286 research outputs found

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution

    Get PDF
    In this thesis a powerful and practical method for characterizing ultrashort pulses in space and time is described (called SEA TADPOLE). First we focus on measuring pulses that are spatially uniform but very complicated in time or frequency. We demonstrate and verify that SEA TADPOLE can measure temporal features as small as 30 femtoseconds over durations as long as 14 picoseconds. The spectral resolution of this device is carefully studied and we demonstrate that for certain pulses, we achieve spectral super resolution. We also develop and test an algorithm for measuring polarization shaped pulses with SEA TADPOLE. Our simple interferometer can even be used to measure the spatiotemporal electric field of ultrashort pulses at a focus. This is because SEA TADPOLE samples the field with an optical fiber which has a small core size. Therefore this fiber can be used to spatially sample the beam, so that the temporal electric field can be measured at every position to obtain E(x, y, z, t). The single mode fiber can be replaced with an NSOM (Near Field Scanning Optical Microscopy) fiber so that spatial resolution as low as 500nm (and possibly lower) can be achieved. Using this device we make the first direct measurements of the compete field of focusing ultrashort pulses. These measurement can be viewed as "snap shots" in flight of the focusing pulse. Also, for the first time, we have observed some of the interesting distortions that have been predicted for focusing ultrashort pulses such as the "forerunner" pulse, radially varying group delay dispersion, and the Bessel-like X-shaped pulse. We have also made the first direct measurements of the electric field of Bessel X-pulses and their propagation invariance is demonstrated. We also use SEA TADPOLE to study the "boundary wave pulses" which are due to diffraction.Ph.D.Committee Chair: Rick Trebino; Committee Member: Jennifer Curtis; Committee Member: John Buck; Committee Member: Mike Chapman; Committee Member: Stephen Ralp

    50 years of first passage percolation

    Full text link
    We celebrate the 50th anniversary of one the most classical models in probability theory. In this survey, we describe the main results of first passage percolation, paying special attention to the recent burst of advances of the past 5 years. The purpose of these notes is twofold. In the first chapters, we give self-contained proofs of seminal results obtained in the '80s and '90s on limit shapes and geodesics, while covering the state of the art of these questions. Second, aside from these classical results, we discuss recent perspectives and directions including (1) the connection between Busemann functions and geodesics, (2) the proof of sublinear variance under 2+log moments of passage times and (3) the role of growth and competition models. We also provide a collection of (old and new) open questions, hoping to solve them before the 100th birthday.Comment: 160 pages, 17 figures. This version has updated chapters 3-5, with expanded and additional material. Small typos corrected throughou

    Robust surface modelling of visual hull from multiple silhouettes

    Get PDF
    Reconstructing depth information from images is one of the actively researched themes in computer vision and its application involves most vision research areas from object recognition to realistic visualisation. Amongst other useful vision-based reconstruction techniques, this thesis extensively investigates the visual hull (VH) concept for volume approximation and its robust surface modelling when various views of an object are available. Assuming that multiple images are captured from a circular motion, projection matrices are generally parameterised in terms of a rotation angle from a reference position in order to facilitate the multi-camera calibration. However, this assumption is often violated in practice, i.e., a pure rotation in a planar motion with accurate rotation angle is hardly realisable. To address this problem, at first, this thesis proposes a calibration method associated with the approximate circular motion. With these modified projection matrices, a resulting VH is represented by a hierarchical tree structure of voxels from which surfaces are extracted by the Marching cubes (MC) algorithm. However, the surfaces may have unexpected artefacts caused by a coarser volume reconstruction, the topological ambiguity of the MC algorithm, and imperfect image processing or calibration result. To avoid this sensitivity, this thesis proposes a robust surface construction algorithm which initially classifies local convex regions from imperfect MC vertices and then aggregates local surfaces constructed by the 3D convex hull algorithm. Furthermore, this thesis also explores the use of wide baseline images to refine a coarse VH using an affine invariant region descriptor. This improves the quality of VH when a small number of initial views is given. In conclusion, the proposed methods achieve a 3D model with enhanced accuracy. Also, robust surface modelling is retained when silhouette images are degraded by practical noise

    Effective operators for Robin eigenvalues in domains with corners

    Get PDF
    We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schr\"odinger-type operator on the boundary of the domain with boundary conditions at the corners.Comment: 84 pages. 23 figures. To appear in Annales de l'Institut Fourier (Grenoble

    Homotopy Based Reconstruction from Acoustic Images

    Get PDF

    Regular Grids: An Irregular Approach to the 3D Modelling Pipeline

    Get PDF
    The 3D modelling pipeline covers the process by which a physical object is scanned to create a set of points that lay on its surface. These data are then cleaned to remove outliers or noise, and the points are reconstructed into a digital representation of the original object. The aim of this thesis is to present novel grid-based methods and provide several case studies of areas in the 3D modelling pipeline in which they may be effectively put to use. The first is a demonstration of how using a grid can allow a significant reduction in memory required to perform the reconstruction. The second is the detection of surface features (ridges, peaks, troughs, etc.) during the surface reconstruction process. The third contribution is the alignment of two meshes with zero prior knowledge. This is particularly suited to aligning two related, but not identical, models. The final contribution is the comparison of two similar meshes with support for both qualitative and quantitative outputs
    • …
    corecore