32 research outputs found

    Realistic frequency coded chipless RFID: physically modulated tags and refectarray readers

    Get PDF
    In letzter Zeit hat die chiplose RFID Technologie enorme Aufmerksamkeit im besonders kostenbewussten Markt für Objektidentifikation erregt. Allerdings befindet sich der aktuelle Stand der Technik auf einem konzeptionellen Niveau und leidet noch unter einer Menge Einschränkungen, die eine sofortige Verwendung der Technologie noch verhindern. Grundsätzlich lässt sich ein chiploses RFID System in drei Teile unterteilen, dem RFID Lesegerät, den verwendeten Antennen und dem RFID Tag. Der Beitrag der vorliegenden Dissertation zur Überwindung der erwähnten Einschränkungen liegt in innovativen physikalisch modulierenden RFID Tags und in der Weiterentwicklung des Antennensystems des RFID Lesegerätes. Dabei werden besonders die drei im Folgenden beschriebenen Aspekte betrachtet. Der erste Aspekt beschäftigt sich mit physikalisch linear modulierten RFID Tags. Dabei werden die RFID Tags mit einem Ultra Breitband (engl. ultra wideband, UWB) Signal bestrahlt und die auf dem RFID Tag aufgebrachten Resonatoren modulieren die Frequenz des Signals physikalisch. Dabei werden dem UWB Signal resonante Notches und/oder Peaks aufmoduliert, die sich in der Frequenzantwort des von der effektiven Rückstrahlfläche (engl. radar cross section, RCS) zurückgestrahlten Signals befindet. Hierfür sind vier innovative physikalisch modulierende RFID Tags, mit dem Ziel einer effektiveren Kodierung und maximalen Kodierungstiefe bei gleichbleibender Frequenzauslastung und RFID Tag Größe, entwickelt worden. Der erste RFID Tag besteht aus ineinander verschachtelten Ringresonatoren, wobei jeder Resonator ein Notch, also ein Bit, erzeugt. Der zweite RFID Tag arbeitet auf zwei unterschiedlichen Polarisationsebenen für empfangene und rückgestrahlte Signale. Dadurch kann die Streustrahlung der Umgebung leichter herausgefiltert werden. Beide Strukturen sind skalierbar, druckbar und kompakt. Als drittes wird ein neuartiger Notchbreiten modulierender (engl. notch width modulation, NWM) RFID Tag eingeführt. Dabei ist die ID des RFID Tags nicht nur über die Notchlage im Frequenzbereich sondern auch über die Notchbreite definiert. Die Notchbreite stellt also eine zusätzliche Dimension bereit, die die Freiheitsgrade (engl. degree of Freedom, DoF) für Kodierung und Modulation erhöhen, was wiederum die kodier Effektivität und Codetiefe verbessert. Als letztes wird ein neuartiger On Off-Notch/Peak (OONP) und Notch/Peak-Position (N/P-P) modulierender RFID Tag eingeführt. Die Idee dahinter ist, sowohl das kopolarisierte als auch das kreuzpolarisierte Rückstrahl Signal eines mit einer linear-polarisierten Welle angeregten RFID Tags auszunutzen. Dies bittet ein weiteres Kriterium um sowohl kodier Effektivität als auch Codetiefe des chiplosen RFID Systems weiter zu verbessern. Gleichzeitig verbessert die kreuzpolarisierte Antwort auch wieder die Detektion des RFID Tags in einer realen Umgebung. Alle vorgeschlagenen RFID Tags und Modulationsschemata sind mit elektromagnetischen (EM) Simulationen und in einer realen Testumgebung überprüft worden. Der zweite Aspekt dieser Arbeit schlägt Reflect-Array Antennen (RA) für das RFID Lesegerät mit dem Ziel vor, die Lesereichweite zu erhöhen und die Reflektionen an der Umgebung zu minimieren. Das RA bietet dabei im Vergleich zu herkömmlichen Phased-Array-Antennen eine Menge weiterer Eigenschaften. Das RA ist einfach zu integrieren, von geringem Gewicht, hat eine sehr geometrische Anordnung und ist preiswert, um nur einige zu nennen. Insgesamt wurden drei neuartige RA Aufbauten entwickelt. Als erstes wurde eine logarithmisch periodische Antenne (engl. log periodic antenna array, LPDA) als Primärstrahler für die entworfene RA Oberfläche genutzt. Der Prototype arbeitet bei 5.8GHz und erreicht eine Bandbreite von 300MHz. Außerdem ist der erzeugte Antennenstrahl viermal schmaler als der Primärstrahl und erreicht somit einen um 6dB höheren Antennengewinn bei einem Nebenkeulenpegel (engl. side lobe level, SSL) von −10dB. Für den zweiten Prototypen wird ein selbstentwickelter Hornstrahler mit konstanter Phase als Primärstrahler für die RA Oberfläche verwendet. Durch diese Anordnung wird ein UWB RA realisiert, mit dem mehrere Bits gleichzeitig ausgelesen werden können. Die Antenne arbeitet zwischen 4 − 6GHz und erreicht einen Öffnungswinkel (engl. half power beam width, HPBW) von 15° bei 19dBi Antennengewinn und −10dB SLL. Im Zusammenspiel mit den physikalisch modulierenden RFID Tags konnte mit diesem UWB RA eine Lesereichweite von 1m erzielt werden, was nach meinem Kenntnisstand die größte bisher für ein chiploses frequenzkodiertes (engl. frequency coded, FC) RFID System erreichte Lesereichweite in einer realen Innenraum Umgebung darstellt. Weiter wird eine dual polarisierte RA Antenne mit geringem Kreuzpolarisations Pegel vorgestellt. Es wird vorgeschlagen diese Antenne mit den ko-/kreuzpolarisierten RFID Tags zu verwenden. Als letztes wird eine RA Antenne mit elektronischer Strahlsteuerung eingeführt, die die Stabilität des Lesevorgangs weiter erhöht und eine präzise Ortung der chiplosen RFID Tags ermöglicht. Dazu wird eine Zelle vorgeschlagen, die mit Hilfe einer Varaktordiode in der Lage ist, für einzelne Frequenzen die Phase des reflektierten Signals elektronisch zu steuern. Ein Scanbereich von ±50° kann damit abgedeckt werden. Als dritter Aspekt werden nicht-lineare physikalisch modulierende RFID Tags vorgeschlagen. Hier ist der Kerngedanke, dass der RFID Tag seine ID mit einer anderen Frequenz zurückstrahlt als die mit der er selber angestrahlt wird. Durch dieses nichtlineare Verhalten wird die Umgebungsstrahlung komplett ausgeblendet, die sonst unumgänglichen Kalibrierungsmessungen werden überflüssig, das Problem der Verstimmung durch das RFID Tag Material wird umgangen und die Abdeckung wird erhöht. Die Nicht-Linearität wird durch eine einzige in die Struktur des RFID Tags integrierte Diode erzeugt. Zunächst werden RFID Tags vorgeschlagen, die mit Nichtlinearitäten zweiter Ordnung arbeiten. Für diese Kategorie werden drei unterschiedliche RFID Tags entworfen. Als Erstes ein Einzelton harmonischer RFID Radar Tag. In dieser Klasse strahlt das RFID Lesegerät einige spezifische Grundtöne aus, die schmalbandige Empfangsan-tenne des RFID Tags ist auf einen Grundton abgestimmt, den sie an die Diode weiterleitet. Die hier generierte zweite Harmonische wird von der entsprechend konfigurierten Sendeantenne der RFID Tags zurückgestrahlt. Dabei gilt, je schmaler der Bandbassfilter, desto mehr Frequenzen können zur Kodierung genutzt werden. Um die Codekapazität zu erhöhen werden als nächsten Mehrfrequenzabfragen vorgestellt. Dazu werden am RFID Lesegerät nacheinander, um keine Mischprodukte entstehen zu lassen, vordefinierte Frequenzen durchlaufen. Auf dem RFID Tag können jetzt mehrere ID Bits wieder durch die unterschiedlichen Frequenzen der jeweiligen zweiten Harmonischen erzeugt werden (engl. Notch Position Modulation, NPM). Anschließend werden festdefinierte Frequenzpaare zum Auslesen der ID verwendet. Die Diode mischt beide Frequenzen und antwortet nur auf der Mischfrequenz eines der Frequenzpaare. In einer weiteren Kategorie werden die Intermodulationseigenschaften der dritten Ordnung ausgenutzt, mit dem Vorteil, dass nur ein relativ geringer Frequenzbereich benötigt wird. Hierbei wir der RFID Tag mit zwei benachbarten Frequenzen bestrahlt und die zurückgestrahlte Intermodulationsfrequenz stellt die ID des RFID Tags dar. Schließlich wird die Kodierung über die Phaseninformation vorgestellt. Zusätzlich zur Existenz oder Fehlen eines Peaks oder Notches wird der dazuge- hörige relative Phasenzustand zur Kodierung herangezogen. Alle vorgestellten RFID Tags und ihre Modulation werden an Hand von Harmonische-Balance-Analyse, EM Simulationen und Messungen in einer realen Testumgebung überprüft. Zum Schluss lässt sich sagen, die einzigartigen Eigenschaften, die in der vorliegenden Dissertation betrachtet werden, bringen wesentliche Verbesserungen für den Einsatz von chiplosen RFID Systemen.Recently, the chipless Radio Frequency Identification (RFID) technology has attracted tremendous attention in the market of item identification where the cost is the main concern. However, up to date the technology is at the conceptual level and suffers from a lot of imitations that hinder the technology deployment. The chipless RFID system comprises three major parts which are the reader circuit, the interrogation antennas, and the chipless tags. The contributions of this dissertation are to overcome the challenges that impede the deployment of the chipless RFID system from the perspective of innovating physically modulated tags and developing the reader antenna system. In particular, the system is considered in three novel aspects. The first aspect is the linear physically modulated tags where the tag is interrogated by Ultra Wideband (UWB) signal and the tag inscribed metallic resonators are physically modulating the interrogation frequencies. Therefore, the UWB waveform is modulated in the form of resonant notches, and/or peaks that are inherently embedded in the tag backscattered Radar Cross Section (RCS) frequency response. In this regard, four innovative physically modulated tags are developed aiming at enhancing the coding efficiency, maximizing the coding capacity, conserving the operating frequency range and preserving the tag size. The first tag is based on nested circular ring resonators where each resonator codifies a tag coding notch. Terefore, the tag structure is scalable, printable and compact size. Moreover, a novel encoding methodology is employed to preserve the notch width and position while coding. The second developed tag is a depolarizing one where the polarization isolation between the reader interrogation signal and the tag response is utilized to minimize the environmental clutter reflections. Furthermore, the tag is scalable, printable, and compact size in the credit card format. Thirdly, a novel Notch Width Modulation (NWM) tag is introduced where the tag-ID is not only based on the notch position but also on the notch width. Hence, the notch width configures a further dimension to increase the Degree of Freedom (DoF) for coding and modulation. Therefore, the notch width and position are modulated simultaneously aiming at enhancing the coding efficiency and capacity. Lastly, a novel On Off Notch/Peak (OO-N/P) and Notch/Peak-Position (N/P-P) modulation tag is introduced. The tag basic idea is to exploit both the co-polarized and cross polarized backscattered signals from a tag excited with a linear polarized wave. Consequently, the tag signature is encoded into Notch/Peak (N/P) format in two orthogonal planes. Thus, the Co/Cross-polarizing N/P modulation scheme presents a novel criterion for enhancing the coding efficiency and capacity of the chipless RFID systems. Moreover, the cross-polarized response enhances the tag detection in a realistic environment. The proposed tags and their associated physical modulation schemes are validated using Electro Magnetic (EM) simulations and real-world testbed measurements. In the second aspect, the Reflectarray (RA) antenna is proposed to be utilized in the reader side aiming at increasing the reading range, minimizing the environmental reflections, and acquiring a lot of novel capabilities that can not be provided by the conventional antenna arrays. The spatial feeding RA antenna is easily integrated with the RF circuits, lightweight, conformal geometry, and low cost. Hence, in this concern, three different novel designs are developed. The first design utilizes the Log Periodic Array (LPDA) antenna to feed the developed RA surface. This introduced prototype operates at 5.8GHz and achieves 300MHz bandwidth. Moreover, the RA antenna radiation beam is 4 times narrower than the feeder beam and thus 6dB higher in gain with −10dB Side Lobe Level (SLL). The second developed prototype uses a constant phase center horn antenna to feed the RA surface. Thus, an UWB RA antenna enabling multiple bits accommodation is designed. This antenna operates from 4GHz to 6GHz with 15° Half Power Beam Width (HPBW), 19dBi gain, and −10dB SLL. Furthermore, this developed UWB RA antenna is successfully integrated with the physically modulated tags and a reading range of 1m is achieved. To the best of my knowledge, this is the highest reading range achieved in the Frequency Coded (FC) chipless RFID systems, considering real-world indoor environment and software defined radio reader. After that, dual-polarized RA antenna with low cross-polarization level is presented. This RA antenna is proposed to be utilized with the Co/Cross-polarizing tags. Finally, a successful implementation of an electronic beam steering RA antenna is introduced. This novel beam steering RA antenna system enhances the reading robustness and can precisely locate the chipless tags. In this concern, a novel unit cell that is able to electronically control the reflected phase at different discrete frequencies utilizing a single varactor diode is proposed. Therefore, a scanning range of ±50° is achieved. Moreover, the steered beams are 4 times narrower than the feeder beam and thus 4 times higher in gain. In the third aspect, the nonlinear physically modulated tags are proposed. The core functionality relies on interrogating the tag with a prescribed set and format of frequencies in a time regulated technique while the tag replies with its unique ID at other frequencies. Therefore, the nonlinearity is exploited to completely isolate the environmental clutter reflections, get rid of the necessary reference calibration measurements, overcome the detuning caused by the tagged item materials, and increase the coverage. These objectives are attained by exploiting the nonlinearity generated from a single unbiased diode integrated with the tag structure. The first proposed tag category relies on exploiting the second order nonlinear terms. Therefore, in this regard, three novel tags are introduced. The first class is the single tone harmonic radar tags. In this class, the reader scans the available tags by sending specific fundamental tones. Then, the tag receiving antenna is tuned at only one of these fundamentals which is maximally conveyed to the nonlinear device for generating the corresponding harmonics. Consequently, the tag transmitting antenna is tuned at the second harmonic which is retransmitted back towards the reader representing the tag-ID. Thus, the narrower is the band-pass filter provided by the tag receiving antenna or integrated into it, the more the frequencies that can be utilized for coding. After that, the multi-tone interrogation is proposed to increase the coding capacity. Hence, the tag is interrogated with a prescribed set of fundamentals that are swept over the time to avoid the generation of the mixing products in the reader and tag as well. The tag in turn which is completely planar based on the Coplanar Waveguide (CPW) technology implements a Notch Position Modulation (NPM) scheme in the second harmonics of these fundamental tones. Therefore, the notches that are existing in the second harmonic response symbolize the tag-ID. Afterward, the simultaneous multi-tone interrogation is explored. In this concern, a set of distinct frequency pairs are used to interrogate the nonlinear tags. As a consequence, these tones are mixed through the nonlinear device. Consequently, the tag transmitting antenna figures out only one of these mixed products. The second proposed tag category relies on exploiting the inter-modulation communication principle which exhibits a small frequency span. Therefore, the tag is illuminated by two co-located frequencies and respond at an inter-modulated frequency which is retransmitted by the tag transmitting antenna representing the tag-ID. Finally, the phase encoding capability is proposed. Therefore, not only the existence or the non-existence of a harmonic notch or peak used in coding the tag-ID but also the corresponding relative phase states can be considered. The introduced tags and their associated physical modulation schemes are verified using harmonic balance analysis, EM simulations and realistic testbed measurements. Lastly, the unique features which are considered in the dissertation bring a significant enhancement to the deployment of the chipless RFID system

    Antennas for UWB Applications

    Get PDF
    “Antennas for UWB Applications” chapter deals with an overview of ultrawideband (UWB) antennas used for different applications. Some fundamental and widely used radiators, such as fat monopole, microstrip-fed and coplanar waveguide (CPW)-fed slot antennas, and tapered end-fire antennas are presented. Selected antenna designs are presented in relation to the UWB applications and their dictating radiation and operation principles. The demonstrated UWB antennas include antennas for handheld devices used for personal area network (PAN) communications; antennas for localization and positioning; UWB antennas for radio-frequency identifications (RFIDs); radar antennas for through-wall imaging, for ground-penetrating radar (GPR), and for breast tumor detection; and more generally, UWB antennas used for sensing. For some of the aforementioned applications, UWB antennas with special characteristics are needed, and they are presented and associated with the relevant applications. These include reconfigurable UWB antennas, metamaterial-loaded UWB antennas, and conformal UWB antennas. The usefulness of these special characteristics in comparison with the claimed advantages is critically evaluated. For the UWB applications presented in the chapter, one type or UWB antenna is recommended

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Passively-coded embedded microwave sensors for materials characterization and structural health monitoring (SHM)

    Get PDF
    Monitoring and maintaining civil, space, and aerospace infrastructure is an ongoing critical problem facing our nation. As new complex materials and structures, such as multilayer composites and inflatable habitats, become ubiquitous, performing inspection of their structural integrity becomes even more challenging. Thus, novel nondestructive testing (NDT) methods are needed. Chipless RFID is a relatively new technology that has the potential to address these needs. Chipless RFID tags have the advantage of being wireless and passive, meaning that they do not require a power source or an electronic chip. They can also be used in a variety of sensing applications including monitoring temperature, strain, moisture, and permittivity. However, these tags have yet to be used as embedded sensors. By embedding chipless RFID tags in materials, materials characterization can be performed via multi-bit sensing; that is, looking at how the multi-bit code assigned to the response of the tag changes as a function of material. This thesis develops this method through both simulation and measurement. In doing so, a new coding method and tag design are developed to better support this technique. Furthermore, inkjet-printing is explored as a manufacturing method for these tags and various measurement methods for tags including radar cross-section and microwave thermography are explored --Abstract, page iii

    Chipless Radio Frequency Identification (RFID) Tag Utilizing Beamforming Technique

    Get PDF
    This work is a paper based dissertation which presents a new method to design low cost chipless radio-frequency identification (RFID) tags using MEMS technology. The proposed chipless tag can be batch-fabricated using a basic MEMS fabrication process. The chipless tag can operate over a wide range of frequencies including the conventional UHF band for RFID applications. The elimination of the chip can reduces the tag price to the extent that it becomes an alternative solution to barcode labels. A prototype of the tag is implemented using a basic fabrication process and measurements are performed to validate its functionality. For the RFID reader, a direct conversion passive micro-mixer combined with a 180 degrees ring hybrid coupler is realized to operate over the unlicensed 60 GHz frequency band. This is followed by a low phase error Rotman lens combined with a patch antenna array in each output port to support beam steering and increasing the communication range. Experimental measurements on a fabricated 3-bit chipless tag show that the tag can backscatter a unique identification code to an RFID interrogator

    Chipless RFID sensor systems for structural health monitoring

    Get PDF
    Ph. D. ThesisDefects in metallic structures such as crack and corrosion are major sources of catastrophic failures, and thus monitoring them is a crucial issue. As periodic inspection using the nondestructive testing and evaluation (NDT&E) techniques is slow, costly, limited in range, and cumbersome, novel methods for in-situ structural health monitoring (SHM) are required. Chipless radio frequency identification (RFID) is an emerging and attractive technology to implement the internet of things (IoT) based SHM. Chipless RFID sensors are not only wireless, passive, and low-cost as the chipped RFID counterpart, but also printable, durable, and allow for multi-parameter sensing. This thesis proposes the design and development of chipless RFID sensor systems for SHM, particularly for defect detection and characterization in metallic structures. Through simulation studies and experimental validations, novel metal-mountable chipless RFID sensors are demonstrated with different reader configurations and methods for feature extraction, selection, and fusion. The first contribution of this thesis is the design of a chipless RFID sensor for crack detection and characterization based on the circular microstrip patch antenna (CMPA). The sensor provides a 4-bit ID and a capability of indicating crack width and orientation simultaneously using the resonance frequency shift. The second contribution is a chipless RFID sensor designed based on the frequency selective surface (FSS) and feature fusion for corrosion characterization. The FSS-based sensor generates multiple resonance frequency features that can reveal corrosion progression, while feature fusion is applied to enhance the sensitivity and reliability of the sensor. The third contribution deals with robust detection and characterization of crack and corrosion in a realistic environment using a portable reader. A multi-resonance chipless RFID sensor is proposed along with the implementation of a portable reader using an ultra-wideband (UWB) radar module. Feature extraction and selection using principal component analysis (PCA) is employed for multi-parameter evaluation. Overall, chipless RFID sensors are small, low-profile, and can be used to quantify and characterize surface crack and corrosion undercoating. Furthermore, the multi-resonance characteristics of chipless RFID sensors are useful for integrating ID encoding and sensing functionalities, enhancing the sensor performance, as well as for performing multi-parameter analysis of defects. The demonstrated system using a portable reader shows the capability of defects characterization from a 15-cm distance. Hence, chipless RFID sensor systems have great potential to be an alternative sensing method for in-situ SHM.Indonesia Endowment Fund for Education (LPDP

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Design of an Ultra-wideband Radio Frequency Identification System with Chipless Transponders

    Get PDF
    The state-of-the-art commercially available radio-frequency identification (RFID) transponders are usually composed of an antenna and an application specific integrated circuit chip, which still makes them very costly compared to the well-established barcode technology. Therefore, a novel low-cost RFID system solution based on passive chipless RFID transponders manufactured using conductive strips on flexible substrates is proposed in this work. The chipless RFID transponders follow a specific structure design, which aim is to modify the shape of the impinged electromagnetic wave to embed anidentification code in it and then backscatter the encoded signal to the reader. This dissertation comprises a multidisciplinary research encompassing the design of low-cost chipless RFID transponders with a novel frequency coding technique, unlike usually disregarded in literature, this approach considers the communication channel effects and assigns a unique frequency response to each transponder. Hence, the identification codes are different enough, to reduce the detection error and improve their automatic recognition by the reader while working under normal conditions. The chipless RFID transponders are manufactured using different materials and state-of-the-art mass production fabrication processes, like printed electronics. Moreover, two different reader front-ends working in the ultra-wideband (UWB) frequency range are used to interrogate the chipless RFID transponders. The first one is built using high-performance off-theshelf components following the stepped frequency modulation (SFM) radar principle, and the second one is a commercially available impulse radio (IR) radar. Finally, the two readers are programmed with algorithms based on the conventional minimum distance and maximum likelihood detection techniques, considering the whole transponder radio frequency (RF) response, instead of following the commonly used approach of focusing on specific parts of the spectrum to detect dips or peaks. The programmed readers automatically identify when a chipless RFID transponder is placed within their interrogation zones and proceed to the successful recognition of its embedded identification code. Accomplishing in this way, two novel fully automatic SFM- and IRRFID readers for chipless transponders. The SFM-RFID system is capable to successfully decode up to eight different chipless RFID transponders placed sequentially at a maximum reading range of 36 cm. The IR-RFID system up to four sequentially and two simultaneously placed different chipless RFID transponders within a 50 cm range.:Acknowledgments Abstract Kurzfassung Table of Contents Index of Figures Index of Tables Index of Abbreviations Index of Symbols 1 Introduction 1.1 Motivation 1.2 Scope of Application 1.3 Objectives and Structure Fundamentals of the RFID Technology 2.1 Automatic Identification Systems Background 2.1.1 Barcode Technology 2.1.2 Optical Character Recognition 2.1.3 Biometric Procedures 2.1.4 Smart Cards 2.1.5 RFID Systems 2.2 RFID System Principle 2.2.1 RFID Features 2.3 RFID with Chipless Transponders 2.3.1 Time Domain Encoding 2.3.2 Frequency Domain Encoding 2.4 Summary Manufacturing Technologies 3.1 Organic and Printed Electronics 3.1.1 Substrates 3.1.2 Organic Inks 3.1.3 Screen Printing 3.1.4 Flexography 3.2 The Printing Process 3.3 A Fabrication Alternative with Aluminum or Copper Strips 3.4 Fabrication Technologies for Chipless RFID Transponders 3.5 Summary UWB Chipless RFID Transponder Design 4.1 Scattering Theory 4.1.1 Radar Cross-Section Definition 4.1.2 Radar Absorbing Material’s Principle 4.1.3 Dielectric Multilayers Wave Matrix Analysis 4.1.4 Frequency Selective Surfaces 4.2 Double-Dipoles UWB Chipless RFID Transponder 4.2.1 An Infinite Double-Dipole Array 4.2.2 Double-Dipoles UWB Chipless Transponder Design 4.2.3 Prototype Fabrication 4.3 UWB Chipless RFID Transponder with Concentric Circles 4.3.1 Concentric Circles UWB Chipless Transponder 4.3.2 Concentric Rings UWB Chipless RFID Transponder 4.4 Concentric Octagons UWB Chipless Transponders 4.4.1 Concentric Octagons UWB Chipless Transponder Design 1 4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 4.5 Summary 5. RFID Readers for Chipless Transponders 5.1 Background 5.1.1 The Radar Range Equation 5.1.2 Range Resolution 5.1.3 Frequency Band Selection 5.2 Frequency Domain Reader Test System 5.2.1 Stepped Frequency Waveforms 5.2.2 Reader Architecture 5.2.3 Test System Results 5.3 Time Domain Reader 5.3.1 Novelda Radar 5.3.2 Test System Results 5.4 Summary Detection of UWB Chipless RFID Transponders 6.1 Background 6.2 The Communication Channel 6.2.1 AWGN Channel Modeling and Detection 6.2.2 Free-Space Path Loss Modeling and Normalization 6.3 Detection and Decoding of Chipless RFID Transponders 6.3.1 Minimum Distance Detector 6.3.2 Maximum Likelihood Detector 6.3.3 Correlator Detector 6.3.4 Test Results 6.4 Simultaneous Detection of Multiple UWB Chipless Transponders 6.5 Summary System Implementation 7.1 SFM-UWB RFID System with CR-Chipless Transponders 7.2 IR-UWB RFID System with COD1-Chipless Transponders 7.3 Summary Conclusion and Outlook References Publications Appendix A RCS Calculation Measurement Setups Appendix B Resistance and Skin Depth Calculation Appendix C List of Videos Test Videos Consortium Videos Curriculum Vita

    Chipless Wireless High-Temperature Sensing in Time-Variant Environments

    Get PDF
    The wireless sensing of various physical quantities is demanded in numerous applications. A usual wireless sensor is based on the functionality of semiconductor Integrated Circuits (ICs), which enable the radio communication. These ICs may limit the application potential of the sensor in certain specific applications. One of these applications stands in the focus of this thesis: the operation in harsh environments, e.g., at high temperatures above 175°C, where most available sensors fail. Chipless wireless sensors are researched to exceed such chip-based limitations. A chipless sensor is setup as an entirely electro-magnetic circuit, and uses passive Radio Frequency (RF) backscatter principles to encode and transmit the measured value. Chipless sensors that target harsh environment operation are facing two important challenges: First, the disturbance by clutter, caused by time-variant reflections of the interrogation signal in the sensor environment and second, the design of suitable measurand transducers. These challenges are addressed in the thesis. To overcome the first challenge, three basic chipless sensor concepts feasible for operation in clutter environments are introduced. The concepts are realized by demonstrator designs of three temperature sensors and are proofed by wireless indoor measurements. A channel estimation method is presented that dynamically estimates and suppresses clutter signals to reduce measurement errors. To overcome the second challenge, measurand-sensitive dielectric materials are used as measurement transducers, and are being characterized by a novel high-temperature microwave dielectric characterization method. Complex permittivity characterization results in temperatures up to 900°C are presented. Finally, in-depth description and discussion of the three chipless concepts is given as well as a performance comparison in wireless indoor measurement scenarios. The first concept is based on polarization separation between the wanted sensor backscatter signal and unwanted clutter. The second concept separates tag and clutter signals in the frequency domain by using harmonic radar. The third concept exploits the slow decay of high-Q resonances in order to achieve the desired separation in time domain. This concept’s realization is based on dielectric resonators and has demon- strated the capability of wirelessly measuring temperatures up to 800°C without requiring an optical line-of-sight. This performance significantly exceeds temperature- and detection-limitations of commercially available sensors at the current state-of-the-art

    Q-Band Millimeter-Wave Antennas: An Enabling Technology for MultiGigabit Wireless Backhaul

    Full text link
    [EN] The bandwidth demands in mobile communication systems are growing exponentially day by day as the number of users has increased drastically over the last five years. This mobile data explosion, together with the fixed service limitations, requires a new approach to support this increase in bandwidth demand. Solutions based on lower-frequency microwave wireless systems may be able to meet the bandwidth demand in a short term. However, with the small-cell mass deployment requiring total capacities of 1 Gb/s/km2, scalable, multigigabit backhaul systems are required. Millimeter-wave technology fits nicely into these new backhaul scenarios as it provides extended bandwidth for high-capacity links and adaptive throughput rate, which allows efficient and flexible deployment. Besides these advantages, millimeter-wave solutions become even more attractive when the cost of backhaul solutions and the cost of spectrum licenses are factored in. Compared to the cost of laying fiber to a cell base station, which is the only other scalable solution, the millimeter-wave solution becomes the most appropriate approach.The research leading to these results received funding from the European Commission's seventh Framework Programme under grant agreement 288267.Vilar Mateo, R.; Czarny, R.; Lee, ML.; Loiseaux, B.; Sypek, M.; Makowski, M.; Martel, C.... (2014). Q-Band Millimeter-Wave Antennas: An Enabling Technology for MultiGigabit Wireless Backhaul. IEEE Microwave Magazine. 15(4):121-130. https://doi.org/10.1109/MMM.2014.2308769S12113015
    corecore