluster or arrivals can be accommodated fast and efficiently. To

harness these benefits, we specify “rules” in the form of Properties 4.1–4.4

below that the clusters must obey. Each cluster distributedly tries to satisfy

the rules using the algorithms discussed in Section 4.3. Also, the rules are

enlisted in a decreasing priority order, i.e., a cluster always tries to satisfy

the first rule in the list that is violated before moving to the next. The

algorithm also ensures that the procedure to satisfy a rule does not invalidate

a previously satisfied rule for a cluster.

Let us now state the required rules. We begin with Properties 4.1 and 4.2

that place bounds on the size and capacity within the cluster. Throughout we

have assumed a rate of R = m
m+1

for m ∈ Z, and have used Gi, i = 1, . . . ,m,

to denote the substream graphs at any time.

Property 4.1. For a peer v ∈ V ,

(i) Peer v can belong to only one cluster at any time.

(ii) The size of v’s cluster must be between m and 2m− 1.

Property 4.2. For a cluster C,

(i) Any peer v ∈ C can have out-degree two in at most one substream graph.

(ii) No two peers u, v ∈ C can have out-degree two in the same substream

graph Gi for any i ∈ [m].

(iii) For each Gi, i ∈ [m], the peers in C that do not have an out-degree two

form a chain.

Note that here out-degree of a peer in a substream graph Gi denotes the

number of nodes to which the peer forwards the i-th substream packets. For

example, in Figure 4.2(a) the out-degree of peer 1 is two, while peers 3 and

4 have an out-degree of one. For ease of notation, we will refer to the out-

degree of a peer in a substream graph, as simply its degree wherever there

is no confusion. Next, to symmetrize the substream graphs and obtain the

benefit of fast repair, we have the following Properties 4.3 and 4.4.
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Property 4.3. For a cluster C,

(i) There exists a degree two peer v ∈ C in every substream graph Gi.

(ii) In each of the Gi, i ∈ [m], the cluster of the parent of the degree two node

from C and their orientation (i.e., whether they are a primary or secondary

child) with respect to their parents must be the same.

Property 4.4. For a cluster C,

(i) For each Gi, i ∈ [m], vi’s secondary child must receive a redundant edge

from another peer u ∈ C, where vi is the degree two peer from C in Gi.

As an illustration, consider the network as shown in Figure 4.2 with R =

3/4 and three substream graphs. Let C1 = {2, 3, 4}, C2 = {1, 5, 6}, C3 =

{7, 8, 9} and C4 = {10, 11, 12} be the peer clusters. Then, clearly Property 4.1

is satisfied since all the clusters are of size between 3 and 5. Property 4.2

is also satisfied because each peer within a cluster is a degree two node in

exactly one substream. For example, in C1, peer 2 has degree two in G1,

peer 3 has degree two in G2 and peer 4 has degree two in G3. Moreover

these are the only places where they have a degree of two. To demonstrate

Property 4.3 let us consider C1. Clearly each of G1, G2 and G3 has a degree

two peer from C1. Also, in G1 peer 2 has peer 1 belonging to C2 as its parent.

Peer 2 is also a primary child of its parent. Similarly, in G2 and G3 peers

3 and 4 respectively are primary children and have parents from the cluster

C2. Thus every out-degree two peer in C2 have parents from the same cluster,

and also have the same orientation with respect to their parents. This rule

is true for the other clusters as well; hence Property 4.3 is also satisfied. As

seen in this example, enforcing Properties 4.1–4.3 essentially symmetrizes

the substream graphs. This allows a balancing operation performed on one

substream graph to be easily mirrored in the remaining substream graphs,

as we will see in Section 4.4. Property 4.4 is also satisfied, since each degree

two node, such as peer 1 in G1 has a secondary child (peer 7 in G1) that

receives a redundant edge (from peer 6).

With Properties 4.1–4.4 in place, our next task is to develop methods to

implement these rules distributed in the network. As previously mentioned,

we assign a priority to these properties in the order of their appearance, i.e.,

Property 4.1 has a higher priority than Property 4.2 and so on. At any

point in time, a cluster might violate one or more of the properties. Then

our algorithm presents a procedure to satisfy the first property to be violated
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(a) (b) (c)

Figure 4.3: The topology resulting immediately after the departure of peer
1 from the network shown in Figure 4.2.

(a) (b) (c)

Figure 4.4: The topology resulting after repairing the clusters in Figure 4.3.

(i.e., Property i such that Properties 1, . . . , i−1 are satisfied), while ensuring

that the previous properties (1, . . . , i − 1) continue to hold for the cluster.

The algorithm also ensures that a cluster implementing the procedure for

Property i does not affect the satisfiability of Property i for the other clusters.

Thus, continuing this way the network can reach a stable state (if there is

no churn) where all the clusters satisfy Properties 4.1–4.4. Before we present

the algorithm to enforce Properties 4.1–4.4, let us illustrate their functioning

by means of an example.

4.2.1 Example

As before, we will consider the network shown in Figure 4.2 and analyze the

dynamics under the departure or arrival of a single node.

Peer departure. First let us consider the departure of peer 1 from the
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(a) (b) (c)

Figure 4.5: The final stable topology after repairing the clusters in
Figure 4.4.

network. Just after the peer has departed, the neighbors of node detect the

departure and repair the network as shown in Figure 4.3. The clusters in this

network are {2, 3, 4}, {5, 6}, {7, 8, 9} and {10, 11, 12}. Now, for all the clusters

except {5, 6} properties 4.1–4.4 are satisfied, as one can verify. However for

the cluster {5, 6} even the basic size rule (Property 4.1) is violated. As such,

this cluster can merge with a neighboring cluster in order to satisfy the size

requirements. Let us suppose this merger happens with the cluster {2, 3, 4}
to form the cluster {2, 3, 4, 5, 6}.

Now, we re-evaluate Properties 4.1–4.4 for the updated set of clusters. As

before, the clusters {7, 8, 9} and {10, 11, 12} satisfy all the properties. But the

newly formed cluster {2, 3, 4, 5, 6} satisfies Property 4.1 and does not satisfy

Property 4.2. This is because both peer 3 and peer 5 have an out-degree two

in G2 (and also peers 4 and 6 in G3; see Figures 4.3(b) and 4.3(c)). However

this can be easily corrected since the peers within a cluster are all connected

to each other. In this case, peers 3 and 4 can withdraw their secondary links

to peers 6 and 5 in G2 and G3 respectively. This results in a topology as

shown in Figure 4.4.

Further, Property 4.2 also requires the degree one peers in any substream

graph to form a chain, which is not satisfied in G1 by the {2, 3, 4, 5, 6} cluster.

To rectify this, the peers that are outside of the chain can depart from their

current locations and insert into the chain. For example, in our case, peer 6

can first depart and insert itself after peer 4. Then, peer 5 can depart from

its position and insert after peer 4. Each time a peer performs a planned

departure care is taken to ensure the network remains connected (by linking

the parent and children of the departed peer). Hence at the end of the
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(a) (b) (c)

Figure 4.6: The topology after peer 13 becomes part of the cluster
{2, 3, 4, 5, 6} in Figure 4.5.

departures by peers 5 and 6, the secondary edge of peer 2 connects to peer 7.

The resulting topology is shown in Figure 4.5. Now, since all the properties

hold for all clusters in this topology, a stable state has been achieved.

Peer arrival. Next, let us consider the arrival of a new peer, say peer 13, in

the network shown in Figure 4.5. When a new peer arrives, as a first step, it

contacts any other peer currently in the system. In practice, a DNS server

can seed new peers with the address information of a small number of peers

currently in the system. An arriving peer can then contact an arbitrary peer

from this list to get started. In our example, let us suppose the arriving peer

13 contacts peer 2 in Figure 4.5. Then peer 2 immediately includes peer 13

into its cluster ({2, 3, 4, 5, 6}), and also provides the address of an out-degree

one peer in the cluster for each substream (e.g. addresses of peers 5,2 and

3), so that peer 13 can insert itself into the network and start receiving the

stream. This results in the topology shown in Figure 4.6.

However, now the newly formed cluster {2, 3, 4, 5, 6, 13} does not satisfy

the size bounds of Property 4.1. This can be resolved by dividing the cluster

into two smaller clusters C1 and C2, where C1 = {2, 5, 6} and C2 = {3, 4, 13}.
Clearly Properties 4.1–4.3 hold for clusters C1 and C2. However, to satisfy

Property 4 for C1 we move its degree one chain in G1, G2 and G3 so that the

redundant edge emanates from within the cluster. Further, all of the peers

in C2 have a degree one in the substreams. Hence in each substream, one

peer from C2 forms a secondary edge to the C1 peer occurring below. This

results in a topology as shown in Figure 4.7 and stability is reached.
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(a) (b) (c)

Figure 4.7: The final topology after splitting clusters in Figure 4.6.

4.3 Repairing Algorithm

Next, we present the algorithm to enforce Properties 4.1–4.4. The proce-

dures involve making/breaking a small number of connections and exchang-

ing signaling messages with other peers. The departing process is particularly

ubiquitous and hence is discussed first in the following.

Changing locations. Consider a degree one peer v in substream graph

Gi. Let r and p be the parent and child of v respectively in Gi. Let s, t

be any other set of connected peers with an edge from a to b. Then, we

say “v departs from its current location and inserts into the edge (a, b)” to

mean the following. First, v asks for permission from a, b, r, p to perform the

operation. If the peers permit, then the edges (r, v), (v, p) are broken and

instead the edge (r, p) is made. Similarly, the edge (a, b) is broken and the

edges (a, v), (v, b) are made. This has been illustrated in Figure 4.8. The

case where v is a degree two peer is similar and has also been illustrated in

the Figure 4.8.

Avoiding cycles. Next, to prevent the formation of cycles in the substream

networks, we implement an address forwarding function (Algorithm 5) that

constantly forwards peer addresses down the substream graphs. If a leaf

peer v in Gi receives an address A that is inconsistent with the address of

the peer to which v has a redundant edge, then it immediately breaks its

existing redundant edge and instead forms an edge to A.

The addresses in Algorithm 5 are forwarded as follows. In a substream

Gi, each degree two peer v forwards the address of its secondary child to its

primary child. Also, any address received by v (from its parent) is forwarded
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(a) (b) (c)

Figure 4.8: Illustration showing departure of peer v from one location to
another location in the graph.

to its secondary child. If a peer is degree one, then it simply forwards the

address received from its parent, to its child. The leaf nodes do not forward

the addresses to their children. Notice that each edge has to forward the

address of at most one peer. Though this approach could possibly cause the

leaf nodes to make and break redundant edges often, it does not affect the

stream reception at the nodes.

4.3.1 Cluster Size

Let us begin with Property 4.1 which stipulates that peers can belong to only

one cluster whose size must be between m and 2m− 1.

To enforce this, first we consider the case where a peer v belongs to multi-

ple clusters C1, . . . , Ck. In this case, the peer can arbitrarily choose a cluster

Ci, i ∈ [k], and declare its membership to Ci. This is performed by broad-

casting an acknowledgment periodically to all the peers in Ci. Peer v also

terminates any existing cluster-edges to the peers in the other clusters. In

the absence of an acknowledgment to peers in the other clusters, v is deemed

to have left those clusters.

Next to enforce Property 4.1-(ii), for a cluster C let us consider the case

where |C| < m. In this case, the cluster C can contact another cluster C ′ (e.g.

a neighbor), and become part of it. The contacting (and also the peer/cluster

to be contacted) can be initiated by an arbitrarily chosen representative peer

in C. Also the cluster C ′ that is receiving the merge request from C always

accepts the request. Once the request is accepted, a new cluster C ′′ = C∪C ′ is
formed and the peers in C ′′ form a clique by sharing their address information

and broadcasting acknowledgments to each other.

Lastly let us consider the case where a cluster C is such that |C| ≥ 2m. In

this case, the peers in C arbitrarily partition themselves into clusters of size
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Algorithm 5: Address forwarding in Gi

Input : A - address from v’s parent in Gi

Output: Ap - address forwarded to v’s primary child and As - address
forwarded to v’s secondary child (if degree two node) in Gi

if v is degree two then
As ← A;
Ap ← address of v’s secondary child;
forward Ap and As to v’s primary and secondary children
respectively;

else if v has a non-redundant edge to a child then
Ap ← A;
forward Ap to v’s child;

else
no action;

end

between m and 2m − 1. For example, if |C| = 2m, then it can be divided

into C1 and C2 consisting of m peers each. The peers in the newly formed

clusters (such as C1 or C2) in turn form a clique among themselves (if such

a clique did not already exist) and exchange acks. As before, the links that

are made or broken in this step are low-bandwidth control links, and do not

affect the streaming network in any way.

4.3.2 Cluster Capacity

In Property 4.2, the first condition requires that for a cluster C, any peer v ∈ C
has a degree of two in at most one substream graph Gi. This can be easily

enforced, since if the peer v has a degree two in multiple substreams then it

can break its secondary edge in all but one arbitrarily chosen substream.

Property 4.2-(ii) is also easily enforced since the peers in a cluster are all

connected to each other. If there are multiple degree two peers in a substream

graph, then every peer except one can break its secondary edge (i.e., become

degree one) in that substream. For example, the peer closest to the server in

that substream can retain its secondary edge while the other peer(s) break

the edge. The closeness of a peer to the server is measured through a depth

message that is passed down the substream network as shown in Algorithm 6.

The final condition that needs to be satisfied in Property 4.2 is that the

degree one nodes of a cluster C, in each Gi, i ∈ [m], must form a chain,
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Algorithm 6: Depth of peer in substream Gi

Input : dr - depth of v’s parent in Gi

Output: dv - depth of v in Gi

dv ← dr + 1;
if v has children in Gi then

forward dv to v’s children in Gi;
else

no action;
end

i.e., each degree one peer must have an outgoing edge to another degree one

peer in C (except the last peer) in that substream. To enforce this rule, if the

degree one peers do not form a chain, they can depart from their locations and

insert themselves one after another to form a chain. For example, suppose

S = {v1, . . . , vk} ⊆ C is the set of degree one peers in Gi. Then, if the peers

in S do not form a chain, it can be made through the following two steps: (i)

choose an arbitrary node v∗ ∈ S, and (ii) for each v ∈ S, v 6= v∗ depart from

current location and insert between v∗ and v∗’s child in Gi. When a peer

departs from its location, it does so according to the departure procedure

mentioned at the beginning of this section, to ensure that the network does

not get disconnected.

4.3.3 Inter Cluster Consistency

Next, let us present a procedure for Property 4.3. Consider any cluster C that

satisfies Properties 4.1 and 4.2. If there are no degree two peers in C then the

first node in the chain of nodes can form a secondary edge to the last node,

in each substream graph. Otherwise there exist peers S = {v1, . . . , vk} ⊆ C
that have a degree two in some substream graph. If S = C and the clusters,

orientation of the parents match, but there exists a parent of a degree two

peer in C that does not satisfy Properties 4.3-(ii) and (iii) then the peers in C
wait for the latter to be satisfied. Hence, the interesting case is when S 6= C
or there is a mismatch in the parent clusters or orientation.

A simple solution in this case is to first fix a node v∗ ∈ S (say the peer that

is closest to the server in the substream graph where it is degree two). Let v∗

be degree two in substream graph Gi∗ , and let C∗r ,Ω∗ ∈ {primary, secondary}
be the cluster of v∗’s parent, v∗’s orientation respectively in Gi∗ . Then, for
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any other peer v ∈ S, v 6= v∗ with a degree two in Gi, such that v’s parent

cluster or orientation in Gi differs from C∗r ,Ω∗, it can depart from its current

location in Gi and instead insert itself after the primary or secondary edge

(according to Ω∗) of C∗r ’s degree two peer in Gi.

However, in the above method collisions can happen if multiple peer clus-

ters try to have the same parent cluster. To avoid this, we let the parent

cluster allow peers from only one cluster to become their primary (secondary)

children in Gi, i ∈ [m]. Such a cluster can be chosen arbitrarily, for example

through a majority vote among its existing children clusters. The chosen

primary (secondary) cluster must also acknowledge the choice to the parent

cluster.

The insertions happen in the following way. Let us assume that C∗r and C
mutually agree to be the parent and primary child cluster respectively in all

of the Gi, i ∈ [m]. As before, let S ⊆ C be the set of peers that have a degree

two in some substream graph. Then, we have the following two cases:

Case 1. For v ∈ S, let v have a degree two in Gi with secondary child s.

Let r ∈ C∗r be the prospective parent in Gi that v wants to become a primary

child of. Also let p′ be the existing primary child of r. Then, v (i) breaks

existing edges with its current parent and primary child and (ii) inserts into

edge (r, p′) such that v is a primary child of r, and p′ is a primary child of v.

Notice that v’s secondary link to s is retained in this process.

Case 2. For v /∈ S, arbitrarily choose an i such that there is no degree two

peer from C in Gi. Let r ∈ C∗r be the prospective parent in Gi that v wants to

become a primary child of. Then v simply departs from its existing location,

and insert into the primary edge of r. Then, v can make an secondary edge

to its prospective secondary child in Gi.

The situation is analogous if v wants to become a secondary child of a

parent r. We again consider two cases:

Case 1. For v ∈ S, let v have a degree two in Gi with secondary child s. Let

r ∈ C∗r be the prospective parent in Gi that v wants to become a secondary

child of. Also let s′ be the existing secondary child of r (if r has no secondary

child, it would pull v as discussed above). Then, v (i) breaks existing edges

with its current parent and primary child and (ii) inserts into edge (r, s′)

such that v is a secondary child of r, and s′ is a primary child of v.

Case 2. For v /∈ S, arbitrarily choose an i such that there is no degree

two peer from C in Gi. Let r ∈ C∗r be the prospective parent in Gi that v
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wants to become a secondary child of. Also let s′ be the existing secondary

child of r (if r has no secondary child, it would pull v as discussed above).

Then, v (i) breaks existing edges with its current parent and primary child

and (ii) inserts into edge (r, s′) such that v is a secondary child of r, and

s′ is a primary child of v. Following this, v makes a secondary edge to its

prospective secondary child in Gi.

Finally, let us describe how peers react when a secondary edge is formed

to them (in case 2 above). Let s′′ be the prospective secondary child of a

peer v in substream Gi and let r′′ be the parent of s′′. Then if v forms a

secondary edge to s′′, s′′ breaks the edge to r′′ and forms an edge with v.

4.3.4 Redundancy

The condition in Property 4.4 requires the terminal leaf nodes of any sub-

stream graph to have a redundant edge to the secondary child of the de-

gree two peer in the same cluster. To achieve this, consider a cluster C =

{v1, v2, . . . , vk} satisfying Properties 4.1–4.3. This implies, for every degree

two node vi ∈ C in a substream graph, the remaining nodes form a degree

one chain in that substream (according to Property 4.2). Without loss of

generality, suppose v1 is the degree two peer in G1; also let v2, . . . , vk (in that

order) form the degree one chain of nodes in G1. Let s be the secondary

child of v1 in G1. If vk has a redundant edge to s in G1, then the property

holds. Otherwise, let p be the peer supplying the redundant edge to s in G1

(if such a peer p exists). Then, the chain of nodes v2, . . . , vk can depart from

their location and insert themselves between p and s. The addresses of peers

p and s are known to v1 who can then share it with its cluster. This way, vk

becomes the supplier of the redundant edge to s thus satisfying Property 4.4.

The only issue arises if s does not receive a redundant edge from any other

peer. In this case, vk can wait for the address to reach a leaf node via the

address procedure. Once a redundant edge is made, then the operations

described above are performed again.
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4.3.5 Peer Churn

In Section 4.2.1 we have seen an example of how a single peer departure or

arrival is handled by our algorithm. In this section, let us discuss the general

case where multiple peers arrive or depart simultaneously. If a peer or a group

of peers is completely disconnected from the server due to such an event, their

ability to rejoin the network is limited by how many peer addresses they

know, that are currently connected to the server in the network. Otherwise,

the disconnected peer has to contact a central server (such as a DNS) to get

seeded with addresses of a few peers, and essentially appearing to join the

network afresh.

Peer arrival. A new peer u wanting to join the p2p network first obtains

a list of addresses of peers currently in the system. It then contacts an

arbitrary peer, say v, from the list and announces its arrival to v. The host

peer v then immediately includes u within its cluster by assisting u to form

a link to every peer in the cluster. This concludes the arrival procedure.

Note that once u becomes part of v’s cluster, the enlarged cluster might no

longer satisfy Properties 4.1–4.4. But this is readily handled by our algorithm

running at the peers. If multiple peers arrive into the system independently,

then each peer can join the system as described above.

Peer departure. Consider the departure of a peer v, with out-degree one,

from substream graph G1. Let r and p be the parent and child of v in G1

respectively. Then, if v departs, p contacts r and can resume receiving the

stream from it.

Now, suppose peer v has an out-degree of two in G1. Let r, p and s be the

parent, primary and secondary children of v in G1 respectively. Ideally, by

Property 4.4, s receives a redundant edge from another peer belonging to the

same cluster as v. Then if v departs, peer p can contact r, while s continues

to receive the stream from its redundant edge.

4.4 Balancing Algorithm

Previously in Sections 4.2 and 4.3 we have seen how Properties 4.1–4.4 ensure

that (i) there are as many degree two nodes in a substream graph as there

are clusters and (ii) no degree two node is a child of a degree one node
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Algorithm 7: Estimating the size of the subtree rooted at v in Gi

Input : size(p) - size of subtree at v’s primary child;
size(s) - size of subtree at v’s secondary child (if v is

out-degree two)
Output: size(v) - size of subtree at v
if v is degree two in Gi then

size(v) ← size(p) + size(s) + 1;
else if v has a child then

size(v) ← size(p) + 1;
else

size(p) ← 1;
end
forward size(v) to v’s parent in Gi;

in a susbtream. The algorithms described there also introduce a level of

symmetry to the Gi’s. However, the depth of the substream graphs could

still be linear in the total number of peers (in the worst case). Therefore,

we also describe an algorithm that can balance the graphs. The balancing

operation performed at a degree two peer in a substream graph, ensures that

the number of peers in its left and right subtrees are roughly the same. Thus

executing this operation recursively, starting with the server node and moving

downward along the tree, we can ensure that the entire tree is balanced. The

procedure also ensures that Properties 4.1–4.4 of the clusters are not violated.

4.4.1 Size Estimation

Key to our balancing algorithm is estimating the sizes of subtrees (i.e., num-

ber of peers) rooted at degree-two peers. This is easily accomplished by

forwarding the tree sizes to the parent peers, who then sum the sizes re-

ceived from their two children peers. This procedure has been illustrated in

Algorithm 7. Using Algorithm 7 degree two peers in a substream graph

can estimate the number of peers in their left and right subtrees. However

depending on the churn dynamics this estimate could be accurate or inac-

curate, since it takes a time proportional to the height of the subtree for

the size messages to reach a peer. Nevertheless, for moderate churn (e.g.

happening over a timescale of 10s of seconds or minutes), we can assume

the size estimates that peers receive are close to their true values. This also
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suggests that the balancing procedure can be performed at a slower timescale

matching the churn dynamics.3

4.4.2 Searching and Rotation

If a degree two peer in a substream graph observes a pronounced disparity in

the sizes of its left and right subtrees, the balancing procedure rearranges the

subtrees so that their sizes are balanced. Let us illustrate this idea through

an example. Consider a substream graph as shown in Figure 4.9(a). In this

network, the left subtree of the peer x consists of peers y, z and trees T1, T2

and T3, while its right subtree consists of the tree T4. Suppose the trees are

such that the size of the left subtree |T1|+ |T2|+ |T3|+ 2 is much bigger than

the size of the right subtree |T4|. Then, to balance the tree, we perform the

following two steps: (i) search and (ii) rotation.

Search. In this first step, the peer x computes a number ∆ of peers to be

transferred from the left to the right subtree. In our example, transferring

∆ = (|T1| + |T2| + |T3| + 2 − |T4|)/2 peers can achieve a balance. Following

this, x traverses down the secondary edges of its left subtree (such as y →
z →root(T3) etc.) until it finds a degree two peer whose right subtree has a

size roughly equal to ∆. Let us suppose the right subtree T3 of peer z has

the required number ∆ of peers. Once this peer has been identified, in the

next step we execute a series of link make-break operations that essentially

transforms the topology in Figure 4.9(a) to the more balanced Figure 4.9(b).

Rotate. This step involves breaking five links, and then relinking the peers

differently. In our example, the links to be broken are (s → x), (x →
y), (y → z), (z → T3) and (z → T4). After the links are broken, new links

(s → z), (z → y), (z → x), (y → T2) and (x → T3) are formed to yield

Figure 4.9(b). This full process can be performed distributedly and involves

communication between at most seven peers.

In general, depending on which of the subtrees (right or left) is heavier and

whether the root peer (x) is a primary or secondary child or its parent (s),

four different cases arise. The algorithm in each of these cases is very similar

to the example above, and have been illustrated in Figures 4.10–4.12.

3We contrast this with our algorithm in Section 4.3 which operates at every time-slot.
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(a) (b)

Figure 4.9: Balancing the right subtree of peer s through a right rotation.

(a) (b)

Figure 4.10: Balancing the left subtree of peer s through a right rotation.

(a) (b)

Figure 4.11: Balancing the right subtree of peer s through a left rotation.

(a) (b)

Figure 4.12: Balancing the left subtree of peer s through a left rotation.
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We also note that if the peer clusters obey Properties 4.1–4.4 before bal-

ancing, then they obey them after balancing too. Hence, we can also execute

the balancing procedure concurrently in all m substream graphs, without vio-

lating the consistency requirements. Alternatively, a single substream graph,

say G1, can execute balancing, while the remaining substream graphs can

copy the topology using the algorithm for Property 4.3. At the end of the

balancing operation, the sizes of the left and right subtrees of any degree two

peer do not differ by much as shown in the following.

Proposition 4.1. For any degree two peer v in G1, at the end of the bal-

ancing procedure, the sizes of v’s left and right subtrees differ by at most

2m.

Proof. Let T1 and T2 respectively be the left and right subtree of v in G1.

Without loss of generality, let us suppose T1 has more peers than T2. If

|T1| − |T2| ≤ 2m then we are done. Otherwise, consider traversing along the

secondary edges of T1. If there exists a degree two peer whose right subtree

has a size of precisely |(T1| − |T2|)/2 again we are done. Otherwise, let us

suppose δ is the size of the smallest subtree less than (T1|− |T2|)/2 along the

secondary child path of T1. Clearly m − 1 ≤ δ ≤ 2m − 2. This is because

the very last degree two peer must necessarily have just a chain of degree

one peers on its right subtree. Rotating around this degree two peer, we can

reduce the difference |T1| − |T2| by at least m and at most 2m − 1. Hence,

whenever |T1| − |T2| > 2m − 1, there always exists a rotation that reduces

this difference. Repeating this process, we get that ||T1| − |T2|| ≤ 2m upon

balancing.

4.4.3 Steady-State Delay

Next, let us show that the delay of the network in the steady-state can be

bounded as in Theorem 4.1.

Proof of Theorem 4.1. In the steady-state, all of the clusters in the network

satisfy Properties 4.1–4.4. As such, the substream graphs are all symmetric

and topologically similar. Further, by Proposition 4.1 the left and right

subtrees of each degree two peer v in G1 have sizes that differ by at most

2m. If there are n peers in the systems, let f(n) denote the worst-case
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steady-state delay possible. Then, we have the recursion

f(n) ≤ 1 + f((n− 1)/2 +m) ∀n ∈ N (4.1)

by the above properties. This is because, for the node directly connected to

the server in G1, its left and right subtrees have a total of n − 1 peers and

differ in size by at most 2m. Continuing this recursion for d = log2(n − 1)

times, we get

f(n) ≤ d+ f

(
n− 1

2d
+
m− 1

2
+ . . .+

m− 1

2d−1
+m

)
= log2(n− 1) + f

(
1 +

m− 1

2
+ . . .+

m− 1

2d−1
+m

)
≤ log2(n− 1) + 1 +

m− 1

2
+ . . .+

m− 1

2d−1
+m (4.2)

≤ log2(n− 1) + 2m = log2(n− 1) +
2R

1−R
,

where we have used f(n) ≤ n ∀n ∈ N in inequality 4.2. For a general upload

capacity of C instead of 1, by proportionately scaling the substream rates,

we have the required delay bound.

In Section 4.5.1, we show that the above delay of the algorithm is order

optimal. We now briefly discuss the scenario of a lowered redundancy in the

network.

4.5 Reducing Redundancy

Tree-based algorithms, such as [121, 127], have a delay guarantee of dlog2 ne
for a streaming rate of R = 1, while the algorithm we have presented has

a weaker delay guarantee of order O(log n + 1/(1 − R)) (Theorem 4.1) for

a rate R ≤ 1 in steady-state. This can be explained by introducing a pa-

rameter called tolerance, τ . In the streaming algorithm discussed, we have

incorporated redundant capacity into the individual substream graphs using

the edges in Ui, i ∈ [m]. Now, consider a scenario in which the the redun-

dancy is reduced by a factor of 1− τ for some 0 ≤ τ ≤ 1, i.e., let the edges in

Ui,∀i ∈ [m], have a rate of (1− τ)/m instead of 1/m. The following theorem

demonstrates the gain in the delay obtained for a lowered redundancy.
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Theorem 4.3. For a tolerance parameter τ , the steady-state delay guaran-

teed by the algorithm is bounded by

D(R, τ, n) ≤ log2(n+ 1)− log2

(
R(1− τ)

1−R
+ 1

)
+

2R(1− τ)

1−R
− 2, (4.3)

for 0 ≤ τ ≤ 1, n peers in the system and a rate of R.

Proof. In the steady-state of the original algorithm, the peers had a degree

of one in all the substream graphs or they had a degree two in one of the

graphs and degree one in all the rest. By a slight modification, we can make

the algorithm more symmetric where every peer with degree two in some Ti

is necessarily a leaf node in some other tree in the steady-state. This leads

to a more even distribution of capacity, i.e., any peer has degree one in m−2

trees and degree zero, two in one tree each or it has degree one in all the

trees in the steady-state. This corresponds to a total upload capacity of mr

and (m − 2)r + r + r(1 − τ) respectively, where r denotes the rate carried

by each tree Ti. Therefore, we must have mr + (1 − τ)r ≤ 1 ⇒ r ≤ 1
m+1−τ .

As such, in this scenario we can support a total rate of R = m/(m+ 1− τ)

across the m substream trees, which is higher than the rate m/(m + 1) of

our algorithm. Since the topology is the same in both cases, by substituting

for m in the proof of Theorem 4.1 for delay, we get the desired bound in

Equation (4.3).

Theorem 4.3 shows that for a rate of R, the steady-state delay obtained by

lowering the amount of redundancy in the system is lower. The extreme case

in which there is no redundancy at all in the system, i.e. τ = 1, corresponds

to tree-based algorithms with a deterministic delay of dlog2 ne. Thus, we

have obtained a relationship which shows the tradeoff between rate, delay and

redundancy for the framework of our algorithm. For τ = 0, one implication of

the way the substream graphs are structured is that connectivity of the nodes

within the substream graphs directly translates to availability of download

bandwidth from which peers can receive packets at a full rate of R = m/(m+

1). However, if we reduce the redundancy in the graphs, i.e., for τ > 0, then

we can only guarantee a rate of (1−τ)m/(m+1) = (1−τ)R for the peers. This

highlights the drawback with using a non-zero tolerance τ ; a large tolerance

parameter can cause the transient drops in the rate received to be large.

Hence, the lower rate and larger delay of our algorithm, compared to the
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tree-based algorithms mentioned in the beginning of this section, has the

advantage of guaranteed continuous playback at full rate even during peer

churn.

4.5.1 Converse

The streaming algorithm we have presented involved binary trees in the sub-

stream graphs. In general, the streaming algorithm can work over any con-

nected graph of n vertices (mesh), where each vertex has an out-degree of

at most ∆. However, in Theorem 4.2 we show that the steady-state delay

of our algorithm in Theorem 4.1 is order optimal within the general class of

algorithms that use multiple arbitrarily structured graphs with redundancies

for streaming.

In the steady-state, if communication happens via flow (copy + forward),

and is deterministic, then one can always consider the flow to be an union

of many constant rate sub-flows. Therefore, without loss of generality let us

consider T trees with the ith tree carrying a rate of ri. The full topology

of the multicast streams can include more edges than just the trees above.

The trees simply correspond to the routes by which the packets arrive earliest

from the source to the peers. Now, suppose any one node departs the system;

then at least one or more of the trees are broken. As such, reception of flow at

full rate is hindered for some of the nodes and needs to be restored. Restoring

is possible only by contacting another node in the tree corresponding to the

substream, that is still connected to the server. Here, we are looking at a

class of algorithms in which such a restoration is done by means of redundant

links. Within this class of algorithms (that are solutions to the problem) we

have the converse result stated in the theorem. The proof of Theorem 4.2

has been presented in Appendix C.

4.6 Conclusion

The p2p algorithm we have presented has the advantage of being simple, ex-

act and lightweight. With the peer churn handling capability of unstructured

algorithms combined with the deterministic delay guarantees of structured

algorithms, the algorithm offers the best of both worlds. We have also iden-
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tified a tolerance parameter, that is related to the transient rate guarantee,

and have discussed its relationship to rate and delay. For the class of algo-

rithms we discussed, we have shown that an additional delay of R/(C − R)

is the price paid for ensuring continuity. In general, other forms of adding

redundancy exist – particularly coding techniques such as MDC or network

coding. It would be interesting to study how these other methods interact

with delay, rate and continuity. While the model captures many important

issues, such as peer churn, testing in a real world environment is needed to

identify the practical issues.

In Chapter 5 we discuss another important and emerging p2p application:

cryptocurrencies. These networks also share many of constraints discussed in

this chapter – such as requiring a low transmission delay, churn management,

decentralized algorithms etc. – however, we will see that the core application

requirements are very different. In particular we focus on achieving optimal

anonymity in these networks. We find that the key, yet again, is in adopting

the right network topology. These observations seem to suggest that the

topological fluidity of p2p networks, usually seen as an inconvenience that

needs to be handled, can in fact be harnessed for achieving multiple parallel

network-level objectives in many instances.
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CHAPTER 5

ANONYMITY IN NETWORKS

Cryptocurrencies are digital currencies that provide cryptographic verifica-

tion of transactions. Bitcoin is the best-known example of a cryptocurrency

[5]. In recent years, cryptocurrencies have transitioned from an academic

research topic to a multi-billion dollar industry [150].

Cryptocurrencies exhibit two key properties: egalitarianism and trans-

parency. In this context, egalitarianism means that no single party wields

disproportionate power over the network’s operation. This diffusion of power

is achieved by asking other network nodes (e.g., other Bitcoin users) to val-

idate transactions, instead of the traditional method of using a centralized

authority for this purpose. Moreover, all transactions and communications

are managed over a fully distributed, peer-to-peer (p2p) network.

Cryptocurrencies are transparent in the sense that all transactions are

verified and recorded with cryptographic integrity guarantees; this prevents

fraudulent activity like double-spending of money. Transparency is achieved

through a combination of clever cryptographic protocols and the publication

of transactions in a ledger known as a blockchain. This blockchain serves as

a public record of every financial transaction in the network.

A property that Bitcoin does not provide is anonymity. Each user is iden-

tified in the network by a public, cryptographic key. If one were to link such

a key to its owner’s human identity, the owner’s financial history could be

partially learned from the public blockchain. Indeed, even if a user uses fresh

public keys for each transaction, the blockchain can help adversaries cluster

keys from the same user [151]. In practice, it is possible to link public keys to

identities through a number of channels, including the networking protocols

on which Bitcoin is built [19]. This is a massive privacy violation, and can

be dangerous for deanonymized users.

Bitcoin is often associated with anonymity or privacy in the public eye,

despite explicit statements to the contrary in the original Bitcoin paper [5].
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People may therefore use Bitcoin without considering the potential privacy

repercussions [152]. Moreover, this problem is not unique to Bitcoin; many

spinoff cryptocurrencies (known as altcoins) use similar technologies, and

therefore suffer from the same lack of anonymity in their p2p networks.

The objective of this chapter is to redesign the Bitcoin networking stack

from first principles to prevent network-facilitated user deanonymization. We

consider an adversary that aims to jointly deanonymize all users, rather

than targeting one specific user. Critically, the network’s reliability and

performance must not be reduced. Although the networking stack is only

one avenue for deanonymization attacks, it is an avenue that is powerful,

poorly understood, and often ignored. To better convey the problem, we

begin with a brief primer on Bitcoin and its networking stack. This chapter

is based on our recent work [153].

Bitcoin Primer

Bitcoin represents each user and each unit of Bitcoin currency by a public-

private key pair. A user “possesses” a coin by knowing its private key. Any

time a user Alice wishes to transfer her coin m to Bob, she generates a

signed transaction message, which states that Alice (denoted by her public

key) transmitted m (denoted by its public key) to Bob (denoted by his public

key). This transaction message is broadcast to all active Bitcoin nodes, at

which point miners, or nodes who choose to help validate transactions, race

to append the transaction to a global ledger known as the blockchain. Specif-

ically, each miner aggregates a group of transaction messages into a block,

or list, and then completes a computational proof-of-work for the block; the

first miner to complete a proof-of-work appends their block to the blockchain

and reaps a reward of newly minted bitcoins and transaction fees.

Bitcoin message propagation. We focus on one key step in the pipeline:

broadcasting transactions to other nodes. The broadcasting process is critical

because it affects which nodes can reap a transaction’s mining reward (by

virtue of the delivery delays to different nodes), and it also affects the global

consistency of the network (e.g., if only a subset of the users receive a given

transaction).

To understand the mechanics of broadcasting, note that cryptocurrencies

88



can be abstracted into two layers: the application layer and the network layer.

The application layer handles tasks like transaction management, blockchain

processing, and mining. Nodes are identified by their public keys in the

application layer. The network layer handles communication between nodes,

which occurs over a p2p network of inter-node TCP connections. In the

network layer, nodes are identified by their IP addresses. As we shall see

momentarily, a node’s IP address and public key should remain unlinkable

for privacy reasons.

Bitcoin’s peer-to-peer broadcast of transactions and blocks is based on

flooding information along links in the p2p network. When a node learns

of a new transaction or block, it passes the message to its neighbors who

have not yet seen the message with an independent, exponential delay. The

process continues recursively until all reachable peers receive the message.

This broadcast protocol is commonly known as a diffusion process ; it forms

the basis of Bitcoin’s global, eventually consistent log and is therefore of

utmost importance to its correct and fair operation.

Desirable network properties. Bitcoin’s network layer should exhibit two

principal properties: low latency and anonymity.

Low latency means that the maximum time for a message to reach all network

nodes should be bounded and small. Latency matters because if the network

fails to deliver messages within a predictable time bound, the network risks

reaching an inconsistent state.

Anonymity means that the adversary should be unable to link transaction

messages (and hence, the associated public keys) to the IP address that orig-

inated a transaction. Recall that every transaction made by a public key

is listed in plaintext in the blockchain. Therefore, if a public key can be

linked to an IP address, the adversary can link all of that user’s transac-

tions. In some cases, the IP address could even be used to learn a node

operator’s human identity. Thus, deanonymization attacks can result in a

user’s entire banking history being revealed. Cryptocurrency users are typ-

ically recommended to choose fresh public keys and “mix” their coins with

others to obscure their transaction history [154, 155] (in practice, few users

do so [156, 151]). However, these techniques are useless if the IP address of

the source of the transaction can be recovered.

How the current network fails. In recent years, security researchers have

89



demonstrated multiple deanonymization attacks on the Bitcoin p2p network.

These attacks typically use a “supernode” that connects to active Bitcoin

nodes and listens to the transaction traffic relayed by honest nodes [157, 19,

158]. Because nodes diffuse transactions symmetrically over the network,

researchers were able to link Bitcoin users’ public keys to their IP addresses

with an accuracy of up to 30% [19]. Moreover, the source estimators used in

these papers are simple, and exploit only minimal knowledge of the p2p graph

structure and the structured randomness of diffusion. We hypothesize that

even higher accuracies may be possible with more sophisticated estimation

tools.

These attacks demonstrate that Bitcoin’s networking stack is inadequate

for protecting users’ anonymity. Moreover, the Bitcoin networking codebase

is copied almost directly in other cryptocurrencies, so the problem pervades

the ecosystem.

Problem Statement and Contributions

We aim to address the Bitcoin p2p network’s poor anonymity properties

through a ground-up redesign of the networking stack. We seek a net-

work management policy that exhibits two properties: (a) strong anonymity

against an adversarial group of colluding nodes (which are a fraction p of the

total network size), and (b) low broadcasting latency. The anonymity guaran-

tees we seek to provide are network-wide that uniformly protect all the users

against a full-network deanonymization. We define these notions formally in

Section 5.1. Critically, these networking protocols should be lightweight and

provide statistical anonymity guarantees against computationally-unbounded

adversaries. Lightweight statistical solutions are complementary to crypto-

graphic solutions, which aim to provide worst-case anonymity guarantees,

usually in the face of computationally bounded adversaries. Lightweight

anonymization methods lower the barrier to adoption since a more efficient,

faster protocol leads to a better user experience and also places less burden

on developers to significantly modify existing code; their study is also of basic

scientific and engineering interest.

Part of the novelty of our work is that the Bitcoin p2p networking stack has

not been modeled in any detailed way (much less analyzed theoretically), to
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Figure 5.1: Bounds on the precision and recall of any networking protocol,
plotted for p = 0.2. Dandelion has strong anonymity properties,
achieving a precision-recall region close to the fundamental lower bounds.

the best of our knowledge. In addition to modeling this complex, real-world

networking system, our contributions are threefold:

(1) Fundamental anonymity bounds. The act of user deanonymization

can be thought of as classifying transactions to source nodes. Precision and

recall are natural performance metrics. Recall is simply the probability of

detection, a common anonymity metric that captures completeness of the

estimator, whereas precision captures the exactness. We define these terms

precisely in Section 5.1.4.

Given a networking protocol, the adversary has a region of feasible (recall,

precision) operating points, which are achieved by varying the source classi-

fication algorithm. We give fundamental bounds on the best precision and

recall achieved by the adversary for any networking protocol, as illustrated

in Figure 5.1; here p refers to the ratio of colluding nodes to the total number

of nodes in the network. We show that a (recall, precision) point is feasible

only if it lies between the red and blue lines in Figure 5.1. Moreover, every

networking protocol yields an achievable (recall, precision) region to the ad-

versary that intersects with the shaded region (a) in Figure 5.1 in at least

one point.

(2) Optimal algorithm. We propose a simple networking protocol called

Dandelion, whose achievable precision-recall region is nearly optimal, in

the sense that it is contained in the achievable region of (nearly) every other

possible networking protocol.
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Dandelion consists of two phases. In the first phase, each transaction is

propagated on a random line; that is, each relay passes the message to exactly

one (random) node for a random number of hops. In the second phase, the

message is broadcast as fast as possible using diffusion. Dandelion has

two key constraints: (a) in the first phase, all transactions from all sources

should propagate over the same line, and (b) the adversary should not be able

to learn the structure of the line beyond the adversarial nodes’ immediate

neighbors.

The point labeled “Dandelion” in Figure 5.1 is the Pareto frontier of

Dandelion’s achievable precision-recall region (shaded in blue). The point

labeled “Diffusion” was obtained by simulating a diffusion process on a snap-

shot of the Bitcoin server network from 2015 [21], and using a suboptimal

source classifier. Because of this, the achievable region for diffusion must con-

tain the red-shaded region, including the plotted point, but may be larger.

Not only is the region for diffusion larger than the one for Dandelion, but

Dandelion’s region is nearly as small as possible. We revisit Figure 5.1 in

greater detail in Sections 5.2 and 5.4.

(3) Practical considerations. We outline the practical challenges associ-

ated with implementing Dandelion. In particular, constructing the graph

for Dandelion in a distributed fashion, and enforcing the assumption that

the adversary cannot learn the graph, are non-trivial. We therefore propose

simple heuristics for addressing these challenges.

We begin by discussing Bitcoin’s p2p networking stack and our problem of

interest, which we model in Section 5.1. We then present fundamental bounds

on our anonymity metric in Section 5.2; these bounds are used for comparison

with various networking policies later in the chapter. In Section 5.3, we

present some first-order solutions, and explain why they do not work. We

present our main result, Dandelion, in Section 5.4. Section 5.5 discusses the

systems challenges of implementing Dandelion, and proposes some simple,

heuristic solutions. We discuss the relation between Dandelionand prior

related work in Section 5.1.6, and conclude with some open problems in

Section 5.6.
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5.1 Bitcoin Network and Adversarial Model

We model three critical aspects of Bitcoin’s p2p network: the network topol-

ogy, the message propagation protocol, and the deanonymizing adversary’s

capabilities. These models are based on existing protocols and observed be-

havior.

5.1.1 P2P Network Model

The Bitcoin p2p network contains two classes of nodes: servers and clients.

Clients are nodes that do not accept incoming TCP connections (e.g., nodes

behind NAT), whereas servers do accept incoming connections. We focus in

this work on servers because (a) they are more permanent in the network, and

(b) it is straightforward to generalize server-oriented anonymity solutions to

also protect clients.

We model the p2p network as a graph G(V,E), where V is the set of all

server nodes and E is the set of edges, or connections, between them. For

a node v, Γ(v) denotes the set of v’s neighbors in G. Similarly for a set of

nodes U , Γ(U) denotes the set of all neighborhood sets of the nodes in U . To

model the graph’s topology, we first discuss Bitcoin’s network management

protocols.

Each node in the Bitcoin p2p network has an address manager – a list of

other nodes’ contact information represented as a (IP address, port) pair,

along with a time estimate of when that node was last active. When a server

first joins the network, its address manager is empty, but the node can learn

a random set of active addresses by contacting a hard-coded DNS server.

During normal network operation, nodes periodically relay entries from their

address managers, which helps spread information regarding active peers. We

model address managers by assuming that each node possesses the contact

information for every other Bitcoin server. In practice, address managers

actually contain a random sample of population IP addresses.

Each server is allowed to establish up to eight outgoing connections to

nodes in the server’s address manager. An outgoing connection from Alice

to Bob is one that is initiated by Alice. However, these TCP connections are

bidirectional once established. We therefore model the subgraph of server-

to-server connections as a random 16-regular graph. In practice, the degree
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distribution is not quite uniform – we revisit this issue in Section 5.5.

5.1.2 Transaction Model

As explained in Section 5.1.3, the network is partitioned into honest nodes

and colluding, adversarial nodes, who attempt to deanonymize users. In

this work, we assume that all honest nodes generate one transaction in the

time period of interest. In practice, servers generate transactions at different

rates; however, transactions by a single node can be linked in practice [151].

Therefore, we treat multiple transactions from the same node as a single

transaction to be deanonymized. We also assume the exact time when each

server starts broadcasting its transaction is unknown to the adversary. A

typical transaction can take up to 60 seconds to propagate through the Bit-

coin network [159], so estimating its time of origin at a useful granularity of a

second or sub-second can be difficult. X is the set of all transaction messages

from honest servers. Xv is the transaction message originating from honest

server v and X is a vector containing the ground truth mapping between

source nodes v and transactions Xv. We model the mapping between servers

and transaction messages as being drawn uniformly from the set of all such

mappings.

Spreading model. Once a Bitcoin transaction is complete, the source

broadcasts the transaction message over the network. The protocol for broad-

casting transactions should ensure low transaction latency, in order to provide

network consistency and fairness.

Bitcoin currently uses a diffusion propagation mechanism to broadcast

transactions, in which each transaction source or relay passes the transac-

tion to the node’s neighbors with independent, exponential delays. Once

a node has received a particular transaction, the node does not accept fu-

ture relays of the transaction. This diffusion spreading serves as a baseline

for our algorithmic improvements. It has good latency properties due to its

exponential spreading [160].

More generally, in this work, we consider spreading policies that are sym-

metric in the neighbor node IDs; that is, a forwarding node does not use

the IP address values (or other metadata) of its neighbors to influence its

forwarding decisions. This holds for diffusion spreading, but we constrain
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our proposed solutions to also satisfy the same property.

5.1.3 Adversarial Model

We consider an adversary whose goal is to deanonymize all users by linking

their transactions (and hence, their public keys) to their IP addresses. Note

that an IP address does not necessarily determine a user’s human identity.

However, it can significantly narrow the set of candidates, particularly if com-

bined with side information. Also, note that we are not interested in adver-

saries that aim to deanonymize specific nodes; this is a separate (important)

problem that has been studied extensively in the literature [161, 162, 163].

Such solutions tend to require users to change their behavior, e.g., by adopt-

ing a new application. Our goal in this work is to provide network-wide

(weaker) protection to all nodes, but without requiring human users to change

their behavior.

In particular, we are interested in defending against botnets – large sets of

malware-infected hosts that are controlled remotely, often without the host

owners’ knowledge [164]. Botnets are a commonly studied adversarial model

for various Bitcoin attacks [165], largely because they are easy to access,

cheap, and pervasive in the Bitcoin network [166]. While botnets can have

many uses, we wish to defend against a botnet that aims to deanonymize

users.

We model the botnet adversary as a set of adversarial, colluding “spy”

nodes that participate in the Bitcoin network as if they were honest nodes

(i.e., honest-but-curious).1 We denote honest nodes by VH and adversarial

nodes by VA. For a parameter p, we assume a fixed number of adversarial

nodes (|VA| = np) and honest nodes (ñ = |VH | = (1− p)n). The adversarial

nodes are dispersed uniformly at random in the network; this reflects the

botnet’s ability to obtain IP addresses uniformly across the IP address space.

However, for a given topology, the actual locations of the honest/adversarial

nodes are random. We further assume that all nodes know the complete

list of active IP addresses, and honest nodes cannot distinguish between an

adversarial and honest IP address.

Whenever a transaction is broadcast over the network, the adversarial

1In particular, we assume adversaries do not repeatedly exit and re-join the network in
order to achieve a favorable graph configuration.
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Figure 5.2: Red nodes are adversarial spies; blue nodes are honest. Message
Xv reaches the spy w at time t = 2.

nodes log the timestamps and the honest neighbors from which they receive

the transaction. We assume a continuous-time system, in which simultaneous

transmissions do not occur. For each honest server node v, we let Sv denote

the set of (transaction, receiving spy node, timestamp) tuples (x, u, Tu(x))

such that transaction x was forwarded by honest node v to adversary u ∈
VA at time Tu(x) (Figure 5.2); S is the vector of all Sv’s. We shall see in

Section 5.4 that the honest server who first delivers a given transaction to

the adversary plays a special role.

In addition to the transaction timestamps, the adversaries can also learn

the network structure G, partially or completely, over time. The extent of

such knowledge depends on the dynamism of the network, and will be made

clear in the context of the specific networks being considered. For example,

if the network is static over an extended period of time then adversaries can

learn the entire graph G. On the other hand, in a fast changing network, the

adversaries have knowledge of only their local neighborhood Γ(VA). For ease

of exposition, let us, for now, use Γ to denote the adversary’s knowledge of

the graph.

Once the timestamps have been collected, the adversarial nodes collude

to infer the transaction source. The adversary uses its observations O =

(S,Γ) to output a mapping between transactions and honest servers; we

let M(Xv) ∈ VH denote the server associated with transaction Xv in the

adversary’s mapping. This mapping is chosen to maximize the adversary’s

deanonymization payoff, defined in Section 5.1.4.

5.1.4 Anonymity Metric

A common metric for measuring a broadcasting scheme’s anonymity is prob-

ability of detection. For a fixed transaction and estimator, probability of
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detection is defined as

PM,G(detection) =

∑
v∈VH P(M(Xv) = v)

ñ
, (5.1)

or the probability that the estimator outputs the correct source of a sin-

gle transaction, computed over all transaction sources v ∈ VH , mappings

between sources and transactions X, realizations of the message propaga-

tion trajectory, and graph realizations G (if the graph is random). While

probability of detection considers a single source, our problem considers the

joint deanonymization of transactions from distinct sources. In this case,

probability of detection inherently captures the recall, or completeness, of an

estimator. We propose to augment this metric by also studying precision,

which captures the exactness of an estimator.

Precision and recall are performance metrics commonly used in informa-

tion retrieval for binary classification. Suppose we have n data items, each

associated with a class: 0 or 1. We are given a classifier that labels each data

item as either a 0 or a 1, without access to the ground truth. We designate

one of these classes (e.g. class 1) “positive”. For a given classifier output

on a single item, a true positive means the item was correctly assigned to

class 1, and a true negative means the item was correctly assigned to class

0. A false positive means a 0 item was incorrectly classified as a 1, and a

false negative means a 1 item was incorrectly classified as a 0. If we run this

classifier on all n data items, precision and recall are defined as follows:

Precision =
|True Positives|

|True Positives|+ |False Positives|

Recall =
|True Positives|

|True Positives|+ |False Negatives|

where | · | denotes the cardinality of a set, and “True Positives” denotes the

set of all data items whose classification output was a true positive (and so

forth).

Precision can be interpreted as the probability that a randomly selected

item with label 1 is correct, whereas recall can be interpreted as the proba-

bility that a randomly selected data item from class 1 is correctly classified.

Adapting this terminology to our problem, we have a multiclass classification

problem; each server is a class, and each transaction is to be classified. For
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a given server v and mapping M, the precision DM(v) comparing class v to all

other classes is computed as2

DM(v) =
1{M(Xv) = v}∑

w∈VH 1{M(Xw) = v}
, (5.2)

and the recall is computed as

RM(v) = 1{M(Xv) = v}, (5.3)

where 1{·} denotes the indicator function. In multiclass classification set-

tings, precision and recall are often aggregated through macro-averaging,

which consists of averaging precision/recall across classes. This approach

is typically used when the number of items in each class is equal [167],

as in our problem. We therefore average the precision and recall over all

servers and take expectation, giving an expected macro-averaged precision

of E[DM] = 1
ñ

∑
v∈VH E[DM(v)] and recall of E[RM] = 1

ñ

∑
v∈VH E[RM(v)].

We now explain why probability of detection does not capture the distinc-

tion between precision and recall. Consider two estimators: in the first, the

adversary’s strategy is to assign all ñ transactions to one randomly selected

server v. In the second, the adversary creates a random matching between

the ñ transactions and honest servers. Both estimators have a probability

of detection (i.e., expected per-node recall) of 1/ñ. However, the first esti-

mator has an expected per-node precision of 1/ñ2, while the second has an

expected per-node precision of 1/ñ. Operationally, this can be interpreted

as a difference in plausible deniability: the implicated node v in the first

case can deny being the source of any given transaction, because it could not

have generated all ñ transactions. If a node is correctly implicated in the sec-

ond estimator, it has no plausible deniability. Probability of detection alone

does not capture this difference, and is therefore insufficient as a standalone

metric.

In this work, we quantify anonymity through a combination of expected

macro-averaged precision (or “precision” for short) and expected macro-

averaged recall (or “recall”, or probability of detection). Higher precision

and recall favor the adversary. For a mapping strategy M let DM and RM denote

2Following convention we define DM(v) = 0 if both the numerator and denominator are
0 in Equation (5.2).
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the average precision and recall, respectively, obtained in a realization. Our

metrics of interest, then, are the overall expected precision DM = E[DM] and

recall RM = E[RM]. This expectation is taken over four random variables: the

graph realization G (which can be random in general), the mapping between

servers and messages X, the observed timestamp and topological information

O, and the adversary’s mapping strategy M. Similarly let DM(v) and DM(v)

denote the instantaneous and expected precisions at a server v ∈ VH , and let

RM(v) and RM(v) denote the instantaneous and expected recalls. Let DOPT and

ROPT denote the precision and recall, respectively, of the precision-maximizing

and recall-maximizing mapping strategies, respectively. The optimal preci-

sion is not necessarily achieved by the same mapping strategy as the optimal

recall. The adversary is computationally unbounded.

5.1.5 Problem Statement

As network designers, we control two aspects of the network: the graph cre-

ation/maintenance strategy and the spreading protocol. Our goal is to choose

a graph-selection strategy and a spreading protocol that simultaneously give

low average latency, precision, and recall guarantees. We restrict ourselves to

the following model of graph generation: For a fixed topology τ , we assume

that the nodes are equally likely to assume each possible label ordering in τ .

Moving forward, G(V,E) will describe the resulting, labeled graph.

Let T denote the set of all graph topologies over n nodes, and Σ the set

of graph-independent spreading strategies. The adversary controls only the

estimation algorithm for mapping transactions to nodes. Given a topology

τ ∈ T and a spreading strategy σ ∈ Σ, let Mτ,σ denote the set of mapping

strategies that map ñ transactions to ñ servers, with all knowledge derived

from the topology and the spreading strategy. If τ and σ are clear from

context, we simply use M to denote the space of mapping strategies. We

define the detection region for τ and σ as the set of achievable precision and

recall operating points:

Ω(τ, σ) = {(D,R) | ∃ M ∈Mτ,σ, D = DM, R = RM}.

Note that the detection region always contains the origin. The adversary’s

goal is to find estimators that achieve the boundary points of the region,
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whereas our goal is to make the detection region as small as possible.

Problem. Characterize fundamental, protocol-independent bounds on the

detection region. Further, identify a (τ ∗, σ∗) pair whose detection region

is a subset of the detection region of every graph-generation and spreading

strategy:

Ω(τ ∗, σ∗) =
⋂

σ∈Σ,τ∈T

Ω(τ, σ). (5.4)

It is unclear a priori if such a strategy pair exists. We show a simple net-

working policy that closely approximates condition Equation (5.4).

5.1.6 Related Work

Related work includes anonymity attacks on Bitcoin, source detection anal-

ysis in diffusion processes, anonymous broadcasting, and privacy-conscious

cryptocurrencies.

Anonymity attacks on Bitcoin. Most attacks on Bitcoin’s anonymity

harness the public blockchain [168, 169, 170]. Transaction patterns can be

used to link user transactions over time, and in some cases identify the

human owner of a public key. More recently, authors have demonstrated

deanonymization attacks on Bitcoin’s networking stack. These attacks typ-

ically use the first-spy estimator, and achieve surprisingly high accuracies

[157, 19, 158]. The Bitcoin Core developers responded to these attacks with

ad hoc changes to its networking stack for improved anonymity [171]. More

recently, researchers have considered ISP-level adversaries [165], which are

beyond the scope of this work.

Analysis of diffusion. A number of researchers have studied source detec-

tion on diffusion processes on graphs. These results show that for various

classes of graphs and adversarial models, reliable deanonymization is possi-

ble [172, 173, 174, 175, 176, 177]. However, there has been a relative lack

of theoretical results in the analysis of diffusion under a spy-based adversary

like ours. Many of the results in this space propose effective heuristics that

achieve high recall in practice [178, 179, 180]. These papers suggest that

by using centrality information, adversaries may be able to launch stronger

attacks than prior practical network attacks [19, 158].
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Anonymous broadcasting. The best-known work on anonymous broad-

casting is dining cryptographer networks (DC nets), which enable a user

to broadcast a message anonymously with information-theoretic guarantees

[181]. DC nets are communication-intensive, which has prevented them from

scaling beyond a few thousand nodes [182, 183, 184].

Another relevant topic is adaptive diffusion (AD) [185], recently proposed

as an anonymous broadcasting protocol over fixed graphs. AD shares some

properties with Dandelion, such as symmetry-breaking. However, AD can

“get stuck” on real graphs, meaning that some messages do not reach the

entire network [185]. This property is unacceptable in cryptocurrencies: all

nodes should receive all messages for fairness and consistency purposes.

Finally, the core idea of Dandelion spreading – passing content through

proxies – has been used in numerous anonymity systems, mainly for point-

to-point communication [186, 187]. However, existing systems have not con-

nected Dandelion spreading to fundamental precision-recall guarantees,

and they typically assume a complete graph topology [186]. In contrast, we

identify topologies over which Dandelion spreading actually provides strong

guarantees (i.e., not complete graphs). More fundamentally, our problem is

focused on broadcasting over a network, which has different requirements

and models than point-to-point messaging.

Privacy-conscious cryptocurrencies. Researchers have proposed several

privacy-conscious alternatives to Bitcoin, including ZCash [162, 163, 188],

Mimblewimble [189], CoinJoin [190], and TumbleBit [161]. These solutions

mainly on cryptographic protocols that must be implemented either as a

secondary service or as a separate cryptocurrency. Our work differs in that

Dandelion provides weaker statistical guarantees, but it is inherent to the

Bitcoin implementation without requiring users to change their behavior.

5.2 Anonymity Metric Properties

Precision and recall are not generally used as anonymity metrics, since most

anonymity systems provide per-user anonymity guarantees [186, 191, 187,

185]. We instead want guarantees against a stronger adversary that jointly

deanonymizes multiple users. The goal of this section is to give intuition

about precision and recall as metrics, and to provide fundamental bounds on
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both.

Our problem differs from traditional classification in that there is only one

data item (transaction) per class (server). This restricts the set of achievable

macro-averaged precision-recall points in a somewhat unconventional way.

We first explain how precision and recall are typically used, and then prove

fundamental bounds that illustrate the ways in which our problem differs

from traditional classification problems.

Precision-recall curves. Most binary classifiers have an internal parameter

(e.g., a threshold) that can be varied to give the classifier different precision

and recall characteristics. Sweeping this parameter yields a tradeoff between

precision and recall. While this tradeoff has been studied theoretically [192],

it is most often illustrated empirically for a given classifier, through curves

like Figure 5.3 (right). Notably, a classifier can achieve high recall (≈ 1) at

the expense of precision or vice versa. Hence the precision-recall points (0, 1)

and (1, 0) are typically achievable in practice.

Unlike traditional precision-recall curves, we are not interested in the curve

for a single estimator; we want to identify the achievable detection region

across all estimators. Moreover, since ours is a multi-class classification prob-

lem, we consider macro-averaged precision and recall. With macro-averaging,

increasing the recall (resp. precision) for one class will often reduce the recall

(resp. precision) for another. Therefore, it is unclear what the precision-

recall tradeoff will look like, or even if the boundary points (0, 1) and (1, 0)

are achievable. The following theorem restricts the set of feasible, macro-

averaged precision-recall points for any estimator the adversary employs.

Theorem 5.1. Any mapping policy M ∈ Mτ,σ on a network with topology

τ ∈ T and spreading strategy σ ∈ Σ has a precision and recall that are

bounded as

DM

(a)

≤ RM

(b)

≤
√

DM. (5.5)

(Proof in Section D.1.1)

This theorem follows from the definition of macro-averaged precision and

recall; it implies that not only are corner points (0, 1) and (1, 0) unachievable,

but every estimator’s detection region must lie between the blue and red lines

in Figure 5.3 (left). Given this constraint, a natural question is whether there
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Figure 5.3: Bounds on the precision-recall detection region for any
networking policy (left). Each bound is labeled with the corresponding
equation number from Section 5.2. Example of a typical precision-recall
curve (right).

exist precision and recall points that can always be achieved, regardless of

the networking protocol. We demonstrate the existence of such points by

analyzing a simple estimator.

Lower bounds. Computing lower bounds on precision and recall is challeng-

ing because the adversary’s knowledge can vary depending on the networking

policy. However, the so-called first-spy estimator (which is used in practical

attacks like [19]) relies only on the adversary’s knowledge of its local network

neighborhood. The adversaries we consider will always have access to this

information. The first-spy estimator outputs the first honest node to send

a given message to any of the adversarial nodes. We start by showing that

the first-spy estimator always achieves a precision and recall of at least p2

and p, respectively, where p is the fraction of spies. This in turn implies

that the maximum precision and recall over all estimators are individually

lower-bounded by p2 and p, respectively.

Theorem 5.2. The optimal precision and recall on a network with a fraction

p of adversaries and any spreading policy are lower bounded as

DOPT ≥ p2 (5.6)

ROPT ≥ p. (5.7)

(Proof in Section D.1.2)

This theorem implies that for any networking policy, the detection region

must include at least one point in the shaded region of Figure 5.3 (left). Note

that if an estimator can achieve a given (recall, precision) point, then it can
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also achieve points with elementwise lower precision and recall by choosing to

discard observed information. The purple curves labeled (i) and (ii) outline

the boundaries of two examples of feasible detection regions, staggered for

visibility.

Optimizing estimators. Given these constraints on the detection region,

we want to understand what estimators achieve the maximum precision and

recall, respectively. For a given network specification, precision and recall

might be maximized by different estimators; if this is the case, then the

detection region will have a non-trivial Pareto frontier, like curve (i) in Figure

5.3 (left). On the other hand, if the same estimator maximizes precision and

recall, the detection region’s Pareto frontier will be a single point, like curve

(ii).

We start by proving that in order to maximize precision, the adversary

should use a maximum-weight matching estimator, where the weights depend

on the information observed by the adversary, such as graph structure and

timestamps.

Theorem 5.3 (Precision-Optimal Estimator). The precision-optimizing es-

timator for an adversary with observations O = (S,Γ), is achieved by a

matching over the bipartite graph (VH ,X ). Moreover, such a matching is

a maximum-weight matching for edge weights P(Xv = x|O) on each edge

(v, x) ∈ VH ×X of the graph.

(Proof in Section D.1.3)

Theorem 5.3 gives a corollary used in Section 5.3 for bounding the perfor-

mance of various networking protocols.

Corollary 5.1. The optimal expected payoff at a server v, under observations

O = (S,Γ) for the adversaries, is upper bounded as

E[DOPT(v)|O] ≤ max
x∈X

P(Xv = x|O). (5.8)

(Proof in Section D.1.4)

Computing the probabilities in Corollary 5.1 may be challenging, depend-

ing on how much information the adversary has. Nonetheless, if the adversary

can approximate these probabilities with some accuracy (e.g., if it knows the

underlying graph G), there exist polynomial-time algorithms for computing

max-weight matchings [193, 194].
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The precision-optimal maximum-weight matching does not necessarily max-

imize recall. Notice that for any matching, its precision and recall are equal,

due to the definitions of precision and recall. The following theorem charac-

terizes a recall-optimal estimator, which assigns each message x to any server

v for which P(Xv = x|O) is maximized.

Theorem 5.4 (Recall-Optimal Estimator). The recall-optimizing estimator

for an adversary with observations O = (S,Γ), is a mapping that assigns

each transaction x ∈ X to any server v∗ ∈ argmax
v∈VH

P(Xv = x|O).

(Proof in Section D.1.5)

The first-spy estimator is an instance of a recall-optimal estimator for

spreading models in which the exit node to the first-spy is the most likely

source. Moreover, Theorem 5.4 implies that a precision-optimal, maximum-

weight matching is only recall-optimal if it also maps each message to its

most likely source, elementwise. For example, if k servers are equally likely

sources for k messages, then the precision-optimal matching estimator is also

recall-optimal.

Summary. This section provides fundamental limits on both precision and

recall, as well as detailing estimators that optimize precision (Theorem 5.3)

and recall (Theorem 5.4), respectively. These fundamental limits and esti-

mators will be useful benchmarks as we analyze the precision-recall regions

for networking policies in Sections 5.3 and 5.4.

5.3 Baseline Algorithms

With the fundamental bounds from Section 5.2, we now tackle our main

problem: designing a networking policy with a minimal detection region.

A key message of our work is that statistical anonymity requires mixing of

messages: users should spread their own messages and those of their peers

in a way that is difficult to distinguish. Degree of mixing depends on three

key properties of a networking policy: (1) the spreading protocol, (2) the

topology of the network, and (3) the dynamicity of the network (i.e., how

often the p2p graph changes). For example, the current Bitcoin network uses

diffusion spreading over a static, roughly 16-regular topology. This policy has
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poor mixing – i.e., a large detection region – because different nodes have

unique spreading patterns and can therefore be deanonymized.

In this section, we first identify a taxonomy of networking policies, based

on the properties above. We then systematically evaluate the anonymity of

various first-order, natural networking policies from this taxonomy. We show

that most of these baseline policies have poor anonymity guarantees, and we

extract rules of thumb for improving a policy’s anonymity. These rules of

thumb will build the groundwork for our main result, Dandelion, presented

in Section 5.4.

5.3.1 Taxonomy of Networking Policies

Our taxonomy has three axes: spreading protocol, topology, and dynamicity.

Spreading protocol. The space of spreading protocols is vast. In this

chapter, we consider a few natural, first-order spreading policies, and also

propose a new protocol called dandelion spreading.3 Perhaps the most nat-

ural spreading strategy is flooding, where messages are propagated with a

fixed delay to all neighbors. A slightly refined version is diffusion, which

adds independent randomness to the transmission delays of flooding. Diffu-

sion is explained in Section 5.1.2. Flooding and diffusion reflect the current

status quo in the Bitcoin network.

Given that our goal is to provide anonymity, another natural strategy is

to forward a message to a randomly chosen node, which then runs diffusion

or flooding. We call this spreading protocol diffusion-by-proxy.

Finally, we propose in this chapter a new protocol called dandelion spread-

ing. Dandelion spreading forwards each message on a randomly selected line

before diffusing it to the rest of the network. Since dandelion spreading is a

comparatively new protocol (not a first-order baseline), we defer a detailed

discussion to Section 5.4.

Topology. We are interested in topologies that are simultaneously simple

to construct, analyzable, and good for anonymity. We therefore limit our-

selves to a set of canonical graph models: lines, trees, d-regular graphs, and

complete graphs. These categories are not mutually exclusive; lines are a

3We use lowercase “dandelion” to denote the spreading protocol, and uppercase “Dan-
delion” to denote the overall network-level algorithm.
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special case of both trees and regular graphs (we consider lines and cycles

interchangeably), and complete graphs are a special case of regular graphs.

Dynamicity. Many network-based deanonymization attacks use partial or

full knowledge of the connectivity graph between nodes [172]. We assume

that the network can change the graph at varying rates to control the adver-

sary’s ability to learn it. We consider two extremes on this spectrum: static

graphs and dynamic graphs. In static graphs, the network never changes the

graph, so the adversary learns it fully over time. We define dynamic graphs

as graphs that are changed at a rate such that the adversary only knows its

local neighborhood at any given point in time.

In the remainder of this section, we first explore the regions of our tax-

onomy by studying three baseline networking policies: flooding, diffusion,

and diffusion-by-proxy. Although none of these baselines has satisfactory

anonymity guarantees, the associated analysis provides valuable intuition

that helps us design better policies in Section 5.4.

5.3.2 Flooding

To model flooding, we assume that messages propagate along each graph

edge with a deterministic delay, and nodes forward incoming messages to

their neighbors with a constant delay. On undirected topologies, flooding

has poor source-hiding due to symmetry and the deterministic spreading

scheme. However, it is unclear if directed topologies fare better. We begin

by showing that flooding has poor performance on directed, static, d-regular

graphs.

Proposition 5.1. The expected precision of flooding on a static d-regular

graph is at least DOPT ≥ (1− (1− p)d) ≥ p.

(Proof in Section D.2.1)

Flooding performs poorly on static regular graphs because each honest

node has a unique spreading “timestamp signature”, and the adversary can

predict these signatures. That is, if node v is the source, then the adversarial

nodes receive all messages from v in a deterministic timing pattern. More-

over, the adversary can predict this pattern from the structure of the graph,

due to the fixed nature of flooding.

107



This reasoning suggests that if the adversary does not know the graph, it

cannot predict nodes’ spreading patterns, and therefore cannot deanonymize

nodes. However, the following proposition shows that even when the graph

is dynamic, the adversary can achieve a high precision.

Proposition 5.2. The expected precision of flooding on a dynamic (defined

in Section 5.3.1) d-regular graph is bounded as DOPT ≥ cp for some constant

c > 0 independent of p.

(Proof sketch in Section D.2.2)

This result highlights that even if the adversary cannot predict the exact

timestamp pattern for a given node, it can infer certain statistical properties

of the pattern that are sufficient for deanonymization. In short, as long as the

topology allows messages to flood in more than one direction, the adversary

can use the statistics of observed timestamp signatures to infer the source of

a message.

Lesson. Do not flood content in multiple directions on the graph at the

same rate.

5.3.3 Diffusion

Diffusion is a natural successor to flooding; instead of using deterministic

delays, it uses random ones. By introducing uncertainty into the adversary’s

timing estimates, diffusion reduces the adversary’s overall precision and re-

call. However, much research in recent years has shown that the source of

a diffusion process can nonetheless be identified reliably [172, 173, 174, 175,

176, 177, 178, 179]. Although there are no theoretical results on the precision

or recall under our particular adversarial model, several heuristic estimation

algorithms are able to identify the source of a diffusion process on many

classes of graphs [178, 179]. Moreover, theoretical results exist on other ad-

versarial models [172, 173, 175]. All of these results rely on the intuition that

diffusion spreads content symmetrically. Because of this, the source node ap-

pears at the center of the adversary’s observed spreading pattern, and can be

identified. Diffusion is therefore not a satisfactory solution to this problem.

Lesson. Random forwarding delays are not powerful enough to provide

anonymity against spreading protocols that spread content symmetrically.
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5.3.4 Diffusion-by-Proxy

The takeaway message from diffusion and flooding is that symmetry of spread-

ing leads to deanonymization. To counter this, we must break the symmetry

of diffusion. A natural strategy for breaking symmetry about the source is to

ask someone else to spread the message. That is, for every transaction, the

source node chooses a peer uniformly at random from the pool of all nodes.

It transmits the message to that node, who then broadcasts the message.

More generally, the network could forward each message a few hops (each

hop choosing a new node at random) before diffusing it. We call this ap-

proach diffusion-by-proxy, and it is conceptually equivalent to propagating

over a line that changes for every transmission. Diffusion-by-proxy might

seem like it should have low precision because the graph is so dynamic, but

that intuition turns out to be false.

Proposition 5.3. The expected first-spy precision of diffusion-by-proxy is

bounded as DFS ≥ p
1−p(1− ep−1).

(Proof in Section D.2.3)

Intuitively, this statement holds because each node delivers its own mes-

sage to the adversary with probability p, and few other nodes report to the

adversary over the same edge. So even though diffusion-by-proxy breaks the

symmetry of diffusion, it also provides many paths for messages to reach

the adversary. Since there are many total paths to the adversary, each path

sees (relatively) less traffic, which in turn reduces the amount of mixing that

happens. A simple countermeasure is to reduce the number of paths over

which messages can flow.

Lesson. There is anonymity in numbers; dense graphs achieve poor mixing

because they do not constrain messages to flow over the same paths.

5.4 Dandelion

The baseline spreading protocols from Section 5.3 provide us with a key

guideline for building more anonymous networking policies: spread asym-

metrically over a sparse graph. In this vein, we propose a new protocol:

dandelion spreading. While the basic intuition of dandelion spreading is
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Algorithm 8: Dandelion Spreading. Nout(G, v) denotes the out-
neighbors of node v on directed graph G.

Input: Message Xv, source v, anonymity graph G, spreading graph
H, parameter q ∈ (0, 1)

anonPhase ← True
head ← v
recipients ← {v}
while anonPhase do

/* forward message to random node */

target ∼ Unif(Nout(G, head))
recipients ← recipients ∪{Xv} from head to target
head ← target
u ∼ Unif([0, 1])
if u ≤ q then

anonPhase ← False
end

end
/* Run diffusion over H from ‘head’ */

Diffusion(Xv, head, H)

used in several point-to-point anonymous communication systems [186, 187],

it has not been formally studied in the context of anonymous broadcast mes-

saging.

Dandelion spreading consists of an anonymity phase and a spreading phase

(Algorithm 8). In the anonymity phase, the protocol spreads the message

over a randomly-selected line for a random number of hops; in the spreading

phase, the message is broadcast using diffusion until the whole network re-

ceives the message. In general, the two phases can occur over different graphs.

In this work, we will design a (possibly time-varying) graph G over which

the anonymity phase occurs, and we will assume the spreading phase occurs

over the current Bitcoin p2p network H. The name “dandelion spreading”

reflects the spreading pattern’s resemblance to a dandelion seed head (Figure

5.4).

The two-phase nature of dandelion spreading allows us to separately de-

sign networking policies that optimize anonymity and latency. This separated

architecture is not necessarily optimal in terms of a latency-anonymity trade-

off; exploring that tradeoff is an interesting direction for future work. How-

ever, diffusion is known to have good spreading properties [160], but poor

anonymity properties [172]. Therefore, we combine it with an anonymity

110



1) Anonymity
Phase

2) Spreading
Phase

Figure 5.4: Dandelion spreading forwards a message in a line over the
graph, then broadcasts it using diffusion. Here both phases occur over the
same graph, i.e., H = G.

phase of constant duration (in an order sense), such that the average latency

is increased by a small, bounded factor. We subsequently assume that the

spreading phase can be fully deanonymized; i.e., the node that launches the

diffusion process can be identified. As such, we only need to analyze the pre-

cision and recall of the anonymity phase. This assumption does not weaken

our anonymity guarantees since it gives the adversary more power.

A key observation for this analysis is that the anonymity phase of dan-

delion spreading largely removes the need for exact timestamps. For honest

server v, let S ′v ⊆ Sv denote a trimmed down version of Sv, in which we

retain only those transaction log tuples (x, u, Tu(x)) that correspond to the

first time transaction x was received by an adversary from any honest node.

That is, we only keep a tuple if u was the first spy to see message x, and x was

delivered to u by honest exit node v. As before, let S′ denote the vector of

all S ′v’s. Then, with dandelion spreading, it holds that X− (S′,Γ)−S forms

a Markov chain. Therefore it is sufficient to use only the first observation

information S′ instead of S for computing transaction likelihoods. In fact,

the sufficient statistic S′ can be further simplified by ignoring the timestamp

coordinate Tu(x) in the tuples. This is possible due to our assumption that

the transactions’ originating times are unknown a priori to the adversary,

which removes the observed timestamps from any temporal reference frame.

Hence, in the remainder of this chapter, with a slight abuse of notation, we

use Sv, for honest server v, to denote the set of message tuples (x, u) such

that (i) u was the first adversarial node to receive x and (ii) u received x

from v. S denotes the vector of Sv’s.

Note that a similar argument does not hold for spreading mechanisms
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like flooding or diffusion, in which multiple independent timestamps across

different nodes (i.e., not just the first observation of a message) are used to

compute likelihoods. The diversity of such observations allows the estimator

to compare timestamps across nodes, thus making them useful for detection.

We begin by showing that the maximum recall for dandelion spreading

over any connected topology is p, the lower bound from Theorem 5.2.

Theorem 5.5. The expected maximum recall for dandelion spreading on any

connected graph of n nodes with a fraction p of adversaries is ROPT = p+O( 1
n
).

(Proof in Section D.3.1)

The reason for this result is that dandelion spreading propagates content

unidirectionally over a line. This lack of symmetry makes the first-spy esti-

mator – which has a recall of p – optimal. Theorem 5.5 result implies that as

we explore various topologies of dandelion spreading, we only need to analyze

and minimize their precision. We do so for three topologies of the graph G:

static trees, dynamic trees, and dynamic lines. Each topology provides intu-

ition about how to achieve anonymity. We find that dynamic lines achieve

nearly-optimal average precision and recall.

5.4.1 Static Trees

Recall that our goal is to mix messages from different users; in this sense,

trees are a natural topology to study. That is, consider a rooted, directed

d-regular tree, with each edge directed toward the parent node. Dandelion

spreading respects the directedness of the graph, so during the anonymity

phase, each node passes all messages to its parent node (i.e. toward the

root). Nodes near the root are therefore able to mix their own messages with

exponentially many other messages from users beneath them in the tree.

However nodes near the leaves of the tree have few nodes beneath them, and

therefore experience minimal mixing. This fundamental asymmetry results

in a high average precision.

Proposition 5.4. The expected precision under a matching estimator MAT

on any tree is given by DMAT ≥ p.

(Proof in Section D.3.2)
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Intuitively, when the graph is known, the adversary can partition nodes

into wards, or sets of honest nodes that share the same first spy. Each ward

contributes equally to the adversary’s precision, so we would like to minimize

the number of wards. On trees, the expected number of wards is pñ, most of

which consist of a single leaf with an adversarial parent node. This gives an

overall precision of p.

Although a precision of p is an improvement over Bitcoin’s current net-

working policy, we would like to achieve a precision close to the lower bound

of p2 (Theorem 5.2). We therefore consider topologies with fewer wards on

average.

Lesson. Use topologies in which it is difficult for the adversary to partition

nodes into wards.

5.4.2 Dynamic Trees

The adversary was able to partition the nodes of a static tree into wards

largely because the graph was known. A natural question is whether dynamic

trees have the same problem, since most of the graph is hidden, except the

adversary’s local neighborhood.

A perfect d-ary tree is a rooted tree in which each node has either d children

or no children, and all leaves are at the same depth. Again, we assume

each edge in such a tree is directed toward the parent node. We find that

dandelion spreading on perfect d-ary trees has an expected precision similar

to that of static trees.

Proposition 5.5. The expected precision of the first-spy estimator on a per-

fect d-ary tree, d ≥ 2, can be bounded as DFS ≥ p/2.

(Proof in Section D.3.3)

Since the graph is now dynamic, the adversary cannot explicitly determine

every ward like it could in the static case. However, the first-spy estimator

naturally identifies wards that consist of a single honest leaf. Statistically,

there are many such wards on trees that are not lines, so we obtain similar

guarantees to the static case. This implies that the problem with trees is

mainly the fact that they have many leaves.
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Lesson. A dynamic graph does not mitigate the negative impact of leaf

nodes.

5.4.3 Dynamic Lines: Dandelion

Next, we study dynamic line graphs. Lines are 2-regular trees, but unlike

higher degree trees, they do not suffer from the asymmetry problems as-

sociated with leaves. However, line graphs seem to lack the strong mixing

properties of higher-degree graphs. Nonetheless, we show near-optimal pre-

cision for this class of graphs. This happens because despite the moderate

mixing on lines, the number of honest nodes visible to the adversary is also

small. As such, the adversary cannot accurately partition nodes into wards,

which reduces the overall precision. Note that this would not hold in the

static case, since the adversary could identify the wards exactly.

Spreading
Protocol

Topology Dynamicity
Static

Dynamic

Dandelion 
spreading

Line
graph

Spreading
Protocol

Topology Dynamicity
Static

Dynamic

Dandelion 
spreading

4-regular
graph

Figure 5.5: The Dandelion networking policy: (1) dandelion spreading,
(2) a line topology, (3) a dynamic graph.

We use the name Dandelion to refer to a full networking policy (Figure

5.5): dandelion spreading over dynamic lines (i.e., 2-regular graphs with

out-degree 1). We begin by showing that Dandelion has near-optimal

precision.

Theorem 5.6. The expected precision of Dandelion (i.e., dandelion spread-

ing on a dynamic line graph) with n nodes and a fraction p < 1/3 of adver-

saries, is upper bounded by

DOPT ≤
2p2

1− p
log

(
2

p

)
+O

(
1

n

)
. (5.9)

(Proof in Section D.3.4)

This result states that for small p, the expected maximum precision is

within a logarithmic factor of our lower bound of p2. The stated bound has
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Figure 5.6: Detection regions for studied networking policies, p = 0.2.
Dandelion has a detection region close to the fundamental lower bounds.

loose constants for improved readability; a tighter expression is included in

the proof. The proof depends heavily on the fact that the adversary cannot

reliably assign nodes toward outside of its local neighborhood on the graph.

As such, it is forced to use estimators that would give suboptimal precision

in the static case, like variants of the first-spy estimator.

Figure 5.6 illustrates Dandelion’s detection region compared to those of

other benchmark policies. The points for diffusion and flooding are generated

through simulation over a snapshot of the Bitcoin server graph from 2015 [21].

Since dandelion spreading has optimally-low recall (Theorem 5.5), the Pareto

frontier for Dandelion is exactly the plotted point (i.e., points below and

to the left are achievable). The other policies are analyzed using possibly-

suboptimal estimators, so their detection regions must at least contain the

plotted points. Dandelion therefore satisfies the theoretical demands of

our problem, and performs favorably compared to baseline alternatives.

Remarks. (1) While Dandelion is near-optimal, whether the logarithmic

gap between our algorithm (Theorem 5.6) and the lower bound (Theorem 5.2)

can be improved remains an important open question. (2) We have assumed

that the exact start-times of transactions are unknown to the adversary.

Analyzing Dandelion’s performance under a partial knowledge of start-

times is also an important future direction.
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Algorithm 9: k Approximate Line Approximates a directed line
graph in a fully-distributed fashion. Each node picks an edge from k
options

Input: Set V = {v1, v2, . . . , vn} of nodes; parameter k
Output: A connected, directed graph G(V,E) with average degree 2
for v ← V do

/* pick k random targets */

ui ∼ Unif(V \ {v}), for i ∈ {1, . . . , k}
/* pick the smallest in-degree */

u← argmin
ui

degin(ui)

E = E ∪ (v → u) /* make connection */

end
return G(V,E)

5.5 Systems Issues

Theoretically, Dandelion is simple and exhibits desirable anonymity prop-

erties. However, the implementation raises a number of practical consider-

ations, like how to construct the underlying line graph and how to provide

sufficient graph dynamicity. We discuss each of these challenges, and intro-

duce practical, heuristic solutions for addressing them.

5.5.1 Constructing a Line Graph

In Dandelion, all nodes propagate their messages over the same line. To

implement this, the network must build either a Hamiltonian circuit or a set

of long, disjoint lines in a fully distributed fashion. Constructing a Hamilto-

nian circuit is challenging in our case because it is not a one-time event; in

order to provide dynamicity, the network must frequently construct a new

random line. To ensure scalability, the algorithm for constructing such a line

should be fully-distributed, lightweight, and asynchronous.

Traditional algorithms for computing Hamiltonian circuits are often com-

putationally intensive and/or require centralized control [195, 196], but recent

papers have studied lightweight, distributed alternatives [128, 197]. For in-

stance, [197] first generates line fragments, then splices them together into

a circuit. However, it relies on the nodes of each line fragment knowing

the identities of the fragment’s head and tail nodes. This could partially
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Figure 5.7: Degree distribution of k-approximate lines (Algorithm 9) for
various k. The fraction of leaves decreases as the number of edge choices k
increases.

reveal the graph structure to the adversary, which would likely change our

anonymity guarantees.

On the other hand, [128] builds up the circuit sequentially; a pair of nodes

start as the circuit “seeds”. Each node v who joins the circuit contacts a

random node u from the partially-built circuit; u replies with the IP address

of its outgoing neighbor w. Then v splices itself into the (u,w) edge, so the

new ordering is u → v → w. This distributed protocol is a viable solution

for constructing an exact line.

Another alternative is to use Bitcoin’s current networking strategy to ap-

proximate a line. Currently, each Bitcoin server generates eight connections

at random. We can approximate a line by asking each server to create one

outgoing connection at random. This protocol can be refined by having each

server, prior to making a connection, contact k nodes and connect to the

node with the smallest in-degree. This protocol (specified in Algorithm 9) is

fully distributed, but it is unclear how well it approximates a line.

Figure 5.7 illustrates the degree distribution of Algorithm 9’s approxima-

tion of a line graph with 1,000 nodes, averaged over 1,000 trials, for different

values of k. First, note that the average degree is two by construction. As k

increases, the fraction of leaves decays, with the greatest reduction coming as

we transition from k = 1 to k = 2. This empirical observation is supported

by the following proposition:

Proposition 5.6. Suppose Algorithm 9 is used to construct a k-approximate

line over n nodes. Let the empirical degree distribution of the resulting graph’s
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nodes have support (d1, . . . , dm), where d1 < . . . < dm. Then with probability

1− o(1), the maximum degree dm satisfies the following condition:

dm =


logn

log logn
(1 + o(1)) + Θ(1) if k = 1

log logn
log k

(1 + o(1)) + Θ(1) if k > 1.

(Proof in Section D.4.1)

Here we are using maximum degree as a proxy for regularity (or number of

leaves), but recall that the expected degree is fixed by construction. There-

fore, if we can drive the maximum degree down to 2, the minimum degree

must also be 2. Proposition 5.6 suggests that we can reap most of the pre-

cision gains of a more regular graph by connecting to one of k = 2 nodes

with minimum in-degree, whereas larger k only improves the regularity by a

factor logarithmic in k.

Section 5.4.2 showed that leaves increase the precision of a scheme because

the leaf nodes’ messages cannot be mixed with other messages. This suggests

that Dandelion can achieve lower precision over k-approximate lines (Al-

gorithm 9) by increasing k and decreasing the number of leaves. Figure 5.8

compares the the first-spy estimator precision for exact lines (generated by

[128]) and k-approximate lines (Algorithm 9). The figure shows that over

k-approximate lines, average precision decreases as k increases (i.e., as the

distribution becomes more regular), but the returns are diminishing in k.

The most significant decrease in precision occurs as we transition from k = 1

to k = 2; higher values of k give marginal improvements. Moreover, the pre-

cision of k-approximate lines is significantly larger than that of exact lines,

which could be obtained through the line-creation protocol in [128].

Algorithm 9 and [128] are both viable options for constructing a line. Al-

though [128] has lower overall precision, it uses more fine-grained information

– connection IPs rather than simple degree information. As such, [128] may

be less robust to misbehaving nodes. Understanding this tradeoff, and de-

veloping alternatives that are resistant to adversarial misbehavior, are of

practical interest.
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Figure 5.8: The k edge choices during graph creation (Algorithm 9) do not
significantly reduce the precision of the first-spy estimator beyond k = 1.

5.5.2 Preventing Graph Leakage

Another challenge is that Dandelion assumes the graph G is unknown

to the adversary. However, lines can be learned over time. First, note that

for any given adversarial node s1 on a 2-regular digraph, s1 can learn the

honest nodes immediately before and after it on the graph by sending probe

messages. Now consider the following scenario: a message from an honest

user propagates on the line, and passes s1. At an honest node v between s1

and the next adversarial node s2 (see Figure 5.9), the message transitions

into the spreading phase at and starts diffusing over the main p2p graph H.

We assume that the adversary can reliably infer the diffusion source v. Since

s2 did not receive the message before the spreading phase began, and v was

the source of the spreading phase, the adversary learns that v lies between s1

and s2. Thus, the adversary learns G at a rate proportional to the creation

of new transactions, which raises the adversary’s expected per-node precision

to p.

S1 S2v

Figure 5.9: The adversary can easily learn line graphs.

This problem must be managed by changing the graph quickly enough that

the adversary cannot learn it – on the timescale of transaction execution. As

an estimate, the Bitcoin network currently sees about three transactions per

second [198]. For $200, one can rent a botnet of 1,000 US-based zombies,
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or corrupted hosts for an hour [199]. Since the current Bitcoin network

consists of about 5,500 servers [200], this corresponds to p ≈ 0.15; each

ward would have about seven nodes on average, of which five are unknown

to the adversary in the fully dynamic setting. We conservatively assume

that each transaction launches its spreading phase from a different honest

node. If we want to ensure that the adversary never learns more than 40%

of interior nodes, we should change the graph every 5500 transactions× 5
7
×

0.4× 1 sec
3 transactions

≈ 9 minutes. This is easy to enforce in a distributed fashion;

every nine minutes, each node will tear down its connections and form new

ones. Synchrony between nodes is not needed for this restructuring due to

the fully distributed line approximation protocol.

More powerful attackers can create botnets of tens of thousands of nodes,

which would overwhelm Dandelion. In such scenarios, statistical solutions

are no longer appropriate.

5.6 Conclusion

In this chapter, we have proposed a redesign for the Bitcoin p2p stack to

provide anonymity against botnet-like adversaries who wish to link users to

transactions. We have presented the Dandelion networking policy, which

achieves nearly optimal anonymity guarantees with a simple, distributed im-

plementation. Dandelion achieves these guarantees by mixing messages

from different users on a graph that is unknown to the adversary. This mix-

ing makes it theoretically difficult for the adversary to jointly deanonymize

users. We have also presented a framework for analyzing other networking

policies in terms of precision and recall.
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CHAPTER 6

CONCLUSION

In this dissertation we have studied some of the key algorithmic challenges,

and methods to solve them, in canonical large-scale networking systems

underpinning today’s internet. Motivated by communication intensive dis-

tributed computing frameworks in data centers, we have considered the two-

party protocol simulation problem in Chapter 2, and presented both an im-

proved lower bound for communication complexity and a round-by-round

compression protocol. In Chapter 3 we have proposed a fast algorithm for

scheduling delay constrained circuit switches in data centers. The algorithm

is directly motivated by the underlying submodularity in the problem. We

have also discussed indirect routing as a promising (and sometimes essential)

alternative while routing packets. Chapters 4 and 5 deals with p2p networks

requiring decentralized algorithms. In Chapter 4 we have presented a deter-

ministic algorithm and topology for live streaming in a p2p network. The key

observation here is that QoS deterioration arising from unpredictable peer

arrivals and departure can be buffered by introducing redundancy into the

network. We have also presented fundamental lower bounds on the best de-

lay possible for a fixed amount of redundancy. Finally in Chapter 5 we have

discussed the problem of network deanonymization in the Bitcoin network,

and presented fundamental bounds under a common adversarial model. By

essentially forwarding transaction messages over a line graph, we have showed

that near-optimal anonymity can be achieved.

6.1 Open Problems and Future Directions

We discuss chapterwise open problems and directions for future research

below.

Chapter 2. A key step in our lower-bound approach is identifying the
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amount of common randomness generated through protocol simulation. How-

ever our estimate for the amount of common randomness does not rely on

the structure of the function to be computed. This is in contrast to most of

the existing lower bounds on communication complexity for function com-

putation, such as the partition bound or the discrepancy bound, where the

structure of the computed function plays an important role. In particular, a

comparison of our approach with other existing approaches for specific func-

tions is not available. An important future research agenda is to incorporate

the structure of functions in our bound; the case of functions with a small

range such as Boolean functions is of particular interest.

Chapter 3. In the case of indirect routing, we have provided a fast algo-

rithm for path selection, however it holds only if the switch configurations are

calculated separately. The problem of jointly deciding the switch configura-

tions and indirect routing policies remains open. While submodular function

optimization with nonlinear constraints is in general intractable, the specific

constraints discussed in Section 3.3.1 perhaps have enough structure that

they can be handled in a principled way. The key challenge here seems to

be the computation of an appropriate sequence of matchings. Ideally, we

would like a matching sequence that (i) offers good connectivity between

nodes and (ii) reduces the number of hops packets have to travel to reach

their destination. One can propose two approaches toward achieving this

goal. The first idea is to use random bipartite matchings for the schedule

and perform multicommodity flow over that. This seems like a reasonable

baseline algorithm, given that random graphs demonstrate good expansion

properties. The other approach is to have greedy algorithms, in the same

vein as direct routing, for computing the matching sequence. While this has

the advantage of being traffic matrix dependent (unlike random matchings),

the exact gains obtained currently seem hard to analyze.

Chapter 4. A key real-world issue, that we have not addressed in our

current model, is heterogeneity of peers. For example, user connections in the

underlying IP-network could range from very fast fiber-optic networks to slow

WiFi networks. The impact of such wide disparities in upload capacities and

latencies on transient behavior is hard to predict analytically. Understanding

this performance of the system-at-large (stability, delay and rate guarantees)

in the limits of diverse heterogeneity through the framework of computer
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simulations or a real world deployment is necessary. Another feature common

in real systems, is the availability of multiple servers to source the stream.

Analyzing the algorithm under other traffic patterns such as file-sharing and

multiple multicast is also of interest.

Chapter 5. To be able to deploy Dandelion in the Bitcoin network, a few

important factors have to be considered. First, we have analyzed honest-but-

curious adversarial nodes. In practice, botnet nodes disobey protocol. In

this case, anonymity can be negatively affected by nodes forwarding content

inappropriately or misbehaving during graph construction. Hardening our

protocols against such intrusions is critical. For example, noninteractive

graph construction protocols offer some robustness by reducing opportunities

for the adversary to lie in order to generate an advantageous anonymity

graph. Alternatively, a system could use cryptographic proofs to ensure

that nodes follow the graph construction protocol. Second, we have paid

less attention to message latency by assuming the two-phase architecture

of dandelion spreading. Understanding the anonymity-latency tradeoff is of

fundamental interest.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Background: Secret Key Agreement and Data

Exchange

Our proofs draw from various techniques in cryptography and information

theory. In particular, we rely heavily on recent results on information the-

oretic secret key agreement and data exchange, which are reviewed in this

section together with the requisite background.

A.1.1 Secret Key Agreement by Public Discussion

The problem of two-party secret key agreement by public discussion was

alluded to in [201], but a proper formulation and an asymptotically optimal

construction appeared first in [39, 40]. Consider two parties with the first

and the second party, respectively, observing the random variable X and

Y . Using an interactive protocol π and their local observations, the parties

agree on a secret key. A random variable K constitutes a secret key if the

two parties form estimates that agree with K with probability close to 1 and

K is concealed, in effect, from an eavesdropper with access to the transcript

Π and some side information Z. Formally, let KX and KY , respectively, be

recoverable by π for the first and the second party. Such random variables

KX and KY with common range K constitute an ε-secret key if the following

condition is satisfied:

dvar

(
PKXKYΠZ ,P

(2)
unif × PΠZ

)
≤ ε,
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where

P
(2)
unif (kX , kY) =

1(kX = kY)

|K|
,

and ‖ · ‖ is the variational distance. The condition above ensures both reli-

able recovery, requiring Pr (KX 6= KY) to be small, and information theoretic

secrecy, requiring the distribution of KX (or KY) to be almost independent

of the eavesdropper’s side information (Π, Z) and to be almost uniform. See

[22] for a discussion.

Definition A.1. Given 0 ≤ ε < 1, the supremum over lengths log |K| of an

ε-secret key is denoted by Sε(X, Y |Z), and for the case when Z is constant

by Sε(X, Y ).

By its definition, Sε(X, Y |Z) has the following monotonicity property.

Lemma A.1 (Monotonicity). For any deterministic protocol π,

Sε(X, Y |Z) ≥ Sε(XΠ, YΠ|ZΠ).

Furthermore, if VX and VY can be recovered by π for the first and the second

party, respectively, then

Sε(X, Y |Z) ≥ Sε(XVX , VY |ZΠ).

The claim holds since the two parties can generate a secret key by first run-

ning π and then generating a secret key for the case when the first party

observes (X,Π), the second party observes (Y,Π) and the eavesdropper ob-

serves (Z,Π). Similarly, the second inequality holds since the parties can

ignore a portion of their observations and generate a secret key from (X, VX )

and (Y, VY).

Leftover hash lemma. A key tool for generating secret keys is the leftover

hash lemma [201, 202, 41, 42, 203] which, given a random variable X and an

l-bit eavesdropper’s observation Z, allows us to extract roughly Hmin(PX)− l
bits of uniform bits, independent of Z. We shall use a slightly more general

form. Given random variables X and Z, let

Hmin (PXZ | QZ)
def
= sup

x,z
− log

PXZ (x, z)

QZ (z)
.
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We define1 the conditional min-entropy of X given Z by

Hmin (PXZ | Z)
def
= sup

QZ : supp(PZ)⊂ supp(QZ)

Hmin (PXZ | QZ) .

Further, let F be a 2-universal family of mappings f : X → K, i.e., for

each x′ 6= x, the family F satisfies

1

|F|
∑
f∈F

1(f(x) = f(x′)) ≤ 1

|K|
.

Lemma A.2 (Leftover hash). Consider random variables X,Z and V

taking values in countable sets X , Z, and a finite set V, respectively. Let

S be a random seed such that fS is uniformly distributed over a 2-universal

family F . Then, for KS = fS(X)

ES {dvar (PKSV Z ,PunifPV Z)} ≤ 1

2

√
|K||V|2−Hmin(PXZ |Z),

where Punif is the uniform distribution on K.

The version above is a straightforward modification of the leftover hash

lemma in, for instance, [203] and can be derived in a similar manner.

As an application of the leftover hash lemma above, we get the following

useful result.

Lemma A.3. Consider random variables X, Y, Z and V taking values in

countable sets X , Y, Z, and a finite set V, respectively. Then,

S2ε(X, Y |ZV ) ≥ Sε(X, Y |Z)− log |V| − 2 log(1/2ε).

The conditional independence testing upper bound for secret key

lengths. Next, we recall the conditional independence testing upper bound

for Sε(X, Y ), which was established in [22, 23]. In fact, the general up-

per bound in [22, 23] is a single-shot upper bound on the secret key length

for a multiparty secret key agreement problem with side information at the

eavesdropper. Below, we recall a specialization of the general result for the

1There is no agreement over the definition conditional min-entropy; the form adopted
here is convenient for our use.
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two-party case with no side information at the eavesdropper. In order to state

the result, we need the following concept from binary hypothesis testing.

Consider a binary hypothesis testing problem with null hypothesis P and

alternative hypothesis Q, where P and Q are distributions on the same al-

phabet V . Upon observing a value v ∈ V , the observer needs to decide if the

value was generated by the distribution P or the distribution Q. To this end,

the observer applies a stochastic test T, which is a conditional distribution

on {0, 1} given an observation v ∈ V . When v ∈ V is observed, the test

T chooses the null hypothesis with probability T(0|v) and the alternative

hypothesis with probability T (1|v) = 1 − T (0|v). For 0 ≤ ε < 1, denote

by βε(P,Q) the infimum of the probability of error of type II given that the

probability of error of type I is less than ε, i.e.,

βε(P,Q) := inf
T : P[T]≥1−ε

Q[T],

where

P[T] =
∑
v

P(v)T(0|v),

Q[T] =
∑
v

Q(v)T(0|v).

The following upper bound for Sε(X, Y ) was established in [22, 23].

Theorem A.1 (Conditional independence testing bound). Given 0 ≤
ε < 1, 0 < η < 1− ε, the following bound holds:

Sε (X, Y ) ≤ − log βε+η
(
PXY ,QXQY

)
+ 2 log(1/η),

for all distributions QX and QY on on X and Y, respectively.

We close by noting a further upper bound for βε(P,Q), which is easy to

derive.

Lemma A.4. For every 0 ≤ ε < 1 and λ,

− log βε(P,Q) ≤ λ− log

(
P

(
log

P (X)

Q (X)
< λ

)
− ε
)

+

,

where (x)+ = max{0, x}. As a corollary, we obtain the following upper bound
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for Sε(X, Y ):

Sε (X, Y ) ≤ λ− log

(
Pr

(
log

PXY (X, Y )

QX (X) QY (Y )
< λ

)
− ε− η

)
+

+ 2 log(1/η),

for all distributions QX and QY .

A.1.2 The Data Exchange Problem

The next primitive that will be used in the reduction argument in our lower

bound proof is a protocol for data exchange. The parties observing X and Y

seek to know each other’s data. What is the minimum length of interactive

communication required? This basic problem, first studied in [204], is in

effect a two-party extension of the classical Slepian-Wolf compression [27]

(see [205] for a multiparty version). A recent work [51] derived tight lower

and upper bounds for the length of a protocol that, for a given distribution

PXY , will facilitate data exchange with probability of error less than ε. We

only review the proposed protocol and its performance here; first, we formally

define the data exchange problem.

Definition A.2. For 0 ≤ ε < 1, a protocol π attains ε-data exchange if

there exist Ŷ and X̂ which are recoverable by π for the first and the second

party, respectively, and satisfy

P(X̂ = X, Ŷ = Y ) ≥ 1− ε.

Note that data exchange corresponds to simulating a (deterministic) inter-

active protocol π where Π1(X) = X and Π2 = Y ; attaining ε-data exchange

is tantamount to ε-simulation of π. In fact, the specific protocol for data ex-

change proposed in [51] can be recovered as a special case of our simulation

protocol in Section A.3. The next result paraphrases [51, Theorem 2] and

can also be recovered as a special case of Lemma A.11.

We paraphrase the result form [51] in a form that is more suited for our

application here. The data exchange protocol proposed in [51] relies on slic-

ing the spectrum of h(X|Y ) (or h(Y |X)). Let Etail denote the tail event

h(X|Y ) /∈ [λ′min, λ
′
max]. The protocol entails slicing the essential spectrum
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[λ′min, λ
′
max] into N parts of length ∆ each, i.e.,

N =
λ′max − λ′min

∆
.

Theorem A.2 ([51, Theorem 2], Lemma A.11). Given ∆ > 0, ξ > 0, and N

as above, there exists a deterministic protocol for ε-data exchange satisfying

the following properties:

(i) denoting by Eerror the error event, it holds that

PXY (Eerror ∩ {h(X4Y ) ≤ λ}) ≤ PXY (Etail) +N2−ξ,

which further yields that the probability of error ε is bounded above as

ε ≤ PXY (h(X4Y ) > λ) + PXY (Etail) +N2−ξ;

(ii) the protocol communicates no more than λ+ ∆ +N + ξ bits;

(iii) for every (X, Y ) such that λ′min < h(X|Y ) < λ′max, the transcript of the

protocol can take no more than 2h(X4Y )+∆+ξ values.

Note that property (iii) above, though not explicitly stated in [51, Theo-

rem 2] or in the general Lemma A.11 below, follows simply from the proofs

of these results. It makes the subtle observation that while, for each (X, Y )

such that λ′min < h(X|Y ) < λ′max, h (X4Y ) + ∆ + N + ξ bits are com-

municated to interactively generate the transcript, the number of (variable

length) transcripts is no more than2 h (X4Y ) + ∆ + N + ξ. Property (ii)

above was crucial to establish the communication complexity results of [51];

property (iii) was not relevant in the context of that work. On the other

hand, here we shall use the protocol of Theorem A.2 in our reduction to

secret key agreement in the next section and will treat the communication

used in data exchange as eavesdropper’s side information. As such, it suffices

to bound the number of values taken by the transcript; the number of bits

actually communicated in the interactive protocol is a loose upper bound on

the former quantity.

2The N -bit ACK-NACK feedback used in the protocol can be determined from the
length of the transcript.
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It is perhaps interesting that our simulation protocol given in Section A.3

is used both in our upper bound to compress a given protocol and in our

lower bound to complete the reduction argument.

A.2 Section 2.2: Lower Bound

Our proof of Theorem 2.1 relies on a reduction argument that utilizes an

ε-simulation to generate an information theoretically secure secret key for X

and Y . Heuristically, a protocol can be simulated using fewer bits of commu-

nication than its length because of the correlation in the observations X and

Y . Due to this correlation, when simulating the protocol, the parties agree

on more bits (generate common randomness) than what they communicate.

These extra bits can be extracted as an information theoretically secure secret

key for the two parties. A lower bound on the number of bits communicated

can be derived using an upper bound for the maximum possible length of a

secret key that can be generated using interactive communication; the lat-

ter was derived recently in [22, 23]. However, there are two caveats in this

heuristic approach.

First, to extract secret keys from the generated common randomness we

rely on the leftover hash lemma. In particular, the bits are extracted by

applying a 2-universal hash family to the common randomness generated.

However, the range-size of the hash family must be selected based on the

min-entropy of the generated common randomness, which is not easy to

estimate. To remedy this, we communicate more using a data-exchange

protocol proposed in [51] to make the collective observations (X, Y ) available

to both the parties; a good bound for the communication complexity of

this protocol is available. The generated common randomness now includes

(X, Y ) for which the min-entropy can be easily bounded and the size of

the aforementioned extracted secret key can be tracked. A similar common

randomness completion and decomposition technique was introduced in [206]

to characterize a class of securely computable functions.

Second, our methodology described above requires bounds on various infor-

mation densities in different directions. A direct application of this method

will result in a gap equal to the effective length of various spectrums in-

volved. To remedy this, we apply the methodology described above not to
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the original distribution PXY but a conditional distribution PXY |E where the

event E is an appropriately chosen event contained in single slices of various

spectrums involved. Such a conditioning is allowed since we are interested in

the worst-case communication complexity of the simulation protocol.

We now describe the proof of Theorem 2.1 in detail. To make the exposi-

tion clear, we have divided the proof into steps.

Given a (private coin) protocol π, let πsim be its ε-simulation and ΠX and

ΠY be the corresponding estimates of the transcript Π for Party 1 and Party

2, respectively.

A.2.1 From Simulation to Probability of Error

We first use a coupling argument to replace the ε-simulation condition with

an ε probability of error condition. Recall the maximal coupling lemma.

Lemma A.5 (Maximal coupling lemma [207]). For any two distributions

P and Q on the same set, there exists a joint distribution PXY with X ∼ P

and Y ∼ Q such that

Pr (X 6= Y ) = dvar (P,Q) .

Using the maximal coupling lemma, for each fixed x, y there exists a joint

distribution PΠΠXΠY |X=x,Y=y such that

Pr (Π = ΠX = ΠY |X = x, Y = y) = 1− dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
.

Consequently,

Pr (Π = ΠX = ΠY) = 1−
∑
x,y

PXY (x, y) dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
= 1− dvar

(
PΠΠXY ,PΠXΠYXY

)
≥ 1− ε. (A.1)

As pointed in Section 2.1, we restrict ourselves to public coin protocols πsim

using shared public randomness U . For concreteness (and convenience of
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proof), we define the joint distribution for (ΠΠXΠYXY U) as

PΠXΠYΠXY U = PΠXΠYΠXY PU |ΠXΠYXY . (A.2)

Note that the marginal PΠXΠYXY U remains as in the original protocol. In

particular, (X, Y ) is jointly independent of U .

A.2.2 From Partial Knowledge to Omniscience

As explained in the heuristic proof above, instead of extracting a secret key

from the common randomness generated by the protocol πsim, we first use the

data exchange protocol of Theorem A.2 to make all the data available to both

the parties, which was termed attaining omniscience3 in [205]. In particular,

the parties run the protocol πsim followed by a data exchange protocol for

(XΠ, YΠ) to recover (X, Y ) at both the parties. Once both the parties have

access to (X, Y ), they can extract a secret key from (X, Y ) which will be

used in the reduction in our final step.

Formally, with the notations introduced in Section A.1.2, let πDE be the

data exchange protocol of Theorem A.2 with X and Y replaced by (XΠ)

and (YΠ), respectively, with N2 and ∆2 denoting N and ∆, respectively,

and with λ = λ
(3)
max, λ′min = λ

(2)
min, λ′max = λ

(2)
max. Then, denoting by Eerror the

error event for the protocol πDE Theorem A.2 (i) yields

Pr (Eerror ∩ Ec3) ≤ Pr (E2) +N22−η
′
, (A.3)

where E2 and E3 are as in Equation (2.3). Furthermore, for every realization

(X, Y ) /∈ E3 the number possible transcripts ΠDE is no more than

2h(XΠ4YΠ)+∆2+ξ. (A.4)

We seek to use πDE for recovering Y and X, respectively, at Party 1 and

Party 2 by running πDE successively after πsim. However, πsim yields XΠX and

YΠY at Party 1 and Party 2, respectively, while the data exchange protocol

πDE facilitates data exchange when the two parties observe XΠ and YΠ. We

3Csiszár and Narayan considered a multiterminal version of the data exchange problem
in [205] and connected the minimum (amortized) rate of communication needed to the
maximum (amortized) secret key rate.
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can easily fix this gap using Equation (A.1).

Specifically, denote by X̂ and Ŷ the estimates of X and Y formed at Party

2 and Party 1 in πDE. Note that πDE is a deterministic protocol and X̂ and Ŷ

are functions of (X, Y,Π,Π). Denote by A the set

A = {(τX , τY , τ, x, y) : τX = τY = τ},

and by B the set

B = {(τX , τY , τ, x, y) : X̂(x, y, τ, τ) = x, Ŷ (x, y, τ, τ) = y},

which is the same as Ecerror for Eerror in Equation (A.3). Then, by Equa-

tions (A.1) and (A.3)

Pr
(
{X̂(X, Y,ΠX ,ΠY) = X, Ŷ (X, Y,ΠX ,ΠY) = Y } ∩ Ec3

)
≥ PΠXΠYΠXY (A ∩ B ∩ Ec3)

≥ PΠXΠYΠXY (A) + Pr (Ec3)− PΠXΠYΠXY (Bc ∩ Ec3)− 1

≥ 1− ε− Pr (E2)− Pr (E3)−N22−ξ. (A.5)

Note that it follows that the combined protocol (πsim, πDE) attains (ε+Pr (E2)+

N22−ξ)-data exchange for X and Y . The partial bound in Equation (A.5)

is more suited for our analysis since we shall account separately for the tail

event E3.

A.2.3 From Simulation to Secret Keys: A Sketch of the
Reduction

The first step in our proof is to replace the simulation condition Equa-

tion (2.1) with the probability of error condition Equation (A.1) for the joint

distribution PΠΠΠXΠYXY U in Equation (A.2).

Next, as described in our heuristic arguments above, we “complete the

common randomness,” i.e., we communicate more to facilitate the recovery

of Y and X at Party 1 and Party 2, respectively. To that end, upon executing

πsim, the parties run the data exchange protocol πDE of Theorem A.2 for

(XΠ) and (YΠ), with (X,ΠX ) and (Y,ΠY) in place of (XΠ) and (YΠ),

respectively. The condition in Equation (A.1) guarantees that the combined
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protocol (πsim, πDE) recovers Y and X at Party 1 and Party 2 with probability

of error less than ε.

We now sketch our reduction argument. Consider the secret key agreement

for X and Y when the eavesdropper observes U . By the independence of

(X, Y ) and U , Sη(X, Y |U) = Sη(X, Y ), and further, the result of [22] shows

that Sη(X, Y ) is bounded above, roughly, by the mutual information density

i(X ∧ Y ) = log PXY (X, Y ) /PX (X) PY (Y ), i.e.,

Sη(XU, Y U |U) = Sη(X, Y ) . i(X ∧ Y ). (A.6)

On the other hand, we can generate a secret key using the following pro-

tocol:

1. Run the combined protocol (πsim, πDE) to attain data exchange for X

and Y , resulting in a common randomness of size roughly h(X, Y |U) =

h(X, Y ).

2. The data exchange protocol πDE for (XΠ) and (YΠ) communicates

roughly h (XΠ4YΠ) bits for every fixed realization (X, Y,Π). Thus,

the combined protocol (πsim, πDE), which allows both the parties to re-

cover (X, Y ), communicates no more than log ‖πsim‖+h (XΠ4YΠ) bits

for every fixed realization (X, Y,Π). Using the leftover hash lemma,

we can extract a secret key of rate roughly h(X, Y ) − log ‖πsim‖ −
h (XΠ4YΠ).

The following approximate inequalities summarize our reduction:

Sη(XU, Y U |U) ≥ Sη(XU, Y U |ΠsimΠDEU)

≥ Sη(XŶ , X̂Y |ΠsimΠDEU)

& Sη(XŶ , X̂Y |U)− log ‖πsim‖ − h (XΠ4YΠ)

≈ h(X, Y )− log ‖πsim‖ − h (XΠ4YΠ) , (A.7)

where the first and the second inequalities hold since we can execute the

protocol (πsim, πDE) and recover Ŷ and X̂ at Party 1 and Party 2, before

generating a secret key for the Sη(XU, Y U |U) problem.

We note that generation of secret keys from data exchange was first pro-

posed in [205] in an amortized, IID setup and was shown to yield a secret

key of asymptotically optimal rate.
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From Equations (A.6) and (A.7) it follows that

log ‖πsim‖ & h(X, Y )− h (XΠ4YΠ)− i(X ∧ Y ) = ic(Π;X, Y ),

which is the required lower bound.

Of course, the steps above are not precise. We have used instantaneous

communication and common randomness lengths in our bounds whereas a

formal treatment will require us to use worst-case performance bounds for

these quantities. Unfortunately, such worst-case bounds do not yield our

desired lower bound for Dε (π). To fill this gap, we apply the arguments

above not for the original distribution PΠXΠYΠXY U but for the conditional

distribution PΠXΠYΠXY U |E where the event E is carefully constructed in such a

manner that the aforementioned worst-case bounds are close to instantaneous

bounds for all realizations. Specifically, E is selected by appropriately slicing

the spectrums of the various information densities that appear in the worst-

case bounds.

A.2.4 From Original to Conditional Probabilities

To identify an appropriate critical event for conditioning, we take recourse

to spectrum slicing. Specifically, we identify an appropriate subset of inter-

section of slices of spectrums (ii) and (iv) described in Section 2.2.1. For

the combined protocol (πsim, πDE) and the estimates (X̂, Ŷ ) as above, and

λ
(i)
min, λ

(i)
max, i = 1, 2, 3, as in Section 2.2.1, let

Esim = {Π = ΠX = ΠY},

EDE = {X̂(X, Y,ΠX ,ΠY) = X, Ŷ (X, Y,ΠX ,ΠY) = Y },

Eλ = {ic(Π;X, Y ) ≥ λ}

E (1)
i = {λ(1)

min + (i− 1)∆1 ≤ h(X, Y ) ≤ λ
(1)
min + i∆1}, 1 ≤ i ≤ N1,

E (3)
j = {λ(3)

min + (j − 1)∆3 ≤ h (XΠ4YΠ) ≤ λ
(3)
min + j∆3}, 1 ≤ j ≤ N3,

where

N1 =
λ

(1)
max − λ(1)

min

∆1

and N3 =
λ

(3)
max − λ(3)

min

∆3

.
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Note that ∪i E (1)
i = Ec1 and ∪j E (3)

j = Ec3 , where the events E1 and E3 are as in

Equation (2.3). Finally, define the event Eij as follows:

Eij = Esim ∩ EDE ∩ Eλ ∩ E (1)
i ∩ E

(3)
j , 1 ≤ i ≤ N1, 1 ≤ j ≤ N3.

The next lemma says that (at least) one of the events Eij has significant

probability, and this particular event will be used as the critical event in our

proofs.

Lemma A.6. There exists i, j such that

Pr (Eij) ≥
Pr (Eλ)− ε− εtail −N22−ξ

N1N3

def
= α. (A.8)

Proof. Note that the event Esim∩EDE∩Ec3 is the same as the event A∩B∩Ec3
of Equation (A.5). Therefore,

Pr (Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3) ≥ Pr (Eλ) + Pr (Esim ∩ EDE ∩ Ec3) + Pr (Ec1)− 2

≥ Pr (Eλ)− ε− Pr (E2)− Pr (E3)−N22−ξ

− Pr (E1)

≥ Pr (Eλ)− ε− εtail −N22−ξ,

where the second inequality uses Equation (A.5) and and the third uses

Equation (2.3). The proof is completed upon noting that {Eij}i,j constitutes

a partition of Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3 with N1N3 parts.

A.2.5 From Simulation to Secret Keys: The Formal
Reduction Proof

We are now in a position to complete the proof of our lower bound. For

brevity, let E denote the event Eij of Lemma A.6 satisfying Pr (E) ≥ α.

Our proof essentially formalizes the steps outlined in Section A.2.3, but

for the conditional distribution given E . With an abuse of notation, let

Sη(X, Y |Z, E) denote the maximum length of an η-secret key for two par-

ties observing X and Y , and the eavesdropper’s side information Z, when

the distribution of (X, Y, Z) is given by PXY Z|E . Then, using Lemma A.4

with QX = PX and QY = PY , we get the following bound in place of Equa-
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tion (A.6):

S2η(X, Y |E) ≤ γ − log

(
Pr

({
(x, y) : log

PXY |E (x, y)

PX (x) PY (y)
< γ

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η)

≤ γ− log

(
Pr

({
(x, y) : log

PXY (x, y)

PX (x) PY (y)
< γ + logα

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η), (A.9)

where 0 < η < 1/3 is arbitrary and in the previous inequality we have used

PXY |E (x, y|E) ≤ PXY (x, y)

Pr (E)
≤ PXY (x, y)

α
.

To replace Equation (A.7), first note that the following inequalities hold

simply by the definition of Sη(X, Y |E)

S2η(X, Y |E) ≥ S2η(XU, Y U |U, E)

≥ S2η(XΠsimΠDE, YΠsimΠDE|U,Πsim,ΠDE, E)

≥ S2η(XŶ , X̂Y |U,Πsim,ΠDE, E), (A.10)

where we have used the fact that we can always generate a secret key for X

and Y by first running the combined protocol (πsim, πDE), recovering estimates

Ŷ and X̂ at Party 1 and Party 2, and finally, since now Party 1 observes

(X, Ŷ ), Party 2 observes (X̂, Y ) and the eavesdropper observes (U,Πsim,ΠDE),

generating a secret key attaining S2η(XŶ , X̂Y |U,ΠsimΠDEE).

Next, note that by Equation (A.4) the transcript ΠsimΠDE takes no more than

‖πsim‖2h(XΠ4YΠ)+∆2+ξ values for every realization (X, Y ) /∈ E3. However,

when the event E = Eij holds, h (XΠ4YΠ) ≤ λ
(3)
min + j∆3. It follows by

Lemma A.3 that

S2η(XŶ , X̂Y |UΠsimΠDE, E)

≥ Sη(XŶ , X̂Y |U, E)− log ‖πsim‖ − λ(3)
min − j∆3 −∆2 − ξ − 2 log(1/2η).

(A.11)
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Also, since {X = X̂, Y = Ŷ } holds when we condition on E ,

Sη(XŶ , X̂Y |U, E) = Sη(XY,XY |U, E)

≥ Hmin(PXY U |E | U)− 2 log(1/2η), (A.12)

where the previous inequality is by the leftover hash lemma. Furthermore,

by using

PXY U |E(x, y, u) ≤ PXY U(x, y, u)

Pr (E)
≤ PXY U(x, y, u)

α
,

we can bound Hmin(PXY U |E | U) as follows:

Hmin(PXY U |E | U) ≥ min
x,y,u
− log

PXY U |E (x, y, u)

PU (u)

≥ min
x,y,u
− log

PXY U (x, y, u)1(PXY U |E (x, y, u) > 0)

αPU (u)

= min
x,y∈E(1)

i

hPXY (x, y) + logα

≥ λ
(1)
min + (i− 1)∆1 + logα. (A.13)

Thus, on combining Equations (A.10)-(A.13), we get

S2η(X, Y |E) ≥ [λ
(1)
min + (i− 1)∆1 − λ(3)

min − j∆3 + logα]−∆2 − ξ

− 4 log(1/2η)− log ‖πsim‖. (A.14)

To get a matching form of the upper bound Equation (A.9) for S2η(X, Y |E),

note that since4

−icPΠXY
(τ ;x, y) = iPXY (x ∧ y)− hPXY (x, y) + hPΠXY

((x, τ)4(y, τ)),

and since under E

hPXY (x, y) ≤ λ
(1)
min + i∆1,

hPXYΠ
((x, τ)4(y, τ)) ≥ λ

(3)
min + (j − 1)∆3,

4For clarity, we display the dependence of each information density on the underlying
distribution in the remainder of this section.
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it holds that

Pr

(
{(x, y) : iPXY (x ∧ y) < γ + logα}

∣∣∣∣ E)
≥ Pr

({
(x, y, τ) : −icPXYΠ

(x, y, τ) < γ − λ(1)
min − i∆1 + λ

(3)
min + (j − 1)∆3

+ logα}
∣∣∣∣ E) .

On choosing

γ = −λ+ λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα,

it follows from Equation (A.9) that

S2η(X, Y |E)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log (Pr (Eλ | E)− 3η)+

+ 2 log(1/η)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log(1− 3η) + 2 log(1/η),

(A.15)

where the equality holds since Pr (Eλ | E) = 1.

Thus, by Equations (A.14) and (A.15), we get

log ‖πsim‖ ≥ λ+ 2 logα−∆1 −∆2 −∆3 − ξ − 6 log(1/η) + log(1− 3η) + 4

= λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 logN1N3

− (∆1 + ∆2 + ∆3)− logN2 − 7 log(1/η) + log(1− 3η) + 4,

where the equality holds for η′ = − log η + logN2. Note that the maximum

value of the right-side above, when maximized over Ni and ∆i under the

constraint Ni∆i = Λi, i = 1, 2, 3, occurs for ∆1 = ∆3 = 2 and ∆2 = 1.

Substituting this choice of parameters, we get

log ‖πsim‖ ≥ λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 log Λ1Λ3 − log Λ2

− 7 log(1/η) + log(1− 3η) + 3.

≥ λ− 2 log Λ1Λ3 − log Λ2 − 9 log(1/η) + log(1− 3η) + 3,

where the final inequality holds for every λ such that Pr (Eλ) ≥ ε+εtail+2η;
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Theorem 2.1 follows upon maximizing the right side-over all such λ.

A.3 Section 2.2: Upper Bound

In this section, we formally present an ε-simulation of a given interactive

protocol π with bounded rounds. For clarity, we build the simulation protocol

in steps.

A.3.1 Sending X Using One-Sided Communication

We start with the well-known Slepian-Wolf compression problem [27] where

Party 1 wants to transmit X itself to Party 2 using as few bits as possible.

This corresponds to simulating the deterministic protocol Π = Π1 = X.

See Remark 1 in Section 2.1 for a discussion on simulation of deterministic

protocols.

For encoder, we use a hash function that is randomly chosen from a 2-

universal hash family Fl(X ); for decoder, we use a kind of joint typical

decoder [11]. Let the typical set TPX|Y be given by

TPX|Y =
{

(x, y) : hPX|Y (x|y) ≤ l − γ
}
, (A.16)

for a slack parameter γ > 0. Our first protocol is given below:

Protocol 10: Slepian-Wolf compression

Input: Observations X and Y , uniform public randomness Uhash, and
a parameter l

Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f from Fl(X )
Party 1 sends Πsim,1 = f(X)
if Party 2 finds the unique x ∈ TPX|Y with hash value f(x) = Πsim,1

then

set X̂ = x
else

protocol declares an error
end

The following result is from [50], [32, Lemma 7.2.1] (see, also, [208]).
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Lemma A.7 (Performance of protocol 10). For every γ > 0, the protocol

above satisfies

Pr
(
X 6= X̂

)
≤ PXY

(
T cPX|Y

)
+ 2−γ.

Essentially, the result above says that Party 1 can send X to Party 2 with

probability of error less than ε using roughly as many bits as the ε-tail of

hPX|Y (X|Y ).

In fact, the use of the typical set in Equation (A.16) is not crucial in

Protocol 10 and its performance analysis: For a given measure QXY , we can

define another typical set TQX|Y by replacing hPX|Y (x|y) with hQX|Y (x|y) in

Equation (A.16) even though the underlying distribution of (X, Y ) is PXY .

Then, the error probability is bounded as

Pr
(
X 6= X̂

)
≤ PXY

(
T cQX|Y

)
+ 2−γ,

which implies that X can be sent by using roughly as many bits as the ε-tail

of hQX|Y (X|Y ) under PXY . This modification is crucial for simplifying our

performance analysis of the more involved protocols in the following sections.

A.3.2 Sending X Using Interactive Communication

Protocol 10 aims at minimizing the worst-case communication length over

all realization of (X, Y ). However, our goal here is to simulate a multiround

interactive protocol and as such, we need not account for the worst-case com-

munication length in each round. Instead, we shall optimize the worst-case

communication length for the combined interactive protocol. The protocol

below is a modification of Protocol 10 and uses roughly h(X|Y ) bits for

transmitting X instead of its ε-tail.

The new protocol proceeds as the previous one but relies on spectrum-

slicing to adapt the length of communication to the specific realization of

(X, Y ): It increases the size of the hash output gradually, starting with

λ1 = λmin and increasing the size ∆-bits at a time until either Party 2

decodes X or λmax bits have been sent. After each transmission, Party 2

sends either an ACK-NACK feedback signal. The protocol stops when an

ACK symbol is received.
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Fix an auxiliary distribution QXY . For λmin
QX|Y

, λmax
QX|Y

,∆QX|Y > 0 with

λmax
QX|Y

> λmin
QX|Y

, let

NQX|Y =
λmax

QX|Y
− λmin

QX|Y

∆QX|Y

,

and

λ
(i)
QX|Y

= λmin
QX|Y

+ (i− 1)∆QX|Y , 1 ≤ i ≤ NQX|Y .

Further, let

T (0)
QX|Y

:=
{

(x, y) | hQX|Y (x|y) ≥ λmax
QX|Y

or hQX|Y (x|y) < λmin
QX|Y

}
, (A.17)

and for 1 ≤ i ≤ NQX|Y , let T (i)
QX|Y

denote the ith slice of the spectrum given

by

T (i)
QX|Y

=
{

(x, y) | λ(i)
QX|Y

≤ hQX|Y (x|y) < λ
(i)
QX|Y

+ ∆QX|Y

}
.

Note that T (0)
QX|Y

corresponds to T cQX|Y in the previous section and will be

counted as an error event.

Our protocol is described in Protocol 11. For every (x, y) ∈ T (i)
QX|Y

, 1 ≤
i ≤ NQX|Y , the following lemma provides a bound on the error.

Lemma A.8 (Performance of protocol 11). For (x, y) ∈ T (i)
QX|Y

, 1 ≤
i ≤ NQX|Y , denoting by X̂ = X̂(x, y) the estimate of x at Party 2 at the

end of the protocol (with the convention that X̂ = ∅ if an error is declared),

Protocol 11 sends at most (l + (i − 1)∆QX|Y + i) bits and has probability of

error bounded above as follows:

Pr
(
X̂ 6= x | X = x, Y = y

)
≤ i2

λmin
QX|Y

+∆QX|Y −l.

Proof. Since (x, y) ∈ T (i)
QX|Y

, an error occurs if there exists a x̂ 6= x such

that (x̂, y) ∈ T (j)
QX|Y

and Πsim,2k−1 = f2k−1(x̂) for 1 ≤ k ≤ j for some j ≤ i.

Therefore, the probability of error is bounded above as

Pr
(
X̂ 6= x | X = x, Y = y

)
≤

i∑
j=1

∑
x̂ 6=x

Pr (f2k−1(x) = f2k−1(x̂), ∀ 1 ≤ k ≤ j)
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Protocol 11: Interactive Slepian-Wolf compression

Input: Observations X and Y with distribution PXY , uniform public
randomness Uhash, auxiliary distribution QXY , and parameters
γ, λmin

QX|Y
,∆QX|Y , NQX|Y , and l

Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f1 from Fl(X )
Party 1 sends Πsim,1 = f1(X)

if Party 2 finds the unique x ∈ T (1)
QX|Y

with hash value f1(x) = Πsim,1

then

set X̂ = x
send back Πsim,2 = ACK

else
send back Πsim,2 = NACK

end
while 2 ≤ i ≤ NQX|Y and party 2 did not send an ACK do

Both parties use Uhash to select fi from F∆QX|Y
(X ), independent of

f1, ..., fi−1

Party 1 sends Πsim,2i−1 = fi(X)

if Party 2 finds the unique x ∈ T (i)
QX|Y

with hash value

fj(x) = Πsim,2j−1, ∀ 1 ≤ j ≤ i then

set X̂ = x
send back Πsim,2i = ACK

else
if More than one such x found then

protocol declares an error
else

send back Πsim,2i = NACK
end

end
Reset i→ i+ 1

end

if No X̂ found at party 2 then
Protocol declares an error

end

1

(
(x̂, y) ∈ T (j)

QX|Y

)
≤

i∑
j=1

∑
x̂ 6=x

1

2
l+(j−1)∆QX|Y

1

(
(x̂, y) ∈ T (j)

QX|Y

)
=

i∑
j=1

∑
x̂6=x

1

2
l+(j−1)∆QX|Y

∣∣∣{x̂ | (x̂, y) ∈ T (j)
QX|Y

}∣∣∣
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≤ i2
λmin

QX|Y
+∆QX|Y −l,

where the first inequality follows from the union bound, the second inequality

follows from the property of 2-universal hash family, and the third inequality

follows from the fact that |{x̂ | (x̂, y) ∈ T (j)
QX|Y
}| ≤ 2

λ
(j)
QX|Y

+∆QX|Y . Note that

the protocol sends l bits in the first transmission, and ∆QX|Y bits and 1-

bit feedback in every subsequence transmission. Therefore, no more than

(l + (i− 1)∆QX|Y + i) bits are sent.

Corollary A.1. Protocol 11 with l = λmin
QX|Y

+ ∆QX|Y + γ sends at most

(hQX|Y (X|Y ) + ∆QX|Y + γ+NQX|Y ) bits when the observations are5 (X, Y ) /∈
T (0)

QX|Y
, and has probability of error less than

Pr
(
X̂ 6= X

)
≤ Pr

(
(X, Y ) ∈ T (0)

QX|Y

)
+NQX|Y 2−γ.

A.3.3 Simulation of Π1 Using Interactive Communication

We now proceed to simulating the first round of our given interactive protocol

π. Note that using Protocol 11, we can send Π1 using roughly h(Π1|Y ) bits.

This protocol uses a public randomness Uhash only to choose hash functions,

which is convenient for our probability of error analysis, and can be easily

derandomized. We now present a scheme which uses another independent

portion of public randomness Usim to reduce the rate of the communica-

tion further. However, the scheme will only allow the parties to simulate

Π1 (rather than recover it with small probability of error) and cannot be

derandomized.

Specifically, our next protocol uses X and U = (Uhash, Usim) to simulate

Π1 in such a manner that Usim can be treated, in effect, as a portion of the

communication used in Protocol 11. Note that since Usim is independent of

(X, Y ), the portion of communication which is equivalent to Usim must as

well be almost independent of (X, Y ). Such a portion can be guaranteed

by noting that the communication used in Protocol 11 is simply a random

hash of Π1 drawn from a 2-universal family, and therefore, its appropriately

small portion can have the desired independence property by the leftover

5When hQX|Y (X|Y ) < λmin
QX|Y

, Protocol 11 may transmit more than (hQX|Y (X|Y ) +

∆QX|Y + γ +NQX|Y ) bits.
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hash lemma. In fact, since the Markov condition Π1 −◦− X −◦− Y holds, it

suffices guarantee the independent of X instead of (X, Y ).

Protocol 12: Simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public
randomness U = (Uhash, Usim), auxiliary distribution QΠ1Y , and
parameters γ, λmin

QΠ1|Y
,∆QΠ1|Y

, NQΠ1|Y
and k

Output: Estimates Π1X and Π1Y of Π1

1. Two parties share k random bits Usim and an h chosen from
Hk(supp(Π1)) using Uhash

2. Party 1 generates a sample Π1X using PΠ1|Xf(Π1) (·|X,Usim)
3. Parties use Protocol 11 with auxiliary distribution QΠ1Y , and
parameters γ, λmin

QΠ1|Y
,∆QΠ1|Y

, NQΠ1|Y
, and l = λmin

QΠ1|Y
+ ∆QΠ1|Y

+ γ to

send Π1X to Party 2 by treating Usim as the first k bits of
communication obtained via the hash function f

Our simulation protocol is described in Protocol 12. Let the quantities

such as λmin
QΠ1|Y

,∆QΠ1|Y
, and NQΠ1|Y

be defined analogously to the correspond-

ing quantities in Section A.3.2 with Π1 replacing X. The following lemma

provides a bound on the simulation error for Protocol 12.

Lemma A.9 (Performance of protocol 12). Protocol 12 sends at most(
hQΠ1|Y

(Π1X |Y ) + ∆QΠ1|Y
+NQΠ1|Y

+ γ − k
)

+

bits when (Π1X , Y ) /∈ T (0)
QΠ1|Y

, and has simulation error

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ

+
1

2

√
2k−Hmin(PΠ1X

|QX),

for any auxiliary distribution QX on X .

Proof. Consider the following simple protocol for simulating Π1 at Party 2:

1. Party 1 generates a sample Π1 using PΠ1|X (·|X).

2. Both parties use Protocol 11 with auxiliary distribution QΠ1Y , and

parameters γ, λmin
QΠ1|Y

,∆QΠ1|Y
, NQΠ1|Y

, and l = λmin
QΠ1|Y

+ ∆QΠ1|Y
+ γ to

generate an estimate ˆProt1 of Π1 at Party 2.
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In this protocol, lwst = λmin
QΠ1|Y

+NQΠ1|Y
∆QΠ1|Y

+ γ bits of hash values will be

sent for the worst (Π1, Y ). We divide these lwst hash values into two parts,

the fist k bits and the last lwst− k bits; let f and f ′, respectively, denote the

hash function producing the first and the second parts. Protocol 12 replaces,

in effect, f with shared randomness Usim for an appropriately chosen value

of k.

Note that the joint distribution of the random variables involved in the

simple protocol above satisfies6

Pf(Π1)f ′(Π1)Π1Π̂1XY
(v, v′, τ, τ̂ , x, y)

= Pf(Π1)X(v, x)PΠ1|Xf(Π1)(τ |x, v)Pf ′(Π1)|Π1(v′|τ)PY |X(y|x)

PΠ̂1|f(Π1)f ′(Π1)Π1XY
(τ̂ |v, v′, τ, x, y). (A.18)

Note that the simple protocol above is deterministic and therefore by Re-

mark 2.1

dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
= Pr

(
Π1 6= Π̂1

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ, (A.19)

where the inequality is by Corollary A.1.

On the other hand, the joint distribution of RVs involved in Protocol 12

can be factorized as

PUsimf ′(Π1X )Π1XΠ1YXY (u, u′, τ, τ̂ , x, y)

= PUsim
(u)PX(x)PΠ1|Xf(Π1)(τ |x, u)Pf ′(Π1)|Π1(u′|τ)PY |X(y|x)

PΠ̂1|f(Π1)f ′(Π1)Π1XY
(τ̂ |u, u′, τ, x, y). (A.20)

Therefore, the simulation error for Protocol 12 is bounded as

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ dvar

(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π1XY

)
≤ dvar

(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π̂1XY

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
6When the protocol terminate before NQΠ1|Y th round, a part of (f(Π1), f ′(Π1)) may

not be sent.
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= dvar
(
PUsim

PX ,Pf(Π1)X

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
≤ dvar

(
PUsim

PX ,Pf(Π1)X

)
+ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ,

where the first inequality is by the monotonicity of ‖ · ‖, the second in-

equality is by the triangular inequality, the equality is by the fact that re-

placing PUsim
PX with Pf(Π1)X is the only difference between the factoriza-

tions in Equations (A.20) and (A.18), and the final inequality is by Equa-

tion (A.19). The desired bound on simulation error for Protocol 12 follows

by using Lemma A.2 to get

dvar
(
PUsim

PX ,Pf(Π1)X

)
≤ 1

2

√
2k−Hmin(PΠ1X

|QX).

Since Protocol 12 uses shared randomness Usim instead of sending f(Π1), it

communicates k fewer bits in comparison with the simple protocol above,

which completes the proof.

A.3.4 Improved Simulation of Π1

In Protocol 12 we were able to reduce the communication by roughly

Hmin(PΠ1X |QX) bits by simulating a Π1 such that if we use Protocol 11

for sending Π1 to Party 2, a portion of the required communication can be

treated as shared public randomness. However, this is the least reduction in

communication we can obtain in the worst case. In this section, we slice the

spectrum of hPΠ1|X
(Π1|X) to obtain an instantaneous reduction of roughly

hPΠ1|X
(Π1|X) bits.

Denote by J a random variable which takes the value j ∈ {0, 1, . . . , NPΠ1|X
}

if (Π1, X) ∈ T (j)
PΠ1|X

. In our modified protocol, Party 1 first samples J and

sends it to Party 2. Then, they proceed with Protocol 12 for PΠ1XY |J=j by

selecting k to be less than Hmin(PΠ1X|J=j|QX) for an appropriately chosen

QX . Let Jg be the set of ”good” indices j > 0 with

PJ (j) ≥ 1

N2
PΠ1|X

;
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it holds that

PJ

(
J c

g

)
< Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Note that for j ∈ Jg, with QX = PX , we have

Hmin(PΠ1X|J=j|PX) = min
τ,x
− log

PΠ1X|J (τ, x|j)
PX (x)

= min
τ,x
− log

PΠ1|X (τ |x)

PJ (j)

≥ λmin
PΠ1|X

+ (j − 1)∆PΠ1|X
− 2 logNPΠ1|X

.

Protocol 13: Improved simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public
randomness U = (Uhash, Usim), and parameters λmin

PΠ1|Y
, ∆PΠ1|Y

,

NPΠ1|Y
, λmin

PΠ1|X
, ∆PΠ1|X

, NPΠ1|X
, and γ

Output: Estimates Π1X and Π1Y of Π1

Party 1 generate J ∼ PJ |X(·|X), and send it to Party 2.
if J = j ∈ Jg then

Parties use Protocol 12 with auxiliary distribution PΠ1Y ,
parameters γ, λmin

PΠ1|Y
, ∆PΠ1|Y

, NPΠ1|Y
, and

k = λmin
PΠ1|X

+ (j − 1)∆PΠ1|X
− 2 logNPΠ1|X

− 2γ + 2 to simulate Π1X

and Π1Y for the distribution PΠ1XY |J=j

else
protocol declares an error

end

Our modified simulation protocol is described in Protocol 13. The following

lemma provides a bound on the simulation error.

Lemma A.10 (Performance of protocol 13). Protocol 13 sends at most(
hPΠ1|Y

(Π1X |Y )− hPΠ1|X
(Π1X |X) +NPΠ1|Y

+ 3 logNPΠ1|X
+ ∆PΠ1|Y

+ ∆PΠ1|X

+3γ)+ bits when (Π1X , Y ) /∈ T (0)
PΠ1|Y

, and has simulation error

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

PΠ1|Y

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+
(
NPΠ1|Y

+ 1
)

2−γ

+
1

NPΠ1|X

.
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Proof. First, we have

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ dvar

(
PΠ1XΠ1YXY J ,PΠ1Π1XY J

)
=
∑
j

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j,PΠ1Π1XY |J=j

)
≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j,PΠ1Π1XY |J=j

)
+ PJ

(
J c

g

)
≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j,PΠ1Π1XY |J=j

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Then, we apply Lemma A.9 with QX = PX for each j ∈ Jg, and get

dvar
(
PΠ1XΠ1YXY |J=j,PΠ1Π1XY |J=j

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

PΠ1|Y
| J = j

)
+NPΠ1|Y

2−γ +
1

2

√
2k−Hmin(PΠ1X|J=j |PX)

≤ Pr
(

(Π1, Y ) ∈ T (0)
PΠ1|Y

| J = j
)

+
(
NPΠ1|Y

+ 1
)

2−γ. (A.21)

Thus, we have the desired bound on simulation error.

Next, we prove the claimed bound on the number of bits sent by the

protocol. By Lemma A.9, the fact that J can be sent by using at most

logNPΠ1|X
+ 1 bits and the choice of k in Protocol 13, for J = j the protocol

above communicates at most

hQΠ1|Y
(Π1X |Y ) + ∆QΠ1|Y

+NQΠ1|Y
+ γ + logNPΠ1|X

+ 2− k

≤ hQΠ1|Y
(Π1X |Y )− λmin

PΠ1|X
− (j − 1)∆PΠ1|X

+ ∆QΠ1|Y
+NQΠ1|Y

+ 3 logNPΠ1|X
+ 3γ.

≤ hQΠ1|Y
(Π1X |Y )− hPΠ1|X

(Π1X |X) + ∆PΠ1|X
+ ∆QΠ1|Y

+NQΠ1|Y

+ 3 logNPΠ1|X
+ 3γ,

where the previous inequality holds since for Π1X generated by

PΠ1|Xf(Π1)J(·|X,Usim, j),

λmin
PΠ1|X

+ j∆PΠ1|X
≥ hPΠ1|X

(Π1X |X),
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for each j ∈ Jg.

A.3.5 Simulation of Π

We are now in a position to describe our complete simulation protocol. Con-

sider an interactive protocol π with maximum number of rounds rmax = d <

∞. We simply apply Protocol 13 for each round Πt of Π. Our overall simu-

lation protocol is described in Protocol 14. In each round we use Protocol 13

assuming that the simulation up to the previous round has succeeded, where,

for the rounds with even numbers, we use Protocol 13 by interchanging the

role of Party 1 and Party 2.

Protocol 14: Simulation of Π
Input: Observations X and Y with distribution PXY , uniform public

randomness U = (Ut,hash, Ut,sim : t = 1, . . . , d), and parameters
λmin

PΠt|XΠt−1
, ∆PΠt|XΠt−1 , NPΠt|XΠt−1 , λmin

PΠt|YΠt−1
, ∆PΠt|YΠt−1 ,

NPΠt|YΠt−1 for t = 1, . . . , d and γ.

Output: Estimates ΠX and ΠY of Π
while Total communication is less than lmax bits, and simulation not
ended do

Party 1 and Party 2, respectively, use estimates Πt−1
X and Πt−1

Y for
Πt−1 ;
Parties use Protocol 13 for simulating PΠt(XΠt−1)(YΠt−1) with
parameters λmin

PΠt|XΠt−1
, ∆PΠt|XΠt−1 , NPΠt|XΠt−1 , λmin

PΠt|YΠt−1
,

∆PΠt|YΠt−1 , NPΠt|YΠt−1 and γ ;

Update t→ t+ 1
end
if Total communication exceeds lmax bits then

Declare an error
end

The following lemma provides a bound on the simulation error.

Lemma A.11 (Performance of protocol 14). Protocol 14 sends at most

lmax bits, and has simulation error dvar
(
PΠXΠYXY ,PΠΠXY

)
≤

Pr

(
ic(Π;X, Y ) +

d∑
t=1

δt > lmax

)

+
d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
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+ 3
(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

where

δt =

{
NPΠt|YΠt−1 + 3 logNPΠt|XΠt−1 + ∆PΠt|YΠt−1 + ∆PΠt|XΠt−1 + 3γ odd t

NPΠt|XΠt−1 + 3 logNPΠt|YΠt−1 + ∆PΠt|XΠt−1 + ∆PΠt|YΠt−1 + 3γ even t
.

(A.22)

Remark 1. The fudge parameters ε′ and λ′ can be explicitly given by

ε′ =
d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+ 3

(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

λ′ =
d∑
t=1

δt.

Proof. Let us consider a virtual protocol in which the protocol does not

terminate even if the total number of bits exceed lmax; let us denote the

output of this protocol by Π̄X = (Π̄1X , . . . , Π̄dX ) and Π̄Y = (Π̄1Y , . . . , Π̄dY).

Then, we have

dvar
(
PΠXΠYXY ,PΠΠXY

)
≤ dvar

(
PΠXΠYXY ,PΠ̄X Π̄YXY

)
+ dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
≤ Pr

(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
+ dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
. (A.23)

First, we bound the second term of Equation (A.23). By using triangular

inequality repeatedly and by using Lemma A.10, we have

dvar
(
PΠ̄X Π̄YXY ,PΠΠXY

)
≤ dvar

(
PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)Y Π̄dX Π̄dYXY ,PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY

)
+ dvar

(
PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY ,PΠ1Π1···Π(d−1)Π(d−1)ΠdΠdXY

)
= dvar

(
PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)YXY

,PΠ1Π1···Π(d−1)Π(d−1)XY

)
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+ dvar
(
PΠ̄dX Π̄dY (XΠd−1)(YΠd−1),PΠdΠd(XΠd−1)(YΠd−1)

)
=

...

=
d∑
t=1

dvar
(
PΠ̄tX Π̄tY (XΠt−1)(YΠt−1),PΠtΠt(XΠt−1)(YΠt−1)

)
≤
∑
t:odd

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|YΠt−1 + 1

)
2−γ +

1

NPΠt|XΠt−1

]
+
∑
t:even

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|XΠt−1 + 1

)
2−γ +

1

NPΠt|YΠt−1

]

≤
d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+
(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

1

NPΠt|XΠt−1

+
1

NPΠt|YΠt−1

]
. (A.24)

By denoting

l(X, Y, Π̄X , Π̄Y) :=
∑
t:odd

hPΠt|YΠt−1 (Π̄tX |Y, Π̄t−1
Y )− hPΠt|XΠt−1 (Π̄tX |X, Π̄t−1

X )

+
∑
t:even

hPΠt|XΠt−1 (Π̄tY |X, Π̄t−1
X )− hPΠt|YΠt−1 (Π̄tY |Y, Π̄t−1

Y ).

Since (ΠX ,ΠY) coincides with (Π̄X , Π̄Y) when the accumulated message length

of the protocol generating (Π̄X , Π̄Y) does not exceed lmax, and since the mes-

sage length of each round is bounded by each term of l(X, Y, Π̄X , Π̄Y) plus

δt by Lemma A.10 unless (Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or (Π̄tY , (X, Π̄

t−1
X )) ∈

T (0)
PΠt|XΠt−1

, we have

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
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≤ Pr

(
l(X, Y, Π̄X , Π̄Y) +

d∑
t=1

δt > lmax

)

+ Pr

(⋃
t:odd

(Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Π̄tY , (X, Π̄
t−1
X )) ∈ T (0)

PΠt|XΠt−1

)
. (A.25)

Since

Pr
(
(X, Y, Π̄X , Π̄Y) ∈ E

)
≤ Pr ((X, Y,Π,Π) ∈ E) + dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
,

for any event E , it follows from Equation (A.25) that

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
≤ Pr

(
l(X, Y,Π,Π) +

d∑
t=1

δt > lmax

)

+ Pr

(⋃
t:odd

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Πt, (X,Π
t−1)) ∈ T (0)

PΠt|XΠt−1

)
+ 2dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
≤ Pr

(
l(X, Y,Π,Π) +

d∑
t=1

δt > lmax

)

+
d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+ 2dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
. (A.26)

Thus, by combining this bound with Equations (A.23) and (A.24), and by

noting

l(X, Y,Π,Π) = ic(Π;X, Y ),

we have the desired bound on simulation error.
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A.4 Section 2.2: Asymptotic Optimality

We now present the proofs of Theorem 2.3 and Theorem 2.4 using single-

shot bounds given in Theorem 2.1 and Theorem 2.2. Both the proofs rely on

carefully choosing the slice-sizes in the lower and upper bounds.

A.4.1 Proof of Theorem 2.3

We start with the upper bound. Note that, for IID random variables

(Πn, Xn, Y n), the spectrums of h(Πn
t |Zn, (Πt−1)n) for7 Z = X or Y have

width O(
√
n). Therefore, the parameters ∆s and Ns that appear in the

fudge parameters can be chosen as O(n1/4). Specifically, by standard measure

concentration bounds (for bounded random variables), for every ν > 0, there

exists a constant8 c > 0 such that with

λmin
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1)− c

√
n,

λmax
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1) + c

√
n,

the following bound holds:

Pr
(

(Πn
t , (Z

n, (Πt−1)n)) ∈ T (0)
PΠnt |Z

n(Πt−1)n

)
≤ ν. (A.27)

Let T denote the third central moment of the random variable ic(Π;X, Y ).

For

λn = nIC(π) +
√
nV(π)Q−1

(
ε− 9dν − T 3

2V(π)3/2
√
n

)
,

choosing ∆PΠnt |Z
n(Πt−1)n

= NPΠnt |Z
n(Πt−1)n

= γ =
√

2cn1/4, and lmax = λn +∑d
t=1 δt in Theorem 2.2, we get a protocol of length lmax and satisfying

dvar

(
PΠnXΠnYX

nY n ,PΠnΠnXnY n

)
≤ Pr

(
n∑
i=1

ic(Πi;Xi, Yi) > λn

)
+ 9dν,

7We introduce Z as a placeholder for X or Y for brevity.
8Although the constant depends on random variables appearing in each round, since

the number of rounds is bounded, we take the maximum constant so that Equation (A.27)
holds for every t.
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for sufficiently large n. By its definition given in Equation (A.22), δt =

O(n1/4) for the choice of parameters above. Thus, the Berry-Esséen theorem

(cf. [209]) and the observation above gives a protocol of length lmax attaining

ε-simulation. Therefore, using the Taylor approximation of Q(·) yields the

achievability of the claimed protocol length.

For the lower bound, we fix sufficiently small constant δ > 0, and we set

λ
(1)
min = n(H(X, Y )− δ), λ(1)

max = n(H(X, Y ) + δ),

λ
(2)
min = n(H(X|Y,Π)− δ), λ(2)

max = n(H(X|Y,Π) + δ),

λ
(3)
min = n(H(XΠ4YΠ)− δ), λ(3)

max = n(H(XΠ4YΠ) + δ).

Then, by standard measure concentration bounds imply that the tail proba-

bility εtail in Equation (2.3) is bounded above by c
n

for some constant c > 0.

We also set η = 1
n
. For these choices of parameters, we note that the fudge

parameter is λ′ = O(log n). Thus, by setting

λ = λn

= nIC(π) +
√
nV(π)Q−1

(
ε+

c+ 2

n
+

T 3

2V(π)3/2
√
n

)
= nIC(π) +

√
nV(π)Q−1(ε) +O(log n),

where the final equality is by the Tailor approximation, an application of the

Berry-Esséen theorem to the bound in Equation (2.2) gives the desired lower

bound on the protocol length.

A.4.2 Proof of Theorem 2.4

Theorem 2.1 implies that if a protocol πsim is such that

log ‖πsim‖ < λ− λ′, (A.28)

then its simulation error must be larger than

Pr (ic (Πn;Xn, Y n) > λ)− ε′. (A.29)
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To compute fudge parameters, we set

λ
(1)
min = n(H(X, Y )− δ), λ(1)

max = n(H(X, Y ) + δ),

λ
(2)
min = n(H(X|Y,Π)− δ), λ(2)

max = n(H(X|Y,Π) + δ),

λ
(3)
min = n(H(XΠ4YΠ)− δ), λ(3)

max = n(H(XΠ4YΠ) + δ).

By the Chernoff bound, there exists E1 > 0 such that

εtail ≤ 2−E1n.

Furthermore, Λi = O(n) for i = 1, 2, 3. We set η = 2−
δ
27
n. It follows that

ε′ ≤ 2−E1n + 2−
δ
27
n, (A.30)

and

λ′ ≤ δ

3
n+O(log n). (A.31)

Finally, upon setting

λ = nIC(π)− δ

3
, (A.32)

and applying the Chernoff bound once more, we obtain a constant E2 > 0

such that

Pr (ic (Πn;Xn, Y n) > λ) ≥ 1− 2−E2n. (A.33)

The result follows upon combining Equations (A.28)-(A.33).
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Section 3.2: Direct Routing

B.1.1 Proof of Theorem 3.1

Proof. We first note that for the throughput of an empty schedule is zero, i.e.

f({}) = 0. Also for any S ⊆ S ′ ∈ 2Z×M we have min
{∑

(α,M)∈S αM, T
}
≤

min
{∑

(α,M)∈S′ αM, T
}

implying f(S) ≤ f(S ′). Hence f is normalized and

monotone. Next, using the identify

min(a+ b, c) = min(a, c) + min(b, c−min(a, c))

for non-negative reals a, b, c, we have for S ∈ 2Z×M and (α0,M0) /∈ S,

f(S ∪ {(α0,M0)}) =
∥∥min

( ∑
(α,M)∈S

αM + α0M0, T
)∥∥

1

=
∥∥min

( ∑
(α,M)∈S

αM, T
)

+ min
(
α0M0, T −min

( ∑
(α,M)∈S

αM, T
))∥∥

1

⇒ fS((α0,M0)) =
∥∥min

(
α0M0, T −min

( ∑
(α,M)∈S

αM, T
))∥∥

1
, (B.1)

where fS((α0,M0)) denotes the incremental marginal value of adding (α0,M0)

to the set S (see Section 3.2.2). Finally, for S ⊆ S ′ ∈ 2Z×M and (α0,M0) /∈ S ′

we have

T −min
(∑
i∈S′

αiMi, T
)
≤ T −min

(∑
i∈S

αiMi, T
)
.
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Combining the above equation with Equation (B.1) we get

fS′({(α0,M0)}) ≤ fS({(α0,M0)}),

or in other words f is submodular.

B.1.2 Proof of Theorem 3.2

Proof. Recall the submodular sum-throughput function f defined in Equa-

tion (3.2). Let {(α1,M1), . . . , (αk,Mk)} be the schedule returned by Algo-

rithm 2. Let Si = {(α1,M1), . . . , (αi,Mi)} denote the schedule computed

at the end of i iterations of the while loop and let S∗ denote the opti-

mal schedule. Now, since in the i + 1-th iteration (αi+1,Mi+1) maximizes
min(αM,Trem(i+1))‖1

(α+δ)
=

fSi ({(α,M)})
(α+δ)

we have for any (α,M) /∈ Si,

fSi({(α,M)})
(α + δ)

≤ fSi({(αi+1,Mi+1)})
(αi+1 + δi+1)

⇒ fSi({(α,M)}) ≤ (α + δ)

(αi+1 + δi+1)
fSi({(αi+1,Mi+1)}). (B.2)

Now consider OPT− f(Si) for some i < k. Since f is monotone we have

OPT− f(Si) = f(S∗)− f(Si) ≤ f(Si ∪ S∗)− f(Si)

≤
∑

(α,M)∈J∗
fSi({(α,M)})

≤
∑

(α,M)∈J∗

(α + δ)

(αi+1 + δi+1)
fSi({(αi+1,Mi+1)}) (B.3)

≤ W

(αi+1 + δi+1)
fSi({(αi+1,Mi+1)}), (B.4)

where J∗ := S∗\Si denotes the set of matchings that are present in the

optimal solution but not in Si, Equation (B.3) follows from Equation (B.2),

and Equation (B.4) follows because
∑

(α,M)∈J∗(α+ δ) ≤
∑

(α,M)∈S∗(α+ δ) ≤
W . Next, observe that

f(Si+1) = f(Si) + fSi({(αi+1,Mi+1)})

⇒ OPT− f(Si+1) = OPT− f(Si)− fSi({(αi+1,Mi+1)})
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≤ (OPT− f(Si))

(
1− (αi+1 + δ)

W

)
(B.5)

≤ (OPT− f(S0))
i+1∏
i′=1

(
1− (αi′ + δ)

W

)
≤ OPT× e−

∑i+1
i′=1

(αi′+δ)/W , (B.6)

where Equation (B.5) follows from Equation (B.4) and Equation (B.6) follows

because of the identity 1 − x ≤ e−x. Now, since after the k-th iteration

the while loop terminates, this implies
∑k

i′=1(αi′ + δ) > W . However, if

the entries of the input traffic matrix T are bounded by εW + δ, then no

matching has a duration longer than εW . In particular αk + δ ≤ εW ⇒∑k−1
i′=1(αi′ + δ) ≥ W (1 − ε). Thus, setting i = k − 2 in Equation (B.6) we

have

OPT− f(Sk−1) ≤ OPT× e−
∑k−1
i′=1

(αi′+δ)/W ≤ OPT× e−(1−ε)

⇒ OPT− ALG2 ≤ OPT× e−(1−ε).

Hence we conclude ALG2 ≥ OPT(1− e−(1−ε)).

B.1.3 Correctness

Consider any traffic matrix T ∈ Zn×n. Let T = {T (i, j) : i, j ≤ [n]} denote

the distinct entries in the matrix T . Then, in the following, we show that

the maximizer in

max
α∈Z,M∈M

‖min(T, αM)‖1

α + δ
(B.7)

occurs for α ∈ T . To do this, for any matching M ∈ M let us define

fM(α) , ‖min(αM, T )‖1 and let f(α) , maxM∈M
fM (α)
α+δ

. We then have the

following proposition.

Proposition B.1. fM(α) is (i) non-decreasing, (ii) piece-wise linear where

the corner points are from T and (iii) concave.

Proof. It is easy to see (i) because if α1 ≤ α2 then min(α1M,T ) ≤ min(α2M,T )

entrywise and hence fM(α1) ≤ fM(α2). To see (ii) consider any t1 < t2 ∈ T
such that no other element of T is between t1 and t2. Then for t1 ≤ α ≤ t2
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we have

fM(α) = ‖min(αM, T )‖1

=
∑

(i,j)∈M
T (i,j)≤t1

min(α, T (i, j)) +
∑

(i,j)∈M
T (i,j)≥t1

min(α, T (i, j))

=
∑

(i,j)∈M
T (i,j)≤t1

T (i, j) +
∑

(i,j)∈M
T (i,j)≥t1

α

=
∑

(i,j)∈M
T (i,j)≤t1

T (i, j) + |{(i, j) ∈M : T (i, j) ≥ t1}|α. (B.8)

Thus fM(·) is linear for t1 ≤ α ≤ t2 and (ii) follows. (iii) also follows from

Equation (B.8) by observing that

|{(i, j) ∈M : T (i, j) ≥ t1}| ≥ |{(i, j) ∈M : T (i, j) ≥ t2}|

for any t1 < t2 ∈ T . Hence the slope of the piece-wise linear function fM(α)

is non-increasing as α increases. In other words, fM(α) is concave.

Next, we consider a case where the matching is fixed.

Proposition B.2. For a fixed matching M , we have arg maxα
fM (α)
α+δ

∈ T .

Proof. This follows from Proposition B.1-(ii). Let fM(α) be linear for α ∈
[t1, t2]. Then it can be written as fM(α) = fM(t1) +m(α− t1) for some slope

m ≥ 0. Now, consider the derivation of the function fM(α)/(α + δ) in the

interval [t1, t2]:

d

dα

(
fM(α)

α + δ

)
=

d

dα

(
fM(t1) +m(α− t1)

α + δ

)
=

(α + δ)(m)− (fM(t1) +m(α− t1))

(α + δ)2

=
δm− fM(t1) +mt1

(α + δ)2
. (B.9)

Note that the numerator of Equation (B.9) is independent of α and the

denominator is strictly positive. Hence the sign (i.e., > 0, < 0 or = 0) of

the slope of fM(α)/(α + δ) is the same in the interval [t1, t2]. This proves

that the maximum must occur at either of the extreme points t1 or t2. By
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Proposition B.1-(ii) we know that the fM(α) is piece-wise linear with the

corner points from the set T . Thus we can conclude that the maximum

must occur at one of the points in T .

We are now ready to show that the maximizer of Equation (B.7) occurs

for α ∈ T .

Theorem B.1. arg maxα f(α) ∈ T .

Proof. This follows directly from Proposition B.2. Notice that

max
α

f(α) = max
α

max
M

fM(α)

α + δ
= max

M

(
max
α

fM(α)

α + δ

)
.

But the maximizer of fM(α)/(α + δ) belongs to T for any M . Hence we

conclude that the maximizer of f(α) also belongs to T and the theorem

follows.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Section 4.5.1: Converse

We first prove the following Proposition C.1, which bounds the depth of any

tree with a give degree distribution.

Proposition C.1. Any directed tree with n nodes, and where d(i) fraction

of the nodes have an out-degree of i for i = 0, 1, . . . , l, has a depth D that is

bounded as

D ≥ d(1)

d(0)
+ logl

(
1 +

l∑
k=2

nd(k)(k − 1)

)
− (l − 2) logl

(
l!

2

)
. (C.1)

Proof. It is clear that the tree with the lowest depth, for a given (d(0), . . . , d(l)),

has the largest degree nodes on the very top followed by the second largest

degree nodes and so on. Let us call a layer of nodes at a particular depth as

an i-layer if the largest degree node present in that layer has the degree i.

Further, let di, i = 1, . . . , l denote the number of of the i-layers in the tree.

Therefore,

D =
l∑

i=0

di (C.2)

gives the depth of the tree. The proof proceeds by bounding the depth of

each layer. The number of nodes in the topmost layer of the graph, layer l,

can be bounded as1

1 + l + . . .+ ldl−2 ≤ nd(l) ≤ 1 + l + . . .+ ldl−1. (C.3)

1If no such dl exists, then dl = 0.
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This yields

logl(nd
(l)(l − 1) + 1) ≤ dl, (C.4)

ldl ≤ (nd(l)(l − 1) + 1)l. (C.5)

Now, in the second layer where there are nodes of degree l − 1 (or possibly

lesser), since ldl constitutes an upper bound on the number of degree l parents

of degree l−1 nodes and ldl−1(l−1) constitutes a lower bound, we must have

ldl−1(l − 1)(1 + (l − 1) + . . .+ (l − 1)dl−1−2) ≤ nd(l−1),

nd(l−1) ≤ ldl(1 + (l − 1) + . . .+ (l − 1)dl−1−1) (C.6)

⇒ ldl−1(1 + (l − 1) + . . .+ (l − 1)dl−1−2) ≤ nd(l−1),

nd(l−1) ≤ ldl(1 + (l − 1) + . . .+ (l − 1)dl−1−1). (C.7)

This yields

logl−1

(
nd(l−1)(l − 2)

ldl
+ 1

)
≤ dl−1, (C.8)

ldl(l − 1)dl−1 ≤ (nd(l−1)(l − 2) + nd(l)(l − 1) + 1)(l)(l − 1). (C.9)

Using Equation (C.5) in Equation (C.8) we have,

logl−1

(
nd(l−1)(l − 2)

(nd(l)(l − 1) + 1)l
+ 1

)
≤ dl−1. (C.10)

Similarly, we have in the (l − 2)th layer,

ldl−1(l − 1)(l − 1)dl−1−1(l − 2)(1 + (l − 2) + . . .+ (l − 2)dl−2−2) ≤ nd(l−2)

⇒ ldl−1(l − 1)dl−1−1(1 + (l − 2) + . . .+ (l − 2)dl−2−2) ≤ nd(l−2),

⇒ nd(l−2) ≤ ldl(l − 1)dl−1(1 + (l − 2) + . . .+ (l − 2)dl−2−1),

(C.11)

yielding

logl−2

(
nd(l−2)(l − 3)

ldl(l − 1)dl−1
+ 1

)
≤ dl−2, (C.12)

ldl(l − 1)dl−1(l − 2)dl−2 ≤ (nd(l−2)(l − 3)

+ nd(l−1)(l − 2) + nd(l)(l − 1)
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+ 1)(l)(l − 1)(l − 2). (C.13)

Using Equation (C.9) we have:

logl−2

(
nd(l−2)(l − 3)

(nd(l−1)(l − 2) + nd(l)(l − 1) + 1)(l)(l − 1)
+ 1

)
≤ dl−2. (C.14)

We continue this process for all the i-layers for i ≥ 2. Finally, in the last

layer the number of degree one chains is equal to the number of the leaves.

As such, we must have

nd(1)

nd(0)
− 1 ≤ d1, and d0 = 1. (C.15)

Therefore, from Equation (C.2) we have depth

D ≥ d(1)

d(0)
+

l∑
k=2

logk

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
.

(C.16)

Now, the second term in the right-hand side of Equation (C.16), denoted by

T , can be lower bounded as

T ≥
l∑

k=2

logl

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)

= logl

l∏
k=2

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)

≥ logl

l∏
k=2

(
(1 +

∑l
k′=k+1 nd

(k′)(k′ − 1)) + nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)

= logl

((
1 +

l∑
k′=2

nd(k′)(k′ − 1)

)
l∏

k=2

(
1∏l

k′′=k+1(k′′)

))

≥ logl

(
1 +

l∑
k′=2

nd(k′)(k′ − 1)

)
− (l − 2) logl

(
l!

2

)
(C.17)

thus proving the claim.

We now prove Theorem 4.2.

Proof of Theorem 4.2. As mentioned in Section 4.5.1, without loss of gener-
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ality let us consider T trees with the ith tree carrying a rate of ri. Let d
(j)
i

denote the fraction of nodes having an out-degree of j in tree i. Clearly,

d
(0)
i + d

(1)
i + . . .+ d

(l)
i = 1, ∀i = 1, . . . , T. (C.18)

Since any tree with n nodes has n− 1 edges, we have

n(d
(1)
i + 2d

(2)
i + . . .+ (l − 1)d

(l−1)
i + ld

(l)
i ) = n− 1, ∀i = 1, . . . , T, (C.19)

⇒ d
(1)
i + 2d

(2)
i + . . .+ (l − 1)d

(l−1)
i + ld

(l)
i = 1− 1

n
, ∀i = 1, . . . , T. (C.20)

Now, every degree i node for i ≥ 2 needs at least i − 1 redundant edges

because of the capacity requirement of the theorem. As such, the cumulative

node capacity constraint becomes

T∑
i=1

(n− 1)ri + n(d
(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i )ri ≤ n

⇒
T∑
i=1

(
1− 1

n
+ d

(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i

)
ri ≤ 1. (C.21)

The proof essentially obtains a lower bound for the expression in Equa-

tion (C.1) based on above Equations (C.18), (C.20) and (C.21). Subtracting

Equation (C.18) from (C.20) gives

d
(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i = d

(0)
i −

1

n
, ∀i = 1, . . . , T. (C.22)

From the above, we have

d
(j)
i ≤

1

j − 1

(
d

(0)
i −

1

n

)
, (C.23)

and combined with Equation (C.18) we get

1 ≤ d
(0)
i + d

(1)
i +

(
d

(0)
i −

1

n

)(
1 +

1

2
+ . . .+

1

l − 1

)
≤ d

(0)
i + d

(1)
i +

(
d

(0)
i −

1

n

)
(loge(l − 1) + 1)

⇒ d
(1)
i ≥ 1− d(0)

i (loge(l − 1) + 2) +
1

n
(loge(l − 1) + 1)
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⇒ d
(1)
i

d
(0)
i

≥ 1

d
(0)
i

− (loge(l − 1) + 2) +
1

nd
(0)
i

(loge(l − 1) + 1). (C.24)

Also, the second term in the delay lower bound in Equation (C.1) becomes

logl

(
1 +

l∑
k=2

nd(k)(k − 1)

)
= logl

(
1 + nd

(0)
i

)
. (C.25)

As such, using Equations (C.24), (C.25) and (C.1) the delay for the i-th tree

Di can now be lower bounded as

Di ≥
1

d
(0)
i

− (loge(l − 1) + 2) + logl

(
1 + nd

(0)
i

)
− (l − 2) logl

(
l!

2

)
, (C.26)

for all i = 1, . . . , T . The derivative of the right-hand side above in Equa-

tion (C.26) with respect to d
(0)
i is given by

− 1

(d
(0)
i )2

+
n

(1 + nd
(0)
i ) log l

, (C.27)

which is strictly negative in 0 < d
(0)
i < 1. As such, the minima in the right-

hand side of Equation (C.26) is achieved by the largest achievable d
(0)
i . Now,

using Equations (C.18) and (C.20) in (C.21) we get

T∑
i=1

(
1− 2

n
+ d

(0)
i

)
ri ≤ 1,

⇒ min
i
d

(0)
i ≤

1

R
− 1 +

2

n
. (C.28)

Letting i∗ = arg min d
(0)
i , the overall delay for the system can be bounded

by the delay of the i∗-th tree. Hence, substituting Equation (C.28) in (C.26)

we have

D ≥ 1

d
(0)
i∗

− (loge(l − 1) + 2) + logl

(
1 + nd

(0)
i∗

)
− (l − 2) logl

(
l!

2

)
(C.29)

≥ 1
1
R
− 1 + 2

n

+ logl

(
1 + n

(
1

R
− 1 +

2

n

))
− (l − 2) logl

(
l!

2

)
− loge(l − 1)− 2 (C.30)
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≥ logl n+
R

2(1−R)
+ logl

(
2(1−R)

R

)
− (l − 2) logl

(
l!

2

)
− loge(l − 1)− 2 (C.31)

for n ≥ 3R/(1 − R). For l = ∆ and a node capacity of C (rather than 1)

replacing R by R/C, we get the desired theorem. Hence we can conclude

that the steady state delay in our algorithm, Theorem (4.1), is order optimal

for the class of algorithms satisfying the conditions of Theorem 4.2.
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APPENDIX D

PROOFS FOR CHAPTER 5

D.1 Section 5.2: Anonymity Metric Properties

D.1.1 Proof of Theorem 5.1

Consider any realization of the network, in which the messages X are mapped

to the servers VH according to mapping rule M. Then from the definition of

precision and recall at any node v (Equations (5.2), (5.3)), we have

DM(v) =
1{M(Xv) = v}∑

w∈VH 1{M(Xw) = v}
≤ 1{M(Xv) = v} = RM(v). (D.1)

Hence it follows that the macro-averaged precision DM is at most the macro-

averaged recall RM, implying DM ≤ RM.

To prove inequality (b), let VM = {v ∈ VH : M(Xv) = v} denote the set of

servers whose corresponding messages are correctly mapped by M. Further,

for each such node v ∈ VM, let Iv = {x ∈ X : M(x) = v, x 6= Xv} denote all

the messages (other than v’s own message Xv) that are mapped to v. Then,

by definition we have RM = |VM|/ñ and

ñDM =
∑
v∈VH

DM(v) =
∑
v∈VM

1

|Iv|+ 1

≥ |VM|2∑
v∈VM(|Iv|+ 1)

≥ |VM|
2

ñ
= ñR2

M, (D.2)

where Equation (D.2) follows from the arithmetic-mean harmonic-mean (A.M-

H.M) inequality and
∑

v∈VM(|Iv|+ 1) ≤ ñ. Hence we have RM ≤
√
DM, which

upon taking expectation and using Jensen’s inequality, yields RM ≤
√

DM.
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D.1.2 Proof of Theorem 5.2

Recall that for honest server v, the tuple (x, u, Tu(x)) is contained in Sv

if v forwards message x to adversarial node u at time Tu(x). Let us now

define a related quantity S̄v to denote the set of messages x ∈ X forwarded

by v to some adversary such that x was not received by any adversarial

node previously. This quantity S̄v is useful in analyses involving the first-spy

estimator. S̄ denotes the vector of all S̄v’s.

Lemma D.1. If v ∈ VH is a honest server node in a network with a fraction

p of adversaries, then the recall of the first-spy estimator is RFS(v) = P(Xv ∈
S̄v) ≥ p.

Proof. Let U ∈ Γ(v) denote the node to which v first sends its message Xv.

Then,

P(U ∈ VA) =
∑

u∈V,u 6=v

P(U = u)P(U ∈ VA|U = u)

=
∑

u∈V,u 6=v

1

n− 1
P(U ∈ VA|U = u) =

np

n− 1
≥ p, (D.3)

due to uniform distribution among the remaining nodes V \{v}. Therefore

we have

P(Xv ∈ S̄v) ≥ P(U ∈ VA) ≥ p. (D.4)

Thus v’s message is contained in S̄v with probability at least p. The case

where v simultaneously broadcasts Xv to multiple nodes can also be similarly

bounded as above, and hence the lemma follows.

To show Equation (5.7), note that ROPT ≥ RFS(v) ≥ p, by Lemma D.1.

Next, we show that the first-spy estimator also has a precision of at least

p2 regardless of the topology or spreading scheme. Consider a random re-

alization S̄, in which the adversaries observe a set of first-received messages

Sv ⊆ X from each node v ∈ V . Now, supposing in these observations there

exists a subset of t server nodes {v1, v2, . . . , vt} whose own messages are in-

cluded in the respective forwarded sets, i.e., Xvi ∈ S̄vi∀i = 1, 2, . . . , t. The
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macro-averaged precision in this case is

DFS =
1

ñ

t∑
i=1

1

|S̄vi |
≥ t2

ñ
∑ñ

i=1 |S̄vi |
≥ t2

ñ2
, (D.5)

where the first inequality above is due to the arithmetic-mean harmonic-

mean (A.M-H.M) inequality, and the second inequality is because the total

number of messages is at most ñ. Equation (D.5) in turn implies that

E[DFS|T = t] ≥ t2

ñ2
. (D.6)

The overall expected detection precision can then be bounded as

DFS = E[DFS] =
ñ∑
t=0

P(T = t)E[DFS|T = t]

≥
ñ∑
t=0

P(T = t)
t2

ñ2
=

E[T 2]

ñ2
≥ E[T ]2

ñ2

=
E[
∑

v∈VH 1Xv∈S̄v ]
2

ñ2
≥ (pñ)2

ñ2
= p2, (D.7)

where the inequality in Equation (D.7) follows from Lemma D.1. Finally by

definition we have DOPT ≥ DFS and hence the theorem follows.

D.1.3 Proof of Theorem 5.3

Let us first prove that the optimal mapping must be a matching. Supposing

otherwise, consider a mapping M ∈M that is not a matching. Then there ex-

ists a server v that is mapped to the most number of messages {x1, x2, . . . , xk}
(k > 1) in M. This also implies there exists another node u ∈ VH such that

no message is mapped to u. Now, the expected precision at server v is given

by

E[DM(v)|O] =

∑k
i=1 P(Xv = xi|O)

k
≤ max

i∈{1,...,k}
P(Xv = xi|O). (D.8)

On the other hand, the expected precision at u is zero. Now, consider an al-

ternative mapping M′ ∈M in which all messages x ∈ X are mapped to servers

exactly as in M except for the message xi∗ where i∗ = argmini∈{1,...,k}P(Xv =
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xi|O) which is mapped to server u. In this case, the expected precision at v

becomes

E[DM′(v)|O] =

∑k
i=1,i 6=i∗ P(Xv = xi|O)

k − 1
≥ E[DM(v)|O], (D.9)

while the expected precision at u is

E[DM′(u)|O] = P(Xu = xi∗|O) ≥ 0. (D.10)

As such the total expected precision at servers u and v is

E[DM′(v) +DM′(u)|O] ≥ E[DM(v) +DM(u)|O]

⇒ E[DM′ |O] ≥ E[DM|O]. (D.11)

Thus we have constructed a new mapping M′ whose expected precision is at

least as much as M and in which the maximum number of messages mapped

to any server is smaller by 1.1 Continuing this process, we conclude that

for any mapping M ∈ M there exists another matching mapping M′ such

that E[DM′ |O] ≥ E[DM|O]. Thus the optimizing mapping is achieved by a

matching.

Now, letM∗ denote the set of all matchings in the bipartite graph (VH ,X ).

By the first part of the theorem above, we can restrict our search toM∗ for

finding the optimal mapping. As such,

E[DOPT|O] = max
M∈M∗

E[DM|O] = max
M∈M∗

∑
(v,x)∈M

P(Xv = x|O), (D.12)

implying that the optimum is achieved by a maximum weight matching.

D.1.4 Proof of Corollary 5.1

Let M ∈ M be any mapping under observations O = (S,Γ). Consider a

server v and let {x1, x2, . . . , xk} be the set of messages that are mapped to v

1In case of ties, we repeat the above process to each of the servers until the maximum
server degree reduces by one.
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in M. Then,

E[DM(v)|O] ≤
∑k

i=1 P(Xv = xi|O)

k

≤ max
i∈{1,...,k}

P(Xv = xi|O)

≤ max
x∈X

P(Xv = x|O). (D.13)

Since the above Equation (D.13) holds for any mapping M, it must hold for

the optimal mapping as well.

D.1.5 Proof of Theorem 5.4

We want to prove that the optimal mapping must map each message x ∈ X to

a server v that maximizes P(Xv = x|O). Supposing otherwise, let us consider

a mapping M ∈ M where there exists a server w that is mapped to a set of

messages {x1, x2, . . . , xk} (k ≥ 1), where w.l.o.g. w /∈ argmax
v∈VH

P(Xv = x1|O).

The expected recall at server w is given by

E[RB(w)|O] =
k∑
i=1

P(Xw = xi|O).

Further, consider another node u ∈ VH such that u ∈ argmax
v∈VH

P(Xv = x1|O).

Suppose it is mapped to a different set of messages {y1, . . . , yj}. The expected

recall for node u is

E[RB(u)|O] =

j∑
i=1

P(Xu = yi|O).

Now, consider an alternative mapping M′ ∈ M in which all messages x ∈ X
are mapped to servers exactly as in M except for the message x1, which is

mapped to server u. In this case, the expected recall at w becomes

E[RM′(w)|O] =
k∑
i=2

P(Xw = xi|O)
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while the expected recall at u is

E[RM′(u)|O] = E[RM(u)|O] + P(Xu = x1|O). (D.14)

As such the total expected precision at servers u and v is

E[DM′(w) +DM′(u)|O] ≥ E[DM(w) +DM(u)|O]

⇒ E[DM′|O] ≥ E[DM|O]. (D.15)

Thus we have constructed a new mapping M′ whose expected precision is at

least as much as M and in which the number of messages mapped to servers

with sub-maximal likelihood is reduced by one. Continuing this process, we

conclude that for any mapping M ∈M there exists another mapping M′ such

that each message x is mapped to a server v∗ ∈ argmax
v∈VH

P(Xv = x|O).

D.2 Section 5.3: Baseline Algorithms

D.2.1 Proof of Proposition 5.1

Consider the broadcasting experiment on a random realization G of the net-

work topology. In the static case this topology is completely known to the

adversary. As defined in Section D.1.2, for any honest server v ∈ VH , let S̄v

denote the set of transactions x ∈ X such that x is directly forwarded by v

to some adversary and x has not been received by any adversary previously.

By our assumption on flooding, this means a server v’s message is contained

in S̄u if and only if

(i) u is reachable from v,

(ii) u has an out-going edge to an adversary and

(iii) no other node u′ ∈ VH that satisfies the previous two conditions is

strictly closer to v than u.

Thus by looking at the graph G, the adversary can construct a bipartite

graph B(VH , VH) in which there is edge (u, v) ∈ VH × VH if and only if Xv

will be contained in S̄u. Further for each u ∈ VH , let Wu = {v ∈ VH : (u, v) ∈
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B, @ u′ 6= u s.t. (u′, v) ∈ B} denote the set of server nodes whose messages

reach only the message set S̄u. Note that for servers v ∈ VH that have an

out-going edge to an adversary, we must have v ∈ Wv.

Now, once the messages have been broadcast in G, consider the following

mapping strategy M for the adversary. First, for each set S̄v we compute

a subset S̄ ′v = {x ∈ S̄v : x /∈ S̄u∀u 6= v}. Such a set S̄ ′v corresponds to

the messages that were delivered to the adversaries only by server v and no

other server. Thus, the messages in S̄ ′v must precisely belong to the servers in

Wv. As such, the adversary’s mapping strategy can be: (i) for each v ∈ VH
pick a random matching mapping between S̄ ′v and Wv and (ii) assign any

remaining messages randomly to the remaining server nodes. Let Ev denote

the event that v has an out-going edge to an adversary. The payoff can then

be bounded as

E[ñDM|G] ≥ E

 ∑
v∈VH :
|Wv |≥1

∑
u∈Wv

1{M(Xu) = u}
∣∣∣∣G


=
∑
v∈VH :
|Wv |≥1

∑
u∈Wv

E[1{M(Xu) = u}|G]

=
∑
v∈VH :
|Wv |≥1

∑
u∈Wv

1

|Wv|
=
∑
v∈VH

1{|Wv| ≥ 1}, (D.16)

where Equation (D.16) follows because in a random matching any message

in S ′v is likely to be assigned to its true server in Wv with probability 1/|Wv|.
Hence the total average precision is bounded by

ñDM ≥ E

[∑
v∈VH

1{|Wv| ≥ 1}

]
≥
∑
v∈VH

P(Ev) = ñ(1− (1− p)d) (D.17)

and we have the proposition.

D.2.2 Proof Sketch of Proposition 5.2

Before we begin the proof, first notice that in the dynamic setting the adver-

saries are directly connected to at most dpn (i.e., roughly a fraction p) honest

servers, while the rest of the server locations are unknown to the adversary.
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Figure D.1: Comparison of the number of adversarial nodes receiving a
message in two rounds following first reception when the source is (i)
directly connected to an adversary (left) and (ii) away from the adversary
(right). The propagation of the message is shown in red; darkened nodes
are adversarial.

Since the hidden servers can only be trivially deanonymized, in order to ob-

tain our claimed average precision of O(p) each of the servers visible to the

adversary must be deanonymized with a high precision close to 1. Indeed, in

the following we describe a simple mapping scheme M that achieves this high

precision.

For a server v ∈ VH , let Ev denote the event that at least one of v’s out-

going edges is connected to an adversary. Consider then, the spreading of

v’s message Xv in the graph under event Ev. Since G is a random d-regular

graph, using the result in [210], there is almost surely a regular tree of depth

at least 1
2

logd−1 n rooted at v. For simplicity, let us consider d = 4 in which

case there is a tree of depth at least 1
4

log n rooted at v almost surely. Thus

v’s message propagates along this tree, reaching two nodes (at least one of

which is an adversary, due to Ev) in the first round and subsequently reaching

2i new nodes in the i-th round for each i < 1
4

log n. Since a fraction p of the

nodes are adversarial, this implies in the i-th round we expect roughly p2i

adversarial nodes to receive Xv. On the other hand, if some other server u

upstream of v had started broadcasting its message Xu, then more adversarial

nodes would have received Xu in the i-th round following reception by the

first adversarial node (see Figure D.1).

The above observation then, naturally motivates a mapping M as described

in Algorithm 15. In this strategy, the adversary simply counts the number

of adversarial nodes that received a particular message x ∈ X at a time
1
4

log n − 1 rounds after the message was first received by some adversarial

node a. If this number is small (< 2pn1/4) then we conclude the source of

x to be the server v that sent the message to the first adversary. Otherwise
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Algorithm 15: Mapping algorithm under flooding for a dynamic 4-
regular graph.

Input: Time-stamp Tv(x) and sender Sv(x) for each message x ∈ X
received by adversary v for all v ∈ VA.

Output: Mapping M from X to VH
I ← VH , J ← X
for each x ∈ X do

ainit ← argmin
v∈VA

Tv(x)

Tinit ← Tainit
(x)

vinit ← Sainit
(x)

η ← |{v ∈ VA : Tv(x) = Tinit + 1
4

log n− 1}|
if η < 2pn1/4 then

M(x)← vinit

I ← I\{vinit}
J ← J\{x}

end

end
Randomly assign messages in J to servers in I
return M

the message is randomly assigned to an unassigned server at the end.

The algorithm works because if v were truly the source of x, then in

the (1
4

log n − 1)-th round following reception by a, the number of adver-

sarial nodes to receive x is less than 2pn1/4 with a probability at least

1−2− log(4/e)pn1/4
by the Chernoff bound. On the other hand if v were not the

true source of x, then x was initially broadcast at a time at least 2 rounds

before a received it. This implies at least 2pn1/4 adversarial nodes receive

the message at a time 1
4

log n− 1 rounds following reception by a. Thus the

total probability of error can be bounded by the union bound, to yield that

whenever a server v’s out-going edges are connected to at least one adversar-

ial node, Xv is mapped to v with precision 1 with high probability. Such an

event Ev happens with a probability at least p to conclude the proposition.

D.2.3 Proof of Proposition 5.3

For any message Xu, let Πu = (Π1,u,Π2,u, . . . ,ΠLu,u) be the path taken by a

message from its source u (= Π1,u) until it reaches an adversarial node ΠLu,u

for the first time (Lu denotes the length of the path). Further for any two
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nodes v, u ∈ VH , let Eu,v denote the event that u’s message Xu reaches the

adversary through server v, i.e., Π1,u = u,Π2,u /∈ VA,Π3,u /∈ VA, . . . ,Πk−2,u /∈
VA,Πk−1,u = v and Πk,u ∈ VA. Then by counting over paths of all possible

lengths, we can evaluate probability of Eu,u as

P(Eu,u) =
∑
l≥2

P(Lk = l, Eu,u) =
(np
n

)
+
∑
l≥3

(
ñ

n

)l−3(
1

n

)(np
n

)
= p+

1

n
.

(D.18)

Similarly, for u ∈ VH , u 6= v,

P(Eu,v) =
∑
l≥3

(
ñ

n

)l−3(
1

n

)(np
n

)
=

1

n
. (D.19)

Further, since the messages are all forwarded independently the set of events

{Ev,u : v ∈ VH} are mutually independent for each server u ∈ VH . Hence

the expected cost incurred at a server under the first-spy estimator can be

written as

DFS(v) =

(
p+

1

n

)
E
[

1

1 + Zv

]
=

(
p+

1

n

)
1

ñ 1
n

(
1−

(
1− 1

n

)ñ)
, (D.20)

where Zv =
∑

u∈VH ,u6=v 1{Eu,v} is the number of messages, other than Xv,

that reach the adversary through v and Zv ∼ Binom
(
ñ− 1, 1

n

)
because of

independence of messages and Equation (D.19). The last equation above can

be further simplified to yield the bound

DFS(v) ≥ p

1− p
(1− ep−1), (D.21)

which when averaged over all honest nodes v ∈ VH gives us the desired result.

D.3 Section 5.4: Main Result - Dandelion

D.3.1 Proof of Theorem 5.5

We first show that the first-spy estimator is recall-optimal for dandelion spread-

ing, then that the first-spy estimator has an expected recall of p.
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To show the first step, i.e., ROPT = RFS, Theorem 5.4 implies that we must

show that for every message x, its exit node z (i.e., the node implicated

by the first-spy estimator) maximizes P(Xv = x|O). For any message Xu,

let Πu = (Π1,u,Π2,u, . . . ,ΠLu,u) be the path taken by a message from its

source u (= Π1,u) until it reaches an adversarial node ΠLu,u for the first

time (Lu denotes the length of the path). From the adversary’s observation

S, ΠLu−1,u and ΠLu,u are fixed as the exit node z and the first spy for Xu,

respectively. Due to the specification of dandelion spreading (Algorithm 8),

the likelihood of this path, L(Πu), is L(Πu) =
∏Lu−1

i=1
1

deg(Πi,u)
, where deg(v)

denotes the out-degree of v. Assuming a uniform prior over candidate sources,

we have P(Xv = x|O) ∝ L(Πv). Since each node is assumed to have an out-

degree of at least 1, this likelihood is maximized by taking the shortest path

possible. That is, the maximum-likelihood path over all paths originating at

honest candidate sources gives z ∈ argmax
v∈VH

P(Xv = x|O). Hence the first-spy

estimator is also a maximum-recall estimator.

Now we analyze the recall of the first-spy estimator. Let Pv denote the

event that v’s parent (i.e., the next node in the line) is adversarial. Then the

expected recall is

ROPT = E[RFS|S, G] =
1

ñ
E

[∑
v∈VH

1{Pv}

]

⇒ ROPT =
1

ñ

∑
v∈VH

P(Pv) =
1

ñ

∑
v∈VH

(
np

n− 1

)
= p+O

(
1

n

)
.

D.3.2 Proof of Proposition 5.4

For any honest node v, let Wv = {u ∈ VH : Xu ∈ Sv} denote the ward

under node v and let W denote the set of all wards. Note that in the tree

topology, the wards Wv can be completely determined from knowledge of the

graph G. Let I(v) denote the node u ∈ VH such that Xv ∈ Su, i.e., node v

belongs to the ward of node I(v). Then, the expected cost at a node v under

observations O = (S, G) by the adversary can be written as

E[DM(v)|S, G] = E[DM(v)|S, G,W] =
1

|WI(v)|
. (D.22)
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This follows because the matching estimator MAT assigns the messages in Sv

to the nodes in Wv as a random matching, and hence the probability of a

node receiving the correct message is 1/|Wv|. Summing Equation (D.22) over

all honest nodes and averaging, we have

E[DMAT|S, G] =
1

ñ

∑
v∈VH

1

|WI(v)|
=
|W |
ñ
, (D.23)

where |W | = |{v : Wv 6= ∅}| denotes the number of non-empty wards, and

∅ denotes the null set. Now, let Pv denote the event that either v’s parent

is adversarial or v is the root of the tree. Since a ward under a node v is

non-empty iff v’s parent is adversarial or v is a root node, Equation (D.23)

above becomes

E[DMAT|S, G] =
1

ñ
E

[∑
v∈VH

1{Pv}

]
(D.24)

⇒ DMAT =
1

ñ

∑
v∈VH

P(Pv) =
1

ñ

∑
v∈VH

(
1

n
+
n− 1

n

np

n− 1

)
≥ p.

D.3.3 Proof of Proposition 5.5

First note that since the tree is dynamic, the adversary’s observations consists

of O = (S,Γ(VA)), i.e., the transaction logs and the local neighborhood of

adversarial nodes. Now for any honest node v ∈ VH , let Ev denote the event

that (i) v occurs at a position in G which is a leaf of the tree and (ii) v’s

parent is an adversary. Similarly let Iv denote the event that v ∈ VH occurs

at the interior of the tree. We first show that whenever Ev happens, v is

detected with certainty under the first-spy estimator, i.e.,

E[DFS(v)|S,Γ(VA), Ev] = 1. (D.25)

This is because DFS(v) =
∑
x∈Sv 1{Xv=x}
|Sv | in the first-spy estimator and Sv =

{Xv} whenever Ev happens. As such,

E[DFS(v)|S,Γ(VA), Ev] = E[1{Xv = Xv}|S,Γ(VA), Ev] = 1

⇒ E[DFS(v)|Ev] = 1. (D.26)
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Hence the expected payoff becomes

DFS(v) = P(Ev)E[DFS(v)|Ev] + P(Iv)E[DFS(v)|Iv] (D.27)

≥ P(Ev)E[DFS(v)|Ev] =
1

2

np

(n− 1)
≥ p

2
, (D.28)

since at least half of the nodes are leaves in a perfect d-ary tree. Summing

over all honest nodes gives the result.

D.3.4 Proof of Theorem 5.6

As in the case of dynamic trees, the adversary’s observations consists of O =

(S,Γ(VA)) in the dynamic line as well. The proof works by evaluating the

cost incurred under various possibilities for the local neighborhood structure

around a node in the network. For any honest server node v ∈ VH , let Ev(i, j)
denote the event that (i) i nodes preceding v are honest nodes, the (i+ 1)-th

node preceding v is adversarial and (ii) j nodes succeeding v are honest nodes

and the (j + 1)-th node following v is adversarial. Also for ease of notation

let Iv denote the event ∪i>0,j>0Ev(i, j). Then the following lemmas hold true.

Lemma D.2. On a line-graph, for any i, j > 0, we have

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(i, 0))|Ev(i, 0)] ≤ 1

i+ 1

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, j))|Ev(0, j)] ≤
1

j + 1

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, 0))|Ev(0, 0)] ≤ 1

E[max
x∈X

P(Xv = x|S,Γ(VA), Iv)|Iv] ≤
1

n(1− 3p)
. (D.29)

Proof. Consider a realization G of the network topology such that our desired

event Ev(i, 0) happens. In such a graph G, the node succeeding v is an

adversarial node and the i nodes preceding v are honest. Let us denote

this set of i + 1 nodes – comprising of the i nodes preceding v and v itself

– as Wv (i.e., the ward of v). Now, if the messages assigned to the nodes

outside of Wv is denoted by X(VH\Wv), then for any x ∈ Sv we have P(Xv =
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x|G,S,Γ(VA), Ev(i, 0), X(VH\Wv)

=
P(Xv = x,S, X(VH\Wv)|G,Γ(VA), Ev(i, 0))∑
x∈Sv P(Xv = x,S, X(VH\Wv)|G,Γ(VA), Ev(i, 0))

=
P(Xv = x,X(VH\Wv)|G,Γ(VA), Ev(i, 0))∑
x∈Sv P(Xv = x,X(VH\Wv)|G,Γ(VA), Ev(i, 0))

=
1

i+ 1
, (D.30)

by using the fact that the allocation of messages X is independent of the

graph structure (G,Γ(VA), Ev(i, 0)) and

P(S|Xv = x,X(VH\Wv), G,Γ(VA)Ev(i, 0)) = 1,

on a line-graph. Now, taking expectation on both sides of Equation (D.30)

we get

P(Xv = x|S,Γ(VA), Ev(i, 0)) =
1

i+ 1
∀x ∈ Sv

⇒ max
x∈X

P(Xv = x|S,Γ(VA), Ev(i, 0)) =
1

i+ 1
or

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(i, 0))|Ev(i, 0)] =
1

i+ 1
. (D.31)

By a similar argument as above, we can also show that

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, j))|Ev(0, j)] =
1

j + 1
,

E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, 0))|Ev(0, 0)] = 1. (D.32)

Finally let us consider the case where v is an interior node, i.e., event Iv
happens. As before, for a head-node u (an honest node whose successor is an

adversarial node) let Wu denote the ward containing u. Notice that under

observations S,Γ(VA) the adversaries know (i) the head and tail nodes of each

ward (from Γ(VA)) and (ii) the size of each ward (|Wu| = |Su|). Therefore if

a message x is such that x ∈ Su for some u, then

P(Xv = x|S,Γ(VA), Iv) = P(Xv = x, v ∈ Wu|S,Γ(VA), Iv)

= P(v ∈ Wu|S,Γ(VA), Iv)P(Xv = x|v ∈ Wu,S,Γ(VA), Iv)
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=
|Wu| − 2

|I|
1

|Wu|
≤ 1

|I|
≤ 1

n(1− 3p)
, (D.33)

where I denotes the set of all interior nodes and |I| ≥ n(1 − 3p) since each

adversary is a neighbor to at most two honest server nodes. Hence we have

E[max
x∈X

P(Xv = x|S,Γ(VA), Iv)|Iv] ≤
1

n(1− 3p)
, (D.34)

concluding the proof.

Lemma D.3. On a line-graph, for i, j > 0 we have

P(Ev(i, 0)) ≤
(
p+

1

n

)2(
1− p+

2

n

)i
(D.35)

P(Ev(0, j)) ≤
(
p+

1

n

)2(
1− p+

2

n

)j
(D.36)

P(Ev(0, 0)) ≤ (p+ 1/n)2 (D.37)

P(Iv) ≤ (1− p)2. (D.38)

Proof. First let us consider the event Ev(i, 0) in which node v has an ad-

versarial successor, i honest predecessor nodes and an adversarial i + 1-th

predecessor. Let Yv denote the position of node v in the line graph. Then

P(Ev(i, 0)) =
n∑

j=i+1

P(Yv = j)P(Ev(i, 0)|Yv = j), (D.39)

since v needs to be at a position on the line graph where at least i + 1

predecessors are feasible. Now, for i + 1 ≤ j ≤ n, by a simple counting

argument we have

P(Ev(i, 0)|Yv = j) =

(
np

n− 1

)(
np− 1

n− 2

)(
ñ− 1

n− 3

)(
ñ− 2

n− 4

)
. . .

(
ñ− i

n− i− 2

)
≤
(
p+

1

n

)2(
1− p+

2

n

)i
.

Combining the above inequality with Equation (D.39) we conclude that

P(Ev(i, 0)) ≤
(
p+

1

n

)2(
1− p+

2

n

)i
(D.40)
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for i > 0. By essentially a similar counting as above, we can also obtain the

remaining Equations (D.36), (D.37) and (D.38) from the lemma.

Lemma D.4. If E1, E2, . . . , Ek is a set of mutually exclusive and exhaustive

events, and v ∈ VH is any honest server node, then

DOPT(v) ≤
k∑
i=1

P(Ei)E[max
x∈X

P(Xv = x|S,Γ(VA), Ei)|Ei]. (D.41)

Proof. The proof is straightforward and follows from Corollary 5.1. From

Equation (5.8) we have

E[DOPT(v)|S,Γ(VA)] ≤ max
x∈X

P(Xv = x|S,Γ(VA))

= max
x∈X

k∑
i=1

P(Ei|S,Γ(VA))P(Xv = x|S,Γ(VA), Ei)

≤
k∑
i=1

P(Ei|S,Γ(VA)) max
x∈X

P(Xv = x|S,Γ(VA), Ei). (D.42)

Taking expectation on both sides of the above equation, we get

DOPT(v) ≤ E[max
x∈X

P(Xv = x|S,Γ(VA), Ei)]

⇒ DOPT(v) ≤
k∑
i=1

P(Ei)E[max
x∈X

P(Xv = x|S,Γ(VA), Ei)|Ei],

and thus proving the lemma.

To complete the proof of the Theorem, let use Lemma D.4 with Ev(i, 0),

Ev(0, j), Ev(0, 0) and Ev for i, j > 0 as the set of mutually exclusive and

exhaustive events. Then the expected payoff at v can be bounded as

DOPT(v) ≤
∑
i>0

P(Ev(i, 0))E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(i, 0))|Ev(i, 0)]

+
∑
j>0

P(Ev(0, j))E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, j))|Ev(0, j)]

+P(Ev(0, 0))E[max
x∈X

P(Xv = x|S,Γ(VA), Ev(0, 0))|Ev(0, 0)]

+P(Iv)E[max
x∈X

P(Xv = x|S,Γ(VA), Iv)|Iv], (D.43)

where the values of the individual expectation and probability terms in the
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above Equation (D.43) have been computed in Lemmas D.2 and D.3 respec-

tively. Using those bounds, we get

DOPT(v) ≤
∑
i>0

(
p+

1

n

)2(
1− p+

2

n

)i
1

i+ 1

+
∑
j>0

(
p+

1

n

)2(
1− p+

2

n

)j
1

i+ 1
+

(
p+

1

n

)2

+
(1− p)2

n(1− 3p)

≤
2(p+ 1

n
)2

(1− p+ 2
n
)

log

(
1

p− 2
n

)
+

(1− p)2

n(1− 3p)

≤ 2p2

1− p
log

(
2

p

)
+O

(
1

n

)
. (D.44)

Finally averaging the expected payoff DOPT(v) over each of the ñ honest server

nodes v ∈ VH , we get the desired result.

D.4 Section 5.5: Systems Issues

D.4.1 Proof of Proposition 5.6

We map the problem of constructing a line (i.e., a 2-regular digraph) to

one of assigning balls to bins. Suppose each ball represents an outgoing

connection, and each bin represents a server who may accept that outgoing

connection. There are n balls and n bins; for the sake of simplicity, we assume

that a server can establish a connection to itself, so all n bins are available

to each ball. Then the maximum degree dm of the degree distribution is

linearly related to the maximum number of balls in any bin hm. That is,

dm = 1 + hm. When k = 1, each ball is assigned to a bin uniformly. The

quantity hm has been studied extensively in this case, and the result for k = 1

in Proposition 5.6 is well-known [211]. When k > 1, Algorithm 9 exploits the

‘power of two choices’ paradigm. Power of two choices states that by picking

the minimum-degree node among two choices, the maximum in-degree hm =
log logn

log 2
(1 + o(1)) + Θ(1) with high probability [212]. This is an exponential

reduction in maximum degree compared to when k = 1. More generally, for

arbitrary k > 1, the maximum degree is log logn
log k

(1 + o(1)) + Θ(1). This result

is due to Azar et al. [212] and is well-studied in subsequent literature [213].
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