289 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies

    Get PDF
    Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG). DSM programs help customers save money by reducing their electricity bills, minimizing the utility’s peak demand, and improving load factor. To achieve these goals, this paper proposes a new load shifting-based optimal DSM model for scheduling residential users’ appliances. The proposed system effectively handles the challenges raised in the literature regarding the absence of using recent, easy, and more robust optimization techniques, a comparison procedure with well-established ones, using Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort. This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes into account user preferences, timing factors for each appliance, and a pricing signal for relocating shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB simulation environment, we have made effectiveness-based comparisons of the adopted optimization algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm (GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves 73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.publishedVersio

    Pool trading model within a local energy community considering flexible loads, photovoltaic generation and energy storage systems

    Get PDF
    This paper presents a pool trading model within a local energy community considering home energy management systems (HEMSs) and other consumers. A transparent mechanism for market clearing is proposed to incentivise active prosumers to trade their surplus energy within a rule-based pool market in the local energy community. A price-based demand response program (PBDRP) is considered to increase the consumers’ willingness to modify their consumption. The mathematical optimization problem is a standard mixed-integer linear programming (MILP) problem to allow for rapid assessment of the trading market for real energy communities which have a considerable number of consumers. This allows for novel energy trading strategies amongst different clients in the model and for the integration of a pool energy trading model at the level of the local energy community. The objective function of the energy community is to minimize the overall bills of all participants while fulfilling their demands. Two different scenarios have been evaluated, independent and integrated operation modes, to show the impacts of coordination amongst different end-users. Results show that through cooperation, end-users in the local energy community market can reduce the total electricity bill. This is shown in a 16.63% cost reduction in the independent operation and a 21.38% reduction in the integrated case. Revenues for active consumers under coordination increased compared to independent operation of the HEMS.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    A novel smart energy management as a service over a cloud computing platform for nanogrid appliances

    Get PDF
    There will be a dearth of electrical energy in the world in the future due to exponential increase in electrical energy demand of rapidly growing world population. With the development of Internet of Things (IoT), more smart appliances will be integrated into homes in smart cities that actively participate in the electricity market by demand response programs to efficiently manage energy in order to meet this increasing energy demand. Thus, with this incitement, the energy management strategy using a price-based demand response program is developed for IoT-enabled residential buildings. We propose a new EMS for smart homes for IoT-enabled residential building smart devices by scheduling to minimize cost of electricity, alleviate peak-to-average ratio, correct power factor, automatic protective appliances, and maximize user comfort. In this method, every home appliance is interfaced with an IoT entity (a data acquisition module) with a specific IP address, which results in a wide wireless system of devices. There are two components of the proposed system: software and hardware. The hardware is composed of a base station unit (BSU) and many terminal units (TUs). The software comprises Wi-Fi network programming as well as system protocol. In this study, a message queue telemetry transportation (MQTT) broker was installed on the boards of BSU and TU. In this paper, we present a low-cost platform for the monitoring and helping decision making about different areas in a neighboring community for efficient management and maintenance, using information and communication technologies. The findings of the experiments demonstrated the feasibility and viability of the proposed method for energy management in various modes. The proposed method increases effective energy utilization, which in turn increases the sustainability of IoT-enabled homes in smart cities. The proposed strategy automatically responds to power factor correction, to protective home appliances, and to price-based demand response programs to combat the major problem of the demand response programs, which is the limitation of consumer’s knowledge to respond upon receiving demand response signals. The schedule controller proposed in this paper achieved an energy saving of 6.347 kWh real power per day, this paper achieved saving 7.282 kWh apparent power per day, and the proposed algorithm in our paper saved $2.3228388 per day

    Optimización de la planificación energética en hogares inteligentes: Un enfoque multi-objetivo

    Get PDF
    This article presents the advances in the design and implementation of a recommendation system for planning the use of household appliances, focused on improving energy efficiency from the point of view of both energy companies and end-users. The system proposes using historical information and data from sensors to define instances of the planning problem considering user preferences, which in turn are proposed to be solved using a multiobjective evolutionary approach, in order to minimize energy consumption and maximize quality of service offered to users. Promising results are reported on realistic instances of the problem, compared with situations where no intelligent energy planning are used (i.e., ?Bussiness as Usual? model) and also with a greedy algorithm developed in the framework of the reference project. The proposed evolutionary approach was able to improve up to 29.0% in energy utilization and up to 65.3% in user preferences over the reference methods.Este artículo presenta los avances en el diseño e implementación de un sistemade recomendación para planificar el uso de electrodomésticos, enfocado en mejorarla eficiencia energética desde el punto de vista tanto de las compañías de energíacomo de los usuarios finales. El sistema propone el uso de información histórica ydatos de sensores para definir instancias del problema de planificación considerandolas preferencias del usuario, que a su vez se proponen resolver mediante un enfoqueevolutivo multiobjetivo, para minimizar el consumo de energía y maximizar la calidaddel servicio ofrecido a los usuarios. Se informan resultados prometedores en casosrealistas del problema, en comparación con situaciones en las que no se utiliza unaplanificación energética inteligente (es decir, modelo ‘Bussiness as Usual’) y tambiéncon un algoritmo goloso desarrollado en el marco del proyecto de referencia. El enfoqueevolutivo propuesto fue capaz de mejorar hasta el 29.0 % en la utilización de energía yhasta el 65,3 % en las preferencias del usuario sobre los métodos de referencia.Fil: Nesmachnow, Sergio. Facultad de Ingeniería; UruguayFil: Colacurcio, Giovanni. Facultad de Ingeniería; UruguayFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toutouh, Jamal. Massachusetts Institute of Technology. Computer Science And Artificial Intelligence Laboratory; Estados UnidosFil: Luna, Francisco. Universidad de Málaga. Departamento Lenguajes y Ciencias de la Computación; Españ

    Recent techniques used in home energy management systems: a review

    Get PDF
    Power systems are going through a transition period. Consumers want more active participation in electric system management, namely assuming the role of producers–consumers, prosumers in short. The prosumers’ energy production is heavily based on renewable energy sources, which, besides recognized environmental benefits, entails energy management challenges. For instance, energy consumption of appliances in a home can lead to misleading patterns. Another challenge is related to energy costs since inefficient systems or unbalanced energy control may represent economic loss to the prosumer. The so-called home energy management systems (HEMS) emerge as a solution. When well-designed HEMS allow prosumers to reach higher levels of energy management, this ensures optimal management of assets and appliances. This paper aims to present a comprehensive systematic review of the literature on optimization techniques recently used in the development of HEMS, also taking into account the key factors that can influence the development of HEMS at a technical and computational level. The systematic review covers the period 2018–2021. As a result of the review, the major developments in the field of HEMS in recent years are presented in an integrated manner. In addition, the techniques are divided into four broad categories: traditional techniques, model predictive control, heuristics and metaheuristics, and other techniques.info:eu-repo/semantics/publishedVersio

    A Cost-Effective Optimization for Scheduling of Household Appliances and Energy Resources

    Full text link
    In literature, proposed approaches mostly focused on household appliances scheduling for reducing consumers' electricity bills, peak-to-average ratio, electricity usage in peak load hours, and enhancing user comfort level. The scheduling of smart home deployed energy resources recently became a critical issue on demand side due to a higher share of renewable energy sources. In this paper, a new hybrid genetic-based harmony search (HGHS) approach has been proposed for modeling the home energy management system, which contributes to minimizing consumers' electricity bills and electricity usage during peak load hours by scheduling both household appliances and smart home deployed energy resources. We have comparatively evaluated the optimization results obtained from the proposed HGHS and other approaches. The experimental results confirmed the superiority of HGHS over genetic algorithm (GA) and harmony search algorithm (HSA). The proposed HGHS scheduling approach outperformed more efficiently than HSA and GA. The electricity usage cost for completing one-day operation of household appliances was limited to 1305.7 cents, 953.65 cents, and 569.44 cents in the proposed scheduling approach for case I, case II, and case III, respectively and was observed as lower than other approaches. The electricity consumption cost was reduced upto 23.125%, 43.87% and 66.44% in case I, case II, and case III, respectively using proposed scheduling approach as compared to an unscheduled load scenario. Moreover, the electrical peak load was limited to 3.07 kW, 2.9478 kW, and 1.9 kW during the proposed HGHS scheduling approach and was reported as lower than other approaches
    corecore