
Durham E-Theses

Regular Grids: An Irregular Approach to the 3D

Modelling Pipeline

KAYE, DAVID,PAUL

How to cite:

KAYE, DAVID,PAUL (2017) Regular Grids: An Irregular Approach to the 3D Modelling Pipeline, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12017/

Use policy

This work is licensed under a Creative Commons Attribution No Derivatives 3.0 (CC
BY-ND)

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12017/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
http://etheses.dur.ac.uk

ABSTRACT

The 3D modelling pipeline covers the process by which a physical object

is scanned to create a set of points that lay on its surface. These data are

then cleaned to remove outliers or noise, and the points are reconstructed

into a digital representation of the original object.

The aim of this thesis is to present novel grid-based methods and provide

several case studies of areas in the 3D modelling pipeline in which they

may be effectively put to use.

The first is a demonstration of how using a grid can allow a significant

reduction in memory required to perform the reconstruction. The second

is the detection of surface features (ridges, peaks, troughs, etc.) during

the surface reconstruction process.

The third contribution is the alignment of two meshes with zero prior

knowledge. This is particularly suited to aligning two related, but not

identical, models. The final contribution is the comparison of two similar

meshes with support for both qualitative and quantitative outputs.

Regular Grids: An Irregular

Approach to

the 3D Modelling Pipeline

David Paul Kaye

A thesis submitted towards the degree of

Doctor of Philosophy.

School of Engineering and Computing Sciences

Durham University

United Kingdom

September 2016

– 2 –

CONTENTS

Abstract . 1

Contents . 7

List of Tables . 8

List of Figures . 11

Declaration . 12

Copyright . 13

Acknowledgements . 14

1. Introduction . 15

1.1 Background . 17

1.2 Key Concepts . 17

1.2.1 Self Organising Maps 18

1.2.2 Marching Cubes Algorithm 19

1.2.3 Iterative Closest Point Algorithm 21

1.2.4 Principal Components Analysis 22

1.3 Motivation . 22

1.4 Objectives . 23

1.4.1 Memory Efficiency 23

1.4.2 Feature Detection 24

1.4.3 Alignment . 24

1.4.4 Comparison . 26

1.5 Research Questions . 27

1.6 Overview . 28

1.7 Contributions . 28

1.8 Limitations . 29

2. Literature Survey . 30

2.1 Stages in the Pipeline . 30

2.1.1 Data Acquisition 30

2.1.2 Registration . 31

2.1.3 Pre-Processing 32

2.1.4 Surface Reconstruction 33

2.1.5 Post-Processing 33

2.1.6 Rendering . 34

2.2 Data Acquisition . 35

2.2.1 Technologies . 35

2.2.2 Commodity Scanners 39

2.2.3 Scanning Objects and Scenes 40

2.3 Preprocessing . 41

2.3.1 Outlier Removal 41

2.3.2 Noise Estimation 42

2.3.3 Normal Estimation 44

2.4 Surface Reconstruction 49

2.4.1 Early Algorithms 49

2.4.2 Explicit Algorithms 53

2.4.3 Implicit Algorithms 57

2.4.4 Least Squares Methods 61

2.4.5 Neural Algorithms 63

2.4.6 Statistical Algorithms 69

2.4.7 Other Techniques 72

2.5 Post-Processing . 72

2.5.1 Feature Detection and Extraction 72

2.5.2 Mesh Alignment 73

2.5.3 Mesh Quality . 75

3. Surface Representations 76

3.1 Mathematical Definition 76

3.2 Explicit Representations 76

3.3 Implicit Representations 78

3.4 Conversions . 79

– 4 –

3.4.1 Explicit to Implicit 79

3.4.2 Implicit to Explicit 79

4. Memory–Efficient Surface Reconstruction 81

4.1 Introduction . 81

4.2 Layered Algorithm . 83

4.2.1 Data Alignment and Sorting 84

4.2.2 Training Step . 84

4.2.3 Separation Calculation 86

4.2.4 Smoothing . 86

4.2.5 Storing . 87

4.2.6 Parameter Choice 87

4.3 Results . 88

4.4 Line-by-Line SOM training 90

4.4.1 Implementation 91

4.4.2 Results . 92

5. Feature Detection . 98

5.1 Introduction . 98

5.2 Algorithm . 99

5.2.1 Surface Reconstruction 100

5.2.2 Feature Detection 100

5.2.3 Isosurface Extraction 101

5.3 Results . 101

5.3.1 Simple Meshes 101

5.3.2 Complex Meshes 103

5.4 Discussion . 106

6. Mesh Alignment . 108

6.1 Introduction . 108

6.2 Alignment Algorithm . 109

6.2.1 The Basic Algorithm 109

6.2.2 Iterative Algorithm 111

6.2.3 Eigenvector Orientation 111

6.2.4 Input Types . 112

6.3 Results . 112

6.3.1 Robustness Against Mesh Processing Operations . 113

– 5 –

6.3.2 Iterative Algorithm 116

6.3.3 CAD Meshes . 116

6.3.4 Effect of Resolution 118

6.4 Discussion . 119

7. Mesh Comparison . 124

7.1 Introduction . 124

7.1.1 Related Work . 124

7.2 Comparison Algorithm 125

7.2.1 Mesh Processing 125

7.2.2 Difference Visualisation 126

7.3 Results . 127

7.3.1 Analytic Meshes 127

7.3.2 Real Meshes . 129

8. Conclusion . 137

8.1 Summary of Work . 137

8.1.1 Memory–Efficient Surface Reconstruction 137

8.1.2 Feature Detection 138

8.1.3 Mesh Alignment 138

8.1.4 Mesh Comparison 139

8.2 Outcomes . 139

8.2.1 Memory–Efficient Surface Reconstruction 139

8.2.2 Feature Detection 140

8.2.3 Mesh Alignment 141

8.2.4 Mesh Comparison 141

8.3 Discussion . 142

8.3.1 Memory–Efficient Surface Reconstruction 142

8.3.2 Feature Detection 143

8.3.3 Mesh Alignment 144

8.3.4 Mesh Comparison 144

8.4 Limitations . 146

8.4.1 Memory–Efficient Surface Reconstruction 146

8.4.2 Feature Detection 146

8.4.3 Mesh Alignment 146

8.4.4 Mesh Comparison 147

– 6 –

8.5 Future Work . 147

8.5.1 Memory–Efficient Surface Reconstruction 147

8.5.2 Feature Detection 148

8.5.3 Mesh Alignment 148

8.5.4 Mesh Comparison 148

8.5.5 Normal Estimation 149

Appendix 150

A. Mesh Implementations . 151

A.1 Data Structures . 151

A.1.1 Indexed Meshes 151

A.1.2 Non-Indexed Meshes 151

A.1.3 Half-Edge Data Structure 152

A.2 File Formats . 153

A.2.1 Object File Format 153

A.2.2 Object File Format Variants 153

A.2.3 Stereo Lithography Format 154

A.2.4 Polygon Format 154

A.2.5 Streaming Formats 155

B. Software Implementation 156

B.1 Core Algorithms . 156

B.1.1 Dependencies . 157

B.1.2 Mesh Format . 157

B.1.3 Architecture . 158

B.2 Code Samples . 159

B.3 Test Data . 161

B.4 Analysis of Results . 162

– 7 –

LIST OF TABLES

4.1 Point cloud sizes in x, y and z directions 89

4.2 The average memory use of the layer by layer reconstruc-

tions in Megabytes. 90

4.3 The peak memory use of the layer by layer reconstructions

in Megabytes. A dash indicates that the data was not

provided by the paper in which the algorithm was proposed. 90

4.4 Timings for the different stages of the proposed layer by

layer algorithm. 91

4.5 Total reconstruction time for algorithms. 91

4.6 The number of triangles for each method. 92

6.1 Mean errors (in degrees) when recovering angles from a

set of known rotations. 112

6.2 Number of faces in the original and decimated meshes. . 114

6.3 Average deviation of principal components (in degrees)

when models were remeshed. 115

6.4 Average deviation of principal components (in degrees)

when models were simplified. 115

6.5 Average deviation of principal components (in degrees)

when mesh vertices had noise added. 115

6.6 Average deviation of principal components (in degrees)

when meshes were simplified. 115

6.7 Mean angular deviations (in degrees) between the sim-

plified and standard Room215, standard and remeshed

House, and standard and dressed Model. 118

6.8 Initial grid sizes. 118

LIST OF FIGURES

1.1 Simplified overview of the 3D modelling pipeline. 16

1.2 Simple example of an artificial neural network 19

1.3 Example of a 2D SOM adapting to training data (c©Dan

Stowell). 19

1.4 Marching Cubes: the different cube configurations. . . . 20

1.5 Iterative Closest Point algorithm applied to a series of points. 21

1.6 Principal components of a set of data. 22

1.7 Example of a surface ridge. 24

1.8 Example of a valley. 25

1.9 Examples of peaks on a surface. 25

2.1 Raw scan data. 31

2.2 Registered point cloud. 32

2.3 Reconstructed surface. 34

2.4 Rendered surface. 35

2.5 Synthatic Aperture Radar scanning. 38

2.6 SAR parallax error. The points represented by the grey

arrows appear equidistant in the output. Consequently

the two red points appear nearby, despite being far apart. 38

2.7 A 2D Voronoi diagram (coloured shapes), with the De-

launey triangulation overlaid in black. 47

2.8 The different cube configurations. 50

2.9 The function f is sampled at each of the cube’s vertices. 51

2.10 The labelled edges of the cube. 51

2.11 Points i1, i2 and i3 denote intersection of surface with edges. 51

2.12 Splitting a cube into 6 tetrahedra, one of which is shaded. 53

2.13 Determination of p+s (and therefore n+) for a point s not

on the convex hull. 54

2.14 Determination of p+s (and therefore n+) for a point s on

the convex hull. The grey arrows indicate the normals of

adjacent triangles. 54

2.15 A set of points (with normals) lying inside a 2D SOM. . 67

4.1 Layer-by-layer SOM training. 83

4.2 Training data representation. 85

4.3 Re-reconstructions from smoothed dragon and Happy Bud-

dha. 93

4.4 Turbine re-reconstructions from a smooth mesh. 94

4.5 Close-up of Neptune’s face, layered reconstructed from a

mesh. 94

4.6 Bunny reconstruction from scan data. 95

4.7 Ramesses reconstruction from scan data. 95

4.8 Layered reconstruction time vs. volume for Neptune. . . 96

4.9 Layers being trained line-by-line. 96

4.10 Line-by-line reconstruction from scan data. 97

5.1 Cube results: left : noisy, centre: original, right : smoothed. 102

5.2 Fandisk results: left : noisy, centre: original, right : smoothed.102

5.3 Bunny results: left : noisy, centre: original, right : smoothed.103

5.4 Horse results: left : noisy, centre: original, right : smoothed. 104

5.5 Blade results: left : noisy, centre: original, right : smoothed. 104

5.6 Happy results: left : noisy, centre: original, right : smoothed.105

5.7 Neptune results: left : noisy, centre: original, right : smoothed.106

6.1 Left: the black nodes are the smallest subgrid that com-

pletely contains the red face. Centre: the smallest subgrid

is extended to decrease discontinuities. Right: the nodes

highlighted in green are the imprint of the red face on the

lattice. 110

6.2 Left, solid: eigenbasis of mesh A. Centre, dashed: eigen-

basis of mesh B. Right, dotted: eigenbasis of mesh B′. . . 110

6.3 Standard Armadillo results. Left: initial rotation, middle:

original, unrotated mesh, right: four iterations. 113

6.4 Standard Statuette results. Left: initial rotation, middle:

original, unrotated mesh, right: four iterations. 114

– 10 –

6.5 Mean angular deviation plotted against number of itera-

tions for the Bunny, Armadillo and Fandisk. 120

6.6 Mean angular deviation plotted against number of itera-

tions for the Blade and Statuette. 121

6.7 Wireframe view of the Room 215 model. Areas of high

curvature have more triangles and appear as solid colours. 122

6.8 Wireframe view of the original House model and its remeshed

form. 122

6.9 Model/dressed model. 123

6.10 Sphere and Vase. 123

7.1 Fitting a mesh to the grid. The shorted distance between

each node and the mesh is shown by blue lines. 131

7.2 Fitting a second mesh to the grid. Comparing the two

meshes then amounts to comparing the magnitude of the

blue lines in each case. 131

7.3 Wireframe view of the cube and icosahedron. 132

7.4 Comparison of analytic meshes (left) to their smoothed

counterparts (right). 132

7.5 Comparison of analytic meshes (left) to their remeshed

counterparts (right). Wireframes of the remeshed forms

are shown below. 133

7.6 Comparison of analytic meshes (left) to their simplified

counterparts (right). Wireframes of the simplified forms

are shown below. 134

7.7 Comparison of analytic meshes (left) to their noisy coun-

terparts (right). 134

7.8 Comparison of real meshes (left) to their smooth counter-

parts (center), Metro comparisons (right). 135

7.9 Comparison of real meshes (left) to their smooth counter-

parts (center), Metro comparisons (right). 136

8.1 A line could be trained thick point by thick point. 143

8.2 The problem of using signed distance on a grid. 145

A.1 Invalid triangle configuration in STL format. 154

– 11 –

DECLARATION

The work in this thesis is based on research carried out in the Innova-

tive Computing Group, School of Engineering and Computing Sciences,

Durham University. No part of this report has been submitted elsewhere

for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text.

Parts of this work have been published in the following conference pro-

ceedings:

• D. Kaye and I. Ivrissimtzis, Implicit Surface Reconstruction and

Feature Detection with a Learning Algorithm. Theory and Practice

of Computer Graphics, Eurographics Association, 2010, 127–130.

• D. P. Kaye and I. Ivrissimtzis, Memory Efficient Surface Recon-

struction Based on Self Organising Maps. Theory and Practice of

Computer Graphics, Eurographics Association, 2011, 25–32.

• David Kaye and Ioannis Ivrissimtzis, Mesh Alignment Using Grid

Based PCA. GRAPP, Springer. 2015, 64–76.

COPYRIGHT

The copyright of this thesis rests with the author. No quotation from

it should be published without the author’s prior written consent and

information derived from it should be acknowledged.

Copyright c© 2016 David Kaye.

ACKNOWLEDGEMENTS

Balancing a project of this magnitude with a job is a difficult task, and

without the understanding and guidance of my supervisor, Ioannis Ivris-

simtzis, I would not have been able to complete this work. Not only has

he provided direction and focus to what would otherwise be a disorgan-

ised (and likely incomplete) set of experiments, he has done so in his own

time in order to ensure I have not had to work in isolation.

The help and support from my friends Emma Lyle and Juliet Pouteaux,

have gone above and beyond what I could ever have hoped for, offering

sympathetic ears and kindness even in the most trying of circumstances.

Your kindness humbles me.

My intellectual sparring partner, Guy Hutchinson, helped me find the

source of and solution to innumerable problems, often with no more than

a well placed “Are you sure?” as I explained my current predicament.

There are countless others to whom I owe my gratitude, including

Richard Parker, Tom Francis, Sarah and Stephen Howell, and Rebecca

Papworth, for their understanding, advice, and consideration, particu-

larly when times were tough and deadlines were tight.

Finally, I would like to offer my deepest thanks to my parents, Arthur

and Pauline Kaye, for their unconditional love and timely reminders that

I could be doing some work right now. Were it not for their endless

patience and (appropriately questioning) support for all my endeavours,

I would not be where I am today.

1. INTRODUCTION

The 3D modelling pipeline is the term used to describe the various stages

and algorithms through which data must pass on their route from a

physical object to a representation of that object on a computer screen.

The data could be geometric in nature, describing the size and shape of

the object; topological, describing fundamental properties of the object

and its self-connectivity; or visual, pertaining to its colour or appearance

(e.g material, reflectance).

A typical route for creating a 3D model from a physical object would

be to scan the object using a laser, which would generate a set of points in

3D space (a point cloud), potentially alongside other data such as colour

and reflectance. Since the scanning is usually done in several stages,

resulting from rotating the object or moving the scanner, the data must

be transformed to bring them into a consistent coordinate system.

This point cloud is then processed to remove any noise and spurious

data that could have arisen during the scan. After this, the clean point

cloud is then used as input for an algorithm that generates a representa-

tion of the 3D surface describing the boundary of the object. The repre-

sentation of the object’s boundary may not be optimal for the intended

purpose; it can therefore be smoothed or have additional data attached

to it (e.g. colour or a quality measure) as part of a post-processing stage.

The final stage is to actually render the object on-screen; this is gen-

erally done by creating a light source and mapping reflections, but there

are other techniques that can be used depending on the desired result.

Figure 1.1 shows a simplified overview of whole process.

This thesis will focus on creating the surface representation (chap-

ters 5 and 4) and on comparing and aligning meshes as part of a post-

processing stage (chapters 6 and 7).

Fig. 1.1: Top left: physical object to be modelled.
Top right: point cloud produced by scanning the object.
Bottom right: normals estimated from the point cloud.
Bottom left: final model after surface reconstruction.

– 16 –

1.1 Background

The acquisition of 3D object data and the creation of models from these

data has a wide range of applications, from understanding our cultural

heritage and the interpretation of medical data to military terrain scan-

ning and civil engineering.

For example, in a medical context, a patient awaiting brain surgery

will undergo a CT scan, and a 3D representation of the brain will be cre-

ated to allow the surgeon to plan the operation in advance. For industrial

situations, one example of its use is viewing and analysing internal frac-

tures in solids.

An engineer wanting to investigate how a bridge would react under

particular weather conditions would likely use a mesh of the bridge as

a starting point for Finite Element Analysis. To model the bridge’s be-

haviour, the engineer would define material properties of the mesh, and

approximate the physical conditions to be modelled using linear equa-

tions. These linear equations would then be solved for each face of the

mesh (the finite elements of the name), and combined to form a global

solution that accurately reflects the bridge’s behaviour.

Understanding our cultural heritage is not only an academic pursuit;

there are also non-profit organisations such as CyArk, whose aim is to

create a library of freely available models of artefacts found at cultural

heritage sites. The sooner and more accurately this can be done, the

smaller the risk of damage and loss of irreplaceable information about our

past. The digital representations would then be a form of preservation for

these artefacts, made available online for future generations (in its own

words) “before they are lost to natural disasters, destroyed by human

aggression or ravaged by the passage of time.”

1.2 Key Concepts

In this section, concepts fundamental to the thesis are presented alongside

a high-level explanation.

Self Organising Maps are the basis for all algorithms presented in this

thesis. We use a specialised form that allows for the detection of surface

features as part of the reconstruction (discussed in chapter 5). It also

– 17 –

allows for a considerable reduction in memory footprint, allowing modest

hardware to process huge amounts of data (chapter 4).

In chapters 5 and 4, a surface representation must be extracted from

the Self Organising Map, and for this we use the Marching Cubes al-

gorithm. Our variant is adjusted to include information on any surface

features that have been detected during the reconstruction.

In chapter 6, we present an algorithm to align two meshes and vali-

date it against the common alternative of Principal Components Analy-

sis. The Iterative Closest Point algorithm is the most widely used mesh

alignment algorithm. It does not directly compare with the algorithm

presented in chapter 6, since it places restrictions on the input data, but

is discussed here to give context.

1.2.1 Self Organising Maps

An artificial neural network comprises several layers of nodes. Within

each layer, each node performs some small amount of processing, which

influences the nodes to which it provides input.

For instance, Figure 1.2 shows a simple artificial neural network di-

vided into three layers. Data passes in from the left and the three layers

process it from left to right, with the rightmost layer providing the fi-

nal output. This architecture is based on supervised learning, where an

updates the network depending on whether the processing was deemed

successful.

A Self Organising Map (SOM) is special case of an artificial neural

network that adapts itself via unsupervised learning. This is essentially

the network training itself, and as such it does not have layers in the

sense of the networks described above.

Figure 1.3 shows an example of an SOM (the black grid) adapting

to some input data (the blue cloud). In this situation, a point from the

blue cloud is selected at random, and the closest node in the SOM moved

towards that data point. Neighbouring nodes are also moved towards

that point, but to a lesser extent, and the procedure is repeated many

times. SOMs work by minimising a so-called “energy function”, in this

case, what is being minimised is the median distance from a point in the

blue cloud to the SOM itself.

– 18 –

Fig. 1.2: A simple artificial neural network: input is provided on the
left, and the processing flows from left to right. The final
output is given by the two nodes in the rightmost layer.

Fig. 1.3: Example of a 2D SOM adapting to training data (c©Dan Stow-
ell).

It is common to have a global dampening such that, with each itera-

tion, the amount that the closest node moves is slightly diminished. This

leads to an increase in stability when, after many iterations, the move-

ment of each node is negligible, or at least within acceptable limits. At

this stage, the SOM can be used either to approximate the data directly,

or it can be provided as input for another application or algorithm.

1.2.2 Marching Cubes Algorithm

The Marching Cubes algorithm is used to create a 3D representation of an

object. The space containing the surface is divided into a regular 3D grid,

and each corner within that grid is evaluated to determine its shortest

– 19 –

Fig. 1.4: Marching Cubes: the different cube configurations.

distance to the surface (negative values indicating that the corner lies

inside the surface.

If the function is outside the surface at one corner, and inside at an-

other, it must be the case that the surface passes between them. Since

each corner can be either inside or outside the surface (ignoring the in-

finitesimal chance of it lying precisely on the surface), there are 28 = 256

possible combinations of corners being inside/outside the surface.

When various symmetries (e.g. rotational) are taken into account, the

number of unique combinations is reduced to just 15, which are shown

(with some duplications for clarity) in Figure 1.4. After reconstructing

– 20 –

Fig. 1.5: Iterative Closest Point algorithm applied to a series of points.

the surface within each smaller cube, the results can be stitched together

to provide a global reconstruction of the surface.

1.2.3 Iterative Closest Point Algorithm

The Iterative Closest Point algorithm can align two point clouds, two

meshes, or a combination of the two. It is widely used, but requires an

“adequate” initial guess in order to provide good alignment, otherwise it

can get stuck and report success in cases of poor alignment.

First, points in one set of input data are matched to the closest point

in the other. Then, the error for this initial alignment is computed,

based on the mean squared distance between all pairs of points. One set

is chosen to be the reference set, the other (the source) is translated and

rotated in order to bring it into better alignment with the reference set

(an alignment is deemed better if it reduces the alignment error computed

earlier). The new errors are computed, new sets of points are matched,

and the procedure is repeated until the computed error is stable.

Figure 1.5 shows how the ICP algorithm might work on two sets of

points.

– 21 –

Fig. 1.6: Principal components of a set of data.

1.2.4 Principal Components Analysis

Principal Components Analysis is a method by which the directions of

greatest variation in a set of data can be determined. These directions

are known as the principal components, and can be used to understand

the character of the data. For instance, when representing 3D data in

two dimensions, taking the largest two principal components as the axes

will ensure that the representation is as expressive as possible.

Figure 1.6 shows the two principal components of a set of data. It is

clear that, in order to represent the data as expressively as possible in

one dimension, we should describe them in terms of their distance along

the red arrow (the largest principal component).

1.3 Motivation

In spite of the relevance and range of applications, the 3D modelling

pipeline suffers from several long-standing issues. Among these are the

resources for processing/creating highly detailed models, the computa-

tional resources required for searching for nearby points, and the com-

plexity of some of the data structures that must be employed. Many of

the stages involve finding solutions to problems that are ill-posed, mean-

ing that a general solution for all cases (an analytic solution) does not

exist. However, different circumstances can benefit from different solu-

tions, so advances can still be made.

Algorithms that exploit regular 3D grids (lattices) have the potential

– 22 –

to improve several stages of the pipeline. The regular structure of a

lattice allows for nodes close to another to be found in constant time

using simple arithmetic operations on that node’s index. By contrast,

an algorithm that uses nodes whose position can change over time must

query the position of all nodes before determining proximity. This is

computationally expensive, and, if nodes are added over the course of the

algorithm, cannot be done in constant time. The simple, regular nature

of a lattice also allows for algorithms that are simple, yet potentially

effective.

1.4 Objectives

I propose that the regular structure of 3D grids allows simple algorithms

to be developed that solve or mitigate otherwise challenging problems in

the 3D modelling pipeline. There are three principle areas in which I will

investigate their utility.

1.4.1 Memory Efficiency

The regular layout of nodes in a 3D grid naturally suggests subdivision

for processing subsets of the input.

The accuracy of 3D scanning methods is ever-increasing, and with

that increased fidelity comes a corresponding increase in the hardware

required to process these data. Keeping up with ever-increasing require-

ments can be costly, but not doing so can lock researchers and interested

parties out of working on large datasets.

Therefore, if a SOM could be trained one section at a time, the mini-

mal hardware requirements for working with large amounts of data would

drop. Taking a layer-by-layer approach to training approach is intuitive,

and indeed fits very well with the way data are produced by some devices

(such as CT scanners), making it natural to pair the two. Correspond-

ingly, the number of people and institutions able to work on such data

would increase, potentially by a large amount.

– 23 –

Fig. 1.7: Example of a surface ridge.

1.4.2 Feature Detection

Does the training history of a Self Organising Map afford any opportunity

to improve the reconstruction quality?

Current SOM methods only use the final value of the SOM’s nodes,

discarding all previous states. The training history can give insight into

the training data. For instance, nodes that have a long training history

are likely in more densely populated areas of the input cloud.

Knowledge of the point cloud density in one area could allow a mea-

sure of confidence to be assigned to those nodes’ values. This could

be used to determine the future execution of an algorithm, or provide

additional information for post-processing.

Surface ridges, valleys, and peaks (shown in Figures 1.7, 1.8, and 1.9

respectively) are likely to show training data from different points inter-

fering, which should become clear with a simple analysis of the training

history.

1.4.3 Alignment

Current mesh alignment algorithms take one of two approaches. Either

they use PCA directly on mesh vertices, or use a variant of the ICP

– 24 –

Fig. 1.8: Example of a valley.

Fig. 1.9: Examples of peaks on a surface.

– 25 –

algorithm.

Vertex PCA inherits the existing issues with PCA, namely that it

is sensitive to equivalent meshes with differing vertex distributions. As

such, it is not viable for aligning similar meshes. In that context, PCA

can be seen as overfitting its analysis to the specific mesh.

ICP can align two meshes, but requires that they have some vertices

in common. Some variants even require one input mesh to be a subset of

the other. ICP is therefore inherently unable to align two similar meshes

that do not have vertices in common. This could be the case after a

remeshing or if one input is a scaled form of another.

We will investigate the extent to which a 3D grid could be used to

align a coarse representation of a mesh. This would provide a practical

third option that avoids the pitfalls of both PCA and ICP.

1.4.4 Comparison

The comparison of meshes in most works is done by adjacent snapshots of

the meshes in question, or sometimes just the points of interest. Depend-

ing on how the results are viewed, this carries the possibility of masking

potentially significant differences.

Some comparison algorithms provide a single numerical output for

their results (perhaps the volume of the space between the meshes).

Without an idea of how the differences are distributed however, this num-

ber in isolation is not necessarily helpful when attempting to interpret

the result.

Other methods are not symmetric, that is, comparing mesh A to

mesh B provides a different result to comparing mesh B to mesh A –

a result that is at least counter-intuitive. We will investigate the use

of an SOM-based approach to mesh comparison, with the intention of

providing a representative visual indication of differences (for intuitive

viewing of results) alongside a solid foundation on which a number of

metrics could be computed.

This would bridge the gap of both forms of comparison: non-visual

but quantitative measures, and visual qualitative ones.

– 26 –

1.5 Research Questions

Implicit representations are frequently used for surface reconstruction but

have not yet been exploited in other stages of the 3D modelling pipeline.

Moreover, even in the surface reconstruction stage, the data contained

within the SOM from the training process is discarded once the mesh is

extracted.

In this thesis we argue that the trained grid contains a great deal of

valuable information that can be exploited at several different stages of

the pipeline. For instance, the information embedded in the grid from its

training can be used to detect surface features and extract alignment in-

formation. Further, the regular structure also allows for easy comparison

of inputs and compartmentalised processing for more efficient handling

of large datasets.

Explicitly, this thesis seeks to answer the following questions.

1. Reducing the footprint of surface reconstruction.

1.1 Can the structure of a regular 3D SOM be used to increase

the performance of surface reconstruction?

1.2 To what extent can the structure of a regular 3D SOM be

exploited to work with large datasets?

2. Feature detection using Self Organising Maps.

2.1 Can the training history of an SOM be used to detect surface

features?

2.2 How early can this be integrated in order to make the infor-

mation available to more stages of the pipeline?

3. Alignment of dissimilar meshes.

3.1 Under what circumstances would an SOM be suitable for

aligning two meshes?

3.2 To what extent would the regular structure be beneficial, and

what limitations would it impose?

3.3 How would such an algorithm compare to standard techniques?

4. Mesh Comparison.

– 27 –

4.1 Could an SOM, being external to two meshes, be trained to

detect their differences?

4.2 Does SOM-based comparison offer any benefits over existing

techniques?

1.6 Overview

The rest of the thesis is organised as follows. Chapter 2 presents an

overview of each stage in the 3D modelling pipeline, before reviewing

the algorithms used at each stage. Chapter 3 discusses implementation

details (in particular, file formats) and describes the software developed

as part of my research.

Subsequent chapters present research performed and the correspond-

ing results. Chapter 4 demonstrates a modified surface reconstruction

algorithm with a focus on reducing the memory footprint, such that

very large meshes can be processed on modest hardware. Chapter 5

presents a surface reconstruction algorithm with integrated feature de-

tection. Chapter 6 presents a novel method of approximately aligning

two different (yet similar) meshes. Chapter 7 presents work on a method

of comparing two meshes.

Finally, chapter 8 discusses the results of the preceding chapters and

suggests potentially fruitful avenues for future research in each area.

1.7 Contributions

The contributions of the work presented in this thesis are as follows.

An SOM-based, memory-efficient, and scalable surface reconstruction

algorithm (chapter 4). This algorithm, presented along with a simple

modification to the Marching Cubes algorithm, allows for the reconstruc-

tion of very fine triangle mesh representations of large quantities of input

data.

A Self Organising Map (SOM) that stores its training history and

demonstrates that this history can be used for feature detection (chapter

5.

– 28 –

A deterministic, fully automated alignment algorithm based on per-

forming PCA on a point sample on a regular grid (chapter 6). The

algorithm can process point clouds and meshes as inputs, and can even

align a point cloud with a mesh.

A comparison algorithm that can not only detect the differences be-

tween two meshes, but also meshes and point clouds, and even two point

clouds. For clean inputs, the results match up well to the standard meth-

ods, which lends credence to the algorithm’s validity.

1.8 Limitations

There are some limitations to the work presented in this thesis.

The algorithm presented in chapter 4 requires pre-processing the data

to sort them by z-coordinate. Such sorting requires pre-determined gran-

ularity, and the optimal value is not always known in advance. It is also

difficult to model mathematically, making it difficult to derive provable

properties of the reconstructed surfaces.

When detecting features as described in chapter 5, the optimal res-

olution of the analysis is not known in advance, which can hinder fully-

automated processing efforts. The results are also not effective when

attempting to detect features in a noisy point set, where corrupted data

points are often incorrectly flagged as features.

The alignment algorithm in chapter 6 depends on PCA, and so in-

herits some of its problems, such as the lack of suitability for inputs with

high levels of rotational symmetry, and the difficulty of modifying it to

work on non-geometric data, such as colour. Another potential issue is

that the method is less accurate than performing PCA on the vertices

when the inputs are identical (or almost identical). However, this larger

error is a trade-off for increased robustness, and the errors are usually in

a tolerable range for most applications.

The comparison algorithm presented in chapter 7 is resolution-dependent,

and, like the feature detection algorithm, the optimal resolution is not

known in advance. Once the appropriate resolution is known however,

it is valid for all future comparisons with that mesh. The use of RMS

to compute the difference between meshes does carry some problems –

partially trained nodes can skew the results.

– 29 –

2. LITERATURE SURVEY

In this chapter I will first present an overview of the 3D modelling pipeline

as a whole in order to provide a lens through which the remainder can be

read. After this I will delve into details of the algorithms and research

relating to each stage, providing context for the research undertaken and

its place within the existing body of work.

In particular, the pre-processing stages are important since the algo-

rithms presented in chapters 5 and 4 both require normal data as part of

the input. Since normal data is not always available, it is important to

know not only how this data can be estimated (section 2.3.3), but also

how to attempt to control for – and mitigate – the confounding factors

in this process, such as outliers and noise (sections 2.3.1 and 2.3.2 re-

spectively). Since chapters 5 and 4 both describe surface reconstruction

algorithms, it is important to understand the context in which they are

presented, and as such a detailed survey of existing algorithms is given

in section 2.4.

Similarly, methods for aligning meshes are discussed in section 2.5.2,

including why PCA is generally not used for mesh alignment. This helps

to show why the use of PCA for mesh alignment, as presented in chapter

6, is novel.

Other sections, such as Data Acquisition (section 2.2) are presented

purely for context.

2.1 Stages in the Pipeline

2.1.1 Data Acquisition

There are a multitude of sources for 3D data, ranging from CT scans

of brains[71] and laser scans of archaeological finds[30], buildings and

trees[40]. There are a number of different methods and tools available for

Fig. 2.1: Raw scan data.

scanning objects, each with their own strengths and weaknesses, which

often relate to the type of noise and errors to which they are susceptible.

For instance, objects with areas of different colours and reflectivity can

give rise to significant errors with laser scanners[10]. In the context

of cultural heritage, modern methods of data acquisition (such as laser

scanners) provide significantly more reliability over the previous methods

(photography, wax-rubbing, and free-hand drawing) that have been the

mainstay for a long time[30]. Practical considerations often require the

data to be acquired in several distinct sets, for instance, to allow the

object to be rotated. Figure 2.1 shows what a collection of these raw

datasets might look like.

2.1.2 Registration

Since the datasets do not necessarily have a consistent coordinate system,

they must undergo some processing to determine if and where they over-

lap, and how they relate to each other. Following this analysis (which

– 31 –

Fig. 2.2: Registered point cloud.

typically involves additional information being collected in the data ac-

quisition phase), systematic errors are detected and removed, and the

necessary coordinate transformations are applied to bring each dataset

into a unified coordinate system. This whole process is known as reg-

istration. For instance, the Long Meg rock art was actually scanned in

102 distinct sections, which needed to be registered before the data as a

whole could be worked with. Figure 2.2 shows what the previous datasets

would look like having gone through this process.

2.1.3 Pre-Processing

After the data has been scanned and registered, it is often preprocessed

to clean remove (or smooth out) noise in order to provide clean input

data for the surface reconstruction algorithm. It can be used to remove

outliers for sensitive algorithms[94], estimate noise in particular regions or

simply to ensure correct file formats. There is some overlap between pre-

processing and registration, but the registration phase focuses primarily

– 32 –

on systematic errors rather than noise. Depending on the acquisition

method, normal data for the point cloud may not be available. Since

many algorithms are dependent on this data, it can be estimated at this

stage.

2.1.4 Surface Reconstruction

Whilst it is possible to represent a surface by a point cloud directly, this

comes with limitations such as difficulty finding intersections and decid-

ing whether a point is located within the surface. Consequently the next

stage is generally is turning a point cloud into a mesh; a representation of

the object’s surface from which the data were collected. Such a represen-

tation is usually deemed accurate if it has no protrusions/features that

are not present in the original object, and there are no features/protru-

sions on the original that are not present in the representation. However,

sometimes such inaccuracies are unavoidable. A multitude of algorithms

exist for this process and the selection of an algorithm depends on the

input, level of noise present, and desired output format. For example,

in engineering applications it is sometimes imperative that the output

be a watertight solid[27], or that the process is noise tolerant[107]. Fig-

ure 2.3 shows a surface reconstructed from the preprocessed data. Most

algorithms focus on reconstructing a surface from data with no prior

knowledge (e.g. no sorting of the input data along one axis), since this is

the most general case. However, knowledge of pre-existing structures in

the data – for instance, knowing that there are no holes – can be exploited

for significant increases in speed[23] and robustness. During the process

of reconstructing the surface, it may be possible to attempt to detect

geometric surface features. If a feature is detected then it can affect the

future direction of the algorithm, possibly by reducing the smoothing

applied to that area in order to avoid dulling the edges of a corner.

2.1.5 Post-Processing

The mesh produced by the surface reconstruction algorithm can be smoothed

to reduce the appearance of ridges and discontinuities or to remove other

artefacts. Spurious holes can also be detected and filled, though this is

a non-trivial problem[14] compared to smoothing.

– 33 –

Fig. 2.3: Reconstructed surface.

Once the surface has been processed as required, it may be desirable

to compare it to a known-good or theoretical model of the same object.

Such a comparison could be used to evaluate the efficacy of the surface

reconstruction algorithm, or, by controlling for the effects of the algo-

rithms at other stages of the pipeline, to evaluate the method of data

acquisition.

2.1.6 Rendering

Meshes are rendered by creating light sources and calculating where and

how the light will be reflected. If surface normals are not provided with

the mesh then they must be approximated or calculated before the surface

can be rendered. Such approximations can be informed by data collected

during the post-processing stage. For instance, if a region of a mesh has

been flagged as being low quality by a comparison algorithm (perhaps

because the scanned object was damaged in that region), this could be

highlighted. The final rendered surface is shown in figure 2.4

– 34 –

Fig. 2.4: Rendered surface.

2.2 Data Acquisition

The first step in the pipeline is to acquire data to process. This can

vary in scale and complexity from scanning a room to identify whether a

person present, to mapping an entire landscape. A common factor is that

nothing is done to the object or environment being scanned; the process is

entirely non-invasive. This stands in contrast to motion tracking, which

requires markers to be attached to the target to achieve high accuracy.

2.2.1 Technologies

The number of technologies that can be involved in data acquisition is too

broad to discuss exhaustively. Instead, an overview of the most popular

methods and a selection of their applications are presented.

– 35 –

Time of Flight

Direct time-of-flight records the time taken for a pulse of light to return

after being transmitted. Since the speed of light is constant, the distance

from the transmitter (whose position is accurately known) to the object is

simply the speed of light multiplied by the time difference. This requires

high-end clocks, which are generally too expensive to include in hardware

that must be affordable for a large number of consumers.

Indirect time-of-flight methods transmit a continuous wave and mea-

sure the difference between the transmitted and received amplitudes,

which are less costly to measure. The distance is then computed using

equation 2.1, where ∆ψ is the phase shift, f is the frequency, and c is

the speed of light.

d =
∆ψ

4πf
c (2.1)

One of the most popular forms of time-of-flight scanning is LiDAR.

LiDAR stands for Light Detection And Ranging, and commonly uses

a laser as the light source. By combining multiple LiDAR scanners,

shadowing can be minimised. A typical setup involves a laser emitting

pulses at a high frequency and adjusting the position of the beam by a

small, known amount in between each pulse.

LiDAR mapping has been used in landscape surveys for some time,

starting with mapping different types of vegetation by their different

radiance under red and infra-red light in forested environments[99], and

developing into automated, multi-spectral analysis of suburban areas[84].

It has also been used in archaeological preservation[30], and inner-city

mapping, where, with some appropriate seed data and a GPS device, it

can achieve accuracy levels better than 30mm based on a single drive-by

with an appropriate setup[41].

Ultrasound Mapping

Ultrasound mapping works by sending a stream of ultrasound waves into

the object to be scanned and performing indirect time-of-flight measure-

ments. Knowing the position of the transceiver allows the operator to

infer the distance from the scanner to a change of structure (where the

waves will be partially reflected). This change of structure could be be-

– 36 –

tween the surface of an object and the air surrounding it, but crucially,

it could also be the internal surface of a hollow object.

This ability of ultrasound – to pass through and map multiple surfaces

at once – has made it a valuable tool for scanning objects and features

that are not easily accessible, or even impossible to access. This non-

invasive, deep scanning has found applications ranging from mapping

cracks inside rails[52], to detect and pre-empt wear on the rails, which

can cause increased maintenance and rougher journeys.

Another application to make particular use of ultrasound mapping’s

particular strengths is the in-situ scanning of plastic pipes and their

surroundings[112]. This is particularly important as it is not simply

the surface of the pipe itself that must be inspected for cracks. Many

problems are caused by the subsidence of material on which the pipe

rests, so identifying and filling these voids can improve safety (for gas

pipes), but can also allow the type of preventative maintenance that can

prevent service interruption (in the case of water pipes).

Synthetic Aperture Radar

In its simplest form, Synthetic Aperture Radar (SAR) creates a 2D map

by moving a transmitter along one axis (the along-track distance) and

tracking the return time of a radar pulse transmitted orthogonally to its

motion (the cross-track distance).

SAR provides its own illumination, making possible the scanning of

terrain at night and even from space. The basic form suffers from the

problem that scanned locations are often distorted when compared to

the 2D view, due to a parallax-type error illustrated in Figure 2.6.

This can be overcome by using two spatially-separated receivers. By

having two receivers, the phase difference of the radar pulse received at

both gives a third measurement for each point, which, when combined

with knowledge of the transmitter and receiver geometry, can be used

to compute a 3D reconstruction[89]. Whilst this bears a resemblance

to stereoscopy, it is SAR uses combination of one transmitter and two

receivers as part of a single system. Stereoscopy on the other hand uses

a pair of systems, each of which consists of one transmitter and one

receiver.

– 37 –

Fig. 2.5: Synthatic Aperture Radar scanning.

Fig. 2.6: SAR parallax error. The points represented by the grey arrows
appear equidistant in the output. Consequently the two red
points appear nearby, despite being far apart.

– 38 –

Even this form of SAR is not without its issues however, as it still

suffers from shadowing (lack of data due to one part of the scenery ob-

structing another) and layover (superposition) of data, though scanning

from multiple viewing angles can significantly increase the accuracy, and

reduce the effect of shadowing[95].

2.2.2 Commodity Scanners

Scanners need not be costly in order to be effective – for instance, the

Microsoft Kinect is commodity hardware priced at a consumer level. The

original Kinect used a known pattern of light (“structured light”) to de-

termine the position of objects and players in the room. It projected a

number of rows of dots into the room (with the position of dots in each

row being unrelated to the previous row). Their depth into the room was

computing by comparing the difference between a point’s apparent posi-

tion and its reference (calibration) position. Using this method, distances

of up to nearly eight metres were able to be reliably measured[111].

The follow-up, Kinect v2.0, contains one RGB camera, one Infra-Red

(IR) camera, and three IR projectors, and uses indirect time-of-flight

to measure distances. Three different modulation frequencies are used

to distinguish between the signals, making the second-generation Kinect

more robust to operating in sunlight, and allowing it record more accurate

depth values[111]. Measurements can be carried out at 30Hz, with 70◦

horizontal and 60◦ vertical angles, and an operating range of 0.5–4.5

metres. The software development kit includes a tool called “Kinect

Fusion”, which uses standard surface reconstruction algorithms to create

3D meshes when the Kinect is slowly moved around and object[63].

Most data acquisition involves moving a scanner around a fixed object

map a point in 3D space. Reversing the perspective however, we can use

a set of fixed scanners and a mobile object to map the location of that

object in 3D space. Filonenko et. al. used a set of ultrasound emitters

attached to a walls to locate a smartphone on a building floor[32]. Their

motivation was that outdoor positioning methods work poorly indoors

(e.g. GPS) and current indoor positioning methods are unreliable. For in-

stance, fingerprinting an accurate location based on wireless network and

other signal strengths requires dense fingerprint value collection, which

– 39 –

must be performed multiple times in order to filter out noise.

Since the speed of sound is significantly slower than the speed of light,

expensive hardware is not needed in order to take measurements accurate

enough to perform direct time-of-flight calculations with sound. Indeed,

the microphones found on commodity smartphones are able to detect

frequencies above the audible range. If the positions of the emitters

are known, the location of the smartphone can be computed to a high

level of accuracy (< 10cm). Significantly, this did not require knowing

the distance from the smartphone to each of the microphones, only the

differences in the distances to each. Given four emitters, this gives three

distance differences, which can be used to compute the 2D position of

the smartphone on a floor of the building.

Bosse et. al. attached a 2D scanner to a moving body (generally a

spring), calling their system “Zebedee”. The vibrations of the moving

body cause irregular scanner movement, which effectively creates a 3D

scanner that is simple, mobile and cheap[12]. Their implementation used

a 2D time-of-flight laser scanner, but the idea is compatible with 3D

scanners. Data are assigned to a time-window, so the cloud is not a

snapshot of the scene, though depending on motion within the scene, this

may not be important. If increased resolution is required, the rotation

can be limited, increasing the frequency with which areas are scanned

(and therefore the resolution).

2.2.3 Scanning Objects and Scenes

A famous example of a laser-scanned object being digitised is the Stan-

ford Digital Michelangelo Project[67]. A laser was used to scan Michelan-

gelo David at a 0.25mm scale; the original reconstructed model had ap-

proximately 56 million triangles, and was based on a subset of the data.

Many years later however, Brown and Rusinkiewicz were able to regis-

ter all the scan data[16] and a new model was created at full resolution.

The full-resolution reconstruction has nearly 1 billion polygons, and at

the time was likely to be the largest ever geometric model of a scanned

object.

At the other end of the scale is the well-known example of the Stanford

Bunny. It is a clean, simple model with approximately 65’000 triangles,

– 40 –

and few holes. This makes it a good early test case for algorithms in the

early stages of development, before the techniques are refined an applied

to more complex models. It was originally created by Turk and Levoy,

who used a modified ICP algorithm to provide the initial alignment of

the surface fragments[101].

Zhu et. al. used an airborne laser to scan terrain for later reconstruc-

tion and feature detection[113]. They created a pipeline for reconstruct-

ing CAD building models without requiring regularisation, and were able

to achieve an accuracy of approximately 0.8 points/m2. The low density

of points made road-edge detection challenging; it was determined that

this would require approximately 8 points/m2.

De Reu et. al. applied this pipeline to the field of Archaeology, since

future study of the growing archive of site structures and drawings are

biased by their 2D nature, which makes reconstruction difficult[88]. Bet-

ter 3D imaging mitigates the destructive effect of excavation, not only

destroys the original source, but also the context of artefacts within a

site. It also helps to raise public awareness and participation, However,

given the increasingly digitised nature of the field and the need for re-

mote analysis, the methods and equipment used must be both fast and

accurate. This allowed them to reduce the amount of manual processing

required to achieve the best possible results.

2.3 Preprocessing

2.3.1 Outlier Removal

Motion quantisation, multiple reflections and object occlusion often cor-

rupt (outdoor) point clouds with significant outliers and noise, which

require multiple scans for handle. In the case of archaeological sites or

streets, it may not be possible to close the area, resulting in ghost geom-

etry, perhaps from where a person has moved in between scans. Outlier

detection is non-trivial in the absence of prior knowledge of the surface

(which would be able to guide the classification). It is also hindered by

the unknown distribution of outliers across the surfaces, and by geomet-

ric discontinuities, which can falsely suggest that points laying on such

discontinuities are outliers.

– 41 –

Kanzok et. al. noted that testing if other scanners can “see through”

an object detected by one scanner was equivalent to asking if the points

from such an object cast a shadow in other scans of the same region[53].

If an object only casts a shadow/obstructs a view in one scan, it is more

likely to be an artefact. Their algorithm assigned a confidence to each

point, and allowed setting a threshold on this confidence, below which

points would be removed as outliers.

Given a noisy set of points containing outliers, Wang et. al. defined

the k-distance, of a point p ∈ P (kd(p))to be the distance from p to the

kth-farthest point q ∈ P , and the k-neighbourhood of p:

Nkd(p) = {q ∈ P |d(p, q) ≤ kd(p)}. (2.2)

A distance-based deviation factor (ω(p)) was defined for each point, based

on the the relative deviation of its local neighbourhood compared to

the average deviation of the points in the neighbourhood. The points

with the smallest value of ω(p) were taken as seeds for regions, and the

nearest three neighbours were added to each each region (with conditions

to prevent the added points being too distant). This was repeated until

no more points could be added to any region, at which stage P was

partitioned into regions and the smallest regions treated as outliers (since

the conditions on adding distance points would prevent their regions

growing)[104].

2.3.2 Noise Estimation

Raw data from 3D scanners is rarely directly usable. There are three

distinct types of information in meshes created from scanners.

• Connectivity – how the vertices are connected within the mesh

(introduced as a side-effect of mesh creation).

• Geometry – the positions of the vertices themselves.

• Topology – how the mesh as a whole connects to itself (e.g. self-

intersections or holes).

Connectivity noise is unimportant to us since it is a by-product of mesh

creation, therefore no particular connectivity map can be said to be more

– 42 –

correct than another. Geometric noise is produced by errors in the data

acquisition: errors in measurement and sampling, and is the type of noise

that will be considered throughout the rest of this thesis.

Topological noise (incorrect self-intersections or holes) is produced

by the mesh generation algorithm. Artefacts from topological noise can

be significant, for instance in the case of CT scans the resulting model

will have an incorrect representation of how biological structures are con-

nected to each other[105].

Most denoising algorithms perform the same conceptual steps[86]:

• Apply a transformation to move the noisy signal to a domain where

the signal and noise are cleanly separated.

• Use assumptions about the effect of transform on the noisy signal

to remove the noise.

• Apply the reverse transformation.

Even if the noise cannot be completely removed, it can be beneficial

for certain algorithms for it to be smoothed in order to achieve a more

uniform distribution over the whole data set.

Many methods of noise estimation assume that it is evenly distributed

across a surface, though this is not always the case. Yoon et. al. ap-

proximated a neighbourhood of points by a uniform B-spline[107]. Their

method uses a variational Bayesian algorithm to estimate the quantity

and variance of the noise. A new B-spline (with more control points) is

then computed, taking the noise estimation into account.

The algorithm was tested on meshes that had varying amounts of

noise added to them and performed very well. The presence of features

interfered with the estimates of noise (something inherent in the algo-

rithm) but this did not cause serious problems. Predictions for the loca-

tions and amount of noise agreed with visual inspection, and the most

appropriate lattice size was found for each area.

– 43 –

2.3.3 Normal Estimation

Principal Components Analysis

The goal of Principal Components Analysis is to extract meaningful re-

lationships from a cornucopia of noisy data. The relationships between

the data are assumed to be linear, but this is rarely an issue and greatly

simplifies the analysis. We therefore attempt to find an optimal basis

for expressing the data (i.e. one that will highlight the relationships) by

using a linear combination of the original basis vectors.

Given a matrix X representing a dataset, each column corresponds to

the set of measurement types and each row of X represents all the data

of an individual measurement type (x0, x1, x2, . . .). To represent the X

in a new basis (P), we transform it like so:

PX=Y. (2.3)

We assume that after this transformation, the most important corre-

lations will occur in the directions of greatest variance. To get a measure

of the redundancy in our dataset we calculate the covariance matrix of

our new dataset Y like so:

CY =
1

A
Y Y T . (2.4)

CY is a square, symmetric matrix. The diagonal elements are the vari-

ance of the different measurement types, the off-diagonal elements are

the covariance of the measurement types with respect to each other. By

our earlier assumption, a large on-diagonal element indicates that a re-

lationship is significant, whereas a large off-diagonal element indicates a

large degree of redundancy in the measurements. If we express CY as

ABA−1, where B is a diagonal matrix of the its eigenvalues, then A will

be a matrix of its mutually-orthogonal eigenvectors.

These new eigenvectors, ordered by eigenvalues, are called the princi-

pal components of Y , and are centred on the component-wise mean of the

original dataset represented by X. If necessary, the dimension of the data

is reduced by removing the least significant principal components. Prin-

cipal Components Analysis can be used for normal estimation because

when the data represents a surface, there is far more variation parallel

– 44 –

to the surface than orthogonal to it, so the least significant component

can approximate the normal to the surface.

Robust Tangent Plane Estimation

Li et. al. developed a new method of normal estimation, since in their

view Principal Components Analysis is, whilst efficient, too susceptible

to noise. They noted that the scales on which one must look in order to

determine the local noise level and to estimate the local tangent plane

are different – a large scale is needed for noise determination, and a small

scale for accurate tangent plane (normal) estimation[68].

For each point in a neighbourhood (the size of which must be man-

ually chosen), three other non-colinear points are selected to estimate

the tangent plane, and the residuals of all other points (their shortest

distance to this plane) are computed. Three different points are then

chosen, a new plane defined, and all points have their residuals com-

puted and sorted in ascending order for this new plane. This process is

repeated for each point in the set, so that for N points in the neighbour-

hood, we have N potential planes, each of which has an associated (and

sorted) list of residuals stored. The plane with the lowest kth residual

is used to estimate the noise scale from its list of residuals. The value

of k is chosen according to the feature size: the smaller the value of k,

the smaller the features that could be detected. Li et. al. found that

taking k to be 20% of the neighbourhood size gave satisfactory results.

The algorithm requires that the noise distribution be Gaussian however,

and the normals produced are unoriented.

Wang et. al. took a different approach. If a point p is not near

a sharp feature, take three non-colinear points to estimate the normal

plane. If p is near a sharp feature, there could be several nearby surfaces

that could be used, so a clustering algorithm is used to determine the

most appropriate. For a set of n points near a sharp feature, m planes

are defined, each by three non-colinear points. The residual of each point

to the plane is then computed, and the list of all such residuals is sorted

in non-decreasing order. The top-k list of a point i is the list of k planes

for which i has the smallest residual (effectively, the first k planes in its

sorted residual list)[104].

– 45 –

It is intuitive that if two points lie on the same substructure, their

top-k preference lists will be similar. Kendall’s Tau is used to determine

the “distance” between top-k preference lists, but it is inverted to give

a similarity measure. Given a point p and its neighbouring point set Q,

we compute in turn the similarity of each qi ∈ Q; if qi and p are above a

threshold of similarity, then qi is added to the set of p’s set of consistent

points.

Least Squares

Mitra et. al. sampled a 2D surface and added noise to simulate a noisy

dataset from which they intended to estimate normals[75]. The inputs

to their algorithm are the dataset D, a user-defined radius r and an

initial number of neighbours to look at, k0. For each point p ∈ D, the

algorithm finds all points inside the r-sphere centred on p. The density

is then estimated by:

ρ =
k

πr2old
(2.5)

and used to approximate the local curvature. This curvature is then used

to compute a new value of r, which is in turn used to compute a new

value of k, the number of neighbours to use in the estimation calculation,

by:

knew = dπρr2newe. (2.6)

The preceding operations are performed a predefined number of times, at

which point the least squares plane of the k-nearest neighbours provides

an estimate of the surface’s normal at p.

Sheung et. al. selected a subset {pi} of the point cloud, then for each

point pi, n points are selected from its neighbourhood and a quadratic

surface fitted to them using a least squares method[97]. The sum of the

residuals of each point is computed, with a lower value taken to indicate

a greater probability of the quadratic surface being accurate.

This process is repeated many times, and the quadratic surface with

the lowest sum of residuals is used as the surface estimator. The points

are then “pulled back” onto this surface estimator, and their normals are

assigned to be the normal of the quadratic surface at their new position.

– 46 –

Fig. 2.7: A 2D Voronoi diagram (coloured shapes), with the Delauney
triangulation overlaid in black.

Delauney Balls

Given a set of points

P = {p0, p1, . . . , pN} ∈ R2 (2.7)

the Voronoi cell of a point pi is the region of R2 that lies closer to pi

than any other point in P . The Voronoi diagram is the decomposition of

R2 into Voronoi cells. A 2D Voronoi diagram is shown with the coloured

shapes in Figure 2.7. The corners of Voronoi cells are called Voronoi

vertices.

Each Voronoi vertex is equidistant from exactly three members of P

(in N dimensions, they are equidistant from N + 1 members of P). If

we connect these three points together then we get the Delauney trian-

gulation. The Delauney triangulation of is shown in black in Figure 2.7.

The Delauney triangulation generalises to three dimensions, where we

get Delauney Tetrahedrons.

A Delauney ball is simply a ball circumscribing the four vertices of

a Delauney tetrahedron. Dey et. al. proposed a method that uses

– 47 –

Delauney balls centred on Voronoi poles (the farthest Voronoi vertices

from a point) to approximate normals[29]. Each point in the sample set

has two Delauney balls; one with its centre inside the surface, the other

with its centre outside. These are used to approximate (unoriented)

normals at the sample points.

They showed that even in noisy samples (which can severely restrict

the size of the Voronoi cells, and hence Delauney balls), large Delauney

balls still exist and can be used to give a good estimate of normals.

Estimates can be made not only for the sample points the Delauney balls

are incident to, but also to nearby points that have no large, incident

Delauney ball.

Orientation

Estimating normal data is not just a question of the direction of the nor-

mal (i.e. magnitude of the normal vector’s components). The orientation

of the normal in that direction must be accurate if these data are to be

relied on when reconstructing or rendering a surface.

Given N unorganised points lying on (or near) a surface, with normals

of unknown orientation, Liu et. al. developed a method of orienting them

as a precursor to reconstructing a surface[70]. First, a set of covering

spheres is created and a weight assigned to each point. In areas of high

sampling density, each point has a low weight, in areas of low sampling

density, each point has a high weight.

The covering spheres are expanded until the residual error crosses a

threshold, at which point a rough triangulation of the surface is gener-

ated. This triangulation need not to be geometrically accurate: only the

orientation of the normals is important, not their values. For all input

points pi, the closest point on the surface M is found (cm), the direction

of cm’s normal is then assigned to pi.

– 48 –

2.4 Surface Reconstruction

2.4.1 Early Algorithms

Contour-Based Methods

Contour-based methods rely on triangulating the space between adjacent

contours, then joining all such strips together to form the final surface.

The contours are typically dense, parallel cross-sections of an object.

However, if multiple scans are taken there can be multiple contours per

slice, resulting in ambiguities. There are other pitfalls, many of which can

be attributed to the fact that the methods throw away data[71]. Contour-

based reconstructions have taken a back seat to other types of algorithm

in recent years, but do still see some work. For instance, Barequet et. al.

studied reconstruction from a set of sparse, non-parallel cross-sections[5].

This stands in contrast to the earlier papers, which looked at parallel,

often dense cross-sections.

The Marching Cubes Algorithm

Probably the most famous algorithm for surface reconstruction is the

Marching Cubes algorithm, developed by Lorensen and Cline[71]. It is

simple yet powerful, and remains in frequent use long after its initial

development.

A scalar function f(x, y, z) is defined over a 3D space D (taken to be

a cube, without loss of generality) containing the object. A value of f

(usually 0) is then chosen to represent the surface. D is subdivided into

many smaller cubes1 and f is sampled at each corner of these smaller

cubes. By the Intermediate Value Theorem, if one corner is inside the

surface (f ≤ 0) and another is outside (f ≥ 0), then the surface (f = 0)

must pass between them.

Each corner can either be inside the surface or outside2, therefore

there are 28 = 256 possible combinations of corners being inside/outside

the surface. When reflective, rotational and internal/external inversion

symmetries are taken into account the number of unique combinations

is reduced to just 15, which are shown (with some equivalent combina-

1 In spite of the name, there is no requirement to use cubes instead of cuboids.
2 Ignoring the case where the surface passes precisely through a corner.

– 49 –

Fig. 2.8: The different cube configurations.

tions duplicated for clarity) in Figure 2.8. By creating an index for each

unique intersection cube we can create a lookup table for each cube and

reconstruct the surface with ease.

To give an example of this for a single triangle, figure 2.11 shows the

output for a cube where v5 is inside, and all others are outside (or vice

versa). Point i1 lies on the surface (i.e. f(i1) = 0), its position along

edge e6 is determined by linear interpolation between f(v2) and f(v6).

Lorensen and Cline investigated quadratic interpolation of the distance of

the intersection along the cube’s edge, but found it to offer no significant

improvement in accuracy.

– 50 –

Fig. 2.9: The function f is sampled at each of the cube’s vertices.

Fig. 2.10: The labelled edges of the cube.

Fig. 2.11: Points i1, i2 and i3 denote intersection of surface with edges.

– 51 –

Marching Cubes Modifications

Due in part to the simplicity of its implementation, Marching Cubes

has become the de-facto standard algorithm for isosurface extraction.

Unfortunately it has a tendency to smooth out sharp features and as

such modifications have been proposed to counteract this. One method

is to use a directed signed distance field; i.e. rather than storing the

scalar distance of a vertex to the surface, the distance from the vertex to

the surface along the direction of each axis is stored separately[60]. This

allows the computation of a more accurate intersection of the surface

with the cube, giving sharper corners and better-reconstructed features.

Schaefer and Warren created the Dual Marching Cubes algorithm to

address the smoothing of sharp features[93]. The dual of a mesh is created

by switching faces with vertices, and connecting any two vertices if the

faces from which they were originally created shared an edge. Whereas

the Marching Cubes algorithm runs on a regular 3D grid (or an octree),

their modification runs on a grid dual to this. The dual grid conforms

more closely to the features of the implicit function and therefore allows

features to be extracted more accurately whilst using fewer polygons.

This dual-graph method of reconstructing sharp features was also used

by Sheung and Wang[97].

Another shortcoming is the production of low-quality triangles, where

one edge is significantly shorter when compared to the other two. First,

the border of each polygon within a cube is computed, and vertices with

bad (i.e. small) angles are detected. The two vertices adjacent to these

bad angles are then connected, to isolate its impact (if other vertices were

connected, the angle would be subdivided, creating more bad triangles).

For polygons with a circumference of four or more edges, a new vertex is

placed inside (subject to user-defined thresholds), close to the smallest

edge (thus minimising the angle created by this new vertex with the edge

This results in a mesh consisting of triangles with significantly better side

length and angle ratios[64].

Marching Tetrahedra

The Marching Tetrahedra algorithm follows the same idea as Marching

Cubes, but once the input has been partitioned into cuboids, it partitions

– 52 –

Fig. 2.12: Splitting a cube into 6 tetrahedra, one of which is shaded.

each cuboid into six tetrahedra. These tetrahedra are created by cutting

diagonally through each pair of cuboid faces.

Doing this consistently across the whole dataset ensures that inter-

section points can be shared between cuboids. Consequently there are

nineteen potential points of intersection in the cuboid, instead of twelve

with Marching Cubes (though the point on the main diagonal is entirely

contained within the cuboid). Each tetrahedron is evaluated to one of

the following cases:

• No surface intersection.

• Intersection resulting in one triangle (one vertex in/outside).

• Intersection resulting in two triangles (two vertices in/outside).

The additional intersections increase the resources require to run the

algorithm, but leads to a more accurate representation of the isosurface.

It also resolves an ambiguity in some cube combinations in the Marching

Cubes algorithm.

2.4.2 Explicit Algorithms

In this section we explore algorithms that directly create an explicit sur-

face from a point cloud.

Basic Concepts

The convex hull of a set of points in 2D is a curve enclosing all points in

such a way that no part of the curve is concave. This concept extends

– 53 –

Fig. 2.13: Determination of p+s (and therefore n+) for a point s not on
the convex hull.

Fig. 2.14: Determination of p+s (and therefore n+) for a point s on the
convex hull. The grey arrows indicate the normals of adjacent
triangles.

to 3D, with the equivalent condition that no point on the surface may

have negative curvature. If a point is in the convex hull, its Voronoi cell

is unbounded.

Given a sample point s, we define the following in its Voronoi cell:

• p+s : If s is not on the convex hull, this is the farthest Voronoi vertex

from s, shown in Figure 2.13.

• n+
s : if s is on the convex hull of S, this is the vector sp+s . Otherwise

it is the average of outer normals of adjacent triangles, shown in

Figure 2.13.

• p−s : the Voronoi vertex whose negative projection onto n+
s is far-

thest from s.

p+ and p− are called the poles of s.

Crust

In 1998, Amenta et. al. developed an algorithm that uses the Voronoi

diagram and Delauney triangulation. No experimentally determined pa-

rameters were given as input; they were all calculated locally[1].

– 54 –

The algorithm starts by computing the Voronoi diagram of the sample

set S. P is defined to be the set of all poles p+ and p− and the Delauney

triangulation is calculated for the the set of all points lying in S ∪ P .

Finally, any triangles with a vertex in P are removed.

The output was found to need more filtering in order to guarantee a

good reconstruction, so triangles whose normals differed too much from

n+ or n− were thrown out, after which the output normals then converged

to the surface normals. The algorithm rests on the assumption that the

Voronoi cells are long and thin, but around sharp edges they are much

fatter, leading to greater variability in the normals. This may lead to

desirable triangles being deleted near sharp edges/features.

Undersampling caused holes to appear, but by moving all poles a fixed

fraction closer to their corresponding sample point, the holes appeared in

different places. Taking a union of the modified output and the original

output sometimes gave a perfect reconstruction. Noise also presented

a problem: when the level of noise was roughly equal to the sampling

density the algorithm broke down and was unable to reconstruct any

surface. It was suggested that there may be a thick surface algorithm

that would be able to tolerate a higher level of noise.

Power Crust

The medial axis is the set of points that have more than one closest

point on the surface. It may be divided into several distinct sections,

each of which may be inside or outside the surface. In two dimensions,

the positions of the Voronoi vertices approximate the medial axis.

A medial ball is a sphere centred on the medial axis or a centre of

curvature of the surface, and that has as large a radius as possible without

containing any sample points. The medial axis transform is the union of

all such balls.

Power Crust is a modification of Crust that was designed to create

watertight surfaces[2]. It uses the poles as defined in section 2.4.2 to

approximate the medial axis transform. Each ball has its centre labelled

as either inside or outside the surface, and the “power crust” is defined

to be the boundary of the union of all the internal medial balls.

– 55 –

Cocone

Given a point s with pole p+, the vector sp+ provides an estimate of the

normal at s. The cocone of a point s is the complement of a solid double

cone centred on s and aligned with sp+s [3]. The angle of the cone (θ) is

given.

The Cocone algorithm[24, 25] selects triangles from the Delaunay tri-

angulation whose Voronoi edges intersect the cocones – these are the

candidate triangles. If the sampling density is sufficiently high, the can-

didate triangles lie near the surface and have normals that are nearly the

same as their vertices’ normals. A continuous surface is then extracted

from this set of candidate triangles.

In well-sampled regions, the Voronoi cells are long and thin, in under-

sampled regions they are short and fat. The Boundary algorithm detects

undersampling by testing how skinny the Voronoi cells are and whether

their elongation is close to that of their cocone neighbours. It is unknown

whether intended boundaries can be recognised at the same time as filling

holes that have arisen due to undersampling.

Tight Cocone

Tight Cocone[27] is a modification of Cocone that produces watertight

surfaces. Cocone is modified to call the Boundary algorithm and allow

only those triangles not marked as undersampled to be selected as can-

didate triangles. This removes bad triangles and gives a surface that

usually contains holes.

Sample points are labelled good if their incident triangles form a topo-

logical disk, otherwise they are labelled bad. All infinite tetrahedra are

marked as out. A stack of “good” point and “out” tetrahedron pairs (p, σ)

is initialised with a point and an infinite tetrahedron and maintained

thereafter. All tetrahedra connected to σ and p are walked through,

without crossing the surface triangles incident to p. These tetrahedra

are all marked as out. When a vertex/tetrahedron pair q, σ′ (incident to

p) is reached, (q, σ′) is added to the stack if q is good and unexplored.

p, σ is then popped off the stack and the next pair is explored.

When there are no more pairs on the stack, a “peeling” algorithm

works through a stack of triangles built in the previous stage and removes

– 56 –

any that do not form part of the surface.

The performance bottleneck is the 3D Voronoi calculation. In the

worst case, Tight Cocone is quadratic in the number of sample points,

though this was not seen in practice. Issues with the algorithm include

its fundamental inability to reconstruct internal voids and its inability to

construct a surface above a particular noise threshold.

Other Cocone Variants

Cocone has two more variants, each suited to different tasks. RobustCocone[28]

computes a surface by interpolating a subset of the sample points and

is better suited to noisy datasets (assuming that the sampling den-

sity is high by comparison to the local feature size). There is also

SuperCocone[26] which is designed to handle very large data sets. It does

so by using octree subdivision to divide the data into subsets, applying

the Cocone algorithm to these subsets, then matching surface sections

from adjacent sets to create the final mesh.

Covering Spheres

A set of covering spheres are generated and all points are labelled as

uncovered. An uncovered point is selected at random to be the centre of

a new sphere. An error function is defined for each sphere, which takes

its minimum value at xm).

If xm is inside Si then xm is marked as the auxilliary point of Si.

Otherwise, the centre of Si is used as its auxilliary point. All the points

contained within the sphere are then projected onto the tangent plane of

all the points in the sphere. On this plane, the convex hull of the points is

computed, and any points not lying on the boundary of the complex hull

are marked as covered. The process is then repeated until all points are

covered. A Radial Basis function method was then used to reconstruct

the surface[70].

2.4.3 Implicit Algorithms

Implicit surface reconstruction methods usually require points with nor-

mals as inputs [18, 100, 82]. Using a standard technique, the input data

– 57 –

are assigned a scalar value of 0, the ends of the normals pointing to the

exterior of the surface are assigned value 1, while the opposite normal

ends are assigned value -1. These values are interpolated or approximated

by local or global scalar fields, which are then blended to create a single

global scalar field approximating the signed distance to the surface.

Finally, the surface is extracted as the zero-level set of the scalar

field. Implicit methods perform well when presented with poorly sampled

data, but interpolating algorithms are not robust in the presence of noise.

Implicit methods also have significant difficulty representing surfaces with

boundaries.

Hoppe’s Method

A set of points is “ρ-dense” if any sphere centred on a sample point, with

radius ρ, contains at least one other sample point. Hoppe et. al.[43]

assumed the sample points to be “δ-noisy”, i.e. ||noise errors|| < δ.

The tangent space of each point xi is estimated using its k-nearest

neighbours and the centroid (barycentre) of these used to determine the

centre of the tangent plane oi. Principle components analysis is then used

to determine the normal vector, ni. A graph is created of the centroids

and the consistent alignment is solved as an optimisation. The point with

the largest z component is defined to have a normal pointing outside the

surface, and this “outward pointing” label is propagated to neighbouring

normals.

The distance of each point from the surface is estimated by evaluating

f(xi) and weighting it with the distance (projected onto ni) from the

point to its centroid, like so:

estimated distance = f(xi)(xi − oi).ni. (2.8)

If the estimated distance is larger than δ+ ρ then the point is discarded.

The zero-set of the distance function is approximated in each voronoi

region, giving a discontinuous global approximation. Post-processing was

used to ensure that long and thin triangles were not produced. The algo-

rithm automatically discovered the topology of the surface and performed

well with respect to surface geometry, it also generalises to higher dimen-

sions allowing surface attributes to be modelled as well as the physical

– 58 –

dimensions.

Radial Basis Functions

If a function depends only the distance of its parameter(s) from the

origin, it is known as a radial basis function. Ohtake et. al. used radial

basis functions to interpolate a point set. First, a hierarchy of point sets

P = {P 1, . . . , Pm} is created by placing P in parallelepiped and octree-

subdividing. Then, the centroid of each cell is computed and assigned

a normal vector, which is computed by averaging the normals of all the

points in the cell and normalising the result[81]. The support radius of

the RBFs is taken to be three-quarters of the average diagonal length of

the cells in the parallelepiped.

The interpolating functions are recursively defined from the previous

set like so:

fk(x) = fk−1(x) + ok(x), (2.9)

the initial function is taken to be a constant at −1. ok is an offset function

- it is a correction applied to the previous level’s interpolating function.

The support size decreases by a factor of two with each recursion. The

surfaces given by this method can be used for a variety of implicit surface

operations, including morphing and cutting. The algorithm method gave

good performance and works with irregularly and badly sampled data,

though since it interpolates points, it is not robust with respect to noise.

Carr et. al. used RBFs fitted to a subset of the point cloud to recon-

struct the surface[18]. These points are assumed to lie on the surface, and

each is augmented by two off-surface points whose positions are given by

xi + ni and xi − ni, where ni is the point’s normal, which may be given

or estimated. The problem is therefore that of finding a global function

f such that

f(x) = 0 where x is on-surface (2.10)

f(x) = ||ni|| where x is external off-surface (2.11)

f(x) = −||ni|| where x is internal off-surface (2.12)

The points to which an RBF is being fitted are classified as either

near or far to the RBF’s centre. Near points are evaluated individually,

whereas far points are clustered and the the cluster’s influence as a whole

– 59 –

is approximated. This results in a dramatic speedup that makes the use

of RBFs feasible for large point sets.

A greedy algorithm is used to reduce the number of interpolation

nodes necessary to represent the surface to the same level of accuracy.

Starting with the initial number of interpolation centres, if the error for

a particular RBF is above a threshold, then a new RBF centre is added

nearby until all fitting errors are below the threshold.

The isosurface is then extracted using a variant of the marching tetra-

hedra surface extraction algorithm that only retains those vertices that

are on the “wavefront” of the algorithm, and so reduces the memory

requirement. It also has the advantage that the computational cost in-

creases with the square of the resolution, not the cube. This approach

was developed further in [19], where low-pass filtering was used to allow

the reconstruction of surfaces from noisy point clouds with large under-

sampled or unsampled regions.

Partitions of Unity

Partitions of unity are used to combine many local approximations into a

single global approximation, inheriting various properties like maximum

error. The basic idea is to split the domain into several regions and solve

the problem in each subdomain. These local solutions can then be added

together with small local weights which sum to 1 at all points in the

domain.

Ohtake et. al. used octree-based subdivision to create the subdo-

mains. The weight function of each cell was given a support radius

that was a multiple of the diagonal of the cell. If this did not contain

enough sample points then the radius was allowed to grow by a fixed

proportion[80].

For each cell they allowed three possible approximations: a general 3D

quadric, a bivariate quadric in local coordinates, and a piecewise quadric

surface. The general 3D quadric is used for larger areas that could be

unbounded or contain more than one sheet. The bivariate quadric in

local coordinates is used to approximate local smooth patches. Finally,

the piecewise quadric surface performs several feature tests to determine

the most appropriate type of approximation, making it effective for edges

– 60 –

and corners. If there are many points in a cell then one of the first two

is used: if the average normal deviation is greater than π
2

then the first

is used, otherwise the second is.

The method can also be adjusted for interpolation by simply giving

each point its own cell. The reconstructions are robust with respect to

variations in point density and sharp features are reproduced. The algo-

rithm worked well with poorly sampled data, especially when compared

to [82], which was more sensitive to density variations.

Nagai et. al. extended the partition of unity methods, smoothing the

local approximations whilst attempting to preserve features[76]. Each oc-

tree was assigned a spherical support with a local signed distance func-

tion. Principal Components Analysis was used to calculate the small-

est eigenvector, which was compared to a vector from the centre of the

sphere and the centroid of all points contained in it. If the sampling den-

sity changed in the sphere, this angle was large and so the points were

assigned a low confidence (often indicating an outlier). The method is

robust to noise and able to cope with random normal rotations of up to

60 degrees, with some manual parameter tuning.

2.4.4 Least Squares Methods

Basic Least Squares

Least square methods are all variants on, or extensions to, the basic least

squares method of minimising a cost function. Given a set of points {xi}
and corresponding values {fi}, the goal is to construct a global function

f(x) such that the difference between f(xi) and fi is as small as possible.

Therefore a cost function, GLS, is defined like so:

GLS =
∑
i

‖f(xi)− fi‖2. (2.13)

In order to minimise the error, the coefficients and constants in f(x)

are chosen such that GLS is minimised. This is done by computing the

partial derivatives and solving for zero.

– 61 –

Weighted Least Squares

The weighted least squares method is an improvement on this since it

(unsurprisingly) includes a weight function. It defines a set of weighting

centres {x̄i} with corresponding local approximations. Errors close to a

weighting centre are treated as “worse” that errors further away[77]. The

error is:

GWLS =
∑
i

Θ(d)‖f(xi)− fi‖2 (2.14)

d = ‖x̄− xi‖. (2.15)

A local approximation is calculated for each of the weighting centres, and

a global approximation created from these using a partition of unity.

The choice of Θ(d) is situation-dependent and often includes a spacing

parameter h to smooth out small features and irregularities. Popular

examples include a Gaussian function:

Θ(d) = exp

(
−d

2

h2

)
, (2.16)

with its non-compact support, and the Wendland function:

Θ(d) =

(
1− d

h

)4(
4d

h
+ 1

)
, (2.17)

which is well-defined on d ∈ [0, h] and has the convenient properties

that Θ(0) = 1 and Θ(h) = 0 as well as C2 continuity (Θ′(h) = 0 and

Θ′′(h) = 0). A judicious choice of Θ(d) can dramatically change the

result of the fitting process. For instance,

Θ(d) =
1

d2 + ε2
(2.18)

with ε = 0 forces interpolation rather than approximation. The partition

of unity functions ψj(x) are given by:

ψj(x) =
Θj(x)∑N
k=1 Θk(x)

(2.19)

– 62 –

with the requirement that ∑
j

ψj(x) ≡ 1 (2.20)

everywhere. The global approximation is then given by:

f(x) =
∑
j

ψjfj(x) (2.21)

where fj(x) is the local approximation for the weighting centre x̄j.

Moving Least Squares

Moving least squares is a logical extension to the weighted least squares

method whereby a local approximation is calculated for every point in

the dataset, i.e. for every xi, an x̄i = xi is created. This approach has

some significant benefits. Levin et. al. used moving least squares to

approximate an N−dimensional function[66]. The error was bounded

by the error of the best local polynomial approximation. Kolluri used

moving least squares and developed an algorithm that, given sufficient

sampling density and bounds on noise, could produce a provably-good

reconstruction (both topologically and geometrically)[62].

Mederos et. al. clustered the sample points, then computed a point on

the moving least squares surface that was representative of the cluster[74].

These representative points were triangulated by taking the nearest neigh-

bour rj of a point ri and inserting an edge, then selecting a third point

rk in order to maximise the angle rjrirk.

Algorithms based on the MLS projecions are the a very successful

case of point-set surfaces, where the surface is implicitly defined as the

set of the fixed points of a projection.

2.4.5 Neural Algorithms

Fundamentals

A neuron is an object that consists of N inputs (xi), an output (o),

an activation function (f), and a learning rule. Each input is assigned a

weight (wi), which can be positive or negative and (almost) always lies in

– 63 –

the range [−1, 1]. The weighted sum of the inputs is called the activation

(a) of the neuron. The activation function takes a as a parameter and

gives the output of the neuron.

a =
N∑
i

wi.xi, (2.22)

o = f(a). (2.23)

The activation function may produce an output based the current acti-

vation or on some combination of the current activation and past acti-

vations. Over time the weights are typically modified in order to give

more precedence to some inputs than others. The manner in which these

modifications are made is defined by the learning rule.

A neural network is simply a number of connected neurons. Each

neuron may take its inputs from the output of other neurons or from

external inputs (or any combination of the two). Each neuron has only

one output value, which may be used as input for many other neurons.

The connections between neurons are called synapses.

There are several different ways that a neural network can be trained,

each suited to different situations. Supervised learning requires an ex-

ternal teacher that knows the desired response from the network. The

teacher updates the weights after every response in order to move the

network’s response closer to the desired output.

Hebbian learning updates the weight of the synapse between any two

connected neurons according to the correlation between their activations.

If both tend to be activated concurrently then the weight increases over

time (the converse is also true).

Two neurons are neighbours if they are directly connected by a synapse.

It is common however, to loosen this definition so that two neurons are

neighbours if one can move from one to the other across fewer than m

synapses (where m is a constant chosen by the user).

Self-Organising Maps

Self-organising maps (SOMs) are a particular type of neural network.

They were developed by Teuvo Kohonen as 2D neural networks used to

express complex non-linear relationships between data into simple ge-

– 64 –

ometric relationships between the nodes[61]. The use of SOMs is not

confined to geometric modelling: they have shown themselves to be use-

ful in areas such as pattern recognition and shape indexing[98].

When applied to surface reconstruction, the SOM is placed within the

data to be analysed and its nodes have their weights randomly initialised

over their nearest N neighbours. Each node’s position is then updated

to the weighted mean of all its neighbours’ positions. The nearest N

neighbours are then recalculated and the process begins again. It is

often the case (but not guaranteed) that the SOM will converge on a

good representation of the data. In this context, good representation

means higher node density in areas of higher data density, and node

values providing reasonable approximations of data values.

Several surface reconstruction algorithms are based on SOMs and

their variants. They frequently use neural networks with 2D connec-

tivity, and the result of the training is an explicit model of the surface

data, such as a triangle mesh or the control grid of a uniform bivariate

spline. Implicit SOM methods for surface reconstruction were introduced

in [106]. SOMs have been used for grid fitting in [6] and for surface recon-

struction in [110]. In [34, 46], special types of SOMs called Growing Cell

Structures, that dynamically create edges between nodes, are used for

the same problem. Unfortunately, the growing cell structures required

the entire point cloud to be sampled several times in order to achieve a

stable result.

Neural Pre-Processing

An interesting application for neural networks/SOMs is as a form of

pre-processing. For instance, to generate a Bezier surface we require a

2D grid of control points. Hoffmann et. al. used surface data to train

an SOM, the final state of which was to be used as input to a surface

reconstruction algorithm[42].

The size of the SOM is chosen in advance and its weights randomly

initialised around the average of all input coordinates. A sample point

s is extracted from the point cloud and the closest neuron n gets moved

towards s. The neurons in the neighbourhood of n are also moved towards

s, but to a lesser extent. Over time, the amount of movement and the

– 65 –

neighbourhood radius are decreased to allow the SOM to become finely-

tuned to the data.

Ordered and scattered points can be interpolated/approximated by

the same type of surface with a wide variety of input conditions. The

static size of the SOM can cause problems however; if too few neurons

are used then some points lie away from the output grid, whereas if too

many are used then speed suffers.

A dynamic neural network solves this problem by inserting new rows/-

columns into the SOM where necessary until all points are interpolated or

a predefined number of neurons are reached[102]. The number of training

iterations required decreases dramatically as does the number of vertices

in the grid. Insertion is not an expensive process and so the algorithm is

actually faster than [42]!

Neural Networks

Martinetz et. al. used a 2D neural network to represent a surface[73]. A

sample was extracted from the point cloud and used as input, and the

neuron with the highest activation was trained. Its neighbours were also

trained (albeit to a lesser degree), and Hebbian learning was used to cre-

ate new synapses. When only the neuron with the highest activation was

trained, the neurons specialised. When the points were sufficiently dense,

the synapses that developed were the edges of the Delauney triangulation

(the dual of the Voronoi diagram).

Barhak et. al. took a slightly different approach: they declared all

neurons to be mobile or static, and active or inactive. A sample point

is then taken from the point cloud, and the nearest neuron declared the

winner. Once this neuron’s position was updated, the position of its

activated and mobile neighbours were also updated[7]. The boundary

of the network was trained first by extracting only the outermost points

from the point cloud. These boundary neurons were then declared static

and the inner neurons trained using the remainder of the point cloud.

After a fixed number of steps the network is reparametrised, using

the current parametrisation as the base for the next, in order to achieve

more uniform parametric density. Unfortunately it is sensitive to the

training parameters and can produce self-intersecting surfaces.

– 66 –

Fig. 2.15: A set of points (with normals) lying inside a 2D SOM.

Ivrissimtzis et. al. created a self-organising map with connectivity of

a regular 3D grid where each of the nodes stored their signed distance

from the surface[106]. The input is a set of points with normal data

that are assumed to lie on the surface. The normals are used to assign

values to the nodes that are representative of that node’s distance from

the surface. A 2D sample is show in figure 2.15.

Once trained, the grid therefore gives a discrete, implicit representa-

tion of the signed distance function from which a triangle mesh can be

extracted using the Marching Cubes algorithm. The error is estimated by

splitting the input points into two sets: one for training and one for val-

idation. It is calculated periodically, and, if the ratio of current error to

previous error is below a threshold, the algorithm stops. This procedure

caught overfitting correctly without imposing severe time penalties.

In spite of the assumption that all the input points lie on the surface,

the algorithm is noise tolerant because the nodes take values from several

input points. Artefacts near sharp edges are avoided and a good level

of accuracy can be achieved; better than partition of unity methods but

worse than radial basis functions.

Growing Cell Structures

The predetermined, regular structure of an SOM can be limiting; in

many cases a different shape can provide a more optimal solution. A

growing cell structure can change its structure dynamically, allowing it

to learn the most appropriate shape. In this case the neural network

directly represents the mesh and so the terms mesh and network are

used interchangeably, as are vertex and neuron.

– 67 –

In a simple example, the point cloud is sampled the neuron nearest

to the sample moved slightly closer to it. Each neuron has an activity

counter that is incremented every time it is the winning neuron, after

which all activity counters decay slightly, so that more recent matches

count for more than old ones[35]. The training is deemed complete when

all neurons have equal probability for matching a randomly chosen input.

After a predefined number of steps the neuron with the highest signal

counter is split. After a few iterations the topology has been determined

and the main source of change is adding new neurons, not moving old

ones. Cells that are barely active are removed.

When growing cell structure surface reconstruction algorithms are

in a training equilibrium, restricted Voronoi cells (the intersection of

Voronoi cells with the surface) tend to have equal area, and the number of

synapses converge[36]. Increasing the frequency of connectivity changes

increased the overall error but distributed it more uniformly. Ensembles

and forgetting were then used to further improve the learning.

The approach of Ivrissimztis et. al is similar to [35], but the learning

rate can be modified[46]. A high rate increases mesh mobility but in-

creases the likelihood of convergence to a local error minima. The vertex

split distributes synapses evenly between the two resulting vertices and

generalises to higher dimensions. Using an edge-collapse preserves topol-

ogy, and allows for more aggressive removal of the least active vertices.

In the meshes produced, 95% have a valency of 5, 6 or 7, which is useful

when dealing with data from a scanned object. As the input surface is

sampled, different inputs types (implicit, point cloud, . . .) can be treated

uniformly and the running time is independent of the input size.

This was extended in [47] by the use of a non-constant counter decay:

as the number of vertices increased, the signal counter decay slowed. Neu-

rons were no longer removed only in a particular step, but whenever their

signal counter fell below a threshold. Topology changes (from boundary

merging and triangle removal) were performed rarely and with decreas-

ing regularity. The modified algorithm stops when the mesh contains a

certain number of vertices.

It is simple to increase the resolution of a growing network; one

need only leave the algorithm running longer (perhaps decreasing the

frequency of vertex removals). In contrast, an algorithm built around

– 68 –

a static network would need to be re-run from the beginning, wasting

time and computing resources. Growing cell structures are generally

best used when the input’s geometry and topology are unknown, since

they will naturally learn them both.

2.4.6 Statistical Algorithms

The Bayesian Approach

Given a random variable X that takes values {x0, x1, . . . , xN}, the classi-

cal approach to statistics concerns itself with evaluating the probability

that X takes the value xi, denoted P (X = xi). This is an interpretation

of probability as a relative frequency; the idea being that we can test X

as often as we like and P (X = xi) is the relative frequency of X = xi.

Using the timeless example of a biased coin toss, the classical ap-

proach is; “We have tossed the coin 100 times, it has turned up heads 75

times. It therefore appears that p(heads) ≈ 0.75. If we continue to toss

the coin then the relative frequency of heads converges to the probability

of a heads being tossed.”

heads

total tosses
→ p(heads). (2.24)

By contrast, the Bayesian approach interprets probabilities are a

quantification of uncertainty. Rather than having a set of outcomes and

approximating the probability of each, we take a set of results and use this

to calculate the most likely probability distribution over the outcomes[9].

Informally, this could be phrased as: “given that this is the outcome,

what is the likelihood of this probability distribution being correct?”.

Using our coin example, the Bayesian approach says; “We have tossed

the coin 100 times; it has turned up heads 75 times. Given this, what is

the probability that p(heads) = x?” This is usually repeated in order to

give a probability distribution over x. Given a set of outcomes D and a

set of unknown parameters r, Bayes’ Theorem states:

p(r|D) =
p(D|r)p(r)
p(D)

(2.25)

Where p(D|r) is the probability of the observed outcomes, given a partic-

– 69 –

ular set of parameter values. The p(r) are called the prior probabilities,

they encode our assumptions about the parameters before data are col-

lected (i.e. without regard to D). The p(D) term is the probability of

the observed outcomes without regard to r. The p(r|D) are dubbed the

posterior probabilities, and are the probabilities of r, given the outcomes

D. They are a quantification of our uncertainty in the parameters having

observed the data.

Statistical Methods

In spite of the potential benefits, Bayesian methods are rarely directly

employed in surface reconstruction. However they are often employed

in related areas. For instance, Jenke et. al. took samples from a point

cloud, added (Gaussian) noise and attempted to reconstruct the original

point cloud using a Bayesian method[49]. In their method, the surface

is assumed to consist of piecewise smooth patches connected by sharp

boundaries; an assumption that works well for man-made objects, but

natural objects are not so cleanly constructed. Prior probabilities were

used to identify which artefacts are taken to be noise; one for density,

one for smoothness and one for estimating sharp features.

The density prior is used to estimate the surface area, which in turn

allows an expected distance between points to be computed. Minor holes

can be filled automatically, but above a noise threshold it is impossible

to identify edges of the point cloud. The algorithm is slow, but robust,

as objects of arbitrary topology can be reconstructed.

Schall et. al. defined a set of local functions that give the likeli-

hood that a point lies on the surface[94]. The maxima of the likelihood

functions were found using a method akin to gradient-ascent (find the di-

rection of greatest increase then move in that direction) with an adaptive

step size.

Each point in the kernel of a likelihood function (its most fundamental

expression) is then moved to the area of maximum likelihood: points

corrupted by noise are “pulled back” into the most likely correct position.

Outliers converge to a set of isolated points lying away from the surface,

which are easy to remove by thresholding due to their very low sampling

density. In this way the point cloud is cleaned and filtered, and noise-

– 70 –

sensitive algorithms (such as Delauney-based ones) were shown to benefit

from this.

Ensemble Techniques

An ensemble is a collection of objects, each of which is assigned a prob-

ability. In this context the objects are surfaces and the probability in-

dicates the chance of the surface being an accurate reconstruction. The

basic ensemble technique is to run a probabilistic algorithm on a set of

data many times, putting the outputs into an ensemble, and then to

combine the outputs into a single model[65]. This approach can be ap-

plied quite generally. For example, Ivrissimtzis et. al. used ensembles of

neural meshes to make the reconstruction robust against noise[48].

The recombination of candidate surfaces into a final reconstruction

requires a good averaging method. If a supervised recombination is not

possible or desirable then the mean of several surface positions can be

taken. Taking the mean of surface positions that are close to the median

was been shown to be more robust than a simple mean over all the

positions[48]. To estimate normals the tangent plane of each point must

be estimated, then a consistent orientation of tangent planes must be

determined.

To create an ensemble, random samples of the initial dataset are

taken (with overlapping permitted), each of which is then run through a

deterministic algorithm. The outputs are combined using an averaging

method and the Marching Cubes algorithm used to construct a triangle

mesh. To reconstruct the normals the same method is used, with the

exception that the subsets are required, not just allowed, to overlap (to

get the consistent orientation).

As the number of samples in each subset increases, error and speed

decrease, regardless of initial noise[108]. Unfortunately due to the way

the error is formed, an ensemble method can only reduce (but not elimi-

nate) errors. The combination of normal and surface ensemble technique

was shown to be very effective.

– 71 –

2.4.7 Other Techniques

Surface reconstruction is still an active research area, with many algo-

rithms employing a variety of geometric, statistical and signal theoretic

techniques. Nehab et. al. combine separately acquired positional and

normal information[78]. Kil et. al. process dense point sets obtained

from multiple scans using a variant of the image processing technique

of super-resolution[59]. A Poisson equation can also be solved to recon-

struct a surface[57, 11], which is used for comparison in chapters 4 and

6.

2.5 Post-Processing

2.5.1 Feature Detection and Extraction

Feature detection is a problem closely related to surface reconstruction,

and the two will be examined together in chapter 5. In many cases,

the two problems are solved concurrently by a feature-preserving surface

reconstruction algorithm[33]. However, features can also be detected

on the input point set as part of a pre-processing analysis[85], or on the

reconstructed surface as a post-processing analysis of the obtained model

[109].

There are three classes of feature that may be of interest to extract

or identify; low–, mid– and high–level[37]. Low-level features are pixel-

properties such as colour or texture. Mid-level features are geometric,

and are the most relevant to this thesis, and include ridges, corners and

points. High-level (semantic) features are those that require additional

context/information to interpret.

Gumhold et. al. extracted features as a pre-processing step[39]. They

created a nearest-neighbour graph and assigned to each edge a probability

that described how unlikely it was to make up a feature. A sub-graph

was created of probable-feature edges and this was filtered to leave only

the edges most likely to constitute surface features.

The likelihood of a particular structure being a surface feature (as

opposed to an artefact) is influenced by various factors[50] such as the

difference in facet normals (in the case of ridges) and the number of

– 72 –

valent edge-features (in the case of vertices). These factors are often in

competition with one another and so thresholds are often used to select

the most probable structures.

Ohtake et. al. developed a post-processing method of feature detection[79].

Radial-basis functions with compact support (i.e. that are 0 outside their

domain) are used to reconstruct the surface, then the vertices of the mesh

are projected onto the reconstructed surface. The first- and second-order

derivatives of the curvature are then calculated for each mesh vertex, and

curvature maxima and minima are detected along the edges.

Pauly et. al. used the idea of surface variation to estimate features[85].

The surface variation is defined via the principal components, like so:

σ =
λ1

λ1 + λ2 + λ3,
where λ1 < λ2 < λ3. (2.26)

The scale on which to look for features is a provided as a manual input,

which is translated into the number of neighbours used in the calcula-

tions. To look for features on a large scale, a larger number of neighbours

are included, the converse is also true. The more neighbours of a point

with a surface variation above a threshold, the higher the confidence that

the point belongs to part of a feature.

All the points that are highly likely to constitute features are then

connected via a minimum spanning tree. Isolate clusters are joined by

those points that have a relatively high feature confidence (but were not

included in the feature-point set). The tree is then cleaned, and smoothed

to produce a final feature map.

2.5.2 Mesh Alignment

It is often useful to compare two meshes, two point clouds, or a point

cloud and a mesh. For example, in shape recognition one might compare

two meshes or two point clouds asking whether they belong to the same

category. Such a comparison of usually starts with the alignment of the

meshes, which will be investigated in chapter 6.

It should be noted that the exact way in which two meshes are

best aligned is not clearly defined. In fact, the best alignment can be

application-dependent, and mesh alignment should be seen as an ill-

– 73 –

posed problem. Nevertheless, a good alignment algorithm is expected

to be able to align a mesh with a version that has undergone common

mesh processing operations such as smoothing, simplification or remesh-

ing.

Alignment is typically done by computing a translation, a scaling

and a rotation, which are then applied to one of the meshes to align it

with the other. The computation of the translation is usually done by

aligning barycentres, while the scaling is done by aligning bounding boxes

or bounding spheres [96]. Translation and scaling are both considered less

challenging to compute than the rotation. In some fields such as medical

imaging, the registration process requires more than this simple pose

normalisation, for instance, an alignment between certain parts of the

two models [87].

Most of the work on mesh alignment focuses on and enhances the Iter-

ative Closest Point (ICP) algorithm, which takes a set of points common

to both input meshes and iteratively rotates the mesh until the common

points are aligned as closely as possible. A variety of modifications and

enhancements to the original ICP algorithm have been developed and

studied. For instance, to make it geometrically stable[38] and to make

it work with approximate nearest neighbouring points or with added

noise[72]. Other ICP based methods require an explicitly defined initial

guess, which prevents the method being used in a completely automated

manner[8].

In reality, many practitioners use PCA directly on the vertices of the

input meshes in order to provide an alignment that is good enough to

work with. PCA is efficient, since it is essentially a quadratic optimisation

problem based on variance maximisation. A technique that is similar in

spirit, called Independent Component Analysis (ICA)[44], is based on

quartic optimisation and has been used for 3D object recognition[92].

Despite its popularity, PCA has been reported to perform poorly

when aligning meshes for 3D model recognition and this has been cited

as motivation for developing rotationally invariant mesh descriptors[58].

Nevertheless, several important shape descriptors, such as[17], shape

histograms[4] and descriptors based on higher order moments[31], are

not rotationally invariant and thus require alignment.

Extensions to PCA to overcome its shortcomings include PCA per-

– 74 –

formed on the normals of a surface[83], and a continuous version of PCA

applied to whole mesh triangles rather than just their vertices[103]. The

latter is independent from the distribution of vertices within the mesh

and thus, overcomes some of the limitations of PCA the same way the

method proposed here does. However, it requires a triangle mesh as input

and has no obvious extensions to point clouds.

2.5.3 Mesh Quality

Yu et. al. improved mesh quality in a post-processing step by exploiting

the fact that given any two triangular meshes there are only three oper-

ations needed to transform one into the other: edge collapse, edge swap

and edge split[110].

If the meshes are both 2D manifolds with the same number of edges

and vertices then only the edge swap is needed. When scanning objects,

concave features can cause long, thin triangles to be formed by the re-

construction algorithm. These triangles are detected and replaced via an

edge-swap.

A measure, “deviation”, is defined to determine which edge to swap,

with swaps being accepted if the new edge has a lower deviation than

the original. Two types of swap are tried before abandoning the attempt:

single swap and, should this prove unsuccessful, double swap. A double

swap is simply two consecutive single swaps where both the swapped

edges belong to the same original triangle.

– 75 –

3. SURFACE

REPRESENTATIONS

3.1 Mathematical Definition

Intuitively, a surface is an object that, when viewed sufficiently closely,

looks like a two-dimensional plane. Formally, a surface is an object for

which the neighbourhood of every point is the image of a smooth map

from an open subset of R2[69]. This means that it can have no self-

intersections (as expected), but also that there may not be any disconti-

nuities. Examples of surfaces are hollow spheres and tori.

Examples of non-surfaces are a hollow cylinders, hollow cones and

2D curves. The hollow cylinder fails because of the circular edges at

each end. If we look at a point lying on this edge, its neighbourhood is

not similar to a plane; discrete operations are required to transform this

neighbourhood into a plane. Similarly, a hollow cone fails for both its

base edge and its tip; try as one might, there is no continuous operation to

map the neighbourhood of the tip to the plane. A curve is an intrinsically

one-dimensional object, and so cannot look like a plane anywhere. It is

also clear that any object incorporating a non-surface entity, cannot itself

be a surface.

In this thesis, an object will be considered a surface if its constituent

components each meet the mathematical definition of a surface. Using

this definition a hollow cylinder is a surface, since the curved edge and

two circular ends all meet the mathematical definition of a surface.

3.2 Explicit Representations

Explicit/parametric surface representations are a map f operating on a

domain A ∈ R2 such that f : A → B ∈ R3. For all but the simplest of

surfaces, this would be an immensely complex (if not impossible) task.

Consequently the domain A is divided into N subdomains, each with a

corresponding map (dubbed patches).

In order to allow efficient processing the patches are generally taken

to be polynomials, since these may be calculated using elementary meth-

ods and can approximate any smooth function to any desired precision

(provided they are of sufficiently high order). Given an infinitely differ-

entiable function, it can be approximated via a polynomial of degree p,

with intervals of length h that has an approximation error of the order

hp+1.

Given this (and that h < 1) there are two apparent methods for

improving the approximation. The order of the polynomial, p, can be in-

creased, or the interval size, h, can be decreased (and more intervals used

in total). This also applies for polynomials of more than one variable,

where h is simply promoted h→ h).

It is very unusual to increase p to improve the accuracy for two rea-

sons: 1) the continuity conditions between the surface patches can be-

come quite difficult to satisfy at higher orders, and 2) it is often more

efficient to perform a large number of simple calculations than a smaller

number of complex ones[15]. By far the most commonly used representa-

tions are piecewise linear, which requires only that neighbouring surface

patches meet, and the most common of these is the triangle mesh, which

will be assumed from now on. A good trade-off between accuracy and

speed can be obtained by varying the density of the triangles according

to the curvature of the surface. Areas with low curvature need relatively

few triangles to describe them to the same level of accuracy as an area

with wildly varying curvature.

When dealing with scanned objects it is often considered bad to have

a large number of long, thin triangles; something that is often indicative

of trying to reconstruct an object from a sparse set of data.

Explicit representations are useful because they can be modified with

relative ease and are easily rendered. Unfortunately, finding out whether

a point is inside or outside the surface is a costly operation, as is working

out its distance from the surface. Collision detection (finding out if one

part of the surface meets another) is also computationally expensive.

– 77 –

3.3 Implicit Representations

To represent a surface implicitly, a function is defined that maps each

point in 3D space to a real number. Any point that is mapped to a

negative number is defined to be inside the surface, and any point mapped

to a positive number; outside. If a point is mapped to 0, then it lies

precisely on the surface. Formally:

f : R3 → R (3.1)

S = {x ∈ R3 : f(x) = 0} (3.2)

O = {x ∈ R3 : f(x) > 0} (3.3)

I = {x ∈ R3 : f(x) < 0} (3.4)

The set S represents the surface itself, O the space outside the surface,

and I the space contained inside the surface. It is important to note that

given an appropriate definition of f these sets will partition R3. There

is no ambiguity since, by the Intermediate Value Theorem, S will always

lie between O and I and no point can belong to more than one set. It

is simple to see that the choice of 0 is arbitrary in the above definitions,

and that any level set would satisfy these criteria.

Given that f tells us whether a point is inside or outside the surface

the most natural choice of f is a signed distance function; a function

defined such that the value of f(x) is the distance of x from the surface.

Even if 0 is not being used as the level set, then a trivial calculation will

allow values of f(x) to be mapped to distances from the surface.

Due to the extreme difficulty of finding a mathematical description

that matches the surface with sufficient accuracy, the domain of f is di-

vided into subdomains, with each subdomain AN having a corresponding

function fN . In order to maintain a smooth surface across subdomain

boundaries, a weighted sum of the contributing functions is often used.

If a partition has few or no sharp features then it is often inefficient

to sub-partition it as finely as areas with many sharp features. Using

such an adaptive partitioning scheme can lead to significant memory

savings[13].

Implicit surface representations do not have the same flaws as ex-

– 78 –

plicit representations; inside/outside calculations are trivial and distance

calculations are dramatically simplified. Unfortunately, they are not so

easily rendered and are unable to reproduce boundaries such as the edge

of a hemisphere.

3.4 Conversions

A mesh conversion involves moving between an explicit representation

and an implicit one. There are many well-established algorithms for such

conversions, but the process necessarily involves the loss of information.

3.4.1 Explicit to Implicit

Conversion from an explicit to an implicit representation amounts to

approximating the signed distance function of the surface. This involves

calculating the nearest triangle to a given point, then calculating the

point’s distance from that triangle. It must also be determined whether

a point is inside or outside the surface. This results in a piecewise linear

distance field, which, whilst not the most accurate, is certainly sufficient

for most needs (since the signed distance field of an implicit model is not

always smooth).

Given a point p near the surface, whose closest point on the surface is

c, which lies in a triangle with normal n, the angle between (p− c) and n

can be used to compute the signed distance. Unfortunately this method

is susceptible to noise in the normal data as a misaligned normal would

at best cause an inaccurate distance to be calculated. In the worst case

would this could place a point on the wrong side of the surface, resulting

in the formation of artefacts (spurious features).

3.4.2 Implicit to Explicit

This conversion is properly called isosurface extraction since it extracts

the level set (isosurface) of the implicit function f . The de-facto standard

algorithm is Marching Cubes[71], which uniformly divides the signed

distance field into a regular grid. It “marches” through all the cubes in

the grid, performing some simple operations to work out approximately

where the surface lies.

– 79 –

To determine the location of the surface within a cube, f is evaluated

at each of the eight corners. If the sign of f differs between two adjacent

corners then it follows that the surface must pass between them. Trian-

gles are then created that partition the cube into internal and external

corners.

– 80 –

4. MEMORY–EFFICIENT

SURFACE RECONSTRUCTION

This chapter is based on material originally published in the 2011 pro-

ceedings of the Theory and Practice of Computer Graphics[56].

We propose a memory efficient, scalable surface reconstruction algo-

rithm based on self organising maps (SOMs). Following previous ap-

proaches to SOM based implicit surface reconstruction, the proposed

SOM has the geometry of a regular grid and is trained with point sam-

ples extracted along the normals of the input data. The layer-by-layer

training of the SOM makes the algorithm memory efficient and scalable

as at no stage there is need to hold the entire SOM in memory. Experi-

ments show that the proposed algorithm can support the training of the

very large SOMs that are needed for richly detailed surface reconstruc-

tions.

The algorithm presented in this chapter works in a similar manner

to SOMs. Unlike traditional SOMs, the nodes themselves to not move,

however, they still work to minimise an energy function. In this case the

energy function is the second derivative of the gradient near the surface.

That is, the nodes update their estimate of the distance to the surface in

order to minimise the discontinuity in the gradient near the surface.

4.1 Introduction

The popularity of implicit surface reconstruction algorithms is in no small

part due to their robustness. Indeed, implicit methods seem to be par-

ticularly well suited to deal with the noisy, unevenly sampled point sets

that are the typical outputs of optical scanning devices. Moreover, in-

tensive research activity on implicit methods has yielded some very fast,

computationally efficient algorithms.

On the other hand, the extra third dimension of the implicit sur-

face representation may increase the memory requirements of an implicit

surface reconstruction algorithm. Memory efficiency problems are dealt

with by employing flexible data structures, such as adaptive octrees, how-

ever, these complicate the algorithms and increase the implementation

overheads. A second drawback of the implicit approach is that the re-

quired global optimisation may affect the scalability of the algorithm.

Scalability issues are ameliorated by making the locally fitting implicit

functions have compact support. However, even though their compact

support means that, in principle, the global optimisation problem can be

solved locally, in a small neighbourhood of the data, it is nontrivial to

implement this in a computationally efficient way.

In this paper we extend the work in [106, 54], proposing an implicit

reconstruction algorithm based on a self organising map. The SOM has

the connectivity of a regular 3D grid. Its nodes can be seen as a regular,

discrete sample from the inside of a bounding box of the input point set.

Each node stores a scalar value representing the signed distance between

the node and the surface, and it is trained with data sampled from the

normals of the input point set.

The proposed algorithm extends the work in [54] by having the size of

the SOM adapt itself to the data provided. Most importantly, the SOM

is trained layer by layer, and never stored entirely in memory at any

given time, see Fig. 4.1. Given the ordered, rather than random nature

of the training, fewer samples need to be taken from the point cloud to

ensure a smooth reconstruction. While the work presented in [54] was

able to handle large quantities of input data by sampling it, rather than

processing it globally, storing the SOM itself entirely in memory could

give rise to problems with scalability.

Any trained layer can be passed directly to the Marching Cubes algo-

rithm for isosurface extraction or saved to disk without needing to wait

for the completion of the SOM training. As a result, the algorithm is

memory efficient without needing an adaptive data structure, and it is

scalable without needing a technically involved localisation of a global

optimisation problem. Taking this approach one step further, each layer

of the SOM can also be trained in stages, in this case line by line, leading

to further memory efficiencies at the expense of higher computational

– 82 –

Fig. 4.1: The SOM is trained layer by layer, starting from the bottom
and going up. The already-trained nodes are shown in green.
The nodes currently being trained are shown in red. The nodes
to be trained are shown in grey.

costs.

4.2 Layered Algorithm

In this section we describe the main algorithm and discuss some imple-

mentation details. The input of the algorithm is a point set with normals.

The SOM is arranged in the form of a regular 3D grid with the nodes

on the lattice Z3. That is, each node has integer coordinates and the

length of each edge is 1. Each node stores an estimation of its signed

distance from the surface, d̄. The edges provide no information and can

be completely ignored since neighbourhood relations for the nodes of the

grid are obtained by direct means such as distances between nodes.

The SOM has a band of active layers, in which each node stores a list

L of weighted distances from the surface¡ obtained through training. The

distance estimation, d̄, is computed as a weighted average of the elements

of L and represents the current estimate for the value of the implicit

– 83 –

function at that node. Only nodes in this active band are trained. The

active band moves from the base to the top of the SOM, training it.

When fully trained, the SOM represents a discrete implicit description

of the surface that can be triangulated using the Marching Cubes algo-

rithm [71]. Even though each node only passes its value d̄ to the Marching

Cubes algorithm, the list of weighted distances L provides information

about earlier states of the SOM, which can be used for fine-tuning or

analysis of the results, as demonstrated in [54]. It also provides some

robustness to noisy input data or misaligned normals of the type that

are common when processing data from optical scanners.

4.2.1 Data Alignment and Sorting

In the first step of the algorithm, we find a tight rectangular bounding

box for the input point set and align it to the SOM. We perform PCA

on the input data and use the three principal components as the axes

of the box. By an affine transformation followed by scaling, we map

the bounding box and the data into the convex hull of the SOM grid.

In the labelling of the axes we choose the z-axis to be the the largest

principal component ensuring that the base of the SOM is as small as

possible, affording us the smallest memory footprint. The point cloud

is analysed and its maximal and minimal x and y values found, and the

SOM then configures its size accordingly. Finally, the point set is sorted

by z-coordinate in ascending order.

4.2.2 Training Step

The basic training step of the SOM runs as follows:

1. A sample point, s, is extracted from the point set.

2. Nine training data are created as shown in Fig. 4.2, which extend a

distance of±2 units from s. These training data store their distance

from the sample, ds, and a corresponding weight computed with

equation 4.1.

3. For each training point, the nearest SOM node is found. This node

has the weight and distance of the training point added to its list

of distances, L.

– 84 –

Fig. 4.2: The grey area represents the interior of the surface. Red points
are training data with negative distances from the surface, blue
points are those with positive distances, and the green points
have distance zero.

The weight of a training point represents our confidence that its distance

from the surface is accurate. This might not be the case if two areas of

the surface are close to each other, or if there is another sample point

closer to the training point than s. Other methods of computing the

weight were tried, but the equation 4.1 was found to give good results

whilst remaining computationally inexpensive.

w(ds) =
1

1 + d2s
(4.1)

Samples are extracted sequentially and are assumed to lie on the

surface, i.e. we assume that their distance from the surface is 0.

– 85 –

4.2.3 Separation Calculation

First, the separation (estimate of signed distance to the surface) of each

node is computed by calculating the weighted mean of all the distances

in its training history.

separation = (
∑
i

widi)/(
∑
i

wi). (4.2)

If the node has had its separation calculated previously, its separation

is updated to

σu = aσc + (1− a)σn (4.3)

Where σc is the node’s current separation, σn is the newly-computed

separation. If the node has not had its separation computed previously,

then it is set to the value computed in equation 4.2. The speed of learning

is controlled by a, the learning rate parameter, where (0 < a ≤ 1). A

higher value increases the training speed, but makes it more susceptible

to corruption by noise. A lower value trains the SOM more slowly, and

favours slow convergence to a single value.

4.2.4 Smoothing

We define a value zs, which initially holds the z-coordinate of the first

sample taken. In subsequent sample extractions, if the new sample’s z-

coordinate is greater than zs plus a predefined threshold, zs is updated

to this value and the SOM is smoothed. We continue use the natural

L0 metric of the grid, where L0(n) denotes nodes with an L0 distance of

exactly n units from a given point.

The nodes to be smoothed are then subjected to the following proce-

dure:

1. The L0(1) neighbours of node n are found. If n has no trained

neighbours, it is not smoothed. Otherwise, the mean of the d̄’s of

the trained neighbours, m1, is computed.

2. Similarly to above, the L0(2) neighbours of node n are found. If

there are less than two trained L0(2) neighbours then n is not

smoothed. Otherwise, the mean of the trained neighbours, m2 is

computed.

– 86 –

3. Finally, n has the distance 0.65m1+0.35m2 added to its distance list

with a weight of 1.0. Weights of 0.65 and 0.35 were experimentally

determined to work well for a variety of data.

The bottom two layers of the active band are not smoothed because

the computed distance would not include contributions from the L0(1)

and L0(2) neighbours with the lowest z-coordinates and so would lead to

biased smoothing. The smoothing is also not applied to layers within 2

units of zs, since these likely still trained directly by new data. Similarly

to the restriction at the bottom of the active band: layers very close to

the top would be unlikely to have trained upper neighbours, which could

lead to biased smoothing.

4.2.5 Storing

If the z-coordinate of any sample point is within 2 units of the top of the

active band then it triggers a dumping of the bottom 2 layers. The data

for these layers (node coordinates and their separation, d̄) are then saved

to a file, but could be passed directly to the Marching Cubes algorithm.

Following this, the active band moves 2 layers in the positive z direction.

The memory for the two formerly active layers is then freed, helping to

keep the memory consumption within reasonable bounds.

4.2.6 Parameter Choice

Setting the height of the active band to 20 nodes results in good quality

surfaces without using large amounts of memory. Different values of the

learning rate parameter a in Eq. 4.2 were tested and a value of 0.9 was

found to give a good balance between convergence speed and numerical

stability.

The training data extend 2 units from their sample point in the direc-

tion of the normal, and in the same distance the opposite direction. This

distance was chosen because only nodes close to the surface will have any

effect on its geometry when the Marching Cubes is run. Training nodes

further away would therefore increase the memory consumption for no

benefit. This is also the distance to the top of the active band that trig-

gers storing since to have a sample closer than 2 units to the top of the

– 87 –

active band would mean its training data extending beyond the top.

Nine training data were created per sample, and spanned a range of

±2 units from each sample point. This was to ensure that nodes were

consistently trained but not over-trained. A more sparse set of training

data would lead to gaps (and thus inconsistent distances) and a denser

set would result in each node being trained with multiple inconsistent

distances.

The length of the weighted distance list is constrained to provide a

bound on the memory that can be used. Each node can store a maximum

of 100 weighted distances. This was chosen to be long enough to tolerate

noise (because the effect of the other distances dwarfs that of the noise)

but short enough to keep the memory footprint within sensible limits.

4.3 Results

To validate the results, two algorithms were selected for comparison. The

first was proposed in [54], it is similar, but has some notable differences.

For instance, it does no preprocessing on the data in order to determine

the optimal size of the SOM or sort the data. Instead, it keeps the

entire SOM in memory and samples the data many times, relying on

an overfitting heuristic to terminate the process. The second was the

commonly-used Poisson reconstruction[57]. It should be noted that [57]

produced smoother meshes than the proposed algorithm and [54], but

this is normal for Poisson reconstructions.

We first validated the proposed algorithm by testing it on point sets

obtained by stripping the connectivity from smooth meshes. We used the

neptune, turbine blade, happy buddha and dragon meshes. By comparing

the re-reconstructed meshes with the original meshes (which serve as the

ground truth for the underlying surface of the point data) we are able

to gauge the accuracy of the method. Figure 4.3 shows the obtained

reconstructions and Figure 4.5 shows close-ups of the reconstructions.

Next, we tested the surface reconstruction algorithm on unprocessed

point sets from raw range scan data, in particular the Bunny data from

Stanford repository and the Ramesses data from AIM@SHAPE. The

normals for the Ramesses model were computed from the raw mesh also

provided by AIM@SHAPE (using MeshLab) as the weighted average of

– 88 –

incident face normals. Figure 4.6 shows the obtained reconstructions.

Figure 4.7 shows a close-up of the Ramesses reconstruction.

To validate the memory efficiency claim, memory consumption was

monitored during the reconstruction of the models (whose sizes are shown

in Table 4.1). The average and peak memory use for each model are

displayed in Tables 4.2 and 4.3 respectively. A × in any table indicates

that the algorithm was not able to run to completion on a PC with 4GB

of RAM.

A detailed breakdown of timings for the algorithm is shown in Table

4.4 and the total run-time for each model and method are shown in Table

4.5. The Marching Cubes implementation used was not able to extract

the isosurface of the huge Neptune model due to insufficient memory. The

number of triangles in each model after reconstruction by each method

is shown in Table 4.6.

The Neptune model was reconstructed at a variety of scales, with

the timing recorded. The results are shown in Figure 4.8 as a function

of the volume of the point cloud’s bounding box, or equivalently, the

number of SOM nodes. All other parameters were kept constant for

these reconstructions to ensure that only the scale affected the results.

As can be seen, the timing scales almost linearly with the volume of the

bounding box.

model bounding box points

buddha 140× 122× 300 543’652
dragon 185× 235× 299 437’645
turbine 495× 463× 598 882’954
neptune 302× 694× 1001 2’003’931
huge neptune 2112× 4858× 7004 2’003’931
bunny scans 130× 209× 210 362’272
ramesses 224× 318× 645 826’266

Tab. 4.1: The size of each point cloud’s bounding box in the x, y and z
directions, along with the number of points in each cloud.

As can be see in table 4.2, our results compare very favourably to

the the alternative algorithms. For instance, the worst case comparison

is against Ohtake et. al., which peaks at using more than five times

the memory of the proposed algorithm. The performance is significantly

better than [54], which kept the whole SOM in memory, so the larger

– 89 –

model average average average
(proposed) [54] [57]

buddha 16 933 173
dragon 20 1260 81
turbine 48 × 144
neptune 54 × 205
huge neptune 1633 × ×
bunny scans 18 623 73
ramesses 29 × 19

Tab. 4.2: The average memory use of the layer by layer reconstructions
in Megabytes.

model peak peak peak peak peak
(proposed) [54] [57] [80] [18]

buddha 23 1209 173 442 291
dragon 24 1721 253 210 306
turbine 71 × 384 - -
neptune 112 × 312 - -
huge neptune 1772 × × - -
bunny scans 20 885 178 110 -
ramesses 38 × 90 - -

Tab. 4.3: The peak memory use of the layer by layer reconstructions in
Megabytes. A dash indicates that the data was not provided
by the paper in which the algorithm was proposed.

differences here are to be expected. Excluding these results however, the

algorithm is favourable in terms of resources used when compared against

the alternatives, and differences of an order of magnitude can see seen in

several places.

4.4 Line-by-Line SOM training

If further memory efficiency is required then the SOM can be modified

to be trained line by line, as shown in Figure 4.9. After the initial pre-

processing and sorting, the points within the range (z, z+1), for integral

z, are sorted in ascending order (left to right) by their y-coordinate. In

this case the active band becomes an active line, which has fixed size in

both the y and z directions.

– 90 –

model pre-processing training polygonisation
time (s) time (s) time (s)

buddha 12 45 5
dragon 10 38 6
turbine 19 227 40
neptune 50 302 57
huge neptune 51 ∼8 hrs ×
bunny scans 9 21 3
ramesses 20 120 19

Tab. 4.4: Timings for the different stages of the proposed layer by layer
algorithm.

model recon. (s) recon. (s) recon. (s)
proposed [54] [57]

buddha 62 142 163
dragon 54 159 220
turbine 286 × 366
neptune 409 × 400
bunny scans 33 98 50
ramesses 159 × 39

Tab. 4.5: The total run-time for each algorithm, including any pre-
processing and isosurface extraction.

4.4.1 Implementation

Inactive nodes are stored in temporary files, and like the layer-by-layer

reconstruction, cannot be trained. If the z-coordinate of any sample

point is too close to the top of the SOM, the SOM dumps these layers

and moves in the positive z direction.

Similarly, if the y-coordinate of any sample point is too close to the

rightmost edge of the active line, the leftmost 2 rows of nodes are stored

in temporary files (including their distance list) and the active line moves

to the right. When the SOM has been trained with all the sample points

in a layer (indicated by yn+1 < yn) the SOM stores the current state of

all active nodes in the temporary files and the active line jumps back to

the left.

The temporary files are read to determine the state of the nodes

when they were last active. The training then continues as before, but

whenever the SOM moves right, it reads the states of the now-active

– 91 –

model triangles triangles triangles
(proposed) [54] [57]

buddha 182’421 343’501 629’208
dragon 247’751 436’873 856’976
turbine 1’600’242 × 1’359’064
neptune 1’070’264 × 1’403’528
bunny scans 128’884 221’166 211’930
ramesses 577’923 × 111’980

Tab. 4.6: The number of triangles for each method.

nodes from the temporary files.

Using an active line with a height and width of 30 nodes resulted

in good quality surfaces and low memory use. A larger value was used

compared to the height of the active band in section 4.2 to take into

account that smoothing the active line would propagate the training in-

formation less than the active band. Smoothing can be triggered by

z-coordinate changes, as in the layer-by-layer reconstruction, or by anal-

ogous y-coordinate changes.

4.4.2 Results

The current implementation of the line-by-line SOM training is basic

and has not been tested on large input data sets. However, proof of

concept results on small data sets show significant memory savings. For

example; when the Ramesses model (scaled to 112 × 159 × 322) was

reconstructed, the mean and peak memory consumption were only 2.4MB

and 2.5MB respectively. On the other hand, the time taken to complete

the reconstruction was 44 minutes (148’495 triangles). The reconstructed

model is shown in Figure 4.10.

– 92 –

Fig. 4.3: Re-reconstructions from smooth meshes. The original meshes
are on the left, layered reconstructions on the right.

– 93 –

Fig. 4.4: Re-reconstructions from a smooth mesh. The original mesh is
on the left, the layered reconstruction on the right.

Fig. 4.5: Close-up of Neptune’s face, layered reconstructed from a mesh.

– 94 –

Fig. 4.6: Reconstruction from scan data. The mesh supplied from the
Stanford 3D Scanning Repository is on the left, the layered
reconstruction is on the right.

Fig. 4.7: Reconstruction from scan data. The mesh supplied from
AIM@SHAPE is on the left, the layered reconstruction on the
right.

– 95 –

Fig. 4.8: Time taken to reconstruct the neptune model by layers vs. the
volume of its bounding box.

Fig. 4.9: In a recursive application of the layer by layer training princi-
ple, a layer can be trained line by line.

– 96 –

Fig. 4.10: Line-by-line reconstruction from scan data. The layer-by-
layer reconstruction is on the left (layer height 20), and the
lower-resolution line-by-line reconstruction on the right (line
width and height 30).

– 97 –

5. FEATURE DETECTION

This chapter is based on material originally published in the 2010 pro-

ceedings of the Theory and Practice of Computer Graphics[54].

In this chapter, we propose a new algorithm for feature detection.

The algorithm is based on a self organising map with the connectivity of

a regular 3D grid that can be trained into an implicit representation of

surface data. The implemented self organising map stores not only its

current state but also its recent training history, which can be used for

feature detection. Preliminary results show that the proposed algorithm

can detect various types of feature on simpler data sets.

As in chapter 4, the presented SOM minimises the second derivative

of the gradient by updating each node’s estimate of its distance from the

surface (rather than by updating its position).

5.1 Introduction

One of the main challenges in surface reconstruction is the detection of

surface features. In this context, we are interested in geometric features,

and therefore define a feature as a point on the surface for which the

curvature is significantly different than the most points in its neighbour-

hood. This definition neatly classifies spikes, corners, creases, and ridges

as features, whilst allowing that features may comprise multiple points

on the surface.

The ill-posed nature of the surface reconstruction and the feature

detection problems means that the use of machine learning techniques

can be advantageous as they can handle the uncertainty of the data better

than their equivalent geometry based techniques. In this chapter, we use

a 3D SOM with the connectivity of a regular grid, which is trained to

implicitly represent the reconstructed surface [106].

In [106], and all other previously proposed SOM-based surface recon-

struction algorithms, the SOM learns the shape of the input data through

a training process that alters the values stored at the SOMs nodes and,

sometimes, its connectivity. In each training step, only the current state

of the SOM is to be stored. Of course, as the evolution of the trained

SOM is gradual, the current state does contain information related to

previous states, however, in general, the previous states of the SOM can

not be fully retrieved.

In contrast, the SOM based algorithm presented in this chapter ex-

plicitly stores information not only on its current state but on previous

states as well. That is, it stores the training history of the SOM. This

training history can be used to infer surface feature information, under

the assumption that the well-defined at areas of the surface are likely

to have a stable training history. Flat areas are expected to exhibit low

variance of the SOM node value between different states. Conversely,

the less well-defined feature parts of the surface are expected to have a

more unstable training history, that is a higher variance of the SOM node

value between different states.

As the implementation stores not only the current state of the SOM

but also some of its training history, memory efficiency becomes a primary

concern. To solve this problem, the implemented SOM does not have the

shape of a full 3D grid, but considers only nodes that are near the training

samples and thus near to the reconstructed surface. Other differences

between the implemented implicit SOM and the one proposed in [106]

are discussed in section 5.2.

The algorithm proposed in this chapter uses an implicit SOM surface

reconstruction. After training, the isosurface is extracted using a slightly

modified form of the Marching Cubes algorithm.

The results show that the training history can be used for feature

detection. Since the data is a by-product of the surface reconstruction, it

adds very little overhead on top of processing that must be done anyway.

5.2 Algorithm

As input, the algorithm takes a set of 3D points with normals, either

from a static file or a stream source. The output is a triangle mesh with

any potential features highlighted.

– 99 –

5.2.1 Surface Reconstruction

The SOM is trained using the algorithm and parameters described in

chapter 4. In the original algorithm up to 20 surface distance estimations

were stored, with the oldest being discarded as new entries are added.

Tests were run with up to 100 entries being stored, but no discernible

difference was found in the reconstruction or efficacy of the feature de-

tection.

The focus of this algorithm is not on the reconstruction itself, but

on the metadata created during the reconstruction process. After the

computing of the final separations is complete instead of discarding this

data and extracting the isosurface, we first attempt to analyse it. In doing

so we attempt to estimate areas of high curvature (and thus, features).

5.2.2 Feature Detection

After the training is complete, we cycle through the list of SOM nodes

and examine their training history. The weighted variance β of the node’s

training history is calculated as

β = (
∑
i

γ2i)/(
∑
i

wi) with γi = wi(di − s) (5.1)

where wi is the weight of distance di, and the sums run over all the

weighted distances in the node’s training history.

If β is above the 95th percentile threshold then the node is flagged

as having a high distance variance and suspected of being close to a

surface feature. A high value of β could be caused by features such as

a spike, a crease, a corner, or two parts of the surface lying sufficiently

close so that the training data for each part interferes with the other. It

could also be caused by inaccurate training data caused by spatial and

normal noise, or by incorrectly oriented normals. The thresholding on

the variance percentile was experimentally determined to provide a good

balance between detected features and false positives.

– 100 –

5.2.3 Isosurface Extraction

In the final step, the surface is extracted using a variant of the March-

ing Cubes algorithm [71], for which the regular arrangement of the SOM

nodes is ideal. If a vertex is created between two nodes that are both

flagged as having a high distance variance, then it flagged up as a sus-

pected feature vertex.

We require both nodes to have the flag set in order to cut down on the

number of surface areas falsely detected as features (which can happen

due to random variation in the surface).

5.3 Results

The algorithm was tested against a variety of simple meshes and complex

meshes. Meshes had normals computed and then their connectivity (and

therefore face data) stripped in order to provide input point clouds from

clean data. To test robustness against noise, vertices were randomly

displaced by 0.25 units along their normals. New source data was also

created by applying three rounds of Laplacian smoothing to the meshes

before computing normals and stripping their connectivity.

Note that due to the nature the diagrams, it is strongly recommended

to view them in colour.

5.3.1 Simple Meshes

First, the algorithm was tested on simple models: a Cube, the Fandisk,

Bunny and Horse models.

Cube

Being an analytic model, the Cube shows the results most clearly, with

the edges being correctly detected on the regular model, and the flag

faces not having any vertices flagged as potential features. The smoothed

model displays similar results - there are no false positives, though both

the regular and smoothed mesh do display some false negatives (the blue

vertices on the edges).

– 101 –

As expected, the noisy noisy point cloud, there is noticeably more

variation in the learned distances for each SOM node. Consequently

the 5% of nodes whose learned distances exhibit the highest variance

are more evenly distributed across the model, with many false positives

appearing inside the flat, featureless faces. There is, however, still a

higher concentration of flagged vertices along the edges.

Fig. 5.1: Cube results: left : noisy, centre: original, right : smoothed.

Fandisk

Following in this vein, as a relatively simple geometric model, the al-

gorithm also gives good results on the Fandisk. Once again, the edges

are correctly detected as edges in the standard model (with some false

positives on the larger curved areas).

The noise model has the expected wider variation, as shown by the

wider range of colours in the high-vertices. Increased noise also leads to

greater variation in the larger curved areas. Smoothing the point cloud

leads to the expected result of poorer feature detection along the edges,

though they are still the main area that is picked out.

Fig. 5.2: Fandisk results: left : noisy, centre: original, right : smoothed.

– 102 –

Bunny

As a more complex shape, the results for the Bunny are not quite so

impressive. The algorithm has correctly picked out the primary contours

around the ears as being feature-like. The head, knee and joint around

the tail are also picked out in all cases, though the smoothed model, as

expected, has fewer vertices flagged.

Unfortunately for all variants, the natural texture of the model surface

has led to a certain amount of false positives in the middle of some of the

larger areas. It is noticeable however, able that these tend to be flagged

blue, indicating that these vertices were near nodes with lower variance

that the red vertices.

Fig. 5.3: Bunny results: left : noisy, centre: original, right : smoothed.

Horse

The Horse model exhibits similar results to the bunny - obvious features

such as the ears and thinner areas on the legs are highlighted in red,

whilst lower-variance vertices are still highlighted in the larger areas.

The smoothed model shows some reconstruction artefacts around the

ears, likely as a result of the smoothed model causing the training data

to pass through very thin areas of the ears and interfere with nearby

nodes. Aside from the wider distribution of highlighted vertices in the

noisy model, the results are similar for each variant.

5.3.2 Complex Meshes

The algorithm was then tested on more complex models: the Blade,

Happy Buddha, and AIM@SHAPE Neptune model.

– 103 –

Fig. 5.4: Horse results: left : noisy, centre: original, right : smoothed.

Blade

The Blade results are good: the ridge along the bottom is correctly

highlighted in all three variants, as are the holes on the left hand side

and the top right corners and the worn area at the join between the

vertical and horizontal components. Feature-flagged vertices can also be

seen in the holes along the right hand side.

Once again the noisy mesh shows a wider distribution of flagged ver-

tices, and both this and the smoothed model have minor artefacts, most

likely due to training data crossing surface boundaries and interfering.

Overall the results are good though, with the larger, flatter areas having

few false positives flagged in both the smooth and original reconstruction.

Fig. 5.5: Blade results: left : noisy, centre: original, right : smoothed.

– 104 –

Happy Buddha

The Happy Buddha is a challenging model due to the large number of

feature-like areas, due in part to the number of thin areas of the surface

and folds of the robe. The noise added to the Happy Buddha resulted

in a large number of artefacts, which are visible around the edge of the

model, though the original and smoothed models were not able to escape

a small number of artifacts from very thin surface regions. High variance

in training data is clearly visible across apparent surface features and

larger, flatter areas.

The regular and smooth models have a number of areas correctly

identified. For instance, the edges of the necklace are identified, though

the front face is not (since the training data will not overlap here, this is

not entirely surprising). The lips and many folds of the robe are detected

as having high training variance, and therefore likely to be features.

Fig. 5.6: Happy results: left : noisy, centre: original, right : smoothed.

– 105 –

Neptune

The AIM@SHAPE Neptune model is also challenging, due in part to the

curls of the beard. Many of these are flagged as features in each of the

variants, but it is difficult to pick them out.

Noise corruption once again came with artefacts in the thin areas,

and caused many areas to be incorrectly flagged as features. Sevel large

areas are (in the noisy model) flagged almost entirely as featureful: the

beard, head of the trident, the fish and the sides of the base. This

is understandable, particularly since the source data not only contains

genuine features, but are also rough even in apparently smooth areas,

which have a similar effect to the noise we added; the variation in training

data is increased.

In the original and smoothed variants the head of the trident has

some areas flagged as features, notably the thin areas running along the

length of each spike.

Fig. 5.7: Neptune results: left : noisy, centre: original, right : smoothed.

5.4 Discussion

Whilst our result have been focused on feature detection as applied to a

surface being reconstructed, the algorithm is quite general. The feature

detection is, in effect, performed on the point cloud directly. Though we

have reconstructed the surfaces, this is not a required step.

– 106 –

If the point cloud itself were tagged with this information, which

would then be passed to a modified reconstruction algorithm, which could

alter its properties or parameters for data flagged in such a way. One way

to make use of this flagged data could be to decrease the distance from a

tagged sample point at which we create training data. This could reduce

the conflicting training data and lead to more accurate reconstructions.

Increasing the density of the point cloud (by normal-respecting sur-

face subdivision) and increasing the resolution of the analysis (by scaling)

were found to have no significant effect on the results.

The feature detection is not directly sensitive to the estimated dis-

tance from the surface (since it could also be applied without surface

reconstruction, this should not be surprising). It is however. sensitive to

noise, which causes false positives; non-features being flagged and high-

lighted as though they were features.

The algorithm performs best at detecting thin surface sections (for

instance, the Happy Buddha’s robes) or sharp corners (like the edges of

the Fandisk).

– 107 –

6. MESH ALIGNMENT

This chapter is based on material originally published in the 2015 pro-

ceedings of the International Joint Conference on Computer Vision, Imag-

ing and Computer Graphics Theory and Applications[55].

6.1 Introduction

Translation and scaling are both considered less challenging to compute

than the rotation. The simplest and most widely used method for the

rotational alignment of two meshes aligns the principal axes of the mesh

vertex sets. Despite its popularity, it is well documented that in demand-

ing applications such as shape recognition the results of this alignment

method may not be satisfactory. This is especially true when the mesh

undergoes processing that potentially disturbs the distribution of mesh

vertices such as simplification and remeshing.

One way around this problem is to voxelise the mesh and then apply

an alignment algorithm for volumetric data. However, such a method can

be computationally demanding, and the cost of the voxelisation cannot

be fully justified if it is used for mesh alignment only. A second approach

is to apply PCA not on the mesh vertex set, but on a more uniform point

set produced by a mesh sampling method. However, such a method would

depend on the quality of the triangulation. For example, a large number

of long thin triangles in the mesh could cause problems.

This chapter describes a solution in between the above two approaches,

that is, a sampling method which, without being a fully volumetric

method, is based on creating a subset of the nodes of a regular grid

and then performing PCA on that point set.

Meshes are typically aligned using a variant of the ICP algorithm.

However, since these require one input to be a subset of the other (and

possibly some manual intervention), they are not directly comparable to

the algorithm described in this chapter.

6.2 Alignment Algorithm

We begin with two meshes (A and B), assuming that mesh B has been

obtained from mesh A after a rotation by an unknown angle around an

unknown axis, and possibly subjected to some kind of mesh processing

operation. The operations considered here are smoothing, simplification,

remeshing, and corruption by random displacement of vertices. Each

mesh is centred on the origin as a pre-processing step. The translation

can be stored and the reverse operation applied at the end of the proce-

dure. The basic alignment algorithm first creates a regular grid around

each mesh, then computes the subset of the grid nodes that are near to

the mesh, and finally applies PCA to this subset of nodes.

6.2.1 The Basic Algorithm

For each mesh M , we first create a regular 3D lattice, LM , around the

mesh M . The size of the grid is given by the user and trades-off the

speed of the algorithm against the accuracy of the alignment. We then

perform the following for each face f ∈M :

• Calculate the smallest rectangular subgrid, Pf in LM that com-

pletely contains f .

• To increase robustness, Pf is expanded by one node in each di-

rection along each axis, for example, a 2 × 2 × 3 subgrid becomes

4× 4× 5.

• For each lattice node, n ∈ Pf , determine the shortest distance from

n to f .

• If the distance from n to f is less than 2 times the edge of a grid

cell, export the node to list IM (the ‘imprint’ of the mesh M on

the lattice).

For each mesh imprint (from Figure 6.1; the collection of green nodes

from every face in the mesh), we perform PCA on the nodes’ coordinates

– 109 –

Fig. 6.1: Left: the black nodes are the smallest subgrid that completely
contains the red face. Centre: the smallest subgrid is extended
to decrease discontinuities. Right: the nodes highlighted in
green are the imprint of the red face on the lattice.

and sort the output eigenvectors in decreasing order of eigenvalue mag-

nitude. Note that a more sophisticated implementation of the algorithm

would apply a weighted PCA, with the weight of each node derived from

its distances to the mesh triangles that pushed it in IM . However, we

have found experimentally that this would not have a significant effect

on the results and thus, we opted for the much simpler unweighted PCA.

Fig. 6.2: Left, solid: eigenbasis of mesh A. Centre, dashed: eigenbasis
of mesh B. Right, dotted: eigenbasis of mesh B′.

Between the two eigenbases (one for each mesh), pairs of eigenvectors

are formed based on them having the largest, middle, or smallest eigen-

value magnitude (blue, green, and red correspondingly in Figure 6.2).

Since PCA does not provide oriented principal components, we have to

ensure that the two eigenbases are consistently oriented. Where an in-

consistent orientation was detected, as we discuss in Section 6.2.3, the

– 110 –

sign of the eigenvector with the smallest eigenvalue was flipped in one of

the meshes.

For the actual mesh alignment, we start with the first pair of prin-

cipal components, a1, b1, (those with the largest eigenvalues; blue). The

rotation aligning a1 with b1 (blue) is computed and applied to mesh B

to produce mesh B′. Lattice imprinting and PCA is then performed on

B′. The rotation around a1 (or, equivalently at this point, b1) aligning

a2 with b′2 (green) is then computed and applied to B′ to produce a mesh

B′′ which is in alignment with A.

Note that it would have been possible to work out both rotations (or

even, a single rotation) from the initial PCA. However, this is likely to

be less accurate, as the imprints of the meshes B and B′ are different.

By imprinting for a second time, the alignment of the second eigenvector

uses a dataset that is closer to B′.

6.2.2 Iterative Algorithm

The basic algorithm can be repeated on mesh A and the mesh B′′ (which

has been aligned with A). The procedure usually leads to a closer align-

ment, but the decrease is not monotonic, and in some cases it can even

lead to poorer alignment.

We believe that the reason for the non-monotonic decrease is the

discrete nature of the grid relative to the mesh itself. This means that

even a tiny rotation, which can change the position of any mesh vertex

by no more than an arbitrary small distance ε, may nevertheless change

the position of a grid node marked for processing by a distance equal to

the edge of a grid cell.

6.2.3 Eigenvector Orientation

In order for the method to work, the principal components of meshes A

and B must be consistently oriented. However, PCA does not define a

consistent orientation. In order to align the two principal components ai

and bi consistently we evaluated a sum of distances function on the two

extreme mesh vertex projections on the principal axis. For each of these

points, the distance to every data point was summed. Then the principal

– 111 –

axis was oriented in the direction of the point with the largest associated

sum.

Consistent orientation of principal components is a particularly chal-

lenging problem. In our experiments we noticed instances where the

method was not successful, causing large deviations (approximately 180

degrees) from the true alignment.

6.2.4 Input Types

The algorithm can, with minimal alteration, be used to align a mesh

with a point cloud, or even to align two point clouds. Each point in the

cloud is simply interpreted as a face with zero area. Here, the benefit

of using the lattice instead of performing PCA directly on the point

cloud is the increased robustness of the calculations due to the external

reference. Which allows, for example, the alignment of a point cloud and

a simplified version thereof.

6.3 Results

In the first experiment, each mesh had its principal components com-

puted by mesh imprinting and was rotated by a known angle around the

largest principle component. The proposed algorithm was then used to

recover the rotation angle, this was repeated using vertex PCA and the

results were compared. The results are summarised in Table 6.1.

Mesh Mesh Imprint Vertex PCA
Bunny 0.45407 0.00648

Armadillo 0.18480 0.01150
Fandisk 1.11274 0.00075
Blade 0.93554 0.00650

Statuette 5.62708 0.01968

Tab. 6.1: Mean errors (in degrees) when recovering angles from a set of
known rotations.

The angle recovered from the Statuette is much larger than for ver-

tex PCA. The primary reason for this is that the Statuette is a highly-

detailed model with significant rotational symmetry. Consequently, im-

– 112 –

printing onto a coarse mesh loses some of this finer detail, exacerbating

the problem of rotational symmetry, since the fine details are lost.

Since mesh alignment is an ill-posed problem, in a second experiment

we evaluated the visual relevance of the reported errors by rotating the

test meshes by an unknown angle around an unknown axis. The al-

gorithm was used to bring them back into alignment. The results for

the Armadillo and Statuette, with the smallest and largest mean error

respectively, are shown in Figures 6.3 – 6.4.

Fig. 6.3: Standard Armadillo results. Left: initial rotation, middle:
original, unrotated mesh, right: four iterations.

6.3.1 Robustness Against Mesh Processing

Operations

Smoothed versions of the models were obtained by applying three it-

erations of Laplacian smoothing (updating the position of the vertices

based on the position of their direct neighbours). Simplified versions

were obtained by using clustering decimation with a cell size of 1% of

the diagonal of the bounding box. The decimation results are shown in

Table 6.2. Noisy meshes were obtained by randomly displacing vertices

by 1% of the bounding diagonal. For remeshed models, surfaces were

reconstructed using the Poisson method[57] with 10 octree subdivisions.

The algorithms were then run against each mesh and the processed

variants thereof. For each method, the angular deviation between cor-

responding principal components of the original and the processed mesh

– 113 –

Fig. 6.4: Standard Statuette results. Left: initial rotation, middle:
original, unrotated mesh, right: four iterations.

Mesh Original faces Decimated faces
Bunny 35,947 9,588

Armadillo 172,974 7,540
Blade 1,765,388 16,088

Statuette 10,000,000 18,330

Tab. 6.2: Number of faces in the original and decimated meshes.

were computed. The results are summarised in Tables 6.3 - 6.6. As

expected, mesh imprinting did not give such good results on the highly

rotationally-symmetric Statuette model.

The proposed algorithm performed well on the remeshed and simpli-

fied variants, but the noisy and smoothed variants were better served

by vertex PCA. This is in line with our expectations as remeshing and

simplification are likely to have a larger impact on vertex distribution

than uniformly applied noise and smoothing. Poorer performance after

smoothing or adding noise is added is not a huge problem, as these are

less likely to be done in a practical context where this algorithm might

be used. Simplification and remeshing however, are common operations,

and so better results here are more practically significant.

– 114 –

Remeshed Mesh Imprint Vertex PCA
Bunny 1.17170 2.53230
Fandisk 0.47195 0.49521

Armadillo 0.20151 0.83864
Blade 0.05844 1.06610

Statuette 3.61364 15.16333

Tab. 6.3: Average deviation of principal components (in degrees) when
models were remeshed.

Simplified Mesh Imprint Vertex PCA
Bunny 0.48455 1.80539
Fandisk 1.40759 6.68831

Armadillo 0.13906 0.45590
Blade 0.28992 0.46369

Statuette 1.02004 17.24127

Tab. 6.4: Average deviation of principal components (in degrees) when
models were simplified.

Noisy Mesh Imprint Vertex PCA
Bunny 0.07809 0.01908
Fandisk 0.00269 0.01375

Armadillo 0.03226 0.04337
Blade 0.04314 0.02045

Statuette 0.28631 0.01530

Tab. 6.5: Average deviation of principal components (in degrees) when
mesh vertices had noise added.

Smoothed Mesh Imprint Vertex PCA
Bunny 0.73757 0.00974
Fandisk 0.38102 0.00458

Armadillo 0.21526 0.04584
Blade 0.01547 0.00613

Statuette 0.08497 0.00000

Tab. 6.6: Average deviation of principal components (in degrees) when
meshes were simplified.

– 115 –

6.3.2 Iterative Algorithm

The performance of the iterative algorithm is shown in Figures 6.5 and

6.6. We notice that generally, the iterative algorithm has improved ac-

curacy in each successive iteration and that most of the improvement

materialises in the first three or four iterations. Since the computation

of principal components is rotationally invariant, there is no significant

improvement in alignment in subsequent iterations. Once again, it is

clear that imprinting a highly rotationally-symmetric model onto a coarse

mesh gives less accurate results.

Given the number of vertices in some of the models however, it seems

likely that the accuracy improvements in subsequent Vertex PCA itera-

tions were a result of the accuracy limitations of floating point arithmetic.

Of particular note are the simplified Fandisk results in Figure 6.5.

Whilst Vertex PCA appears to instantly converge to a highly accurate

result, in reality this was a very poor alignment. The simplified Fandisk

had many large, thin triangles, which significantly altered the distribu-

tion of vertices in the mesh, which in turn significantly changed the initial

computation of the principal components. Consequently, all subsequent

comparison of the original principal components with those computed

after the remeshing were invalid. The Mesh Imprint results on the sim-

plified mesh are a true representation of the alignment, as are the Vertex

PCA results for the standard and smoothed Fandisk.

6.3.3 CAD Meshes

The proposed method is particularly well suited for CAD meshes that

have undergone mesh processing operations.

The Room 215 model shown in Figure 6.7 is a hand-made replica of

an office created using CAD software, it has 171,711 faces and significant

variance in vertex density. For instance, large areas of walls are repre-

sented by huge triangles, but tiny triangles are used to pick out the detail

and high-curvature of the radiator grills and chairs. In its simplified form

it has 16,080 faces The simplification will have a large effect on vertex

distribution as the highly-detailed areas, such as the radiator, will lose

many of their triangles, which removes a large number of the vertices in

that area. By contrast, the large, flat areas are already almost as simple

– 116 –

as they can be, consisting, as they do, of small numbers of large triangles,

so the relative sparseness of vertices in these areas will be unaffected.

When the principal components of each were computed and com-

pared, Mesh Imprinting proved very effective, with a maximum deviation

of 0.493 degrees across all principal components, compared to a minimum

deviation of 6.302 degrees for vertex PCA.

The same test was run against a simple house model and a remeshed

form thereof shown in Figure 6.8. The original mesh had 1,396 faces,

the remeshed model had 98,818. The remeshing operation significantly

affected vertex distribution by “filling in” larger triangles with many

smaller, consistently-sized triangles. Areas of high curvature or that

already had a high vertex density may have had their vertices shifted a

little or the triangles resized to achieve greater uniformity, but this will

have had little effect on the global vertex distribution. The maximum

deviation between the standard house and the remeshed form thereof was

4.297 degrees. Vertex PCA however, had a minimum deviation of 6.875

degrees.

The model/dressed models in Figure 6.9 are a pair of models that

both depict a human figure. This figure is nude in the regular model,

but has long hair and is wearing bulky/baggy clothes in the second.

Both were analysed and had their principal components compared. The

computation was reasonably stable for both models, showing only small

deviations between the two meshes, but with up to five times smaller

deviations being produced by the mesh imprint. The maximum devia-

tion between principal components computed by imprinting was 0.126

degrees, and the minimum computed by vertex PCA was 0.688 degrees.

This is not too surprising, as the two figures have the same pose and

the changes from the regular model to the dressed model are relatively ro-

tationally symmetric between the two minor principal components. The

largest principal component is along the height of the model, and the

proportions do not change sufficiently to make much difference to this.

This result is significant as it demonstrates that the algorithm can be

used to good effect not only on alternative forms of the same mesh, but

on meshes that are related in a manner that goes beyond pure geometric

processing and into high-level contextual processing.

– 117 –

Mesh Mesh Imprint Vertex PCA
Room 215 0.3707 6.7913

House 3.4744 12.0224
Model 0.1896 0.7047

Tab. 6.7: Mean angular deviations (in degrees) between the simplified
and standard Room215, standard and remeshed House, and
standard and dressed Model.

6.3.4 Effect of Resolution

We experimented on grids at 10%, 50%, 100%, and 150% of their original

size. The initial size (100%) of each grid is shown in Table 6.8. In addition

to the meshes used earlier, the Sphere and Vase models (Figure 6.10) were

also used.

Mesh Volume
Bunny 78× 77× 60

Armadillo 127× 151× 115
Fandisk 121× 131× 67
Blade 352× 598× 274

Statuette 235× 396× 203
Sphere 105× 108× 105
Vase 55× 101× 55

Tab. 6.8: Initial grid sizes.

Predictably, lower-resolution analyses usually produced alignments

that were not so accurate as higher-resolution analyses. However for

the Bunny and Armadillo models the 150% resolution alignments were

actually slightly less accurate than the 100% resolution analyses.

The Vase, Sphere and Statuette all highlighted a limitation of the

eigenvector orientation method; they produced inaccurate results because

one principal component was incorrectly aligned. This occurs when the

input meshes have high levels of rotational symmetry. When run at

an appropriate resolution the algorithm correctly orients the principal

components, leading to a successful alignment. However there appears

to be no universally optimal resolution for the lattice in this regard.

– 118 –

6.4 Discussion

The presented algorithm proved robust in the face of the most signifi-

cant mesh processing operations that are likely to be performed when

attempting to align meshes. By its nature (being based on PCA, and

using a coarse imprint) it is best suited to meshes that do not have high

levels of rotational symmetry. As expected, it significantly outperformed

vertex PCA when operations were performed that altered the vertex dis-

tribution of the input.

– 119 –

Fig. 6.5: Mean angular deviation plotted against number of iterations
for the Bunny, Armadillo and Fandisk.

– 120 –

Fig. 6.6: Mean angular deviation plotted against number of iterations
for the Blade and Statuette.

– 121 –

Fig. 6.7: Wireframe view of the Room 215 model. Areas of high curva-
ture have more triangles and appear as solid colours.

Fig. 6.8: Wireframe view of the original House model and its remeshed
form.

– 122 –

Fig. 6.9: Model/dressed model.

Fig. 6.10: Sphere and Vase.

– 123 –

7. MESH COMPARISON

7.1 Introduction

Some works compare their test mesh to a highly detailed, pre-existing

mesh by placing images of each adjacent to each other. This has the

drawback that on black and white or low quality printers, subtle varia-

tions can be masked, obscuring the results. Even on high quality printers,

significant differences can be difficult to observe.

Unfortunately, there are not many objective mesh comparison algo-

rithms available, and those that do exist do not always produce output in

the clearest way. Providing the difference in volume gives a global mea-

sure of error, but does nothing to elucidate where the error lies, which

can make a huge difference to the interpretation of the result.

Other methods are not symmetric, that is, comparing mesh A to mesh

B provides a different result to comparing mesh B to mesh A – a result

that is at least counter-intuitive. In this chapter we present an objective,

symmetric and easy-to-use algorithm that we believe lays the groundwork

for this gap to be filled, whilst allowing a simple and immediately clear

presentation of mesh differences.

7.1.1 Related Work

The presented algorithm differs from [90] in that the points of comparison

are the nodes of a regular lattice that is independent of each input mesh.

Like [90], the comparison can be done on a purely geometric basis, or

by user-defined attributes (as long as these are defined over the whole

input).

The Hausdorff distance between two meshes is the maximum value

of set of minimal distances between the two. So, if we have two meshes,

A and B, then for each vertex in mesh A, we compute the minimum

distance from that vertex to mesh B. The Hausdorff distance from A to

B, d(A,B), is the largest of these distances.

Note that this distance is not symmetric, i.e. d(A,B) 6= d(B,A), this

makes sense if we consider the case where A is a subset of B, though this

is often forced by setting

ds(A,B) = max|d(A,B), d(B,A)|. (7.1)

The Hausdorff distance can be set by a single outlier (consider the case

of a single vertex lying a long way from the other mesh).

The main tool used in practice is Metro[22], which works by sampling

vertices, edges and faces, and colours of vertices by taking a mean of

errors at sample points on adjacent faces. It is against this tool that we

will validate the proposed algorithm.

Any significant deviations between the test and reference inputs would

show up as a high level of localised error. Consequently if deviations are

spread more uniformly over the lattice, this may be indicative of a higher

degree of similarity, albeit with a systematic error (perhaps a translation

error).

The structure of the lattice allows it to be trained layer by layer in

order to improve memory efficiency, as shown in chapter 4. This could

prove useful if the meshes/point clouds to be compared are very large.

Since the error is defined as a function of a regular grid, it should be easier

to apply analytical methods (which may require evenly spaced data).

The lattice structure allows neighbours to be found efficiently, without

needing to perform any searches on the mesh. Since a common speed

enhancement is to store data instead of repeatedly searching for it, this

also helps to reduce the memory footprint.

7.2 Comparison Algorithm

7.2.1 Mesh Processing

Two meshes (A and B) are selected for comparison and scaled to fit

inside a unit lattice. Since the lattice nodes have integer coordinates,

the choice of scale is, in effect, the choice of the resolution at which the

comparison will be performed.

– 125 –

The algorithm assumes aligned meshes as input; as with other mea-

sures, mismatched alignments would be detected as differences in the

meshes themselves. Similarly, the meshes must be translated to share an

origin in order for the comparison to be performed. This is not a trouble-

some requirement however, and can be met with a trivial preprocessing

step. Differences due to noise corrupting the mesh are, in line with other

algorithms, simply detected as differences in the meshes.

The presented algorithm is invariant under differing densities – since

faces are interpolated to train the lattice the only limitation is the number

of vertices in the mesh. In principle per-face textures could be created

for each face that were painted according to the lattice’s values near that

point, but this is somewhat outside the scope of this work.

Each node on the lattice stores its closest distance to each mesh (dA

and dB). If the input mesh as associated normals, these can be incorpo-

rated into the comparison.

A face is selected from the mesh, and the smallest bounding box

subsection (parallelepiped P) of the lattice that contains the face is com-

puted. Each node n in P has its shortest distance dA to the face calcu-

lated (be that point inside the face or on the perimeter).

If the distance between the mesh and the node is less than the dis-

tance currently stored in n for the mesh in question (or if no distance is

currently stored) then that node’s dA is updated. The distance between

the mesh and the node is shown in blue in Figures 7.1 and 7.2. Once this

has been done for all nodes in P , the next face in the mesh A is selected

and the process is repeated.

This process is repeated for mesh B. The lattice nodes keep track of

which mesh has trained them, so nodes that have been trained by one

mesh and not the other are trivially identifiable. Such nodes are have

their difference set to the maximum value, but are excluded from the

variance computations to avoid biasing the results.

7.2.2 Difference Visualisation

In order to easily visualise the differences between the meshes we follow

the standard practice of applying a changing hue to areas of significance.

For each vertex v, we find the nearest node n and map the distance

– 126 –

discrepancy of n to a hue according to its magnitude. This can be done

on an absolute basis or relative to the other discrepancies.

We then paint v with the calculated hue, giving a colour-coded differ-

ence map painted onto the mesh. After this procedure we have 2 output

meshes, one is A with the differences to B highlighted, the other is B

with the differences to A highlighted.

7.3 Results

The initial analyses were performed on two analytic models - a cube and

an icosahedron, wireframe views of each can be see in Figure 7.3. Four

experiments were done in order to test the algorithm on clean data before

testing it on real meshes.

7.3.1 Analytic Meshes

In order to provide a consistent basis for analysis, both were scaled to fit

within a 150× 150× 150 bounding box. The mesh volumes and surface

areas were computed, and percentage differences compared to the other

forms computed. The volumes were all unchanged up to 0.1% relative to

the original.

Smoothed

In the first experiment, both meshes underwent three iterations of Lapla-

cian smoothing. As can be seen, the edges are clearly highlighted cor-

rectly, with the most significantly highlights in those areas that are be

affected most by smoothing.

The RMS difference for the Cube was 0.1755, with a 1.7% smaller

surface area. The Icosahedron had an RMS difference of 0.1219 and a

surface area and a 0.94% smaller surface area.

Remeshed

The second experiment was to compare each mesh to variants that had

been remeshed using Poisson reconstruction. Each bounding box had

– 127 –

a side length fixed at 1% of the bounding diagonal of the mesh. The

distribution of differences is significant and distributed over large areas.

However, looking at the remeshed wireframe for the Icosahedron, we

can see the algorithm detecting differences in the areas that might be

expected. A simple threshold was applied that ignored differences of less

than 0.1 units, which revealed that the mid-face deviations generally fell

into the 0−−0.1 unit range. The horizontal bands that can be seen also

line up the denser regions of vertices that can be seen in the triangles

adjacent to the forward-facing triangle. The RMS difference was 0.3956,

larger than for the smoothed mesh, with a 1% smaller surface area.

Similarly for the Cube, the edges have a higher vertex density, and

the two visible, off-centre faces have discernible squares of differently-

arranged triangles that are shown in the original, coloured form. The

smaller differences near the edges are likely due to the Poisson reconstruc-

tion creating a slightly more rounded form of the mesh that nevertheless

passes very close to the edges in a similar manner to a circle circumscrib-

ing a square. The RMS difference was 0.7461, again larger than for the

smoothed form, which is in keeping with the Poisson reconstruction. The

surface area was 2.5% smaller.

Simplified

In the third experiment, simplification was performed using the Cluster-

ing Decimation with a cell size of 1% of the value of the diagonal bounding

box of the mesh. The simplified meshes do not show significant groupings

of differences.

Looking at the simplified wireframe models, the larger detected dif-

ferences in both meshes correspond to those areas with more movement

of vertices. This is particularly clear for the Icosahedron, where the

front-facing triangle has a larger difference. The simplification algorithm

gave results on the faces that were axis-dependent, as can be see for the

Icosahedron, where the off-centre faces have long, thin triangles (that

have been detected as different at their vertices). Once again, a small

threshold was then required in order to show up any difference, and these

differences were confirmed to be very small, and therefore most likely as

a results of minor numerical changes in the storing of the vertex coordi-

– 128 –

nates.

The Cube had an RMS difference of 1.197 and 0.07% larger surface

area. Similarly, the Icosahedron had an RMS error of 6.152 and a surface

area increase of 0.31%. The RMS errors are large in this case despite the

small differences in surface area. Further investigation suggests with

both the Metro tool and thresholding suggests that this is a result of

the technique used to determine the RMS difference for partially-trained

nodes.

Noisy

For the fourth experiment, each vertex was displaced randomly by a

vector with a maximum modulus of 0.5 units. As with the simplified and

remeshed variants, there is no discernible pattern to the comparison, as

would be expected given the random distribution of noise.

The RMS difference for the Cube was 0.3363 with a 15.9% larger

surface area, and for the Icosahedron, the RMS difference was 0.5748

with a 21.7% larger surface area. Significant differences in surface area

combined with a small RMS difference is in line with intuition for a

noisy surface – the irregularity has little overall effect on volume and the

differences in distance from nodes to the surface remain small.

7.3.2 Real Meshes

As with the analytic meshes, three rounds of Laplacian smoothing were

performed before comparing the meshes. We focused on the smoothed

meshes as changes from smoothing are intuitively clear, which eases

assessment of the results. This explains the relatively smooth colour

changes in comparison to the presented algorithm.

The Bunny and Fandisk models show the strongest visual results for

the proposed algorithm, with the most significant deviations being in

areas that would be expected. They are also consistent with the Metro

output – detected areas of high and low differences coincide across all

models. When RMS scores are analysed however, the Bunny had the

worst RMS score of all the tested “real” meshes with a difference of

0.545. This may be due to the relative sparseness of the mesh causing a

large number of nodes to only be partially trained. The Fandisk had the

– 129 –

best RMS result of all meshes at 0.203.

The more complex Happy Buddha and Armadillo models show greater

variation across the models as a whole, but with a higher concentration

of deviation in near edges. Results are comparable to the result from the

Metro tool – areas of more significant deviation are the same between

most models (red with the proposed results, green from metro).

Whilst the output of the proposed comparison method shows greater

variation across the output, these areas are generally isolated, whereas for

the Metro output, they are typically merged into a larger band of colour.

The Armadillo and Happy Buddha models had similar RMS differences

of 0.382 and 0.377 respectively.

The optimum resolution for the comparison is not known in advance,

and must therefore be experimentally determined. If the resolution is

too low, large regions will be flagged as significantly different. If it is

too high, then the results can become noisy, in a situation equivalent to

over-fitting, since the hue of each point is determined by the difference

percentile in which the node variances fall.

This is due to the fixed expansion of the parallelepiped around each

face when computing the distances from the face. As the resolution

increases, this fixed distance becomes smaller relative to the sizes of the

models being compared. Consequently, more nodes will only have been

trained by one surface, and so will be flagged as having the maximum

difference.

– 130 –

Fig. 7.1: Fitting a mesh to the grid. The shorted distance between each
node and the mesh is shown by blue lines.

Fig. 7.2: Fitting a second mesh to the grid. Comparing the two meshes
then amounts to comparing the magnitude of the blue lines in
each case.

– 131 –

Fig. 7.3: Wireframe view of the cube and icosahedron.

Fig. 7.4: Comparison of analytic meshes (left) to their smoothed coun-
terparts (right).

– 132 –

Fig. 7.5: Comparison of analytic meshes (left) to their remeshed coun-
terparts (right). Wireframes of the remeshed forms are shown
below.

– 133 –

Fig. 7.6: Comparison of analytic meshes (left) to their simplified coun-
terparts (right). Wireframes of the simplified forms are shown
below.

Fig. 7.7: Comparison of analytic meshes (left) to their noisy counter-
parts (right).

– 134 –

Fig. 7.8: Comparison of real meshes (left) to their smooth counterparts
(center), Metro comparisons (right).

– 135 –

Fig. 7.9: Comparison of real meshes (left) to their smooth counterparts
(center), Metro comparisons (right).

– 136 –

8. CONCLUSION

In this chapter a summary of the work performed is presented, along

with discussion of the outcomes and limitations. The original hypothesis

is then revisited in light of the undertaken experiments. Finally, we

discuss areas for future investigations that follow naturally from the work

presented.

8.1 Summary of Work

8.1.1 Memory–Efficient Surface Reconstruction

We proposed a memory efficient, scalable surface reconstruction algo-

rithm based on SOMs.

The SOM has the geometry and connectivity of a regular 3D grid.

The input data is preprocessed in order to sort it in order of increasing

z-coordinate. Samples are taken sequentially from the data and training

data created for each sample. Training data consist of regularly-spaced

points laying along the normal of the original sample, each carrying an

estimate of its distance to the surface. SOM nodes are trained storing a

list of estimates, each with a weight factor, to indicate how far from the

original sample they are.

If a sample is near the top of the active band, the active band is

smoothed and the bottom layers stored. Each node’s final distance es-

timate is a weighted average of these training data. The active band is

then moved up by a small amount and the processing continues. This

layer-by-layer training of the SOM makes the algorithm memory efficient

and scalable, since at no stage is the entire SOM held in memory.

Taking this idea further, we demonstrated initial promising results

for further memory footprint reduction by training this active band line-

by-line.

8.1.2 Feature Detection

We proposed a new algorithm for feature detection that can be performed

in tandem with surface reconstruction. The feature detection is an ex-

pansion of the algorithm described in chapter 4 intended to serve as a

visual aid.

Before a node’s data is stored and the active band moves on, the

weighted variance of its training data is computed. Nodes with a high

variance (we used the 95th percentile) were flagged as being potentially

adjacent to features. This limited the number of nodes that were flagged

to only those for which we had a high level of confidence, and prevented

the output becoming too noisy.

The variance data is passed to the Marching Cubes algorithm, which

renders vertices surrounded by such nodes according to the mean of the

nodes between which they lie. Higher variances led to higher deviations

from the default mesh colour, increasing the prominence of the most

likely features.

8.1.3 Mesh Alignment

We presented an algorithm for mesh alignment by performing PCA on a

set of nodes of a regular 3D grid.

The nodes on which to perform PCA were determined by taking an

“imprint” of the mesh to be aligned. To do this, the lattice was created

around the mesh, and any node within a set distance of the mesh was

flagged for inclusion in the calculation. These flagged nodes were then

treated as the input to a PCA calculation, and these principal compo-

nents were aligned with those of the target mesh’s imprint.

By taking an imprint of the mesh (instead of just performing PCA

on the vertices, as is common practice), the potentially negative conse-

quences of large triangles are avoided. In this sense, the imprint captured

the character of the input, and could therefore align meshes that are ge-

ometrically similar, but structurally very different.

The use of a 3D lattice external to both inputs increased the ro-

bustness of PCA, particularly when dealing with meshes of different and

possibly uneven vertex density. The proposed algorithm was tested on

meshes that have undergone a variety of standard mesh processing oper-

– 138 –

ations and it was found to perform well under most circumstances.

8.1.4 Mesh Comparison

We presented an algorithm for the symmetric comparison of two meshes.

As a preprocessing step the meshes are aligned and set to the appro-

priate scale. Each node in the lattice computes its shortest distance to

each grid (as an optimisation, only nodes within a certain distance of

the lattice are trained in this manner). The difference between a node’s

distance to each mesh is used as a measure of the deviation of nearby

vertices. In order to smooth out extreme values, these differences are

sorted into percentiles.

The meshes are then coloured, with nearby nodes being assigned a

colour based on the difference percentile of their closest nodes’ differences.

Nodes that are far from one mesh (and have thus only been trained by

one) are coloured as though their distance difference lay in the largest

percentile. As a final step, the RMS difference between the separation

of all nodes in the SOM are computed and used to give a quantitative

value for the differences between them.

8.2 Outcomes

Throughout the various chapters of this thesis we have attempted to show

that a trained grid can be used for many purposes aside from the typical

one of computing an input for the Marching Cubes algorithm. Overall

we have met this goal: the results have been good for most of the areas

investigated; not just meeting the standards of existing techniques but

in some cases surpassing them. In the cases where the results were not

as good as could be hoped, the reasons for these shortcomings are well-

understood, allowing future work to be planned to address them.

8.2.1 Memory–Efficient Surface Reconstruction

Overall this avenue was very successful, with both research questions

being answered in the affirmative.

– 139 –

Can the structure of a regular 3D SOM be used to increase

the performance of surface reconstruction?

We have found that a regular 3D grid offers notable benefits to the per-

formance of surface reconstruction. The lack of search, querying and

sorting simplifies what are often relatively complex operations.

To what extent can the structure of a regular 3D SOM be

exploited to work with large datasets?

Experiments showed that the proposed algorithm can support the train-

ing of the very large SOMs that would be required for large data sets.

The layer-based reconstruction provided a significant decrease in memory

requirements compared to earlier algorithms, in some cases by an order

of magnitude.

8.2.2 Feature Detection

The feature detection was a qualified success, though further work would

be required for it to meet its full potential.

Can the training history of an SOM be used to detect surface

features?

Preliminary results showed that the algorithm can detect various types

of feature, and gives intuitively correct results with clean inputs.

How early can this be integrated into the pipeline in order to

make the information available to more stages of the pipeline?

The algorithm would be well incorporated into a reconstruction that

would use the data to inform later pipeline steps. For example, flagged

areas could be skipped in the smoothing phase (either as part of a post-

processing step, or visually in the rendering phase).

The overhead of this feature detection is very low, and can be imple-

mented by a fast and simple modification to the surface reconstruction

algorithm from chapter 4.

– 140 –

8.2.3 Mesh Alignment

In light of the results, the presented algorithm provides a valid third

option for alignment after PCA and the ICP variants, particularly when

the inputs have significantly difference vertex distributions.

Under what circumstances would an SOM be suitable for

aligning two meshes?

If the vertex distribution between the meshes is significantly different,

using an SOM to align them as in chapter 6 is robust. Correspondingly,

if the meshes are “similar” in some sense, the algorithm can also align

them successfully.

To what extent would the regular structure be beneficial, and

what limitations would it impose?

In several cases the results indicate an improved robustness compared to

performing PCA directly on mesh vertices. This was generally the case

when the vertex distribution changed due to mesh processing operations

(smoothing, remeshing, etc.).

The most significant problems were in the case of the Statuette, which

is highly-detailed and rotationally-symmetric, since the coarseness of the

imprint removes detail that can increase the accuracy of the PCA, which

already faces some difficulty with rotationally symmetric inputs.

How would such an algorithm compare to standard

techniques?

The results as applied to CAD meshes (section 6.3.3) were all better than

Vertex PCA, and showed that the algorithm can be successfully applied

to meshes that are not simply geometrically-modified forms of each other.

8.2.4 Mesh Comparison

The use of an SOM to compare two meshes was a qualified success. We

achieved a proof-of-concept algorithm, but there are still some issues that

would need resolving for the comparison to reach its full potential.

– 141 –

Could an SOM, being external to two meshes, be trained to

detect their differences?

The algorithm was tested on analytic meshes that had undergone stan-

dard mesh processing operations, and performed as expected for smoothed

and noisy variants.

Remeshed variants used Poisson reconstruction to rebuild the mesh,

which resulted in large deviations between the two inputs. Given the

nature of Poisson reconstruction these differences are not surprising, and

the deviations are present and correctly detected. Simplified forms also

presented some difficulties, but testing with thresholds suggested that

these were tiny numerical differences.

Results for for real meshes were comparable to the results from the

Metro tool, though given its sample-based method of comparison, its

colour maps were smoothed.

Does SOM-based comparison offer any benefits over existing

techniques?

In terms of mesh-to-mesh comparisons, whilst the results produced are

suggestively similar, the lack of automatic resolution detection means

that the current state of the SOM-basd comparison does not meet the

same standard as the Metro tool.

It does however, offer a notable benefit compared to Metro, namely

that the algorithm is capable of transparently handling comparisons of

meshes to point clouds, and even point clouds to point clouds.

8.3 Discussion

8.3.1 Memory–Efficient Surface Reconstruction

The layer-by-layer training of the SOM is the main novelty, and means

there is no need to store the entire SOM in memory at any point. The

memory efficiency of the algorithm compared to [18, 82, 57] and [54] was

demonstrated. Good sized SOMs, such as those used for the reconstruc-

tions of Neptune and the turbine, require about 100MB peak memory,

while even the massive SOM used for reconstructing the huge Neptune

– 142 –

Fig. 8.1: A line could be trained thick point by thick point.

model can be accommodated in the memory of a commodity PC.

The second major advantage of our approach is its scalability. Not

only can the training of the SOM be done layer by layer, but, in a recur-

sive application of this principle, a layer can be trained line by line. As

shown in figure 4.10, the preliminary results of this line-by-line training

are promising, particularly as the memory required was approximately

10% of that required for the layered reconstruction, though at the ex-

pense of processing time. If further memory efficiency is needed, a line

could be trained thick point by thick point, see Fig. 8.1.

We note that memory efficiency and scalability are natural features

of our approach and can be achieved with minimal implementation over-

heads. In contrast, memory efficiency in other implicit reconstruction

methods requires the implementation of complex data structures, such

as adaptive octrees, or the use of special scalable algorithms for solving

global optimisation problems.

The regular structure of the SOM employed by the proposed algo-

rithm, and the very simple processing operations performed at each node,

make the method particularly suitable for GPU implementation.

8.3.2 Feature Detection

The main novelty of the feature detection algorithm is that instead of

only storing the current state of the SOM, the recent training history

is explicitly stored and used for feature detection. Additionally, despite

being performed in parallel with surface reconstruction, the latter is not

a requirement – features would be able to be detected and flagged in

point clouds by the same procedure.

The algorithm performed very well on analytic and simpler models,

– 143 –

such as the Cube and Fandisk, but even gave good results on the Blade.

Thin surfaces areas were well detected, like the thin robes of the Happy

Buddha.

8.3.3 Mesh Alignment

In our implementation, we used the Point Cloud Library [91] for PCA,

and MeshLab [21] for the various geometric operations we performed as

part of our testing; smoothing, simplification, adding noise and remesh-

ing. While processing large meshes can require large amounts of memory

due to the sheer number of points that must be processed, our method

(by virtue of performing PCA on fewer points) will naturally have a

smaller memory footprint than many. Memory could also be saved by

running the proposed algorithm in a layered fashion, as proposed in [56].

Since the proposed method aligned the meshes on a relatively coarse

regular grid, the loss of accuracy compared to direct vertex PCA was

noticeable. However, it was inside a range that would be considered

tolerable in most applications, that is, around one degree if there were

no problems caused by the rotational symmetry of the meshes, or by

incorrectly-oriented eigenvectors. Note that these problems are common

to both the proposed method and standard PCA on mesh vertices.

Mesh Imprinting shows its strengths when original inputs are poorly

meshed. For instance, if they have many long, thin triangles, or an uneven

distribution thereof. While long thin triangles are very rare in meshes

that are acquired through physical optical devices such as laser scanners,

they often dominate meshes produced by CAD software. In such cases,

simplification and remeshing significantly affect the distribution of the

vertices, causing Vertex PCA to produce highly inaccurate alignments,

as discussed in chapter 6 in section 6.3.2.

8.3.4 Mesh Comparison

The algorithm can accept a point cloud as input and could therefore be

used for more than just comparing a modified mesh to the original (in

the case of simplification or smoothing). For example, it could be used to

directly evaluate the effectiveness of a surface reconstruction algorithm

– 144 –

or check that a subsampled point cloud still has sufficient density in

important areas.

Signed distance to grid nodes was not measured as it would only be

possible to measure whether two points lay on different sides of a grid

node, which could give rise to misleading results. For instance, in figure

8.2, the red and blue surfaces are a fixed distance apart, however, the

way the grid is positioned, the purple node will flag that it is in different

sides of the surfaces, which could suggest that the surfaces are uneven.

Fig. 8.2: The problem of using signed distance on a grid.

The two inputs laying in difference cubes can cause significant dif-

ferences in the RMS calculation due to the way partially-trained nodes

are handled. Figure 8.2 would result in partially-trained nodes on each

side. One way to approach this could be with input-specific smoothing,

for example, by looking at the distances of nearby nodes to that same

input, then incrementing this by 1 unit.

Currently, the output is “noisy” in the sense that colour transitions

on the mesh are often abrupt. It is possible that some form of smoothing

could be applied to the SOM, but a balance between a smooth appearance

– 145 –

and the loss of data must be found.

8.4 Limitations

8.4.1 Memory–Efficient Surface Reconstruction

As can be seen in chapter 5, the algorithm is sensitive to noise, which can

cause artefacts to form. Such artefacts lay outside the surface however,

and would be simple to remove with standard algorithms.

The layered reconstruction requires pre-processing for best results,

and the optimum parameters for the pre-processing are not always known

in advance.

The line-by-line reconstruction sacrifices processing speed for further

gains in memory efficiency. Whilst the memory requirements are even

lower than the layered reconstruction, the time required to process the

Ramesses model was significantly increased.

8.4.2 Feature Detection

The algorithm is sensitive to noise and variability in the input data, which

has the same effect on a node’s training data as being near a surface

feature, namely, a high variance. Such an effect results in false positives;

vertices being incorrectly flagged as belonging to a surface feature.

High variability in the input data, for instance, Neptune’s beard

(which has a large number of ridges in a small area) does present prob-

lems, as there is a large amount of interference in the training data. Con-

sequently, with the percentile threshold on training data variance, this

prevented other features being flagged. The percentile could be changed

in order to detect these features as well, but would come at the cost of

false positives.

8.4.3 Mesh Alignment

The implementation of each algorithm was not optimised due to the wide

variety of different techniques and circumstances under which each is

possible and appropriate. Our implementations took the simple approach

of reading the full file from the hard drive, processing the data entirely

– 146 –

in memory, and writing the output back to the hard drive in a single

execution thread. Since the algorithm is based on PCA, it is not suitable

for datasets that are highly rotationally symmetric.

8.4.4 Mesh Comparison

The result from the algorithm is resolution-dependent, and the resolution

at which the comparison is best performed must be determined exper-

imentally for each model. However, once the appropriate resolution is

known, it will be valid for all future comparisons.

The algorithm, due to highlighting all differences, can appear overly-

sensitive if no minimum difference is specified. This can actually be

a strength however, as it allows comparison and detection of even the

smallest differences between two meshes.

The RMS calculation is sensitive to partially-trained nodes, and can

give artificially-inflated values that do not properly reflect the differences

between the two meshes.

8.5 Future Work

In this section we suggest potentially fruitful avenues for future research.

Not only does each chapter’s work contain potential for expansion and

refinement, but an SOM may also be able to be used in more areas of

the pipeline.

8.5.1 Memory–Efficient Surface Reconstruction

The regular structure of the SOM employed by the proposed algorithm,

and the very simple processing operations performed at each node, make

the method particularly suitable for GPU implementation. In the fu-

ture, we plan to work on a GPU implementation of the algorithm which,

together with existing GPU implementations of the Marching Cubes al-

gorithm [51], could be a step towards the goal of real-time surface recon-

struction.

The implementation of the line-based reconstruction algorithm is not

mature. With further work the the memory requirements could be de-

– 147 –

creased even further than the layer-based reconstructions; the initial re-

sults suggest by up to an order of magnitude.

8.5.2 Feature Detection

A more sophisticated statistical analysis of the separation of a single

node, or the separations of neighbourhood nodes, is expected to allow

the extraction of more reliable feature information. Depending on the

characteristics of the training history, it may even be possible to classify

features in to different types, such as a ridge, valley or peak.

8.5.3 Mesh Alignment

In the future we plan a systematic analysis of the error of the standard

PCA caused by vertex quantisation. Indeed, the small alignment error

produced by our method is essentially a vertex coordinate quantisation

error, which anyway may be present in the vertex coordinates, if for

example the mesh had undergone lossy compression. By showing, as we

conjecture, that the alignment error of our method and the vertex PCA

error caused by vertex coordinate quantisation are comparable, we will

further justify our approach.

8.5.4 Mesh Comparison

A natural extension to this work would be to implement input-specific

smoothing such that the number of partially-trained nodes can be re-

duced. This could be achieved by increasing the size of the parallelepiped

around each input in which we train the nodes, though this would come

at a significant performance penalty. A more sophisticated statistical

analysis of the SOM could also provide a more stable and informative

measure of the difference between the inputs.

Further, we hope to investigate potential methods for automatically

determining the best resolution at which to run the analysis. Even if

the objectively best resolution cannot be proved, the existence of one

or two methods that suggest good resolutions could save time for future

experimenters.

– 148 –

8.5.5 Normal Estimation

It may be possible to make further use of a lattice and the predefined

training procedures to estimate normals in a point cloud that is otherwise

devoid of them. We have done some initial work on setting up such an

algorithm. The basic step is that only the winning node is trained from

sample point, however, the SOM is still smoothed (this is another case

where the resolution of the analysis becomes important).

After the point cloud has been processed in this manner and the SOM

is fully trained, focus passes to each axis of the SOM in turn. The partial

derivative of the node separations all the rows parallel to the x axis is

used as an estimate of the x component of each node’s normal. After

doing this for all rows parallel to the x axis (and thus computing all the

x components of the normals), the procedure is repeated for the y and z

axes.

For a sufficiently dense point cloud, this would reduce the complex-

ity of the problem to the development of methods for determining the

orientation of the normal components.

– 149 –

APPENDIX

A. MESH IMPLEMENTATIONS

In this appendix I provide details on how surfaces are realised within

software as meshes. A mesh is a collection of polygons that describes

a surface, these polygons (faces) are comprised of vertices and edges.

Typically these polygons are triangles for simplicity. The represented

surface may or may not have a boundary.

A.1 Data Structures

A.1.1 Indexed Meshes

Indexed meshes are named as such because their vertices are implicitly

indexed by their position in a list. This has the advantage that editing

the position of a single vertex updates all faces whose perimeters include

that vertex. However, such a modification could invalidate the mesh’s

normal data. With indexed meshes, the only way to find the data relating

to a vertex is to sequentially read the list.

It is not possible to skip sections or perform a binary search, since

given an individual vertex, there is no way to know what its index is. This

is clearly inefficient, particularly when attempting to find the immediate

neighbours of a vertex (it’s 1-ring), which would require searching the

entirety of the face data. If the mesh can be fully loaded into memory

then this is not such an issue, though scattered memory access could

result in decreased performance.

A.1.2 Non-Indexed Meshes

Informally referred to as a “triangle soup” (since the faces are almost

always triangles), non-indexed meshes store redundant vertex informa-

tion to reduce the number of linear searches. A set of three coordinates

defines a vertex, and faces are implicitly defined by a collection of three

vertices. This means that given a face to draw, all the necessary infor-

mation is immediately to hand, but finding the 1-ring of a vertex is still

inefficient.

A.1.3 Half-Edge Data Structure

The Half-Edge Data Structure only stores vertices and edges. Each edge

is realised as two directed half-edges, each of which store the following:

1. The face bordered by the half-edge.

2. The vertex the half-edge is leading to (or equivalently, the vertex

from which it emanates).

3. It’s half-edge pair (the half-edge going in the opposite direction)

4. The next half-edge in the perimeter of the face.

Extra data is often stored to ease implementation, for example; by storing

the vertex that a half-edge is coming from as well as the vertex it leads

to.

Each vertex stores its 3D coordinates and the index of a half-edge

leading to it. The face data is now implicitly encoded in the half-edge

data structure, but it is often stored explicitly for ease of manipulation.

It is also useful to store face data explicitly when extra information (e.g.

normal/texture data) needs to be stored.

The half-edge data structure makes adjacency queries simple; by it-

erating various simple operations we can easily determine what faces are

adjacent to a particular face. In C, such an operation might look like

this:

do

{

adjacent_faces[n] = current_edge.face;

current_edge = current_edge.next;

n = n + 1;

}

while(current_edge != start_edge);

– 152 –

A.2 File Formats

A.2.1 Object File Format

The Object File Format (OFF) has a simple structure, facilitating the

development of new tools for its manipulation. It stores an indexed mesh

representation. A standard OFF file is laid out as follows:

OFF

nF nV nE

x0 y0 z0

x1 y1 z1
...

xnV−1 ynV−1 znV−1

nS0 i0 i1 . . . inS−1

nS1 i0 i1 . . . inS−1
...

nSnF−1 i0 i1 . . . inS−1

// file type

// Number of faces, vertices and edges.

// xn = x coordinate of vertex n

// Position in the file gives an implicit

index.
...

// end of vertex data

// nSX = number of faces that side X has

// in = index of nth vertex in the perimeter
...

// end of face data

nF is the number of faces, nV ; the number of vertices and nE; the num-

ber of edges. The number of edges, nE, must required to be present

but is rarely used, and is not always accurate since many programs ig-

nore it or just store 0 to comply with the file format specification. After

the header comes the vertex data; each line of which consists of the 3D

coordinates of a single vertex, implicitly indexed by its position in the

file.

Next comes the face data, with one face being described per line.

Each line starts with the number of sides of that face and is followed by

a list of vertex indices that define the corners of the face. The vertices

are listed such that they describe the perimeter of the face, making cyclic

permutations and order reversals entirely equivalent. All information has

now been provided (either explicitly or implicitly), so the file ends.

A.2.2 Object File Format Variants

There exist two optional extensions to the OFF, one or both may be used

at any time. The first adds normal information to each of the vertices

– 153 –

Fig. A.1: Invalid triangle configuration in STL format.

and declares itself to be a NOFF file. The header starts with “NOFF”

instead of “OFF”, and each vertex line has the Cartesian components

of the normal to the surface at that vertex appended. The face section

remains unchanged.

The second extension adds RGB colour information to the faces, and

files are declared to be COFF files, starting with “COFF”. If both ex-

tensions are used, then the files are CNOFF files, and begin as such.

A.2.3 Stereo Lithography Format

The STereo Lithography file format (STL) describes a single object. The

file itself and begins with the word “solid”, and ends with “endsolid”. A

facet (face) is begun with the word “facet” and finished with “endfacet”.

If the facet has a normal then “normal nx ny nz” follows the facet decla-

ration. Normal information is optional as it can be losslessly generated

from the face itself. Within each facet, the perimeter is described by list-

ing the position of each of its vertices. Any two adjacent triangles must

share two vertices, and so the triangle configuration shown in figure A.1

is not valid.

A.2.4 Polygon Format

The Stanford PoLYgon (PLY) file format was created in an attempt to

unify the wide range of potential file formats that are often used for 3D

models. In spite of this, it was not intended to be all-encompassing; it

describes precisely one object and does not support a variety of features

– 154 –

found in other formats, such as polygons with holes. Element types are

declared along with the number instances of that element, and properties

are added to describe all the necessary features.

The format was also designed to be extensible, with user-defined data

being declared in the header of the file and appearing after the vertex and

face subsections (which are identical to those of the OFF). Compatibility

is maintained by requiring those data not understood by an interpreting

program to be ignored or dropped without impact on the others.

A typical PLY file might start like so:

ply

format ascii 1.0

element vertex 35947

property float x

property float y

property float z

element face 69451

property list uchar int vertex_indices

end_header

A.2.5 Streaming Formats

Streaming mesh formats are useful when the original mesh is too large to

fit in the memory of a workstation. A mesh can be streamed from a local

disk[45], or over a network[20]. These formats typically rely on loading a

simplified mesh, to show the overall structure, then loading small areas

at a higher quality and updated the rendered mesh in real-time. The

methods employed can allow useful work to be done on a high-quality

subsection of the mesh, without sacrificing the context provided by the

lower-quality base mesh.

– 155 –

B. SOFTWARE

IMPLEMENTATION

In this appendix I describe the software used throughout this thesis,

including languages and external libraries.

B.1 Core Algorithms

The core algorithms are implemented in C for maximum portability

across a wide range of hardware devices. Code was written to the C90

standard since this is the most widely supported across all compilers.

Source code for all presented algorithms is available under a BSD licence.

C’s low-level and highly-optimisable nature made the algorithms vi-

able in terms of speed and memory use, even on some embedded systems.

This, combined with the fact that some embedded devices do not have

C++ compilers available, meant the software could be quickly adapted to

even the most constrained environments.

Except as listed in the “Dependencies” section, all software was writ-

ten from scratch. The software was built using the following compilers:

• Microsoft Visual Studio

• GCC

• Clang

• TCC

and tested on the following operating systems:

• Microsoft Windows

• Ubuntu Linux

• FreeBSD

• OpenBSD

in order to confirm its standards-compliant and cross-platform nature.

Making use of external dependencies would have required them to

support all of the above operating systems. Writing portable code from

scratch however, allows the code to be taken and used with compilers and

systems other than those listed (for instance, Google’s Android, Apple’s

iOS, or some other mobile operating system).

B.1.1 Dependencies

The only external dependency is in the mesh alignment program (and

even then only in one implementation). It depends on the Point Cloud

Library[91], PCL, which is available for Windows, Linux, and MacOS

X. This was for the convenience of using a pre-existing, optimised, and

stable implementation of Principal Components Analysis, against which

results could be validated.

The GNU Scientific Library (GSL) provides a near drop-in replace-

ment should more portability be required. It would also be simple to

implement this algorithm directly in C, and validate this implementa-

tion against either GSL or PCL.

B.1.2 Mesh Format

When creating or processing meshes, the file format must be chosen. The

format was required to have the following characteristics:

• Simple to parse.

• Usable by a large number of software tools.

• Able to store colour and normal data.

The format was required to be simple to parse in order that a new

parser could be written with no external dependencies. Support by a

wide variety of software tools was important in order to allow viewing and

analysis of the results. The ability to store colour data was important for

working on feature detection and mesh comparison. After taking these

requirements into consideration, the Object File Format was selected.

– 157 –

B.1.3 Architecture

Code that could be shared between programs was written into separate

files and referenced from there. Algorithm-specific code was kept to a

single file that gave a high-level overview of the process. For instance,

the only code specific to the layered SOM is the function it uses to store

node data on the disk, and its main execution function, reproduced in

Listing B.1.

– 158 –

Listing B.1: Source code for “main” function from the layered

SOM.
1 int main(int argc , char **argv)

2 {

3 /* perform common setup operations */

4 initialise(argc , argv);

5

6 printf("Running layered reconstruction .\n");

7

8 /* enter the main loop of reading and processing samples */

9 for (curstep = 1; curstep != numsteps; ++ curstep)

10 {

11 if (1 == extract_sample (&sample , pt_cloud , PT_CLOUD_HAS_NORMALS))

12 break;

13

14 /* smooth if samples have moved too far in the z direction */

15 if (fabs(coord_ctrs.z - sample.pos.z) > (double)DUMP_LAYERS)

16 {

17 smooth_SOM(nodes , &sample , STD_SMOOTH);

18 coord_ctrs.z = sample.pos.z;

19 }

20

21 /* might try to train up to s.p.z+NORM_EXT */

22 if ((z_base + ACTIVE_Z_EXT - sample.pos.z) < (long)NORM_EXT)

23 {

24 printf("SOM base now at z = \%ld\n", z_base);

25

26 /* store node data on disk */

27 dump_node_data(ndump , nodes , DUMP_LAYERS);

28

29 /* record resource usage information */

30 dump_resources(mdump , mem_data);

31

32 /* move the SOM up by DUMP_LAYERS */

33 z_base += DUMP_LAYERS;

34 }

35 /* create data from the sample point and its normal */

36 create_training_data(training_pts , sample);

37

38 /* train nodes with newly -created data */

39 learn_distances(nodes , training_pts);

40 }

41

42 /* compute the final separation of nodes before dumping to a file */

43 calculate_separations(nodes , &sample , FINAL_SMOOTH);

44

45 /* smooth and move the SOM until all layers have been stored on-disk */

46 for (int i = 0; i != (ACTIVE_Z_EXT / DUMP_LAYERS); ++i)

47 {

48 smooth_SOM(nodes , &sample , STD_SMOOTH);

49 dump_node_data(ndump , nodes , DUMP_LAYERS);

50 sample.pos.z += DUMP_LAYERS;

51 z_base += DUMP_LAYERS;

52 }

53

54 /* perform common cleanup operations */

55 deinitialise ();

56

57 return EXIT_SUCCESS;

58 }

B.2 Code Samples

Several global variables are set during initialisation. This was often to

fully exploit the regularity of the nodes’ positions for optimisation in later

– 159 –

stages. The specifics of these variables are in the comments in Listing

B.2.

Listing B.2: Setting global variables for easy lookups later.
1 void set_globals(node ***nodes , vector *coord_ctrs ,

2 double min_x , double min_y , double min_z ,

3 double max_x , double max_y , double max_z)

4 {

5 long int ni = 0;

6

7 /* SOM_N_EXT is the full extension of the SOM along that axis.

8 * ACTIVE_N_EXT is the SOM extension along that axis that is being trained. */

9 SOM_X_EXT = ACTIVE_X_EXT = get_side_length(min_x , max_x);

10 SOM_Y_EXT = ACTIVE_Y_EXT = get_side_length(min_y , max_y);

11 SOM_Z_EXT = get_side_length(min_z , max_z);

12

13 ACTIVE_Z_EXT = SOM_HEIGHT;

14

15 /* used to speed up calculations later */

16 X_HALF_SIDE = (long)ceil(ACTIVE_X_EXT / 2.0);

17 Y_HALF_SIDE = (long)ceil(ACTIVE_Y_EXT / 2.0);

18

19 nodes_in_layer = ACTIVE_X_EXT * ACTIVE_Y_EXT;

20 NUM_NODES = ACTIVE_Z_EXT * nodes_in_layer;

21

22 /* <name >_test: if the node index modulo this is zero , it’s on that SOM face */

23 back_test = ACTIVE_X_EXT - 1L;

24 right_test = ACTIVE_X_EXT * (ACTIVE_Y_EXT - 1L);

25 top_test = (ACTIVE_Z_EXT - 1L) * nodes_in_layer;

26

27 /* used to compensate for negative coordinate when finding node indices */

28 lookup_addition = X_HALF_SIDE + (Y_HALF_SIDE * ACTIVE_X_EXT);

29

30 if (NUM_NODES == 0L)

31 {

32 fprintf(stderr , "Side length equal to 0.\n");

33 exit(EXIT_FAILURE);

34 }

35

36 (*nodes) = calloc ((size_t)NUM_NODES , sizeof (** nodes));

37 if ((* nodes) == NULL)

38 {

39 fprintf(stderr , "Insufficient memory for new nodes\n");

40 fprintf(stderr , "NUM_NODES = %ld\n", NUM_NODES);

41 fprintf(stderr , "SOM_X_EXT = %ld\n", SOM_X_EXT);

42 fprintf(stderr , "SOM_Y_EXT = %ld\n", SOM_Y_EXT);

43 fprintf(stderr , "SOM_Z_EXT = %ld\n", SOM_Z_EXT);

44 exit(EXIT_FAILURE);

45 }

46

47 for (ni = 0; ni != NUM_NODES; ++ni)

48 (*nodes)[ni] = NULL;

49

50 /* init_z_base stores the active band’s initial z coordinate */

51 init_z_base = (long)floor(min_z - BASE_POS);

52

53 /* z_base stores the active band’s current z coordinate */

54 z_base = init_z_base;

55 coord_ctrs ->z = (double)init_z_base;

56 }

Listing B.3 shows the simplicity with which a node can be found given

a set of coordinates. The coordinates must be rounded to the nearest in-

teger (casting the coordinate does not achieve this result). Consequently,

we are able to perform simple integer arithmetic to compute the node’s

index, a process optimised by the variables set in Listing B.2.

– 160 –

Listing B.3: Looking up a node from integral coordinates.
1 long int node_lookup(short int x, short int y, short int z)

2 {

3 /* node_lookup (...) is sped up by calculating this once and re-using it */

4 extern long int lookup_addition;

5

6 if (x < -X_HALF_SIDE || x >= X_HALF_SIDE ||

7 y < -Y_HALF_SIDE || y >= Y_HALF_SIDE ||

8 z < 0 || z >= ACTIVE_Z_EXT)

9 {

10 return -1L;

11 }

12

13 return (long)(x + (y * ACTIVE_X_EXT) + (z * nodes_in_layer) + lookup_addition);

14 }

In Listing B.4 another example is shown of how the regular structure

of a lattice can be beneficial. In order to find the neighbours of a given

node, we can use modular arithmetic to directly determine their indices.

One check is performed on the value of the given node’s index, and then a

simple addition/submission is performed for each neighbour. Again, since

some of the values were precomputed (the variable “nodes in layer”), we

even manage to save performing multiple additions.

Listing B.4: Finding L0(1) neighbours using only the node index.
1 void calc_neighbours(long int ni, long int neighbours [])

2 {

3 /* the regular node arrangement allows border detection using only the index */

4 neighbours [0] = (ni % ACTIVE_X_EXT == back_test) ? -1L : ni + 1;

5 neighbours [1] = (ni % ACTIVE_X_EXT == 0) ? -1L : ni - 1;

6 neighbours [2] = (ni % nodes_in_layer >= right_test) ? -1L : ni + ACTIVE_X_EXT;

7 neighbours [3] = (ni % nodes_in_layer < ACTIVE_X_EXT) ? -1L : ni - ACTIVE_X_EXT;

8 neighbours [4] = (ni >= top_test) ? -1L : ni + nodes_in_layer;

9 neighbours [5] = (ni < nodes_in_layer) ? -1L : ni - nodes_in_layer;

10

11 return;

12 }

B.3 Test Data

When creating variant meshes (smoothed, remeshed, noisy, or simplified),

MeshLab[21] (an open source tool for rendering and working with 3D

models) was used. The filters that modified the files were then stored

externally for future use. This ensured reproducible test data creation,

a necessity if adding another mesh to a test set, or in case the modified

file was lost.

A set of Python scripts were created not only to create the test data

in an automatic manner (with no human involvement), but also to run

batches of tests. This hands-off approach significantly reduced the pos-

sibility of human error influencing the results.

– 161 –

B.4 Analysis of Results

Images of results were created using multiplier (high-resolution) snap-

shots from MeshLab. 2D and 3D graphs were created using gnuplot, a

free, cross-platform, and scriptable plotter. Before each test the mesh/-

point cloud variants were created anew.

– 162 –

REFERENCES

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi–based

surface reconstruction algorithm. In SIGGRAPH, pages 415–422,

1998.

[2] N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of

balls, and the medial axis transform. Computational Geometry:

Theory and Applications, 19(2-3):127–153, 2001.

[3] Nina Amenta, Sunghee Choi, Tamal K. Dey, and Naveen Leekha. A

simple algorithm for homeomorphic surface reconstruction. In In-

ternational Journal of Computational Geometry and Applications,

pages 213–222, 2000.

[4] Mihael Ankerst, Gabi Kastenmller, Hans-Peter Kriegel, and

Thomas Seidl. 3d shape histograms for similarity search and classi-

fication in spatial databases. In RalfHartmut Gting, Dimitris Papa-

dias, and Fred Lochovsky, editors, Advances in Spatial Databases,

volume 1651 of Lecture Notes in Computer Science, pages 207–226.

Springer Berlin Heidelberg, 1999.

[5] Craig Gotsman Gill Barequet and Avishay Sidlesky. Polygon recon-

struction from line cross-sections. In Proceedings of the 18th Cana-

dian Conference on Computational Geometry (CCCG’06), pages

81–84, 2006.

[6] J. Barhak and A. Fischer. Adaptive reconstruction of freeform

objects with 3D SOM neural network grids. In Pacific Graphics,

pages 97–105, 2001.

[7] J. Barhak and A. Fischer. Adaptive reconstruction of freeform ob-

jects with 3D SOM neural network grids. Computers and Graphics,

26(5):745–751, 2002.

[8] Paul J. Besl and Neil D. McKay. A method for registration of 3-D

shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256,

1992.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learn-

ing. Springer Science+Business Media, 2006.

[10] W. Boehler, Bordas M. Vicent, and A. Marbs. Investigating laser

scanner accuracy. In Proceedings of XIXth CIPA International

Symposium, September 2003.

[11] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues

Hoppe. Parallel poisson surface reconstruction. In Advances in

Visual Computing, volume 5875 of Lecture Notes in Computer Sci-

ence, pages 678–689. Springer-Verlag, 2009.

[12] Michael Bosse, Robert Zlot, and P. Flick. Zebedee: Design of a

spring-mounted 3-d range sensor with application to mobile map-

ping. Robotics, IEEE Transactions on, 28(5):1104–1119, Oct 2012.

[13] Botsch. Mesh data structures. In Geometric Modelling Based On

Polygonal Meshes, Course Notes. SIGGRAPH, 2007.

[14] Botsch. Model repair. In Geometric Modelling Based On Polygonal

Meshes, Course Notes. SIGGRAPH, 2007.

[15] Botsch. Surface representations. In Geometric Modelling Based On

Polygonal Meshes, Course Notes. SIGGRAPH, 2007.

[16] Benedict Brown and Szymon Rusinkiewicz. Global non-rigid align-

ment of 3-D scans. ACM Transactions on Graphics (Proc. SIG-

GRAPH), 26(3), August 2007.

[17] Virginio Cantoni, Alessandro Gaggia, and Luca Lombardi. Ex-

tended Gaussian image. In Encyclopedia of Systems Biology, pages

724–725. Springer, 2013.

[18] J. C. Carr. Reconstruction and representation of 3D objects with

radial basis functions. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive tech-

niques, pages 67–76. ACM, 2001.

– 164 –

[19] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J.

McLennan, and T. J. Mitchell. Smooth surface reconstruction from

noisy range data. In Proceedings of the 1st international conference

on Computer graphics and interactive techniques in Australasia and

South East Asia, New York, NY, USA, 2003. ACM.

[20] Bing-Yu Chen and Tomoyuki Nishita. Multiresolution streaming

mesh with shape preserving and qoS-like controlling. In Web3D,

pages 35–42, 2002.

[21] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo

Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. Meshlab: an

open-source mesh processing tool. In Sixth Eurographics Italian

Chapter Conference, pages 129–136, 2008.

[22] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro:

Measuring error on simplified surfaces. Comput. Graph. Forum,

17(2):167–174, 1998.

[23] P. Crossno and E. Angel. Spiraling edge: fast surface reconstruction

from partially organized sample points. In Proc. Visualization ’99,

pages 317–538, 1999.

[24] J. Giesen T. K. Dey and J. Hudson. Delaunay based shape re-

construction from large data. In IEEE Symposium in Parallel and

Large Data Visualization and Graphics, pages 19–27, 2001.

[25] T. Dey and N. Leekha. Surface reconstruction simplified, 1999.

[26] T. K. Dey and J. Giesen. Detecting undersampling in surface re-

construction. In Proc. 17th ACM Symposium on Computational

Geometry, pages 257–263, 2001.

[27] Tamal K. Dey and Samrat Goswami. Tight cocone: A water-tight

surface reconstructor. J. Comput. Inf. Sci. Eng., 3(4):302–307,

2003.

[28] Tamal K. Dey and Samrat Goswami. Provable surface reconstruc-

tion from noisy samples. In SCG ’04: Proc. of the 20th annual

symposium on Computational geometry, pages 330–339, 2004.

– 165 –

[29] Tamal K. Dey and Jian Sun. Normal and feature approximations

from noisy point clouds. In Foundations of Software Technology

and Theoretical Computer Science, pages 21–32, 2006.

[30] Diaz-Andreu, Margarita, Hobbs, Richard, Rosser, Nick, Sharpe,

Kate, and Trinks. Long meg: Rock art recording using 3D laser

scanning. Past (The Newsletter of the Prehistoric Society), 50:2–6,

2005.

[31] Michael Elad, Ayellet Tal, and Sigal Ar. Content based retrieval of

vrml objects: an iterative and interactive approach. In Proceedings

of the sixth Eurographics workshop on Multimedia 2001, pages 107–

118. Springer-Verlag, 2002.

[32] Viacheslav Filonenko, Charlie Cullen, and James D. Carswell. In-

door positioning for smartphones using asynchronous ultrasound

trilateration. ISPRS International Journal of Geo-Information,

2(3):598, 2013.

[33] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Ro-

bust moving least-squares fitting with sharp features. In SIG-

GRAPH, pages 544–552, 2005.

[34] B. Fritzke. Growing Cell Structures - a self organizing network for

unsupervised and supervised learning. Technical Report ICSTR-

93-026, ICSI, Berkeley, 1993.

[35] Bernd Fritzke. Growing cell structures - a self-organizing network

for unsupervised and supervised learning. Neural Networks, 7:1441–

1460, 1994.

[36] Bernd Fritzke. Growing self-organizing networks - why? In In

ESANN96: European Symposium on Artificial Neural Networks,

pages 61–72. Publishers, 1996.

[37] Claudia Fuchs and Stephan Heuel. Feature extraction. In Proc. of

Third Course in Digital Photogrammetry, 1998.

[38] Natasha Gelfand, Szymon Rusinkiewicz, Leslie Ikemoto, and Marc

Levoy. Geometrically stable sampling for the icp algorithm. In

3DIM’03, pages 260–267, 2003.

– 166 –

[39] Stefan Gumhold, Xinlong Wang, and Rob Macleod. Feature extrac-

tion from point clouds. In In Proceedings of the 10 th International

Meshing Roundtable, pages 293–305, 2001.

[40] Norbert Haala, Claus Brenner, and Karl heinrich Anders. 3D ur-

ban GIS from laser altimeter and 2D map data. Int’l Archives

Photogrammetry and Remote Sensing, 32(3):339–346, 1998.

[41] Norbert Haala, Michael Peter, Alessandro Cefalu, and Jens Kre-

mer. Mobile Lidar Mapping For Urban Data Capture. In M. Loan-

nides, A. Addison, A. Georgopoulos, and L. Kalisperis, editors,

14th International Conference on Virtual Systems and Multimedia

(VSMM 2008), pages 95–100. Archaeolingua, October 2008.

[42] M. Hoffmann and L. Várady. Free-form modelling surfaces for scat-

tered data by neural networks. Journal for Geometry and Graphics,

1:1–6, 1998.

[43] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.

Surface reconstruction from unorganized points. In SIGGRAPH,

pages 71–78, 1992.

[44] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent

Component Analysis. Wiley-Interscience, 2001.

[45] Martin Isenburg and Peter Lindstrom. Streaming meshes. In IEEE

Visualization, page 30, 2005.

[46] I. Ivrissimtzis, W.-K. Jeong, and H.-P. Seidel. Using growing cell

structures for surface reconstruction. In SMI, pages 78–86, 2003.

[47] Ioannis Ivrissimtzis, Won-Ki Jeong, Seungyong Lee, Yunjin Lee,

and Hans-Peter Seidel. Surface reconstruction based on neural

meshes. In Proceedings Mathematical Methods for Curves and Sur-

faces, pages 223–242, 2007.

[48] Ioannis Ivrissimtzis, Yunjin Lee, Seungyong Lee, Won-Ki Jeong,

and Hans-Peter Seidel. Neural mesh ensembles. 3D Data Process-

ing Visualization and Transmission, International Symposium on,

0:308–315, 2004.

– 167 –

[49] Philipp Jenke, Michael Wand, Martin Bokeloh, Andreas Schilling,

and Wolfgang Straßer. Bayesian point cloud reconstruction. Com-

puter Graphics Forum, 25(3):379–388, 2006.

[50] Xiangmin Jiao and Michael T. Heath. Feature detection for surface

meshes. In Proceedings of 8th International Conference on Numer-

ical Grid Generation in Computational Field Simulations, pages

705–714, 2002.

[51] Gunnar Johansson and Hamish Carr. Accelerating marching cubes

with graphics hardware. In Proceedings of the 2006 conference of

the Center for Advanced Studies on Collaborative research. ACM,

2006.

[52] Sakdirat Kaewunruen. Identification and prioritization of rail squat

defects in the field using rail magnetisation technology. In Proc.

SPIE 9437, volume 9437, pages 94371H–94371H–11, 2015.

[53] Thomas Kanzok, Falk S, Lars Linsen, and Paul Rosenthal. Effi-

cient removal of inconsistencies in large multi-scan point clouds. In

Vaclav Skala, editor, Communication Paper Proceedings of WSCG,

pages 120–129, Plzen, Czech Republic, 2013. UNION Agency – Sci-

ence Press.

[54] David Kaye and Ioannis Ivrissimtzis. Implicit surface reconstruc-

tion and feature detection with a learning algorithm. In John Col-

lomosse and Ian Grimstead, editors, Theory and Practice of Com-

puter Graphics, pages 127–130, Sheffield, United Kingdom, 2010.

Eurographics Association.

[55] David Kaye and Ioannis Ivrissimtzis. Mesh alignment using grid

based pca. In GRAPP, Berlin, Germany, 2015. Springer.

[56] David Paul Kaye and Ioannis Ivrissimtzis. Memory efficient surface

reconstruction based on self organising maps. In Ian Grimstead and

Hamish Carr, editors, Theory and Practice of Computer Graphics,

pages 25–32, Warwick, United Kingdom, 2011. Eurographics Asso-

ciation.

– 168 –

[57] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface recon-

struction. In Symposium on Geometry Processing, pages 61–70,

2006.

[58] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz.

Rotation invariant spherical harmonic representation of 3D shape

descriptors. In SGP ’03, 2003.

[59] Y. Kil, B. Mederos, and N. Amenta. Laser scanner super-resolution.

In SoPBG, pages 9–16, 2006.

[60] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter

Seidel. Feature sensitive surface extraction from volume data. In

SIGGRAPH ’01: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 57–66. ACM,

2001.

[61] T. Kohonen. Self-organized formation of topologically correct fea-

ture maps. Biological Cybernetics, 43:59–69, 1982.

[62] Ravikrishna Kolluri. Provably good moving least squares. In SODA

’05: Proceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 1008–1017, Philadelphia, PA, USA,

2005. Society for Industrial and Applied Mathematics.

[63] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, and P. Grussen-

meyer. First Experiences with Kinect v2 Sensor for Close Range

3d Modelling. ISPRS - International Archives of the Photogram-

metry, Remote Sensing and Spatial Information Sciences, pages

93–100, February 2015.

[64] Thiago F. Leal, Aruquia B. M. Peixoto, Cassia I. G. Silva, Marcelo

de A. Dreux, and Carlos A. de Moura. Local changes in marching

cubes to generate less degenerated triangles. In Proceedings of the

10th International Conference on Computer Graphics Theory and

Applications (VISIGRAPP 2015), pages 143–149, 2015.

[65] Y. Lee, M. Yoon, S. Lee, I. Ivrissimtzis, and H.-P. Seidel. Ensembles

for surface reconstruction. In Proc. of Pacific Graphics, pages 1–2,

2005.

– 169 –

[66] David Levin. The approximation power of moving least-squares.

Mathematics of Computation, 67(224):1517–1531, 1998.

[67] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz,

David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James

Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The

digital michelangelo project: 3D scanning of large statues. In

SIGGRAPH ’00: Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, pages 131–144, New

York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[68] Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang

Dang, and Shiyao Jin. Robust normal estimation for point clouds

with sharp features. Computers & Graphics, 34(2):94 – 106, 2010.

[69] Martin M. Lipschutz. Differential Geometry. The McGraw-Hill

Companies, 1969.

[70] Shengjun Liu and Charlie C.L. Wang. Orienting unorganized points

for surface reconstruction. Computers & Graphics, 34(3):209 – 218,

2010. Shape Modelling International (SMI) Conference 2010.

[71] William E. Lorensen and Harvey E. Cline. Marching cubes: A high

resolution 3D surface construction algoritm. Computer Graphics,

21(4):163–169, 1987.

[72] Lena Maier-Hein, Thiago R. dos Santos, Alfred M. Franz, and

Hans-Peter Meinzer. Iterative closest point algorithm in the pres-

ence of anisotropic noise. In Bildverarbeitung fr die Medizin’10,

pages 231–235, 2010.

[73] Thomas Martinetz and Klaus Schulten. Topology representing net-

works. Neural Networks, 7(3):507–522, 1994.

[74] Boris Mederos, Luiz Velho, Luiz Henrique, and De Figueiredo. H.:

Moving least squares multiresolution surface approximation. In In

Proceedings of SIBGRAPI, 2003.

[75] Niloy Mitra, An Nguyen, and Leonidas Guibas. Estimating surface

normals in noisy point cloud data. International J. of Computa-

tional Geometry and Applications, 4:261–276, 2004.

– 170 –

[76] Yukie Nagai, Yutaka Ohtake, and Hiromasa Suzuki. Smoothing of

partition of unity implicit surfaces for noise robust surface recon-

struction. Computer Graphics Forum, 28(5):1339–1348, 2009.

[77] Nealen. An as-short-as-possible introduction to the least squares,

weighted least squares and moving least squares methods for scat-

tered data approximation and interpolation. Technical report,

NIST, 1992.

[78] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Effi-

ciently combining positions and normals for precise 3D geometry.

In SIGGRAPH, pages 536–543, 2005.

[79] Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3D scattered data approx-

imation with adaptive compactly supported radial basis functions.

In SMI, pages 31–39, 2004.

[80] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and

Hans-Peter Seidel. Multi-level partition of unity implicits. In SIG-

GRAPH, pages 463–470, 2003.

[81] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. A

multi-scale approach to 3D scattered data interpolation with com-

pactly supported basis functions. In Shape Modeling International

2003. IEEE Computer Society, 2003.

[82] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. 3D

scattered data approximation with adaptive compactly supported

radial basis functions. In Shape Modeling International, pages 31–

39. IEEE, 2004.

[83] Panagiotis Papadakis, Ioannis Pratikakis, Stavros Perantonis, and

Theoharis Theoharis. Efficient 3D shape matching and retrieval us-

ing a concrete radialized spherical projection representation. Pat-

tern Recogn., 40(9):2437–2452, September 2007.

[84] Jason R. Parent, John C. Volin, and Daniel L. Civco. A fully-

automated approach to land cover mapping with airborne lidar and

– 171 –

high resolution multispectral imagery in a forested suburban land-

scape. {ISPRS} Journal of Photogrammetry and Remote Sensing,

104:18 – 29, 2015.

[85] M. Pauly, R. Keiser, and M. Gross. Estimation of planar curves.

Comp. Graph. Forum, 22(3):281–289, 2003.

[86] Jianbo Peng, Vasily Strela, and Denis Zorin. A simple algorithm

for surface denoising. In Proceedings of the Conference on Visual-

ization ’01, VIS ’01, pages 107–112, Washington, DC, USA, 2001.

IEEE Computer Society.

[87] Gheorghe Postelnicu, Lilla ZÃ¶llei, and Bruce Fischl. Combined

volumetric and surface registration. IEEE Trans Med Imaging,

28(4):508–22, April 2009.

[88] Jeroen De Reu, Gertjan Plets, Geert Verhoeven, Philippe De

Smedt, Machteld Bats, Bart Cherrett, Wouter De Maeyer, Jasper

Deconynck, Davy Herremans, Pieter Laloo, Marc Van Meirvenne,

and Wim De Clercq. Towards a three-dimensional cost-effective

registration of the archaeological heritage. Journal of Archaeologi-

cal Science, 40(2):1108 – 1121, 2013.

[89] Paul A. Rosen, Scott Hensley, Ian R. Joughin, Fuk K. Li, Sren N.

Madsen, Senior Member, Ernesto Rodrguez, and Richard M. Gold-

stein. Synthetic aperture radar interferometry. In Proceedings of

the IEEE, pages 333–382, 2000.

[90] Michaël Roy, Sebti Foufou, and Frédéric Truchetet. Mesh com-

parison using attribute deviation metric. Journal of Image and

Graphics, 4:1–14, 2004.

[91] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud

library (PCl). In IEEE International Conference on Robotics and

Automation (ICRA), Shanghai, China, May 2011.

[92] H. S. Sahambi and K. Khorasani. A neural-network appearance-

based 3-D object recognition using independent component analy-

sis. IEEE Trans. Neur. Netw., 14(1):138–149, 2003.

– 172 –

[93] S. Schaefer and J. Warren. Dual marching cubes: primal contour-

ing of dual grids. In Proc. 12th Pacific Conference on Computer

Graphics and Applications PG 2004, pages 70–76, 2004.

[94] O. Schall, A. Belyaev, and H.-P. Seidel. Robust filtering of noisy

scattered point data. In Point-Based Graphics, 2005. Eurographic-

s/IEEE VGTC Symposium Proceedings, pages 71–144, June 2005.

[95] M. Schmitt. Three-dimensional reconstruction of urban areas by

multi-aspect tomosar data fusion. In Urban Remote Sensing Event

(JURSE), 2015 Joint, pages 1–4, March 2015.

[96] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis.

Pose normalization of 3d models via reflective symmetry on

panoramic views. The Visual Computer, 30(11):1261–1274, 2014.

[97] Hoi Sheung and Charlie C. L. Wang. Robust mesh reconstruction

from unoriented noisy points. In SPM ’09: 2009 SIAM/ACM Joint

Conference on Geometric and Physical Modeling, pages 13–24, New

York, NY, USA, 2009. ACM.

[98] P. N. Suganthan. Shape indexing using self-organizing maps. IEEE

Transactions on Neural Networks, 13(4):835–840, July 2002.

[99] Compton J. Tucker. Red and photographic infrared linear combina-

tions for monitoring vegetation. Remote Sensing of Environment,

8(2):127 – 150, 1979.

[100] G. Turk and J. O’Brien. Modelling with implicit surfaces that

interpolate. ACM ToG, 21(4):885–873, 2002.

[101] Greg Turk and Marc Levoy. Zippered polygon meshes from range

images. In Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’94, pages 311–

318, New York, NY, USA, 1994. ACM.

[102] L. Várady, M. Hoffmann, and E. Kovács. Improved free-form mod-

elling of scattered data by dynamic neural networks. Journal for

Geometry and Graphics, 3:177–181, 1999.

– 173 –

[103] DV Vranic, D Saupe, and J Richter. Tools for 3d-object retrieval:

Karhunen-loeve transform and spherical harmonics. In Workshop

on Multimedia Signal Processing, 2001.

[104] Jun Wang, Kai Xu, Ligang Liu, Junjie Cao, Shengjun Liu, Zeyun

Yu, and Xianfeng David Gu. Consolidation of low-quality point

clouds from outdoor scenes. Computer Graphics Forum, 32(5):207–

216, 2013.

[105] Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder.

Removing excess topology from isosurfaces. ACM Trans. Graph.,

23(2):190–208, April 2004.

[106] Micheol Yoon, Ioannis Ivrissimtzis, and Seungyong Lee. Self-

organising maps for implicit surface reconstruction. In UK The-

ory and Practice of Computer Graphics. Eurographics Association,

2008.

[107] Mincheol Yoon, Ioannis P. Ivrissimtzis, and Seungyong Lee. Varia-

tional bayesian noise estimation of point sets. Computers & Graph-

ics, 33(3):226–234, 2009.

[108] Mincheol Yoon, Yunjin Lee, Seungyong Lee, Ioannis Ivrissimtzis,

and Hans-Peter Seidel. Surface and normal ensembles for surface

reconstruction. Computer-Aided Design, 39(5):408–420, 2007.

[109] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Fast and robust detec-

tion of crest lines on meshes. In Symposium on Solid and Physical

Modeling, pages 227–232. ACM Press, 2005.

[110] Y. Yu. Surface reconstruction from unorganized points using self-

organizing neural networks. In IEEE Visualization, pages 61–64,

1999.

[111] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi,

S. Ghidoni, and E. Menegatti. Performance evaluation of the 1st

and 2nd generation kinect for multimedia applications. In Multi-

media and Expo (ICME), 2015 IEEE International Conference on,

pages 1–6, June 2015.

– 174 –

[112] Juanjuan Zhu, Richard P. Collins, Joby B. Boxall, Robin S. Mills,

and Rob Dwyer-joyce. Non-destructive in-situ condition assessment

of plastic pipe using ultrasound. Procedia Engineering, 119:148

– 157, 2015. Computing and Control for the Water Industry

(CCWI2015) Sharing the best practice in water management.

[113] Lingli Zhu, Matti Lehtomki, Juha Hyypp, Eetu Puttonen, Anssi

Krooks, and Hannu Hyypp. Automated 3d scene reconstruction

from open geospatial data sources: Airborne laser scanning and a

2d topographic database. Remote Sensing, 7(6):6710, 2015.

– 175 –

