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Extreme event attribution characterizes how anthropogenic climate change may have influenced the
probability and magnitude of selected individual extreme weather and climate events. Attribution
statements often involve quantification of the fraction of attributable risk (FAR) or the risk ratio (RR) and
associated confidence intervals. Many such analyses use climate model output to characterize extreme
event behavior with and without anthropogenic influence. However, such climate models may have
biases in their representation of extreme events. To account for discrepancies in the probabilities of
extreme events between observational datasets and model datasets, we demonstrate an appropriate
rescaling of the model output based on the quantiles of the datasets to estimate an adjusted risk ratio.
Our methodology accounts for various components of uncertainty in estimation of the risk ratio. In
particular, we present an approach to construct a one-sided confidence interval on the lower bound of
the risk ratio when the estimated risk ratio is infinity. We demonstrate the methodology using the
summer 2011 central US heatwave and output from the Community Earth System Model. In this ex-
ample, we find that the lower bound of the risk ratio is relatively insensitive to the magnitude and
probability of the actual event.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The summer of 2011 was extremely hot in Texas and Oklahoma,
producing a record of 30.26 °C for the average June–July–August
(JJA) temperature (3.24 °C above the 1961–1990 mean) as mea-
sured in the CRU observational dataset (CRU TS 3.21, Harris et al.,
2014). In a previous study of the 2011 Texas heat wave by Hoerling
et al. (2013), a major factor contributing to the magnitude of 2011
heat wave was the severe drought over Texas resulting from the La
Niña phase of the ocean state. However, the analysis found a
substantial anthropogenic increase in the chance of an event of
this magnitude. As in most mid-latitude land regions, the prob-
ability of extreme summer heat in this region has increased due to
human-induced climate change (Min et al., 2013). However, as
Stone et al. (2013) note, depending on spatial extent of the region
analyzed, observed summer warming is low in Texas in 2011 and
traceable to the so-called “warming hole” (Meehl et al., 2012).
r B.V. This is an open access article

ry, Department of Mathema-
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Extreme event attribution analyses attempt to characterize
whether and how the probability of an extreme event has changed
because of external forcing, usually anthropogenic, of the climate
system. As with traditional detection and attribution of trends in
climate variables (Bindoff et al., 2013), climate models must play an
important role in the methodology due to the absence of extremely
long observational records. The fraction of attributable risk (FAR) or
the risk ratio (RR) are commonly-used measures that quantify this
potential human influence (Palmer, 1999; Allen, 2003; Stott et al.,
2004; Jaeger et al., 2008; Pall et al., 2011; Wolski et al., 2014). Fol-
lowing the notation used in Stott et al. (2004), let pA be the prob-
ability in a simulation using all external (anthropogenic plus nat-
ural) forcings of an event of similar magnitude, location and season
to the actual event and pC be the probability of such an event under
natural forcings. The FAR is defined as = −FAR p p1 /C A while the RR
is defined as =RR p p/A C , with each quantity a simple mathematical
transformation of the other. We note that the commonly used term
“risk ratio” is more precisely a “probability ratio” (Fischer and
Knutti, 2015) but we will stick to the RR nomenclature in this study
—in part because RR is the well-established terminology.

In the seminal study of the 2003 European heat wave by Stott
et al. (2004), their climate model did remarkably well in
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Central United States region, 90°W to 105°W in longitude and 25°N to 45°N
in latitude (bold rectangular area), covering the states of Texas and Oklahoma.
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simulating both European mean summer temperature and its in-
terannual standard deviation. However, this is not generally the
case for the entirety of available climate model outputs nor for the
wide range of extreme events of current interest (Peterson et al.,
2012, 2013; Herring et al., 2014). Hence there is a need to correct
model output, particularly in the tail of its distribution, to more
realistically estimate both pA and pC. Quantile-based mapping is
often used to reduce such climate model biases in statistical
downscaling studies of future climate change projections. Such
methods match quantiles of climate model outputs to observed
data for monthly GCM temperature and precipitation (Wood et al.,
2004). For instance, quantile-based corrections to the transfer
function between the coarse mesh of the global models and the
finer downscaled mesh have been obtained by using cumulative
distribution functions (CDFs) to match percentiles between the
model outputs and observations over a specified base period
(Maurer and Hidalgo, 2008). Li et al. (2010) proposed an adjust-
ment of the traditional quantile matching method (Panofsky and
Brier, 1968) to account for time-dependent changes in the dis-
tribution of the future climate and suggested that the quantile-
matching method is a simple and straightforward method for re-
ducing the scale differences between simulations and observa-
tions, for the tails of the distribution as well. The quantile mapping
approach of Li et al. (2010) has been previously used to empirically
estimate annual and decadal maximum daily precipitation in an
attribution study of an early season blizzard in western South
Dakota (Edwards et al., 2014).

This paper is concerned with developing a formal statistical
methodology using extreme value analysis combined with quan-
tile mapping to adjust for model biases in event attribution ana-
lyses. We apply the methodology to the 2011 central US heatwave
as a case study, using an ensemble of climate model simulations.
In Section 2, we describe the observed and simulated data for the
central US heatwave analysis. Section 3 presents our statistical
methodology, describing the use of extreme value methods com-
bined with the quantile bias correction to estimate the risk ratio.
We describe several approaches for estimating uncertainty in the
risk ratio, focusing on the use of a likelihood ratio-based con-
fidence interval that provides a one-sided interval even when the
estimated risk ratio is infinity. In Section 4 we present results from
using the methodology for event attribution for the central US
heatwave, showing strong evidence of anthropogenic influence.
2. Case study: summer 2011 central USA heatwave

For a representative case study of extreme temperature attri-
bution, we define a central United States region bordered by 90°W
to 105°W in longitude and 25°N to 45°N in latitude, chosen to
encompass the Texas and Oklahoma heatwave that occurred in
summer 2011 (see Fig. 1). For this region, we calculated summer
(June, July, August [JJA]) average temperature anomalies for the
time period 1901–2012 by averaging daily maximum temperatures
for grid cells falling within the study region. Anomalies are com-
puted using 1961–1990 as the reference period.

The observational data in this study are obtained from the
gridded data product (CRU TS 3.21, Climatic Research Unit Time
Series) available on a 0.5°�0.5° grid provided by the Climatic
Research Unit (Harris et al., 2014). This dataset provides monthly
average daily maximum surface air temperature anomalies. Simi-
larly, monthly averaged daily maximum surface air temperatures
were obtained from the CMIP5 database through the Earth System
Grid Federation (ESGF) archive. For both the observations and
model output, spatial averages over the cells covering the land
surface of the region were calculated, resulting in simple 1-di-
mensional time series. In this study, we use a single climate model,
the fourth version of the Community Climate System Model
(CCSM4) with a resolution of 1.25°�0.94° grid. To more fully ex-
plore the structural uncertainty in event attribution statements,
additional models would need to be included in the analysis.
While that topic is outside the scope of this paper, our metho-
dology is also relevant for analyses that use multiple models that
will each have their own biases.

The CCSM4 ensemble consists of multiple simulations, each
initialized from different times of a control run; we treat the en-
semble members as independent realizations of the model's pos-
sible climate state. For the actual scenario with all forcings in-
cluded, we use an ensemble of five members, constructed by
concatenating the period 1901–2005 from the CMIP5 “historical”
forcings experiment and the period 2006–2012 from the matching
RCP8.5 emissions scenario experiment. As a representation of a
world without human interference on the climate system, we
construct a counterfactual scenario by producing an ensemble of
12 100-year segments drawn from the preindustrial control run. In
this scenario, greenhouse gases, aerosols and stratospheric ozone
concentrations are set at pre-industrial levels, but other external
natural forcings such as solar variability and volcanoes are not
included. We use this counterfactual scenario as a proxy for the
natural climate system without any external forcing factors.

An important consideration in event attribution analyses is
whether the climate model(s) reasonably represent the magni-
tudes and frequencies of the event of interest (Christidis et al.,
2013). Fig. 2 shows that summer temperatures vary more in the
CCSM4 output than in the observations. The record observed ex-
treme value in our central US region in 2011 was 2.467 °C above
the 1961–1990 average (represented by the large black dot); even
this extreme is somewhat lower than the observed values over just
the states of Texas and Oklahoma. However, this value is not
particularly rare in either model scenario dataset. Due to this scale
mismatch in temperature variability, the climate model incorrectly
estimates the probabilities of extreme events of this magnitude in
both scenarios. In light of this model bias, a quantile mapping
procedure to scale the extreme values of either the model or the
observations to the other is warranted to more consistently relate
the model's risk ratio to the real world. More precisely, we define
the event according to observations, even in the presence of ob-
servational error, and calibrate the model to the observations with
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Fig. 2. Illustration of the mismatch in scales between observations and model
output for central US summer temperatures. Observed values for 1901–2012 (blue),
model output under actual scenario for 1901–2012 (red) and model output under
counterfactual scenario for 100-year time period (green). The vertical lines show
the 5–95% range of values for the different datasets. The larger black dot represents
the observed value of 2.467 for 2011. The blue and red lines represent smoothed
global mean temperature anomalies used as observational and actual scenario
model output covariates, respectively. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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the quantile-based method described in this paper. The metho-
dology presented in Section 3 implements such a scaling by first
estimating the probability, p̂O, of reaching or exceeding the actual

event magnitude from the observations. Then, the magnitude, ẑA,
of an event in that time with the same probability, ^ ( = ^ )p pO A , is
estimated from the actual scenario of the model. The risk ratio can
then be estimated from the probability, p̂C , of an event of magni-

tude ẑA from the counterfactual scenario of the model as
^ = ^ ^RR p p/A C .

Implicit in this estimation of RR is an assumption that the
asymptotic behavior of the all forcings model ensemble is similar
to the observations. Indeed, it is not clear how to validate that
assumption given the limited observational data availability and
the rarity of the events of interest in attribution studies. However,
it is clear that errors from estimating RR directly from the model
without a quantile mapping correction would be larger, because
probability estimates would be drawn from a different part of the
distribution. In this case study, such probabilities would not be
representative of the tail of the distribution. Furthermore, in other
cases, the model may underestimate variability, and the prob-
ability in the model of an event of the actual magnitude may be
zero due to the boundedness of the distribution function. We re-
turn to the implications of bounded distributions for uncertainty
estimates in Section 3. There is a risk that bias correction could
mask serious model errors in simulating the processes responsible
for the extreme event in question. This risk is also present in more
commonly-used bias correction techniques such as the use of
anomalies based on subtracting off or dividing by a reference va-
lue. In the present example, a complete assessment of the ro-
bustness of the results would also include analysis of CCSM4's
ability to reproduce the type of large-scale meteorological patterns
leading to central US heatwaves as well as its simulation of ENSO.
3. Methodology

3.1. Quantile bias correction

Here we describe a quantile mapping methodology to adjust
for the difference in scales between observations and model out-
puts; we call this methodology quantile bias correction. The
methodology seeks to estimate adjusted probabilities pA and pC
and the corresponding RR. From this point forward, since we will
work exclusively with the adjusted probabilities, we will simply
use pA and pC to refer to the adjusted probabilities rather than
introduce additional notation to distinguish adjusted and un-
adjusted probabilities. The steps of the method are as follows:

(1) observe some extreme event, e.g., the extreme value of
2.467 °C for the 2011 central US heatwave, and estimate the
probability, p̂O, of the observed event using appropriate ex-
treme value statistical methods,

(2) use extreme value methods applied to the model output under
the actual scenario to estimate the magnitude, ẑA, associated
with the probability p̂O, thereby defining pA¼pO,

(3) use extreme value methods applied to the model output under
the counterfactual scenario to estimate the probability p̂C of
exceeding the value ẑA, and

(4) calculate the estimated risk ratio ^ = ^ ^RR p p/A C .

Step 2 is the critical bias adjustment, where the method adjusts
the magnitude of the extreme event considered in the model
output to be of the same rarity in the model under the all forcings
scenario as the actual extreme event is in the observations. This
correction in the tail of the distribution is likely to be very dif-
ferent than a simple adjustment of the model mean and/or var-
iance and more appropriate to event attribution studies. Fig. 3
illustrates the quantile bias correction method and demonstrates
the steps with cumulative distribution functions for the 2011
central US heatwave analysis.

3.2. Using extreme value statistics to estimate event probabilities

The probabilities, pO and pC, can be estimated using a variety of
techniques. For instance, in studies using ensembles with tens of
thousands of model realizations (Pall et al., 2011), probabilities of
very rare events can often be estimated simply using the propor-
tion of realizations in which the event was observed. However, in
our case study, as will be the case in many other analyses, there
are only a few simulations and the tail of the distribution is not
well sampled. Extreme value statistical methods involve fitting a
three parameter extreme value distribution function to a subset of
the available sample and are well suited to estimating such
probabilities. After estimating the distribution's parameters, step
2 can be accomplished by inverting the distribution to estimate
the magnitude of ẑA in the form of a return value for the period

p̂1/ O.
In the current study, we use a point process (PP) approach to

extreme value analysis (Smith, 1989; Coles, 2001; Katz et al., 2002;
Furrer et al., 2010). This approach involves modeling exceedances
over a high threshold and is described in detail in the Appendix.
The simplest formulations of extreme value models assume that
the distribution of the extremes does not change over time, an
assumption of stationarity. The PP approach can be extended to
non-stationary cases in which the parameters of the model, μ, s,
and ξ, are allowed to be (arbitrary but often linear) functions of
covariates. Covariates are chosen to incorporate additional physi-
cal insight into the statistical model. A common practice is to re-
present nonstationarity through only the location parameter, μ,
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and take s and ξ to be constant (Coles, 2001; Kharin and Zwiers,
2005). For example, one could represent the location of the ex-
treme value distribution μt to depend on time t as a function of
time-varying covariates xkt:

∑μ β β= +
( )=

x .
1

t
k

K

k kt0
1

The model under the actual scenario, as seen in Fig. 2, is non-
stationary due to the effects of anthropogenic climate change.
Rather than try to directly develop a covariate as an explicitly
nonlinear function of time, it is simpler to use a more physically-
based “covariate” as a linear source of non-stationarity. A simple
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Fig. 4. Mean residual life plot for each dataset: (a) observations, (b) model output unde
lines represent the 75th, 80th, and 85th percentiles as possible choices of thresholds.
relatively linear trends. (For interpretation of the references to color in this figure capti
choice is a temporally-smoothed global mean temperature
anomaly (xt). A 13-point filter (Solomon et al., 2007) removes
some of the natural modes of variability that may affect central US
summer temperature but retains the anthropogenic warming
signal. This function is then a non-linear proxy for time that we
can use as a covariate in a linear representation of the location
parameter, μ β β= + xt t0 1 . We note that adding additional covari-
ates to account for other known physical dependencies, such as an
El Niño/La Niña index, may improve the quality of the fitted dis-
tribution but as such is outside the scope of this study. Finally, as
the model under the counterfactual scenario is presumed to be
stationary, we do not use a covariate in fitting that dataset. In this
study, we computed the Akaike Information Criterion (AIC) to
compare stationary and non-stationary models for the observa-
tions and actual scenario output, where the model with the
smaller AIC value is preferred. For the actual scenario, the non-
stationary model was strongly preferred based on AIC. However,
we found that the AIC for the stationary model for observations
(152.93) was slightly smaller than the AIC for the non-stationary
model for the observations (154.14). This is a consequence of the
very small observed warming trend in the selected region. Despite
this preference for omitting the covariate, we use the non-sta-
tionary model for the observational data to be consistent with the
statistical representation for the actual scenario output.

The PP model requires the choice of an arbitrary threshold,
with only data above the threshold used to fit the model, as de-
scribed in the Appendix. There are few rigid guidelines for how
high the threshold should be. It must be high enough to be in the
‘asymptotic’ regime, i.e., that the assumptions of the extreme value
statistical theory are satisfied, but low enough that enough points
from the original sample are retained to reduce the uncertainty in
estimating the parameters of the statistical model. Here we use
the 80th percentile of the values in each dataset. Standard diag-
nostics (Coles, 2001; Scarrott and MacDonald, 2012), including
mean residual life plots shown in Fig. 4, suggest that this is a
reasonable choice.

Given the choice of a threshold and covariates, the PP-based
extreme value distribution is straightforward to fit using max-
imum likelihood methods, providing estimates of μt (i.e., β0 and
β1), σ , and ξ. To fit the model, we use the fevd routine of the R
package, extRemes (Gilleland and Katz, 2011). Note that for sea-
sonal data such as for this case study, the time.units argument
should be specified to be "m/year", where m is the number of
observations in each block of data. It is useful to treat a ‘block’ as a
year so that return levels can be considered to be the value ex-
ceeded once in 1/p years. When using an ensemble of model runs,
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we have multiple replicates for each year, so m is the number of
ensemble members (e.g., =m 5 for the all forcings ensemble). To
implement steps 2 and 3 of the quantile bias correction method,
we need to be able to calculate both a return level given a specified
probability ^ (^ )z pA O and a probability given a specified return level,
^ (^ )p zC A . Both of these values are obtained from the estimated
parameter values as shown in the Appendix, Eqs. (A.2) and (A.3).

3.3. Uncertainty quantification of the risk ratio

We have presented an approach to estimating the RR using the
quantile bias correction method. We turn now to accounting for
the various sources of uncertainties in the estimate of RR produced
by this method. Here we focus on uncertainty from statistical es-
timation of the various probabilities; structural uncertainty that
arises from using model simulations in place of the real climate
system is of course important but is beyond the scope of our work.
More precisely, the uncertainties in estimating the risk ratio can be
separated into three sources: uncertainty in estimating pO using
the observations (step 1), uncertainty in estimating zA using the
actual scenario model output (step 2), and uncertainty in esti-
mating pC using the counterfactual scenario output (step 3). In this
section we quantify the uncertainty in the risk ratio considering
the second and third sources of uncertainty. With regard to the
first source, for now we consider the magnitude of the extreme
event to be a given, as a precise estimate of pO will be shown to not
be absolutely necessary to make a confident attribution statement.
Rather, we believe that the sensitivity of the estimate of RR to a
defensible range of zO values (and pO) is critical to confident ex-
treme event attribution.

In our uncertainty analysis below, we condense our notation of
the fitted extreme value distributions to θ β β σ ξ= ( ), , ,A A A0 1A A

and
θ μ σ ξ= ( ), ,N C C C , where A again indicates the model under the ac-
tual scenario and C the model under the counterfactual scenario.
We consider several approaches to deriving a confidence interval
for the RR. Given that the RR is non-negative and its sampling
distribution is likely to be skewed, we work on the base-2 loga-
rithmic scale.

A standard approach to estimating the standard error of a non-
linear functional of parameters in a statistical model is to use the
delta method and then derive a confidence interval using a normal
approximation (Casella and Berger, 2002, Sections 5.5.4 and
10.4.1). Another possibility is to use the bootstrap to either esti-
mate the standard error or directly estimate a confidence interval
(Casella and Berger, 2002, Section 10.1.4). However, both of these
methods fail when the estimated RR is infinity. The bootstrap
uncertainty estimate will also pose difficulties if some of the
bootstrap datasets produce estimated risk ratios that are infinity.
This outcome is quite likely if the extreme value distribution of the
model output under the counterfactual scenario is bounded and
the magnitude of ẑA is close to that bound. Therefore, after a brief
discussion of the delta method and the bootstrap, we develop an
alternative confidence interval by inverting a likelihood ratio test
(LRT) and propose that this is a general approach to estimating a
lower bound of RR.

(i) Delta method: In this uncertainty analysis, we estimate the
log risk ratio and θ= ( )RR flog as a function of the parameter
vector θ θ θ= ( ),A C . The delta method uses an analytic approxima-
tion by a first-order Taylor series expansion:

θ θ θ θ θ( ^) ≈ ( ) + ∇ ( ) ( ^ − )f f f T , where ∇f is a vector of the partial

derivatives of f and θ̂ is the maximum likelihood estimate of θ.
Taking the variance of both sides of the Taylor approximation
above, the delta method gives that

θ θ θ θ^ ( ^ ) = ^ [ ( ^)] ≈ ∇ ( ^) ( ^)∇ ( ^) ( )RR f f fVar log Var Cov . 2T
The variance–covariance matrix of θ̂ , θ( ^)Cov , is based on the
matrix of second derivatives of the likelihood function. The stan-

dard error is ( ^ ) = ^ ( ^ )RR RRs. e. log Var log and the corresponding
95% confidence interval for RRlog is

( ^ − ( ^ ) ^ + ( ^ )) ( )RR RR RR RRlog 1.96 s. e. log , log 1.96 s. e. log . 3

The delta method relies on the approximate linearity re-
presented by the Taylor approximation and approximate normal-
ity of the distribution of the maximum likelihood estimates. In
particular, the delta method will not perform well when the

sampling distribution for R̂Rlog is skewed, which will be a parti-

cular concern for large values of R̂R, as the sampling distribution of
p̂C is bounded below by zero.

(ii) Bootstrap method: Our bootstrap procedure attempts to
reflect the structure of the climate model outputs in the resam-
pling procedure that produces bootstrapped datasets. To generate
a bootstrap dataset, we first resample with replacement from the
set of ensemble members, as the ensemble members are in-
dependent realizations of the climate state. In addition, for each
resampled ensemble member, we resample years with replace-
ment from the years represented in the dataset. This second type
of resampling is a block bootstrap that is justified by the low
correlation in seasonal climate from year to year. Note that by
resampling both ensemble members and years, we reduce the
discreteness in approximating the sampling distribution that
would occur from only resampling from the small number of en-
semble members. However, note that in our example, results were
similar when either excluding or including the resampling of
years.

By repeating the resampling procedure, we produce bootstrap
datasets, …D D, , B1 where B is the bootstrap sample size, e.g.,
B¼500. For example, for the actual scenario, we resample with
replacement from the five ensemble members and with replace-
ment from the 112 years and the associated smoothed global
temperature values. We obtain bootstrap samples with analogous
resampling for the counterfactual scenario. The return levels,
^ ^ … ^( ) ( ) ( )
z z z, , ,A A A

B1 2
, are computed from the bootstrapped samples for

the actual scenario for the fixed probability p̂O. Pairing each
bootstrapped return level estimate from the actual scenario with a
bootstrapped dataset from the counterfactual scenario, we obtain

bootstrapped probabilities ^ (^ ) ^ (^ ) … ^ (^ )
( ) ( ) ( )

p z p z p z, , ,C A C A C
B

A
B1 1 2 2

of exceed-
ing the bootstrapped return levels. We can then calculate

^ ^ … ^( ) ( ) ( )
RR RR RRlog , log , , log

B1 2
, which allows us to estimate the

sampling distribution of R̂Rlog . From this, one can obtain a
bootstrap standard error or confidence interval for the RRlog via
standard methods. For the basic bootstrap confidence interval of

RRlog , we use the 2.5th and 97.5th percentiles of the bootstrapped

values for ^ = …
( )

RR b Blog , 1, ,
b

, to compute the 95% confidence
interval:

( ^ − ( ^ − ^ ) ^ − ( ^ − ^ )) ( )
( ) ( )

RR RR RR RR RR RRlog log log , log log log . 4
b b

.975 .025

(iii) Method of inverting a likelihood ratio test: The delta method

fails when ^ =p 0C ( ^ = ∞RR ) as it relies on asymptotic normality,

and the bootstrap method fails for ^ =p 0C and can fail to varying

degrees when p̂C is very small and one obtains ( ^ ) = ∞( )RRlog b for
one or more bootstrap samples. Hansen et al. (2014) discussed the
case of ^ =p 0C under the counterfactual scenario in the context of
event attribution and suggested a one-sided confidence interval
for attributable risk using stationary Poisson processes in the
setting where probabilities are estimated simply by empirical
proportions. Here we propose a likelihood ratio test-based method



Table 1
Parameter estimates from the point process model fitted to observations (top,
1901–2012), actual scenario model output (middle, 1901–2012), and counterfactual
scenario model output (bottom, 100 years). The right column gives the estimated
return levels and/or probabilities calculated in the steps of the quantile bias cor-
rection method. The threshold, u, is the 80th percentile of values for each given
dataset.

Observation Location Scale Shape
u¼0.856 β̂0 β̂1 σ̂ ξ̂ ^ = ( > )p P Z 2.467O

Global mean tmp �0.802 0.404 1.250 �0.239 0.032

Model (actual scenario) Location Scale Shape
u¼1.405 β̂

A0 β̂
A1 σ̂A ξ̂A ẑA

Global mean tmp 1.263 1.382 0.926 �0.197 4.842

Model (counterfactual) Location Scale Shape
u¼0.811 μ̂C σ̂C ξ̂C ^ = ( > )p P Z 4.842C

No trend (K¼0) 1.415 0.638 �0.179 1.503e�08
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to find a lower bound for RR that can be employed when extreme
value statistics are used. We note that a lower bound is actually
more relevant for making an attribution statement than a point
estimate of RR as it encapsulates both the potential magnitude of
the risk ratio and our uncertainty in estimating it.

A standard approach to finding a confidence interval is to invert
a test statistic (Casella and Berger, 2002). The basic intuition is that
for a hypothesized parameter value, θ0, if we cannot reject the null
hypothesis that θ θ= 0 based on the data, then that θ0 is a plausible
estimate for the true value of θ and should be included in a con-
fidence interval for θ. A confidence interval is then constructed by
taking all values of θ0 such that a null hypothesis test of θ θ= 0 is
not rejected.

The likelihood ratio test (Casella and Berger, 2002, Sections
9.2.1 and 10.3.1) compares the likelihood of the data based on the
MLE (i.e., the maximized likelihood estimate) to the likelihood of
the data when restricting the parameter space (which in the no-
tation above can be expressed as setting θ θ= 0). If the null hy-
pothesis is true then as the sample size goes to infinity, twice the
log of the ratio of these two likelihoods has a chi-square dis-
tribution with ν degrees of freedom. ν is equal to the difference in
the number of parameters when comparing the original parameter
space to the restricted space. The hypothesis test of θ θ= 0 is re-
jected when twice the log of the likelihood ratio exceeds the α−1
quantile of the chi-square distribution, which would be the 95th
percentile (i.e., α = 0.05) for a 95% confidence interval.

Specifically, we are interested in the plausibility of = =RR rp
p 0

A

C

versus the alternative that = >RR rp
p 0

A

C
where r0 is a non-negative

constant, so it would be natural to derive a one-sided confidence
interval, ∈ ( ∞)RR RR ,L , that gives a lower bound, RRL, on the risk
ratio. The likelihood ratio test we use here is one where the re-
stricted parameter space sets =RR r0. Under this null hypothesis,
which is equivalent to =p p r/C A 0, we construct the constrained
likelihood function by letting β0A

, β1A
, sA, ξA, sC and ξC be free

parameters and setting

( )μ β β σ ξ σ
ξ

= ( ) + { − − ( − ) }ξ−z p r, , , 1 log 1 / ,C A A A
C

C
A0 1 0A A

C

where zA is the return level corresponding to probability of ex-
ceedance under the actual scenario and pA is based on p̂O or chosen
in advance without directly making use of the observations. This
likelihood ratio test has one degree of freedom, corresponding to
the restriction on μN in the constrained likelihood. The joint
likelihood for the model output from both the actual scenario and
counterfactual scenario can be expressed as
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where mA is the number of exceedances (out of the total of nA
observations) for the actual scenario and mC the analogous quan-
tity for the counterfactual scenario. Thus, the lower bound of

=RR RRminL is found by finding the smallest value r0 such that

β β σ ξ μ σ ξ

β β σ ξ σ ξ

[ ( ^ ^ ^ ^ ^ ^ ^ )

− ( ^ ^ ^ ^ ^ ^ = )] < ( )

L x

L x RR r

2 log , , , , , , ;

log , , , , , ; , 3.841, 5

A A C C C

A A C C

0 1

0 1 0

A A

A A

where 3.841 is the 95th percentile of a chi-square distribution
with one degree of freedom.

Numerically this can be solved by one dimensional minimiza-
tion subject to the constraint for the condition (5). The simplest
way to do this is to move the constraint into the objective function
and minimize an unconstrained problem. The new unconstrained
objective function is

λ+ · ( ( ) > )r c I r 3.8410 0

where c is set to be a large number (mathematically = ∞c ), λ (·) is
twice the log of the likelihood ratio, and (·)I is an indicator func-
tion that evaluates to one if the inequality is satisfied and zero if
not. The resulting objective function is not continuous, hence
many standard optimization techniques are not applicable. One
that can be used here is “golden section search” (particularly if the
objective function is modified slightly to be unimodal – albeit still
discontinuous). In R, we use the optimize function. This function
is designed for continuous objective functions as it combines
golden section search with parabolic interpolation, but it seems to
work reasonably well in our analyses.
4. Results

In this section we apply our proposed methodology to the
central US heatwave event. The analysis relies on estimation of the
probabilities pO and pC and the adjusted event magnitude zA. As
described in the previous section, we use the smoothed global
mean temperature anomaly as a covariate to account for non-
stationarity in temperature extremes in both the observations and
the model output under the all forcings scenarios. The smoothed
global mean temperature anomalies are plotted in Fig. 2. Table 1
gives the parameter estimates from fitting the PP model to ob-
servations and to the model output from both scenarios. Note that

the estimated shape parameters ( ξ̂ ) are all negative, indicating
that the fitted distributions are bounded.

As shown in Table 1, the estimated probability, p̂O, of exceeding
the observed extreme value of 2.467 is 0.032. Following the pro-
posed quantile bias correction method, we set ^ =p 0.032A and,
based on the fitted PP model for the actual scenario, estimate the
return level as ^ =z 4.842A . Then, using the fitted PP model for the
counterfactual scenario, the estimated probability, p̂C , of an event
as or more extreme than zC¼4.842 is 1.5e�08. The corresponding
estimated logarithm of risk ratio is 21.0 (or ≈RR 2, 100, 000), in-
dicating a very large increase in probability of a heatwave due to
human influence. Fig. 3 graphically illustrates the quantile bias
correction methodology for this particular case study. Without the
bias correction, one would obtain ^ =p 0.657A and ^ =p 0.132C , giving
an estimated RR of approximately 5, which is quite different than
the estimate with the bias correction. Note that the observed event



Table 2
Estimated RRlog and corresponding confidence intervals using delta method,
bootstrap resampling (B¼500), and the proposed likelihood ratio test (LRT)-based
method giving a lower bound for the risk ratio. For the bootstrap, 246 of the 500
bootstrap samples are excluded as the bootstrapped RR estimate is infinity. For the
LRT-based approach, we consider two cases of uncertainty quantification: first
uncertainty only in estimating pC, and second uncertainty in estimating both zA and
pC.

RRlog2 21.0

Delta method [16.8, 25.2]

Bootstrap method [12.2, 39.4]

LRT-based method

UQ for p̂C
[ ∞)4.3,

UQ for ẑA and p̂C
[ ∞)4.0,

Table 3
Sensitivity of results to definition of the event, i.e., different values of pO¼pA.

pA
pO¼pA

ẑA p̂C RRlog2
One-sided CI for RRlog2
(α¼0.05)

Lower bound of
RR

0.200 3.7 2.8e�03 6.1 [ ∞)3.0, 8.0
0.100 4.2 1.9e�04 9.1 [ ∞)3.6, 11.7
0.050 4.6 3.1e�06 14.0 [ ∞)3.9, 14.8
0.032 4.8 1.5e�08 21.0 [ ∞)4.0, 16.1
0.023 5.0 0 ∞ [ ∞)4.1, 16.8
0.010 5.3 0 ∞ [ ∞)4.1, 16.9

S. Jeon et al. / Weather and Climate Extremes 12 (2016) 24–3230
is not extreme in the model simulations under the actual scenario,
which suggests that without bias correction we would be in-
appropriately estimating a RR from a different part of the dis-
tribution than is of interest based on the observations.

The uncertainty in estimating RR with the quantile bias cor-
rection is quantified using three methods: the delta method, the
bootstrap, and our suggested likelihood ratio test-based interval;
Table 2 shows 95% confidence intervals for RRlog from each
method. As discussed in Section 3.3, both the delta method and
the bootstrap face difficulties when the estimated probability
under counterfactual scenario is near zero, as it is here. In this
example, the bootstrap resamples often produce estimates of large
return levels under the actual scenario that correspond to esti-
mating probabilities of zero under counterfactual scenario. The
result is that many of the bootstrap datasets (246 of the 500) have
estimates of RRlog that are infinity, but these bootstrap estimates
cannot be sensibly included in the estimate of the bootstrap
confidence interval. Hence, the confidence interval in Table 2 is
calculated based only on the finite values, but we cannot expect
this to provide a reliable estimate of the uncertainty.

Instead, we focus on the likelihood ratio-based interval de-
scribed in the previous section. We apply our method by inverting
a LRT in two ways. First we ignore uncertainty in ẑA and consider
only uncertainty in p̂C , and second we consider uncertainty in both

ẑA and p̂C (note that when we consider only uncertainty in p̂C , one
can derive a LRT-based interval analogous to that derived in Sec-
tion 3.3). The estimated lower bound, when considering both
sources of uncertainties, is 4.0 (i.e., 16.1 on the original scale of the
risk ratio), which indicates strong evidence that the true risk ratio
is substantially elevated under actual scenario compared to
counterfactual scenario. As expected, the lower bound is lower
(4.0) when considering both sources of uncertainty than when
considering only uncertainty in p̂C (4.3).

In Section 3.3, we argued that a precise event magnitude and
corresponding pO is not necessary to making confident event at-
tribution statements. Rather, the sensitivity of the risk ratio to a
plausible range of extreme event definitions is essential. Table 3
shows the sensitivity of the risk ratio and its lower bound to
various values of =p pO A. Critically, while the estimate of the risk
ratio varies dramatically as one varies the event definition, with
the estimated risk ratio as large as infinity, the lower bound from
the one-sided confidence interval is quite stable for a wide range
of event definitions. This is a critically important component to the
confident event attribution statement: “For the summer 2011
central US heat wave, anthropogenic changes to the atmospheric
composition caused the chance of the observed temperature
anomaly to be increased by at least a factor of 16.1.” Of course this
statement is conditional on the climate model accurately re-
presenting relative changes in probabilities of extreme events
under the different scenarios after the quantile-based correction.
5. Conclusion

We present an approach to extreme event attribution that
addresses differences in the scales of variability between ob-
servations and model output using the methodology of quantile-
based bias correction in the context of a formal statistical treat-
ment of uncertainty. The correction rescales matching quantiles
between the observations and the models to obtain an event in
realistically-forced climate model simulations of corresponding
rarity to the actual extreme weather or climate event of interest.
We develop a procedure for estimation and for quantifying un-
certainty in the risk ratio, a measure of the anthropogenic effect on
the change in the chances of an extreme event. In particular we
calculate a lower bound on the risk ratio by inverting a likelihood
ratio test statistic that can be used even when the estimated
probability of the event is zero or near-zero in climate model si-
mulations of a hypothetical world without anthropogenic climate
change. This lower bound provides the key element in construct-
ing confident attribution statements about the human influence
on individual extreme weather and climate events.

We caution that bias correction can mask serious errors and is
not a replacement for expert judgment and physical insight into
the source of the bias between model and observation. For in-
stance in our case study, it is well known that extreme tempera-
tures in Texas and Oklahoma are associated with the La Niña phase
of ocean surface temperatures. The statistical methods presented
here could account for this source of bias by including an El Niño/
La Niña index as a covariate in the statistical model for event
probabilities in the model dataset (see Section 3.2) and bias cor-
rect the index rather than directly bias correcting the distribution
for the variable of interest. Pursuing such ideas is beyond the
scope of our work here but could lead to an approach that offers
more insight into the source of bias and provide a physically-based
justification for the bias correction.

The lower bound on the risk ratio estimated using our pro-
posed method implies a substantial increase in the probability of
reaching or exceeding the observed extreme temperature of 2011
central US heatwave event under human-influenced climate
change. However the precise probability and magnitude of the
observed extreme event is not a key component in extreme event
attribution analyses. We explored the sensitivity of the lower
bound of the risk ratio to various definitions of the event (i.e.,
probabilities corresponding to different magnitudes of extreme
events) and found that the lower bound of the risk ratio con-
fidence interval is more stable than point estimates of the risk
ratio. As a result, confident attribution statements about the
minimum amount of anthropogenic influence on extreme events
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are more readily constructed than statements about the most
likely amount of anthropogenic influence. We also maintain that
such more conservative statements are more consistent with the
vast literature of attribution statements about the human influ-
ence on trends in the average state of the climate.
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Appendix A. Background for modeling of extreme values

Extreme value theory (EVT) provides a statistical theory of
extreme values that models the tail of a probability distribution.
Univariate extreme value theory to study the so-called block
maxima (e.g., annual or seasonal maxima of daily data) is well-
developed. The theory shows that the distribution of the maxima
converges to a distribution function G,
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that is known as the generalized extreme value (GEV) distribution.
The parameters μ, s, and ξ are known as the location, scale and
shape parameters, respectively. The shape parameter, ξ, de-
termines the type of tail behavior — whether the tail is heavy
(ξ > 0), light (ξ → 0), or bounded (ξ < 0), implying a short-tailed
distribution. For example, analysts usually obtain a negative esti-
mated shape parameter for temperature data and a non-negative
estimated shape parameter for precipitation data.

Return levels are quantiles — a return level z such that
( > ) =P Z z p implies that the level z is expected to be exceeded

once every 1/p years on average. The probability p of exceeding z is
easily obtained in closed form, given μ, s, and ξ, based on the
distribution function (A.1),
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As a counterpart to this, given p, the return level is obtained by
solving the equation ( > ) =P Z z p, which gives
μ σ
ξ

ξ= − { − (− ( − )) } ( ≠ )
( )

ξ−z p1 log 1 0 .
A.3

However, the block maxima approach only uses the maximum
(or analogously the minimum when analyzing extreme low va-
lues) of blocks in time series data. An alternative that can make
use of more of the data is the peaks over threshold (POT) approach
(Coles, 2001; Katz et al., 2002). POT modeling is based on the
observations above a high threshold, u. The distribution of ex-
ceedances over the threshold is approximated by a generalized
Pareto distribution (GPD) as u becomes sufficiently large. In this
approach, the limiting distribution of threshold exceedances is
characterized by the following: for >x u,

ξ
σ

( ≤ | > ) = − + −
( )

ξ

+

−⎛
⎝⎜

⎞
⎠⎟P X x X u

x u
1 1 .

A.4u

1/

The scale parameter σ > 0u depends on the threshold. As with the
GEV distribution the shape parameter, ξ, determines the tail behavior.

The point process (PP) provides a closely-related alternative
peaks over threshold approach to the GPD that is convenient be-
cause the PP parameters can be directly related to the GEV para-
meters and then the GEV equations above can be used to calculate
return values and return probabilities. The corresponding like-
lihood of the threshold excesses can be approximated by a Poisson
distribution with the intensity measure depending on μ, s, and ξ,
where μ, s, and ξ are location, scale, and shape parameters
equivalent to those in the GEV distribution (A.1), respectively.
More precisely, for a vector of n observations …X X X, , , n1 2 stan-
dardized under the conditions of GEV distribution, the point pro-
cess on regions of ( ) × [ ∞)u0, 1 , converges to a Poisson process
with the intensity measure given by
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Taking m to be the number of observations above the threshold
u (out of the total of n observations), the likelihood function is
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where ny is the number of observations per year (e.g., ny¼5 for the
all forcings ensemble and ny¼12 for the counterfactual ensemble).
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