159,799 research outputs found

    Quantile-based bias correction and uncertainty quantification of extreme event attribution statements

    Get PDF
    Extreme event attribution characterizes how anthropogenic climate change may have influenced the probability and magnitude of selected individual extreme weather and climate events. Attribution statements often involve quantification of the fraction of attributable risk (FAR) or the risk ratio (RR) and associated confidence intervals. Many such analyses use climate model output to characterize extreme event behavior with and without anthropogenic influence. However, such climate models may have biases in their representation of extreme events. To account for discrepancies in the probabilities of extreme events between observational datasets and model datasets, we demonstrate an appropriate rescaling of the model output based on the quantiles of the datasets to estimate an adjusted risk ratio. Our methodology accounts for various components of uncertainty in estimation of the risk ratio. In particular, we present an approach to construct a one-sided confidence interval on the lower bound of the risk ratio when the estimated risk ratio is infinity. We demonstrate the methodology using the summer 2011 central US heatwave and output from the Community Earth System Model. In this example, we find that the lower bound of the risk ratio is relatively insensitive to the magnitude and probability of the actual event.Comment: 28 pages, 4 figures, 3 table

    Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence

    Full text link
    In recent years, the climate change research community has become highly interested in describing the anthropogenic influence on extreme weather events, commonly termed "event attribution." Limitations in the observational record and in computational resources motivate the use of uncoupled, atmosphere/land-only climate models with prescribed ocean conditions run over a short period, leading up to and including an event of interest. In this approach, large ensembles of high-resolution simulations can be generated under factual observed conditions and counterfactual conditions that might have been observed in the absence of human interference; these can be used to estimate the change in probability of the given event due to anthropogenic influence. However, using a prescribed ocean state ignores the possibility that estimates of attributable risk might be a function of the ocean state. Thus, the uncertainty in attributable risk is likely underestimated, implying an over-confidence in anthropogenic influence. In this work, we estimate the year-to-year variability in calculations of the anthropogenic contribution to extreme weather based on large ensembles of atmospheric model simulations. Our results both quantify the magnitude of year-to-year variability and categorize the degree to which conclusions of attributable risk are qualitatively affected. The methodology is illustrated by exploring extreme temperature and precipitation events for the northwest coast of South America and northern-central Siberia; we also provides results for regions around the globe. While it remains preferable to perform a full multi-year analysis, the results presented here can serve as an indication of where and when attribution researchers should be concerned about the use of atmosphere-only simulations

    A typology of marine and estuarine hazards and risks as vectors of change : a review for vulnerable coasts and their management

    Get PDF
    This paper illustrates a typology of 14 natural and anthropogenic hazards, the evidence for their causes and consequences for society and their role as vectors of change in estuaries, vulnerable coasts and marine areas. It uses hazard as the potential that there will be damage to the natural or human system and so is the product of an event which could occur and the probability of it occurring whereas the degree of risk then relates to the amount of assets, natural or societal, which may be affected. We give long- and short-term and large- and small-scale perspectives showing that the hazards leading to disasters for society will include flooding, erosion and tsunamis. Global examples include the effects of wetland loss and the exacerbation of problems by building on vulnerable coasts. Hence we emphasise the importance of considering hazard and risk on such coasts and consider the tools for assessing and managing the impacts of risk and hazard. These allow policy-makers to determine the consequences for natural and human systems. We separate locally-derived problems from large-scale effects (e.g. climate change, sea-level rise and isostatic rebound); we emphasise that the latter unmanaged exogenic pressures require a response to the consequences rather than the causes whereas within a management area there are endogenic managed pressures in which we address both to causes and consequences. The problems are put into context by assessing hazards and the conflicts between different uses and users and hence the management responses needed. We emphasise that integrated and sustainable management of the hazards and risk requires 10-tenets to be fulfilled

    Knowledge discovery from mining the association between H5N1 outbreaks and environmental factors

    Get PDF
    The global spread of highly pathogenic avian influenza H5N1 in poultry, wild birds and humans, poses a significant panzootic threat and a serious public health risk. An efficient surveillance and disease control system requires a deep understanding of their spread mechanisms, including environmental factors responsible for the outbreak of the disease. Previous studies suggested that H5N1 viruses occurred under specific environmental circumstances in Asia and Africa. These studies were mainly derived from poultry outbreaks. In Europe, a large number of wild bird outbreaks were reported in west Europe with few or no poultry infections nearby. This distinct outbreak pattern in relation to environmental characteristics, however, has not yet been explored. This research demonstrated the use of logistic regression analyses to examine quantitative associations between anthropogenic and physical environmental factors, and the wild bird H5N1outbreaks in Europe. A geographic information system is used to visualize and analyze the data. Our results indicate that the H5N1 outbreaks occur in wild birds in Europe under predictable environmental conditions, which are highly correlated with increased NDVI in December, decreased aspect and slope, increased minimum temperature in October and decreased precipitation in January. It suggests that H5N1 outbreaks in wild birds are strongly influenced by food resource availability and facilitated by the increased temperature and the decreased precipitation. We therefore deduce that the H5N1 outbreaks in wild birds in Europe may be mainly caused by contact with wild birds. These findings are of great importance for global surveillance of H5N1 outbreaks in wild birds

    Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin)

    Get PDF
    The Guadiana Basin.(SW Iberian Peninsula) is affected by acid mine drainage (AMD), a consequence of ancient mining activities in the Iberian Pyrite Belt (IPB). Consequently, the sedimerits at the Alqueva reservoir (SE Portugal) in the Guadiana Basin are potentially contaminated by trace elements, which make important: (i) to characterize the status of trace element pollution of the sediments; (ii) to evaluate the mobility and the bioavailability of As, Cd, Cu, Cr, Pb and Zn; and (iii) to assess the environmental risk associated with the total and bioavailable concentrations of trace elements, using the sediment quality guidelines (SQGs) and the risk assessment code (RAC). Metal enrichment factors (EF) and geoaccumulation indexes (I-geo), determined taking into account the regional background levels, revealed that, among the metals analyzed, Cd contributed the highest to pollution levels followed by Pb and As. Despite the trace element contamination of the Alqueva sediments, the sequential extraction showed that Most of them are found in the oxidizable and residual fractions, which indicates that they are sparingly bioavailable, with exception of Cd (acid-labile fraction) and Pb (reducible fraction). Based on the RAC, Cd was the only metal that presented a high risk, while Pb, As and Zn showed a medium risk. Moreover, the SQGs revealed the existence of certain areas of extremely high risk, particularly related to high concentrations of total As and, in less extent, of Pb and Cd, associated with AMD, wastewater discharges and runoff of plant protection products from agricultural fields located near the reservoir. (C) 2015 Elsevier By. All rights reserved.FCT (Fundacao para a Ciencia e Tecnologia) [PTDC/AAC-AMB/103547/2008]; FEDER, through POFC (Eixo I - Programa Operacional Fatores de Competitividade) from QREN [COMPETE Re: FCOMP-01-0124-FEDER-008582]info:eu-repo/semantics/publishedVersio

    Science, scientists, and local weather: Understanding mass perceptions of global warming

    Get PDF
    Objective: To explore the effects of long-term climate trends and short-term weather fluctuations, evaluations of scientists and science, political predispositions, religious affiliation, the information environment, and demographic attributes on individuals’ views about whether global warming exists and, if so, whether it is a result of natural cycles or human activity. Methods: We use data from the 2009 Pew General Public Science Survey, along with data on long- and short-term patterns of temperature and precipitation in individuals’ home communities. Results: We find that long-term trends in summer temperatures influence perceptions of global warming. Individuals who reside in communities with long-term warming of summer temperatures that are coupled with long-term cooling of spring temperatures are significantly more likely to perceive that global warming exists and is due to human activity. We also find that Americans\u27 attitudes toward scientists and science, political dispositions, evangelical religious affiliation, education, and some demographic attributes all have discernible effects on their perceptions of anthropogenic (man-made) global warming. Conclusion: Individuals’ attitudes toward global warming are influenced by long-term temperature trends in their home communities, as well as a variety of attitudinal and demographic attributes

    Foxes and food subsidies: anthropogenic food use by red and Arctic foxes, and effects on Arctic fox survival, on the Arctic Coastal Plain of Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2013Food subsidies have the potential to impact wildlife on the Arctic Coastal Plain of Alaska. Red foxes (Vulpes vulpes (L., 1758)) expanded their range into Arctic regions during the 20th century, and the availability of anthropogenic foods may have contributed to their success and persistence in the Arctic. Arctic foxes (Vulpes lagopus (L., 1758)) are also known to forage on anthropogenic foods in Prudhoe Bay and to forage on marine mammals on the sea ice, but it is unknown whether these strategies benefit survival of Arctic foxes. This thesis examined: 1) the importance of anthropogenic foods to the diets of red and Arctic foxes in Prudhoe Bay, and 2) the factors with the greatest effect on Arctic fox survival, including access to food subsidies in Prudhoe Bay and on the sea ice. For the first study, stable isotopes of red and Arctic fox tissues were used to infer late summer, late winter, and lifetime (for red fox only) diets. The contribution of anthropogenic foods to the diets of both species was low in late summer (~10%) but high in late winter (49%, 95% credible interval = 38-57%, of red fox diets and 37%, 95% credible interval = 29-44%, of Arctic fox diets). Estimates of lifetime diet in red foxes revealed high levels of anthropogenic food use, similar to the winter diet. To characterize the extent of competition for food resources, dietary niche overlap was examined between both species by comparing isotopic niche space. Both fox species had little isotopic niche overlap but may have greater overlap between their ecological dietary niches. Availability and consumption of anthropogenic foods by red foxes, particularly in winter, may partially explain their year-round presence in Prudhoe Bay. For the second study, nest survival models and satellite collar data were used to evaluate whether multiple factors affected survival of adult and juvenile foxes. Site and sea ice use had two times more support than the other factors. Three groups of foxes were identified based on capture location and sea ice use, which corresponded to different survival rates: Prudhoe Bay foxes, NPR-A foxes that used sea ice during more than eight 2-week periods during the winter (seven 2-week periods for juveniles), and NPR-A foxes that did not use sea ice. Both adult and juvenile foxes at Prudhoe Bay had modestly higher annual survival rates, 0.50 (90% CI 0.31-0.69) and 0.04 (90% CI 0.0-0.08) respectively, than foxes at NPR-A that did not use sea ice, 0.40 (90% CI 0.18-0.62) and 0.01 (90% CI 0.0-0.04) respectively. NPR-A foxes that used sea ice extensively had the highest survival rates. Food subsidies may have far-reaching effects on red and arctic foxes on the Arctic Coastal Plain of Alaska

    Anthropogenic Electromagnetic Fields and Cancer: A Perspective

    Get PDF
    The authors review findings of a recent National Research Council report and conclude that, e.g., until a cancer promotion model can be identified for effective testing, the EMF issue will remain open to debate

    3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway

    Get PDF
    The landscape of many historic cities and the character of their shallow subsurface environments are defined by a legacy of interaction between anthropogenic and geological processes. Anthropogenic deposits and excavations result from processes ranging from archaeological activities to modern urban development. Hence, in heritage cities, any geological investigation should acknowledge the role of past and ongoing human activities, while any archaeological investigation should be conducted with geological processes in mind. In this paper it is shown that 3D geological and anthropogenic models at different scales can provide a holistic system for the management of the subsurface. It provides a framework for the integration of other spatial and processmodels to help assess the preservationpotential for buried heritage. Such an integrated framework model is thus contributing to a decision support system for sustainable urban (re)development and regeneration in cities, while preserving cultural heritage. A collaborative approach is proposed to enhance research and implementation of combined geological and archaeological modelling for sustainable land use planning and heritage preservation, using York and Bryggen as prime examples. This paper presents the status of 3D framework modelling at Bryggen in Norway as an example
    • …
    corecore