59 research outputs found

    Background, Systematic Review, Challenges and Outlook

    Get PDF
    Publisher Copyright: © 2013 IEEE. This research is supported by the Digital Manufacturing and Design Training Network (DiManD) project funded by the European Union through the Marie Skłodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement no. 814078The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.publishersversionpublishe

    Enhancing service-oriented holonic multi-agent systems with self-organization

    Get PDF
    Multi-agents systems and holonic manufacturing systems are suitable approaches to design a new and alternative class of production control systems, based on the decentralization of control functions over distributed autonomous and cooperative entities. However, in spite of their enormous potential they lack some aspects related to interoperability, migration, optimisation in decentralised structures and truly self-adaptation. This paper discusses the advantages of combining these paradigms with complementary paradigms, such as service-oriented architectures, and enhancing them with biologically inspired algorithms and techniques, such as emergent behaviour and self-organization, to reach a truly robust, agile and adaptive control system. An example of applying a stigmergy-based algorithm to dynamically route pallets in a production system is also provided

    Linked data as medium for distributed Multi-Agent Systems

    Get PDF
    The conceptual design and discussion of multi-agents systems (MAS) typically focuses on agents and their models, and the elements and effects in the environment which they perceive. This view, however, leaves out potential pitfalls in the later implementation of the system that may stem from limitations in data models, interfaces, or protocols by which agents and environments exchange information. By today, the research community agrees that for this, that the environment should be understood as well as abstraction layer by which agents access, interpret, and modify elements within the environment. This, however, blurs the the line of the environment being the sum of interactive elements and phenomena perceivable by agents, and the underlying technology by which this information and interactions are offered to agents. This thesis proposes as remedy to consider as third component of multi agent systems, besides agents and environments, the digital medium by which the environment is provided to agents. "Medium" then refers to exactly this technological component via which environment data is published interactively towards the agents, and via which agents perceive, interpret, and finally, modify the underlying environment data. Furthermore, this thesis will detail how MAS may use capabilities of a properly chosen medium to achieve coordinating system behaviors. A suitable candidate technology for digital agent media comes from the Semantic Web in form of Linked Data. In addition to conceptual discussions about the notions of digital agent media, this thesis will provide in detail a specification of a Linked Data agent medium, and detail on means to implement MAS around Linked Data media technologies.Sowohl der konzeptuelle Entwurf von, als auch die wissenschaftliche Diskussion über Multi-Agenten-Systeme (MAS) konzentrieren sich für gewöhnlich auf die Agenten selbst, die Agentenmodelle, sowie die Elemente und Effekte, die sie in ihrer Umgebung wahrnehmen. Diese Betrachtung lässt jedoch mögliche Probleme in einer späteren Implementierung aus, die von Einschränkungen in Datenmodellen, Schnittstellen, oder Protokollen herrühren können, über die Agenten und ihre Umgebung Informationen miteinander austauschen. Heutzutage ist sich die Forschungsgemeinschaft einig, dass die Umgebung als solche als Abstraktionsschicht verstanden werden sollte, über die Agenten Umgebungseffekte und -elemente wahrnehmen, interpretieren, und mit ihnen interagieren. Diese Betrachtungsweise verschleiert jedoch die Trennung zwischen der Umgebung als die Sammlung interaktiver Elemente und wahrnehmbarer Phänomene auf der einen Seite, und der zugrundeliegenden Technologie, über die diese Information den Agenten bereitgestellt wird, auf der anderen. Diese Dissertation schlägt als Lösung vor, zusätzlich zu Agenten undUmgebung ein digitales Medium, über das Agenten die Umgebung bereitgestellt wird, als drittes Element von Multi-Agenten-Systemen zu betrachten. Der Begriff "Medium" bezieht sich dann genau auf diese technologische Komponente, über die Umgebungsinformationen Agenten interaktiv bereitgestellt werden, und über die Agenten die zugrundeliegenden Daten wahrnehmen, interpretieren, und letztendlich modifizieren. Desweiteren wird diese Dissertation aufzeigen, wie die Eigenschaften eines sorgfältig gewählten Mediums ausgenutzt werden können, um ein koordiniertes Systemverhalten zu erreichen. Ein geeigneter Kandidat für ein digitales Agentenmedium findet sich im Ökosystem des „Semantic Web”, in Form von „Linked Data”, wörtlich („verknüpfte Daten”). Zusätzlich zu einer konzeptionellen Diskussion über die Natur digitaler Agenten- Media, spezifiziert diese Dissertation „Linked Data” als Agentenmedium detailliert aus, und beschreibt im Detail die Mittel, wie sich MAS um Linked Data Technologien herum implementieren lassen

    Use of bio-inspired techniques to solve complex engineering problems: industrial automation case study

    Get PDF
    Nowadays local markets have disappeared and the world lives in a global economy. Due to this reality, every company virtually competes with all others companies in the world. In addition to this, markets constantly search products with higher quality at lower costs, with high customization. Also, products tend to have a shorter period of life, making the demanding more intense. With this scenario, companies, to remain competitive, must constantly adapt themselves to the market changes, i.e., companies must exhibit a great degree of self-organization and self-adaptation. Biology with the millions of years of evolution may offer inspiration to develop new algorithms, methods and techniques to solve real complex problems. As an example, the behaviour of ants and bees, have inspired researchers in the pursuit of solutions to solve complex and evolvable engineering problems. This dissertation has the goal of explore the world of bio-inspired engineering. This is done by studying some of the bio-inspired solutions and searching for bio-inspired solutions to solve the daily problems. A more deep focus will be made to the engineering problems and particularly to the manufacturing domain. Multi-agent systems is a concept aligned with the bio-inspired principles offering a new approach to develop solutions that exhibit robustness, flexibility, responsiveness and re-configurability. In such distributed bio-inspired systems, the behaviour of each entity follows simple few rules, but the overall emergent behaviour is very complex to understand and to demonstrate. Therefore, the design and simulation of distributed agent-based solutions, and particularly those exhibiting self-organizing, are usually a hard task. Agent Based Modelling (ABM) tools simplifies this task by providing an environment for programming, modelling and simulating agent-based solutions, aiming to test and compare alternative model configurations. A deeply analysis of the existing ABM tools was also performed aiming to select the platform to be used in this work. Aiming to demonstrate the benefits of bio-inspired techniques for the industrial automation domain, a production system was used as case study for the development of a self-organizing agent-based system developed using the NetLogo tool. Hoje em dia os mercados locais desapareceram e o mundo vive numa economia global. Devido a esta realidade, cada companhia compete, virtualmente, com todas as outras companhias do mundo. A acrescentar a isto, os mercados estão constantemente à procura de produtos com maior qualidade a preços mais baixos e com um grande nível de customização Também, os produtos tendem a ter um tempo curto de vida, fazendo com que a procura seja mais intensa. Com este cenário, as companhias, para permanecer competitivas, têm que se adaptar constantemente de acordo com as mudanças de mercado, i.e., as companhias têm que exibir um alto grau de auto-organização e auto-adaptação. A biologia com os milhões de anos de evolução, pode oferecer inspiração para desenvolver novos algoritmos, métodos e técnicas para resolver problemas complexos reais. Como por exemplo, o comportamento das formigas e das abelhas inspiraram investigadores na descoberta de soluções para resolver problemas complexos e evolutivos de engenharia. Esta dissertação tem como objectivo explorar o mundo da engenharia bio-inspirada. Isto é feito através do estudo de algumas das soluções bio-inspiradas existentes e da procura de soluções bio-inspiradas para resolver os problemas do dia-a-dia. Uma atenção especial vai ser dada aos problemas de engenharia e particularmente aos problemas do domínio da manufactura. Os sistemas multi-agentes são um conceito que estão em linha com os princípios bio-inspirados oferecendo uma abordagem nova para desenvolver soluções que exibam robustez, flexibilidade, rapidez de resposta e reconfiguração. Nestes sistemas distribuídos bio-inspirados, o comportamento de cada entidade segue um pequeno conjunto de regras simples, mas o comportamento emergente global é muito complexo de perceber e de demonstrar. Por isso, o desenho e simulação de soluções distribuídas de agentes, e particularmente aqueles que exibem auto-organização, são normalmente uma tarefa árdua. As ferramentas de Modelação Baseada de Agentes (MBA) simplificam esta tarefa providenciando um ambiente para programar, modelar e simular, com o objectivo de testar e comparar diferentes configurações do modelo. Uma análise mais aprofundada das ferramentas MBA foi também efectuada tendo como objectivo seleccionar a plataforma a usar neste trabalho

    Towards a Reference Architecture for Swarm Intelligence-based Internet of Things

    Get PDF
    International audienceThe Internet of Things (IoT) represents the global network which interconnects digital and physical entities. It aims at providing objects with intelligence that allows them to perceive, decide and cooperate with other objects, machines, systems and even humans to enable a whole new class of applications and services. Agent-Based Computing paradigm has been exploited to deal with the IoT system development. Many research works focus on making objects able to think by themselves thus imitating human brain. Swarm Intelligence studies the collective behavior of systems composed of many individuals who interact locally with each other and with their environment using decentralized and self-organized control to achieve complex tasks. Swarm intelligence-based systems provide decentralized, self-organized and robust systems with consideration of coordination frameworks. We explore in this paper the exploitation of swarm intelligence-based features in IoT-based systems. Therefore, we present a reference swarm-based architectural model that enables cooperation among devices in IoT systems

    Proposition d’une architecture holonique auto-organisée et évolutive pour le pilotage des systèmes de production

    Get PDF
    The manufacturing world is being deeply challenged with a set of ever demanding constraints where from one side, the costumers are requiring products to be more customizable, with higher quality at lower prices, and on other side, companies have to deal on a daily basis with internal disturbances that range from machine breakdown to worker absence and from demand fluctuation to frequent production changes. This dissertation proposes a manufacturing control architecture, following the holonic principles developed in the ADAptive holonic COntrol aRchitecture (ADACOR) and extending it taking inspiration in evolutionary theories and making use of self- organization mechanisms. The use of evolutionary theories enrich the proposed control architecture by allowing evolution in two distinct ways, responding accordingly to the type and degree of the disturbance that appears. The first component, named behavioural self- organization, allows each system’s entity to dynamically adapt its internal behaviour, addressing small disturbances. The second component, named structural self-organization, addresses bigger disturbances by allowing the system entities to re-arrange their rela- tionships, and consequently changing the system in a structural manner. The proposed self-organized holonic manufacturing control architecture was validated at a AIP-PRIMECA flexible manufacturing cell. The achieved experimental results have also shown an improvement of the key performance indicators over the hierarchical and heterarchical control architecture.Le monde des entreprises est profondément soumis à un ensemble de contraintes toujours plus exigeantes provenant d’une part des clients, exigeant des produits plus personnalisables, de qualité supérieure et à faible coût, et d’autre part des aléas internes auxentreprises, comprenant les pannes machines, les défaillances humaines, la fluctuation de la demande, les fréquentes variations de production. Cette thèse propose une architecture de contrôle de systèmes de production, basée sur les principes holoniques développées dans l’architecture ADACOR (ADAptive holonic COntrol aRchitecture), et l’étendant en s’inspirant des théories de l’évolution et en utilisant des mécanismes d’auto-organisation. L’utilisation des théories de l’évolution enrichit l’architecture de contrôle en permettant l’évolution de deux manières distinctes, en réponse au type et au degré de la perturbation apparue. Le premier mode d’adaptation, appelé auto-organisation comportementale, permet à chaque entité qui compose le système d’adapter dynamiquement leur comportement interne, gérant de cette façon de petites perturbations. Le second mode, nommé auto-organisation structurelle, traite de plus grandes perturbations, en permettant aux entités du système de ré-organiser leurs relations, et par conséquent modifier structurellement le système. L’architecture holonique auto-organisée de contrôle de systèmes de production proposée dans cette thèse a été validée sur une cellule de production flexible AIP-PRIMECA. Les résultats ont montré une amélioration des indicateurs clés de performance par rapport aux architectures de contrôle hiérarchiques et hétérarchiques

    Evolvable production systems in a RMS context: enabling concepts and technologies

    Get PDF
    The goal of this paper is to describe the research on Evolvable Production Systems (EPS) in the context of Reconfigurable Manufacturing Systems (RMS), and to briefly describe a multiagent based control solution. RMS, Holonic and EPS concepts are briefly described and compared. Novel inspiration areas and concepts to solve the demanding requirements set by RMS, such as artificial life and complexity theory, are described. Finally, the multiagent based control solution is described as the underlying infrastructure to support all future development in EPS, using concepts such as emergence and self-organisation

    Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context

    Get PDF
    International audienceIt is now accepted that using multi-agent systems (MAS) improve the reactivity to treat perturbation(s) within flexible manufacturing system. Intelligent algorithms shall be used to address these perturbation(s) and all smart decision entities within their environment have to continuously negotiate until their common and final goal is achieved. This paper proposes a negotiation-based control approach to deal with variability on a manufacturing system. It has initially formulated and modeled an environment in which all contributing entities or agents operate, communicate, and interact with each other productively. Then after, simulation and applicability implementation experiments on the basis of full-sized academic experimental platform have been conducted to validate the proposed control approach. Product and resource entities negotiate considering different key performance measures in order to set best priority-based product sequencing. This has been done with expectations that the applicability of the negotiation-based decision-making will be more adaptable to deal with perturbation(s) than another alternative decision-making approach called pure reactive control approach. The result showed that negotiation among the decisional entities has brought significant improvement in reducing makespan and hence conveyed better global performance of a manufacturing system

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism
    corecore