

Use of Bio-inspired Techniques to Solve Complex Engineering

Problems: Industrial Automation Case Study

José Fernando Lopes Barbosa

Relatório de Projecto para obtenção do grau de Mestre em

Engenharia Industrial

ramo de especialização em Engenharia Electrotécnica

Supervision: Prof. Dr. Paulo Leitão

September, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153404425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Dedication

To Inês and Mariana

iii

Acknowledgements

First of all I want to express my most grateful thanks to Professor Paulo Leitão

for his knowledge, patient, support and constant motivation during the development of

this work without which the conclusion was not possible.

Next, I want to thank all my friends for their support, incentive and motivation.

I also want to thank my parents for all the support and love throughout the years.

A special thank to my beautiful grandmother that with her love and affection

made me feel to be her special grandson.

Finally, but not the least, I want to thank my wife Inês for her support and

comprehension and to my daughter Mariana just to make me constantly smile.

iv

Abstract

Nowadays local markets have disappeared and the world lives in a global economy.

Due to this reality, every company virtually competes with all others companies in the

world. In addition to this, markets constantly search products with higher quality at

lower costs, with high customization. Also, products tend to have a shorter period of

life, making the demanding more intense. With this scenario, companies, to remain

competitive, must constantly adapt themselves to the market changes, i.e., companies

must exhibit a great degree of self-organization and self-adaptation.

Biology with the millions of years of evolution may offer inspiration to develop

new algorithms, methods and techniques to solve real complex problems. As an

example, the behaviour of ants and bees, have inspired researchers in the pursuit of

solutions to solve complex and evolvable engineering problems.

This dissertation has the goal of explore the world of bio-inspired engineering. This

is done by studying some of the bio-inspired solutions and searching for bio-inspired

solutions to solve the daily problems. A more deep focus will be made to the

engineering problems and particularly to the manufacturing domain.

Multi-agent systems is a concept aligned with the bio-inspired principles offering a

new approach to develop solutions that exhibit robustness, flexibility, responsiveness

and re-configurability. In such distributed bio-inspired systems, the behaviour of each

entity follows simple few rules, but the overall emergent behaviour is very complex to

understand and to demonstrate. Therefore, the design and simulation of distributed

agent-based solutions, and particularly those exhibiting self-organizing, are usually a

hard task. Agent Based Modelling (ABM) tools simplifies this task by providing an

environment for programming, modelling and simulating agent-based solutions, aiming

to test and compare alternative model configurations. A deeply analysis of the existing

ABM tools was also performed aiming to select the platform to be used in this work.

Aiming to demonstrate the benefits of bio-inspired techniques for the industrial

automation domain, a production system was used as case study for the development of

a self-organizing agent-based system developed using the NetLogo tool.

Keywords: Bio-inspired, Self-organization, Automation, NetLogo

v

Resumo

Hoje em dia os mercados locais desapareceram e o mundo vive numa economia

global. Devido a esta realidade, cada companhia compete, virtualmente, com todas as

outras companhias do mundo. A acrescentar a isto, os mercados estão constantemente à

procura de produtos com maior qualidade a preços mais baixos e com um grande nível

de customização Também, os produtos tendem a ter um tempo curto de vida, fazendo

com que a procura seja mais intensa. Com este cenário, as companhias, para permanecer

competitivas, têm que se adaptar constantemente de acordo com as mudanças de

mercado, i.e., as companhias têm que exibir um alto grau de auto-organização e auto-

adaptação.

A biologia com os milhões de anos de evolução, pode oferecer inspiração para

desenvolver novos algoritmos, métodos e técnicas para resolver problemas complexos

reais. Como por exemplo, o comportamento das formigas e das abelhas inspiraram

investigadores na descoberta de soluções para resolver problemas complexos e

evolutivos de engenharia.

Esta dissertação tem como objectivo explorar o mundo da engenharia bio-inspirada.

Isto é feito através do estudo de algumas das soluções bio-inspiradas existentes e da

procura de soluções bio-inspiradas para resolver os problemas do dia-a-dia. Uma

atenção especial vai ser dada aos problemas de engenharia e particularmente aos

problemas do domínio da manufactura.

Os sistemas multi-agentes são um conceito que estão em linha com os princípios

bio-inspirados oferecendo uma abordagem nova para desenvolver soluções que exibam

robustez, flexibilidade, rapidez de resposta e reconfiguração. Nestes sistemas

distribuídos bio-inspirados, o comportamento de cada entidade segue um pequeno

conjunto de regras simples, mas o comportamento emergente global é muito complexo

de perceber e de demonstrar. Por isso, o desenho e simulação de soluções distribuídas

de agentes, e particularmente aqueles que exibem auto-organização, são normalmente

uma tarefa árdua. As ferramentas de Modelação Baseada de Agentes (MBA)

simplificam esta tarefa providenciando um ambiente para programar, modelar e simular,

com o objectivo de testar e comparar diferentes configurações do modelo. Uma análise

mais aprofundada das ferramentas MBA foi também efectuada tendo como objectivo

seleccionar a plataforma a usar neste trabalho.

vi

Com o objectivo de demonstrar os benefícios das técnicas bio-inspiradas para o

domínio da automação industrial, um sistema de produção foi usado como caso de

estudo para o desenvolvimento, usando a ferramenta NetLogo, de um sistema baseado

em agentes auto-organizado.

Palavras-chave: Bio-inspiração, Auto-organização, Automação, NetLogo

vii

Acronyms

ABM Agent Based Modelling

ACO Ant Colony Optimization

ADACOR ADAptive holonic Control aRchitecture for distributed manufacturing

systems

AIS Artificial Immune Systems

API Application Programming Interfaces

DAS Dynamic Assembly System

GA Genetic Algorithm

GUI Graphical User Interface

IDE Integrated Development Environment

MAS Multi Agent System

MLT Manufacturing Lead Time

NP Non-deterministic Polynomial-time hard

PSO Particle Swarm Optimization

RFID Radio Frequency IDentification

WIP Work In Process

viii

Contents

Dedication ... ii

Acknowledgements ... iii

Abstract .. iv

Resumo ... v

Acronyms ... vii

List of Figures ... x

List of Tables ... xi

1. Introduction .. 1

1.1 Motivation and Objectives ... 1

1.2 Dissertation organization ... 2

2. Bio-inspired Techniques, Algorithms and Methods ... 4

2.1 Swarm Intelligence .. 4

2.1.1 Biological Concept ... 5

2.1.2 Ant Colony Optimization ... 7

2.1.3 Particle Swarm Optimization ... 8

2.1.4 Bees Algorithm ... 9

2.2 Evolution and Self-organization .. 10

2.2.1 Biological Concepts .. 10

2.2.2 Genetic Algorithms .. 11

2.2.3 Stigmergy ... 12

2.3 Artificial Immune System .. 13

3. Survey of Applications of Bio-inspired Solutions .. 15

3.1 Existing Applications to solve Mathematical/Engineering Problems 15

3.2 Existing Applications to solve Manufacturing and Automation Problems 17

3.3 Challenges and Contribution Areas ... 19

ix

4. Simulations Tools to Support Bio-inspired Engineering 21

4.1 Review and Evaluation of Agent Based Modelling Tools 22

4.1.1 Repast ... 22

4.1.2 MASON (Multi Agent Simulation Of Neighborhood) 23

4.1.3 NetLogo .. 24

4.1.4 Swarm ... 25

4.1.5 ABM comparison ... 26

4.2 The NetLogo Modelling and Simulation Environment 27

5. Self-organizing Agent-based Model for an Automation System 30

5.1 Description of the Case Study ... 30

5.2 Implementation of the Agent-based Model using NetLogo 31

5.2.1 The Agents Attributes ... 32

5.2.2 Implementation of the Agents Behaviour ... 33

5.2.2.1 Random mode ... 34

5.2.2.2 T-invariant mode ... 35

5.2.2.3 Stigmergy mode .. 36

5.2.3 Implementation of the Graphical Aspects .. 37

5.2.4 Simulation Setup, Running and Global Behaviour 40

5.2.5 Implementation of the Statistical Procedures ... 42

6. Analysis of the Experimental Results ... 44

7. Conclusions .. 50

Bibliography ... 52

Attachments .. 72

x

List of Figures

Figure 1 - V formation shape .. 5

Figure 2 - Bird flocking .. 5

Figure 3 - Fish schooling (avoidance of predator) ... 6

Figure 4 – Bee waggle dance .. 7

Figure 5 – Indirect Communication Among Ants [Leitão, 2009b] 13

Figure 6 - RepastS with Eclipse IDE .. 23

Figure 7 - MASON simulation example .. 24

Figure 8 - NetLogo simulation example ... 25

Figure 9 - Swarm screenshot (source: [Johnson, 2010]) .. 26

Figure 10 – NetLogo User Interface environment.. 28

Figure 11 - NetLogo world coordinates .. 29

Figure 12 - FlexLink DAS 30 system (located at Schneider Electric GmbH in

Seligenstadt, Germany) .. 30

Figure 13 - Modular composition of the assembly system ... 31

Figure 14 - NetLogo interface for the agent-based model.. 32

Figure 15 – Pallet movement execution flowchart ... 34

Figure 16 - GUI of the developed application .. 38

Figure 17 - Method chooser ... 38

Figure 18 - Pallet creation parameters .. 39

Figure 19 - Machine parameters ... 39

Figure 20 - Malfunction settings .. 39

Figure 21 - Pheromones parameter adjustments .. 40

Figure 22 – The view of the system modeled in NetLogo ... 40

Figure 23 - Setup and Run buttons ... 41

Figure 24 - Results area .. 43

Figure 25 – Graphical results without breakdown.. 45

Figure 26 - Graphical results with breakdown at 300 t.u. .. 46

Figure 27 - Graphical results with breakdown at half of makespan 47

Figure 28 – Graphical evolution of WIP .. 48

xi

List of Tables

Table 1 - Summary of bio-inpired applications .. 16

Table 2 - Summary of bio-inspired applications to manufacturing domain 18

Table 3 - ABMs comparison .. 26

Table 4 – NetLogo encoding examples .. 29

Table 5 - Experimental results with breakdown at 300 t.u. .. 45

Table 6 – Experimental results with breakdown at half of the makespan 47

1

1. Introduction

The solutions for complex problems are usually found where are less expected,

being necessary to open our eyes and look for successful cases in our living days. In

biology and nature the systems are complex and adaptive, but the individual entities are

very simple and with very limited cognitive skills. In such systems, the system

behaviour is based on simple and adaptive individuals that cooperate with each other in

order achieve the whole objective. The biology ideas, mainly swarm intelligence and

self-organization, have been the source of inspiration for the development of several

techniques and methods to solve complex engineering problems. Problems like logistics

and traffic optimization, telecommunications networks, economic markets and

production systems have bio-inspired solutions [Leitão, 2009b]. Particularly, the

application of techniques inspired in biology can contribute to achieve manufacturing

systems with the desired characteristics of robustness, flexibility and re-organization.

With simple rules to coordinate the global behaviour, the required software to

develop agent-based solutions is shorter and simpler than the software required by the

centralized approaches, leading to easier development, debug and maintenance

[Parunak, 1996]. However, the development and debug of agent-based systems remain a

difficult task, especially when these distributed systems exhibit complex phenomena,

such as emergence and self-organization. Additionally, the simulation of these systems

at the design phase, allowing testing different control strategies, the tuning

configuration parameters and identifying mistakes and misunderstanding, brings

important benefits if they are done before the deployment into the practical operation.

1.1 Motivation and Objectives

The motivation of this work is to understand how bio-inspired techniques can be

used to solve complex engineering problems. For this purpose, several bio-inspired

techniques will be studied and existing applications will be surveyed, analysing the use

of different bio-inspired methods to different application domains. A particular attention

will be given to the manufacturing and automation fields, discussing the applicability of

such bio-inspired solutions to the different areas within the manufacturing domain.

2

In this work, several Agent Based Modelling (ABM) tools, which allows the

modelling and simulation of bio-inspired agent-based solutions, will be studied and

compared. Due to their nature, ABM tools are a powerful way to validate ideas allowing

the fast prototyping and proof-of-concept, i.e. the creation, simulation and/or validation

of the agents’ behaviour for a desired problem in an easy way.

In the perspective to demonstrate the potential of bio-inspired algorithms to offer

good alternative solutions, a production system case study will be used to develop an

agent-based control system that exhibits self-organization capabilities. For this purpose,

it will be used the NetLogo platform to model and simulate the system behaviour using

different control algorithms running under different scenarios.

1.2 Dissertation organization

This document is organized in seven chapters, starting with the present chapter

where the contextualization, problem and objectives were presented.

The second chapter, entitled ―Bio-inspired Techniques, Algorithms and Methods‖,

presents an overview of some nature behaviours that are mimic and makes the bridge to

the implementation of the bio-inspired algorithms.

The chapter 3, entitled ―Survey of Applications of Bio-inspired Solutions‖, surveys

the applications of the bio-inspired techniques to solve daily and engineering problems

and in particular complex problems found in automation/manufacturing world.

The fourth chapter, entitled ―Simulations Tools to Support Bio-inspired

Engineering‖, discusses the use of Agent Based Modelling tools, analyzing and

comparing several existing tools and detailing the NetLogo environment that will be

used in this work to develop the self-organized agent-based solution.

The chapter 5, entitled ―Self-organizing Agent-based Model for an Automation

System‖, describes the case study selected to illustrate the application of bio-inspired

techniques in automation systems, and provides details about the implementation of the

agent-based model using the NetLogo environment.

In chapter 6, entitled ―Analysis of the Experimental Results‖, the developed agent-

based model is simulated under several scenarios, and the experimental results are

analyzed allowing to reach important conclusions about the importance of these bio-

3

inspired techniques to improve the engineering of modular and reconfigurable

automation solutions.

Finally, the last chapter rounds up the document with the conclusions and points

out some future work.

4

2. Bio-inspired Techniques, Algorithms and Methods

Planet Earth was born about 4.6 Billion years ago and carries with that the same

amount of time of life creation, refining and evolution. Because of that, nature has

millions of species and inherent to that, nature has a lot of powerful mechanisms to

offer, to handle emergent and evolvable environments [Leitão, 2009b]. And the beauty

of this evolution is that it comes with the particularity that the species have simple

ruling mechanisms that govern them and even so very complex behaviours can emerge.

Other situation observed in nature and that can be very useful to solve a large

number of problems is that some species have a well defined distribution of jobs and

each individual knows what to do (i.e. division of labour). The study of these species

can give some insights to problem solving

Humans are also studying certain parts of the human body and are trying to

understand their behaviour and their applicability in real life problem solving. One

example is the human Immune System that has given birth to some bio-inspired

algorithms [Castro and Timmis, 2002]. Other example can be found on the functioning

of the human brain that also gave origin to the Neural Networks [Fausett, 1994].

This chapter gives a generalized view of some mechanisms found in biology that

can be copied to solve complex engineering problems, and introduces some bio-inspired

techniques, algorithms and methods. This chapter doesn’t intent to give an exhaustive

description of all existent bio-inspired techniques, but intends to make a brief overview

of the most known and used, mainly the swarm intelligence and self-organization.

2.1 Swarm Intelligence

Swarm Intelligence is a concept found in colonies of insects that can be defined as

―the emergent collective intelligence of groups of simple and single entities‖ [Bonabeau

et al., 1999]. Swarm intelligence offers an alternative way of designing intelligent,

complex systems. In these complex systems the traditional centralized control is

replaced by a distributed functioning where the interactions between individuals leads to

the emergence of "intelligent" global behaviour unknown to them [Bonabeau et al.,

1999]. Some examples of swarm intelligence include ant colonies, bird flocking, fish

shoaling and bacterial growth [Miller, 2007].

5

2.1.1 Biological Concept

In nature and biology, complex systems are built upon entities that exhibit simple

behaviours, made of a small set of simple rules, and having reduced cognitive abilities.

In fact the behaviour of the whole emerges from the contribution and the interaction of

every single entity, i.e., the collective behaviour. These complex systems don’t have a

pre-defined master plan or one central entity. Instead of that, the behaviour of the

system is decentralized. The behaviour of the whole is greater and much more complex

than the sum of the single behaviours [Holland, 1999]. A well-known example is the

movement of group of birds, where individuals coordinate their movements according

to the movement of the others (e.g. the typical V formation).

Figure 1 - V formation shape

Other examples of species that exhibit these characteristics are ants and honey bees.

It is common sense knowledge that this two species are not very smart, but their

colonies are, and concretely the emergent behaviours of a society of ants or bees are

very surprisingly complex [Miller, 2007].

Figure 2 - Bird flocking

Simple mechanisms are used to coordinate the individual behaviours of these

entities, namely feedback mechanisms. Feedback mechanisms use positive and negative

6

indications to regulate the system behaviour. i) in case of positive feedback, the system

responds to the perturbation in the same direction as the change, towards amplification,

and ii) in case of negative feedback, the system responds to the perturbation in the

opposite direction, towards stabilization. Combining positive and negative feedbacks,

the system can be maintained under control but pushed to its limits [Camazine et al.,

2001]. In fish nesting, the coordination process uses a simple rule “I nest where other

similar individuals nest unless there are too much fishes”, where the first part is related

to the positive feedback, allowing to increase the aggregation of fishes at the same

place, and the second part is related to the negative feedback, avoiding a great

concentration of fishes at the same place (see Figure 3).

Figure 3 - Fish schooling (avoidance of predator)

Other similar mechanisms, found in other areas of science, are the market laws

[Márkus et al., 1996] and potential (attraction) fields [Vaario and Ueda, 1996], which

use the concept of regulating expectations of individuals presenting conflict of interests:

e.g. some entities have operations to be executed and others have skills to execute them.

In these colonies, each individual entity only possesses a very limited view of the

surrounding world, but a larger view is needed and because of this larger view a

communication mechanism must be achieved. Instead of using direct communication, it

is usual the use of indirect communication, mainly through the environment. In case of

ants, the communication is achieved by using a spreading odour chemical substance

known as pheromone. This indirect communication mechanism is achieved by the

deposit of pheromones in the paths to food sites. In the presence of a pheromone trail,

other ants know that they are in presence of a path to a food site. Each ant reinforces the

pheromone trail telling this way that the path is a valid one.

7

Pheromones in the nature suffer from a natural process of reduction of intensity.

This odour reduction is as higher as the time elapsed from the nest to the food source,

i.e. as longer is the travelled distance. If several ants make different trips to the same

food source, several paths to the same solution will appear. The optimal solution will be

the shortest one, i.e. that whose pheromones have a more intense odour. In fact, the

double bridge experience, conducted by [Deneubourg et al., 1990] states that, for

several experiences, on the presence of two equal paths from a nest to a food source

each path is chosen 50% of the times and that in each experience ants tend to chose only

one path. If by other hand one path is significantly bigger than the other, ants chose the

shortest one [Goss et al., 1989].

Other illustrative example of swarm intelligence is related to the waggle dance used

by honey bees to exchange information about the direction and distance to patches of

flowers yielding nectar and pollen, Figure 4.

Figure 4 – Bee waggle dance

In the waggle dance the angle from the sun indicates the direction and the duration

of the waggle part of the dance represents the distance to the patch [Frisch, 1967].

2.1.2 Ant Colony Optimization

Ant colony optimization (ACO) is a meta-heuristic algorithm that is inspired on the

behaviour of food foraging of ants. It was first introduced in 1992 by Marco Dorigo in

his PhD thesis [Dorigo, 1992]. The inspiration on the algorithm’s development came

from the fact that real ants have the ability to find the shortest path from source food to

the nest and also the flexibility to find new ones when an obstacle arises on the previous

path [Beckers et al., 1992].

8

Basically, the ants (or software agents) travel over a weighted graph in a random

manner, depositing on the way a trail (pheromones). After a period of time, when the

pheromone level is considerable, the ants leave to travel in a random manner and start to

follow the trail with the most intense level of pheromone.

In a generic view, the algorithm can be implemented following the next adapted

pseudo code from [Dorigo, 2007].

Set parameters, initialize pheromone trails

While conditions not met do

ConstructAntSolutions

DaemonActions {optional}

UpdatePheromones

End While

The ACO algorithm and its variations have been successfully applied to solve NP-

hard and dynamic NP-hard problems [Dorigo and Stützle, 2009]. Dynamic NP-hard

problems have an increased degree of difficulty which is related to the fact that

variables can be time-varying stochastic variables, i.e., change over time. A short list of

applications, which will be more detailed in chapter 3, includes routing, assignment,

scheduling, machine learning and bioinformatics problems.

2.1.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm inspired on the behaviour of

fish schooling and bird flocking. The algorithm is a population based stochastic

optimization technique that was first introduced by [Eberhart and Kennedy, 1995].

The system is initialized with a population of random solutions and searches for

the optimal one by updating generations. The potential solutions (or particles) fly

through the problem space by following the current optimum particles. As the swarm

iterates, the fitness of the global best solution is improved (decreases for minimization

problem).

A pseudo code of the algorithms found in [Hu, 2010] is the following.

For each particle

Initialize the particle

End For

Do

9

For each particle

Calculate fitness value

If the fitness value is better than the best fitness

value (pBest) in history

Set current value as the new pBest

End For

Choose the particle with the best fitness value of all the

particles as the gBest

For each particle

Calculate particle velocity

Update particle position

End For

While maximum iterations or minimum error criteria is not

attained

The list of applications, which will be more detailed in chapter 3, includes areas

related to image and video, biomedical, communication networks, electronics, power

systems and robotics.

2.1.4 Bees Algorithm

In a food foraging situation, honey bees start by sending scout bees in the search

of good flower patches. After they return to the hive, and if a good food source was

found, scout bees inform others by doing a dance, know as waggle dance [Bonabeau

et al., 1999, Frisch, 1967]. This waggle dance provides the following information: the

direction, the distance and food quality of the site. After this waggle dance, bees follow

the scout bee to the food site. While harvesting, bees measure the amount of food left, to

see if that particular food site is still valid or not, being either way advertised in hive

with the waggle dance.

This behaviour was mimic to an algorithm by Prof. D.T. Pham and his colleagues

[Pham et al., 2005] and has, in its basic form, the following pseudo code:

Initialise population with random solutions.

Evaluate fitness of the population.

While (stopping criterion not met)

Select sites for neighbourhood search.

Recruit bees for selected sites (more bees for best e

sites) and evaluate fitnesses.

Select the fittest bee from each patch.

Assign remaining bees to search randomly and evaluate their

fitnesses.

End While.

10

The list of applications, which will be more detailed in chapter 3, includes

scheduling, data clustering, design and manufacturing.

2.2 Evolution and Self-organization

Species tend to adapt to better suit their environment. Changes occur from

generation to generation that tend to eliminate their limitations and even with very small

changes over time they produce major results.

This chapter will give an insight to algorithms that have inherited characteristics of

evolution and of self-organization.

2.2.1 Biological Concepts

The Darwinian theory of evolution is a form for the adaptation to the dynamic

evolution of the environment. According to Darwin, nature is in a state of permanent

transformation, in which the species change from generation to generation, evolving to

better adapt to their environment. Darwin saw the evolution as a result of selection by

the environment acting on a population of organisms competing for resources. In this

evolution process, the selection is natural in the sense that is purely spontaneous without

a pre-defined plan.

Another approach to evolution is the concept of self-organization. Several distinct

definitions, but not necessarily contradictory, are found in the literature [Bousbia and

D. Trentesaux, 2002, Massotte, 1995, Vaario and Ueda, 1996], but a possible definition

to be used in this work can be: ―The ability of an entity/system to adapt dynamically its

behaviour to external changing conditions without external intervention” [Leitao,

2008].

Self-organization occurs when species without a predefined plan or one entity in

charge adapt to external changes. One example of the usage of self-organization

properties is the mound building and reshape by termites. During building, termites use

signs to inform others of what to do. In the same manner, if the external conditions

change, e.g. the direction of wind, termites re-arrange their mound in order to obtain the

desired wind entry.

11

Self-organizing systems don’t have a rigid and estimated organization, evolving

through a non-linear and dynamic process with a constant optimization of the

individuals’ behaviour.

The utilization of self-organization allows the achievement of self-* properties,

namely:

- Self-configuration, that is the capacity to dynamically adapt to when conditions

change, by modifying its own configuration allowing the addition/removal of

resources on the fly (i.e. without the need to stop, re-program and start the other

components) and guarantying service disruption.

- Self-optimization, that is the capacity to adjust itself in a pro-active way to

respond to environmental stimulations.

- Self-healing, that is the capacity to sense deviations from non optimal conditions

and take proactive actions to re-establish them and avoid service disruptions.

This also includes, in a more advanced view, the ability to self-repair.

Several examples of self-organization can be found in nature, such as stigmergy

and thermodynamics (decrease of entropy) and autopoiesis [Leitão, 2009b]

2.2.2 Genetic Algorithms

The Genetic Algorithms (GA) is based on a population of abstract representations

of candidate solutions to an optimization problem that evolves toward better solutions.

GA applies evolution operators, namely inheritance, mutation, selection, and crossover.

Like the others algorithms (e.g. ACO and PSO) there are different variations of GA

but the basic algorithm could have the following form: a population is created randomly

with a group of individuals. Then, these individuals are evaluated by an evaluation

function provided by the programmer. This evaluation function acts like a filter to select

the most fittest to reproduce. The selection is based on the fitness that each individual

gets, which is done for two individuals. After the creation of one or more offspring the

individuals are randomly mutated. This cycle continues until a good solution is found or

a maximum number of generations are reached. The pseudo code of this implementation

found at [Skinner, 2010] is reproduced here.

For all members of population

 sum += fitness of this individual

12

End for

For all members of population

 probability = sum of probabilities + (fitness / sum)

 sum of probabilities += probability

End for

Loop until new population is full

 Do this twice

 number = Random between 0 and 1

 For all members of population

 If number > probability but less than next

probability

 Then you have been selected

 End for

 End

 Create offspring

End loop

GA areas of application, to be more detailed in chapter 3, include astronomy and

astrophysics, electrical engineering, robotics, routing and scheduling and systems

engineering.

2.2.3 Stigmergy

Stigmergy is a form of self-organization, being the term Stigmergy first introduced

in 1959 by the French biologist Pierre-Paul Grassé [Grassé., 1959]. The term derives

from the Greek words stigma which means mark or sign and the word ergon which

means work or action.

Stigmergy can be described as the deposition of signs in the environment that other

entities sense to achieve/make a determined action. This indirect communication

mechanism can be observed in the behaviour of social insects like termites or ants. For

example, in social insects’ behaviour, the phenomenon involving an indirect

coordination between entities, where the trace left in the environment stimulates the

execution of a subsequent action, by the same or different entity is known as stigmergy.

Figure 5 exemplifies the stigmergy mechanism. The left ant deposit the pheromone

(i.e. a chemical substance that has a distinctive odour) in the ground and the following

ant while walking senses that odour being guided in that way.

13

Figure 5 – Indirect Communication Among Ants [Leitão, 2009b]

According to [Parunak, 2005] stigmergic mechanisms have a good number of

attractive features for military propose. These features also could be good in other

applications fields and they are: simplicity, scalability, robustness and environmental

integration.

Stigmergic based algorithms have several applications. Among them are military,

robotics, multi-agent systems and communication in computer networks.

2.3 Artificial Immune System

Artificial Immune Systems (AIS) has its roots on the early work of [Farmer et al.,

1986], and mimics the principles and processes found on the vertebrate immune system.

Typically these algorithms use the characteristics of memory and learning that are

exhibited.

There are several variations of AIS, but the most usual are the Negative Selection,

Clonal Selection and Immune Networks [Timmis et al., 2008]. As an example, the

pseudo code of a basic Negative Selection algorithm is presented. The algorithm is

inspired by the main mechanism in the thymus that produces a set of mature T-cells.

input : Sseen = set of seen known self elements

output : D = set of generated detectors

Begin

Repeat

Randomly generate potential detectors and place them in a

set P

Determine the affinity of each member of P with each member

of the self set Sseen

If at least one element in S recognizes a detector in P

according to a recognition threshold,

pheromone

flow field gradientflow field gradient

Perception

Action

(deposit/

reinforcement)

Action

(deposit/

reinforcement)

Perception

14

Then the detector is rejected, otherwise it is added

to the set of available detectors D

Until Stopping criteria has been met

End

Some of the main application areas for AIS are: Clustering/classification, anomaly

detection, robotics, scheduling, fault diagnosis and numeric function optimisation.

15

3. Survey of Applications of Bio-inspired Solutions

Several research groups have been working in copying/adapting the previous

described biological adaptive behaviour to solve complex engineering and mathematical

problems. In this chapter, the application of bio-inspired techniques and methods in

engineering is briefly surveyed. A special attention will be made to their applicability to

the manufacturing domain.

3.1 Existing Applications to solve Mathematical/Engineering Problems

The behaviour found in ants and particularly the ACO algorithm has been applied

in a wide of problem domains.

The main area of application of the behaviour of ants is probably the planning and

scheduling and on this area and in a real world context, Air Liquide uses an ant-based

strategy to manage the truck routes for delivering industrial and medical gases [Miller,

2007] and also [Bell and McMullen, 2004] uses it to optimize logistics vehicle routing.

Another real life example is on the utilization of an ant behaviour model to improve

airlines scheduling in the Sky Harbor International Airport in Phoenix [Miller, 2007].

The ACO technique is used to determine the optimal values for the components in

an electronics power circuit [Zhang et al., 2008], and to achieve an optimal image

thresholding, separating the object from its background [Malisia and Tizhoosh, 2006].

A solution based on the ants behaviour is applied to update dynamically and in adaptive

manner the routing tables in telecommunications [Di Caro and Dorigo, 1998]. Amongst

other applications are the reduction of energy consumption in remote sensor networks

[Camilo et al., 2006]), the cooperation among robots (swarm robots) to achieve a

complex task [Nouyan et al., 2009]. This method is also being applied in the army for

the dynamic re-planning of Uninhabited Aerial Vehicles [Duan et al., 2009] and in the

financial markets for the prediction of the price share process [Fang and Bai, 2009].

Another bio-inspired technique is the PSO. Briefly, PSO is being applied to solve

problems that go from social to medical and from mathematical to engineering fields.

As examples of such applications are the parameters optimization in the design of PID

controllers [Gaing, 2004], the credit risk assessment in financial area [Li and Pi, 2009],

in the design of evolvable hardware [Peña et al., 2006], in vehicle routing with

simultaneous pickup and delivery [Ai and Kachitvichyanukul, 2009], and to optimize

16

parameters on spatiotemporal retina models [Niu et al., 2007]. A more extensive

analysis and detailed classification of applications of PSO can be found in [Poli, 2007].

Other examples of application of swarm intelligence principles are in forecasting

energy demands in Turkey [Miller, 2007] and in traffic and transportation problems

[Teodorovic, 2008]. A more widespread example of the application of the swarm

intelligence principles is Wikipedia [Leitão, 2009b] where a huge number of people

contribute for the constant evolution of the encyclopaedia with their individual

knowledge; no single person knows everything but collectively it is possible to know far

more than it was expected to know.

GA is being successfully applied in different application domains, notably in power

distribution [Ramirez-Rosado and Bernal-Agustin, 1998], in image segmentation [Peng

et al., 2000] and in the military field with route scheduling and selection for land moves

[Montana et al., 1999].

Table 1 summarizes the survey of applying bio-inspiration techniques to different

domains.

Table 1 - Summary of bio-inpired applications

Problem domain
Existing ACO inspired

solutions

Existing PSO

inspired solutions

Existing GA

inspired solutions

Communication

Networks

[Di Caro and Dorigo,

1998] [Zhao et al., 2009]

[Sim and Sun, 2002]

[Dongming et al.,

2008] [Li et al.,

2008]

[Lima et al., 2007]

[Lee et al., 1997]

Control

[Van Ast et al., 2009]

[Boubertakh et al., 2009]

[Zhang and hai Wang,

2008]

[Gaing, 2004]

[Jalilvand et al.,

2008] [Hu et al.,

2005]

[Wai and Su, 2006]

[Toderici et al.,

2010] [Bae et al.,

2001]

Financial

[Fang and Bai, 2009]

[Yuan and Zou, 2009]

[Hong et al., 2007]

[Li and Pi, 2009]

[Majhi et al., 2008]

[Chen et al., 2009]

[Badawy et al.,

2005]

Hardware design

[Zhang et al., 2008]

[Abd-El-Barr et al.,

2003] [Sethuram and

Parashar, 2006]

[Peña et al., 2006]

[Goudos et al.,

2008] [Ren and

Cheng, 2009]

[Tsai and Chou,

2006] [Regue

et al., 2001]

Image Processing

[Malisia and Tizhoosh,

2006] [Tian et al., 2008]

[Wang et al., 2005]

[Chen et al., 2009]

[Chandramouli and

Izquierdo, 2006]

[Ma et al., 2008]

[Peng et al., 2000]

[Katayama et al.,

2006]

Medical [Meng, 2006] [Lee et al.,

2009] [Logeswari and

[Niu et al., 2007]

[Meng, 2006]

[Maulik, 2009]

[Das and

17

Karnan, 2010] Bhattacharya,

2009] [Tohka

et al., 2007]

Military

[Duan et al., 2009]

[Cheng et al., 2009]

[Munirajan et al., 2004]

[Matlock et al.,

2009] [Cui and

Potok, 2007]

[Thangaraj et al.,

2009]

[Moore and

Sinclair, 1999]

[Montana et al.,

1999] [Liu et al.,

2005]

Power Energy

[Lee and Vlachogiannis,

2005] [Liu et al., 2009]

[Colson et al., 2009]

[Liu and Ge, 2008]

[Zhang et al.,

2008] [Leeton

et al., 2010]

[Ramirez-Rosado

and Bernal-

Agustin, 1998]

Robotics [Nouyan et al., 2009]

[Zhengxiong and

Xinsheng, 2010]

[Tohka et al.,

2007] [Karlra and

Prakash, 2003]

[Pessin et al.,

2009] [Albert

et al., 2009]

Sensors / Sensor

networks

[Camilo et al., 2006]

[Muraleedharan and

Osadciw, 2009]

[Aziz et al., 2007]

[Tewolde et al.,

2008] [Li and Lei,

2009]

[Jiang et al., 2009]

[Brown and

McShane, 2004]

[Khanna et al.,

2006]

Vehicle Routing /

Traffic Control

[Miller, 2007] [Bell and

McMullen, 2004]

[Ai and

Kachitvichyanukul,

2009] [Wu and

Tan, 2009]

[Tong et al., 2004]

[Jun, 2009]

[Tunjongsirigul

and Pongchairerks,

2010]

3.2 Existing Applications to solve Manufacturing and Automation Problems

Manufacturing and automation domains cover a wide range of application domains

presenting different requirements and constraints. From the previous examples it is clear

that the existing bio-inspired solutions focus high-levels of control.

In manufacturing domain, the ACO algorithm or the ants behaviour were used in

machine layouts optimization [Corry and Kozan, 2004], in shop scheduling [Blum and

Sampels, 2004], and in coordination of adaptive manufacturing control systems [Hadeli

et al., 2004]. In a real world application a solution based in the ACO algorithm is used

on the scheduling of continuous casting aluminium in a factory located in Quebec

[Gravel et al., 2002]

18

Algorithms based on the behaviour of honey bees has also inspired researchers to

solve job scheduling problems [Pham et al., 2007] and to optimize the manufacturing

layout formation [Pham et al., 2007].

PSO has been applied to detect machinery faults [Samanta and Nataraj, 2009], for

job shop scheduling [Xia and Wu, 2005] and optimisation of manufacturing cells

layouts and allocation of transport robots [Yamada et al., 2003].

AIS has also inspired the resolution of manufacturing problem like scheduling

[Hong, 2009] [Mori et al., 1998] and also, for example, to layout optimization

[Satheesh Kumar et al., 2009].

Inspiration drawn of self-organization has also being used to solve complex

adaptive problems, namely in holonic manufacturing control systems [Leitão and

Restivo, 2006], in the dynamic resource allocation of a factory plant of Daimler

Chrysler [Bussmann and Sieverding, 2001], in the design and implementation of self-

organized and self-assembled biologically inspired robots [Moudada et al., 2004] and in

manufacturing scheduling [Thamarajah, 1998].

Bio-inspiration combined with holonic concepts is being used to design intelligent

and adaptive manufacturing control systems (see [Leitão, 2009a]). Also in robotics,

such solutions are used to design bio-inspired morphologies, sensors and actuators, and

control architectures.

GA has also a word to say in this area. See for example its application in a job-shop

scheduling problem [Qiu et al., 2009] and to determine optimized layouts [Wang et al.,

2008].

Table 2 summarizes the application of bio-inspiration techniques to different

domains.

Table 2 - Summary of bio-inspired applications to manufacturing domain

Problem domain Existing ACO inspired

solutions

Existing PSO

inspired solutions

Existing GA

inspired solutions

Assembly/disassembly

[Shan et al., 2007]

[Sharma et al., 2009] [Lu

et al., 2008]

[Lv and Lu, 2009]

[Dong et al., 2007]

[Lazzerini et al.,

1999] [Gao and

Chen, 2008]

Layout Optimization

[Jain and Sharma, 2005]

[Sun and Teng, 2002]

[Chen and Rogers, 2009]

[Ning et al., 2004]

[Ohmori et al.,

2010] [Lei et al.,

2003]

[Wang et al., 2008]

[Kulkarni and

Shanker, 2007]

19

Scheduling

[Arnaout et al., 2008]

[Chen et al., 2008] [Xu

et al., 2009]

[Shi et al., 2009]

[Zhang and Wu,

2008]

[Qiu et al., 2009]

[Aggoune et al.,

2001]

Supply chain

[Suva et al., 2004] [Sun

et al., 2008] [Caldeira

et al., 2007]

[Sinha et al., 2009]

[Qi et al., 2008]

[Elmahi et al.,

2004] [Kaijun

et al., 2010]

[Jianhua and

Xianfeng, 2010]

3.3 Challenges and Contribution Areas

In spite of the promising perspective that the bio-inspired principles can bring to

engineering systems and particularly to the manufacturing domain, their adoption

remains less effective than expected, mainly in industrial solutions. In fact, a major

problem is the demand of industry for proven technology. The companies don’t want to

be the first ones to try these methods in their production processes. This requires the

maturity of the technology and the proofs of its real applicability and merits.

Additionally, industry has afraid of the usage of emergent terminology usually

associated to these new technologies, like ontologies, self-organization, emergence,

distributed thinking and learning [Leitão, 2009a].

The challenge faced to the engineer that is developing/researching bio-inspired

solutions for manufacturing is to convince people of the real advantages of applying

distributed behaviour based on simple, effective and adaptive entities regulated by

simple coordination mechanisms as it occurs in nature. For this purpose, it is important

the development of demonstrators and real case studies to be used as the proof of

concept.

With this in mind, these bio-inspired techniques and methods, and especially those

supporting swarm intelligence and self-organization, could have a great impact to

design more intelligent, modular, flexible and adaptive systems in the following

manufacturing areas:

- Supply chains and virtual organizations, which requires the frequent re-

organization of partners aiming to achieve optimization and responsiveness to

unexpected situations.

- Shop floor (factory) layout, where the optimization of the shop floor layout is

crucial to achieve a minimization of transport operations; additionally, it is also

20

important where the manufacturing resources present in the shop floor are

movable, i.e. the producer and transporter resources move physically in order to

minimize the transportation distances.

- Product demand, where the manufacturing system re-organizes itself in order to

adapt to the changes in the product demand, increasing or reducing the number

of manufacturing resources, or modifying their capabilities, based on the

forecasted production demands.

- Planning and scheduling, where the goal is to find optimized planning and

scheduling plans taking into consideration the product demands and the

capabilities of the shop floor resources.

- Adaptive control, where the goal is to find out an adaptive and dynamic

production control strategy based in the dynamic and on-line schedule, adapted

in case of occurrence of unexpected disturbances.

- Predictive maintenance, where the prediction of machinery failures is crucial to

support disturbances and malfunctions contributing for an adaptive production

system.

- Adaptive processes and equipments, where the development of new sensors,

actuators and controllers will contribute to design and implement more adaptive

manufacturing equipments.

Note that such solutions may be as more useful as more unpredictable will be the

environment where they run. Also, bio-inspired concepts are more suited, at least for

yet, to a higher level of control since they have lower requirements of real time

implementation.

21

4. Simulations Tools to Support Bio-inspired Engineering

An agent is an entity that has built upon a set of behaviour rules exhibiting some

properties, such as autonomy and cooperation. Each agent has a local view of the

surrounding world (i.e. it doesn’t have a global knowledge) and a decision cannot be

achieved by a simple agent. Each agent is autonomous but can, if necessary,

communicate with other agents and in this way, for example, share and/or retrieve

information.

Multi Agent Systems (MAS) is a paradigm aligned with the bio-inspiration

theories, comprising a community of agents with intelligence and behaviour emerging

from the interaction between them. Agent-based solutions are suitable approaches to

address the new requirements of flexibility, re-configurability and modularity.

According to [Castle and Crooks, 2006] an agent-based approach also have advantages

over traditional techniques, such as centralized and top-down approaches, related with

caption of the emergent phenomena, from the flexibility and ability found in natural

environments.

As stated before, in such distributed bio-inspired system, the behaviour of each

entity follows simple few rules, but the overall emergent behaviour is very complex to

understand and to demonstrate. Therefore, the design, test and simulation of distributed

agent-based approaches, and particularly those exhibiting self-organizing and self-

adaptive properties, are usually a hard task.

The use of computational platforms that simplifies these tasks and ensures a

framework to simulate/validate strategies during the design phase assumes a crucial

issue. For this purpose, Agent Based Modelling (ABM) tools provide an environment

for programming, modelling and simulating agent-based solutions, aiming to test and

compare alternative model configurations (e.g. alternative rules for individual

behaviours) by reproducing a variety of patterns observed in the real system. The idea is

to verify the correctness of the agent-based model at the design phase, correcting the

identified mistakes and misunderstandings before its deployment into practical

operation, using a set of richness scenarios. The use of such tools is very useful in the

context of being less time consuming than having to write a program from scratch

[Tobias and Hofmann, 2004].

22

4.1 Review and Evaluation of Agent Based Modelling Tools

A set of modelling and simulation environments are currently available for the

simulation/validation of agent-based models exhibiting complex behaviour, namely

MASON (http://cs.gmu.edu/~eclab/projects/mason/), Swarm (http://www.swarm.org/),

NetLogo (http://ccl.northwestern.edu/netlogo/) and Repast

(http://repast.sourceforge.net/). Several surveys reviewing and comparing well-known

and widely used agent-based modelling and simulation platforms are available in the

literature (see for example [Railsback et al., 2006] and [Allan, 2009]).

The goal in this work is not to evaluate each one of the existent ABM, but instead

to make an overview based on studies already conducted and in the most popular

platforms. Due to the open source policy of almost of the above ABMs (with the

exception of the NetLogo) a more steady development is expected, having in

consideration that all the community could make a contribution.

Agent development frameworks (e.g. JADE or JACK) aim to provide a platform to

simplify the implementation of multi-agent systems, supporting also the debugging and

deployment of the developed agent-based solutions. The main goal of this kind of tools

is the development and deployment to real environment of agent-based systems, which

differs from the primary objective ABM tools that aims to model and simulate agent-

based system behaviour.

Mathematical systems (e.g. Matlab) can also be used to simulate multi-agent

systems. These systems have an enormous drawback that is the need to build agent and

their behaviour from the scratch. One big advantage is the possibility to use the almost

endless mathematical potentialities of these tools. Other advantage, namely in Matlab, is

the ability to use the simulated/validated code and deploy it to hardware.

4.1.1 Repast

Repast (Recursive Porous Agent Simulation Toolkit) was firstly developed at

University of Chicago but is now maintained by the Argonne National Laboratory and

managed by the Repast Organization for Architecture and Development (ROAD).

Repast had 3 languages of implementation: Python (RepastPy), Java (RepastJ) and

.NET (Repast.net): These 3 approaches have reached maturity and are not being

developed but are still maintained [Castle and Crooks, 2006]. Now all these have been

23

superseded by the Repast Symphony (RepastS). Figure 6 gives an insight of RepastS

integration with Eclipse IDE.

Figure 6 - RepastS with Eclipse IDE

RepastS has the advantage of being integrated into a well know IDE like Eclipse. It

has a visual model development, visual model execution, automated database

connectivity, automated output logging and results visualization [Allan, 2009].

Other advantage of RepastS is the possibility of integration with the mathematical

tool Matlab.

4.1.2 MASON (Multi Agent Simulation Of Neighborhood)

MASON is being developed by the George Mason University’s Computer Science

Department and the George Mason University Center for Social Complexity. MASON

is maybe the ABM with less maturity. MASON has been developed as an alternative to

Repast and has the main goals of fast simulations and a large number of agents over a

large number of iterations [Luke et al., 2005] and the reproducibility across hardware

[Allan, 2009].

Regardless that being developed to maximize simulation speed and be an

alternative to Repast it still is slower than this one in some simulations [Railsback et al.,

2006]. Other disadvantage is the lack of a good GUI and also has the drawbacks of good

24

literature and a small group of users. One big advantage of MASON is the ability to

stop simulations, copy data and restart the simulation in other machine [Allan, 2009].

Figure 7 shows a screenshot of an ant food foraging simulation running on MASON (as

part of the package downloaded from [MASON, 2010]).

Figure 7 - MASON simulation example

Also according to [Berryman, 2008], MASON should be used when simulation

speed and/or sophisticated batch runs are a required.

4.1.3 NetLogo

NetLogo comes from the ―Network Logo‖ and has heritage the values of Logo

programming language, developed in the 1960s by Seymour Papert. The assumption

behind Logo is the ease of use (remember that the main audience for Logo were the

children), but that doesn’t mean that NetLogo is to be put apart in the world of ABM. In

fact, because of the low knowledge of programming required, NetLogo is an excellent

tool for starters and for the academic users.

The fantastic documentation, the examples available in the NetLogo library and the

good users group feedback are also positive points. On favour is also the possibility of

functionality extension through the use of API.

Some downsides of NetLogo are the simulation speed to a great number of agents

and for code organization the fact that the code must be in a single file. Also while

debugging it lacks a stepwise debugger.

The following figure is a screenshot of the behaviour of ant food foraging in the

NetLogo environment (as part of the Models Library from [Wilensky, 1999])

25

Figure 8 - NetLogo simulation example

According to [Railsback et al., 2006] NetLogo is a good choice if the model to

build meets the paradigm of short-term, local interactions in a restricted space and not to

extremely complex or if the model is to be implemented in lower-level platforms,

because of the ease to use and fast programming.

4.1.4 Swarm

The Swarm platform was first developed in 1994 by Chris Langton at the Santa Fe

Institute. Nowadays, is still being developed by a non-profit organization called Swarm

development Group also based in Santa Fe.

Being an early starter, Swarm was build before the Java language be a reference.

Therefore, the need of a programming that was less type consuming, like the one made

in C++, was an issue and the developers opted by the Objective-C programming

language. Meanwhile, a Java library was developed to simplify the use of Swarm and

the next release will support Java Script end Scheme [Allan, 2009]. Figure 9 is a

screenshot of an Artificial Stock Market model.

26

Figure 9 - Swarm screenshot (source: [Johnson, 2010])

According to [Allan, 2009], Swarm is still the most powerful and flexible

simulation platform, but has a drawback that is the need of previous knowledge of Java

or Objective-C programming language.

4.1.5 ABM comparison

Since currently several ABMs are available, a good choice has to be made taking

into account several parameters, like the objective of the simulation, programming skills

or the Graphical User Interface (GUI) facilities. The next table summarizes the studied

ABMs according to some criteria [Barbosa and Leitão, 2010].

Table 3 - ABMs comparison

Name Mason NetLogo Swarm Repast

Availability (free) yes yes yes yes

Maturity - O + O

Programming effort - + 0 -

Change of properties - O - +

User interface - + - +

Simulation speed + O O +

Documentation + + O O

Legend: + Good; O Fair; - Poor

27

Analyzing the data in the Table 3, it is possible to conclude that the majority of

existing platforms presents general weaknesses in terms of maturity, lack of support

documentation and of statistical tools, and they will benefit from the integration with an

integrated development environment (IDE), such as Eclipse (note that RepastS is

already embedded in the Eclipse IDE). It is also possible to conclude that none of them

is perfect, i.e. each one has good and weak points. For example, NetLogo is very good

for the newcomers for its ease of programming but has some deficiencies like for

example the simulation speed and practical limitations with the number of agents being

executed. Some benefits of RepastS regarding the Swarm and MASON approach is the

possibility of graphical construction of the model or parts of it. Regarding the GUI,

Netlogo has a good, native, GUI and RepastS is built in Eclipse. Swarm and MASON

being frameworks don’t have a GUI.

These platforms are being used to simulate agent-based models for different

application domains, such as economics, chemical, social behaviour and logistics. An

interesting example in the manufacturing domain, described in [Sallez et al., 2009], is

the use of the NetLogo platform to simulate the dynamic determination of the best path

to route the products in situations characterized by the occurrence of disturbances.

In conclusion the choice of the correct ABM depends of the task to be performed

and the skills of the person who will make that task. Since the experience of such

programming skill is not very strong and taking into account the requirements specified,

the NetLogo is more than well suited to be used in this work and therefore is the chosen

tool. Also, the good documentation available make the NetLogo tool a good choice.

4.2 The NetLogo Modelling and Simulation Environment

Since the NetLogo tool was chosen to be used in this work, in this section a more

detailed description of this tool is performed.

The NetLogo application runs on a Java Virtual Machine, therefore it is able to run

on major platforms available (Windows, Linux, Mac, Solaris, etc). However, its

programming language is based on the Logo programming language [Feurzeig et al.,

1970], and not in Java, making it very easy to be used even by persons with low skills in

programming.

28

NetLogo world is, basically, composed by two types of agents, the stationary agents

(or patches) and the mobile agents (or turtles). The patches are arranged in a grid way,

so they can form the world in over that the turtles move around. There is a third kind of

agent that is the Link agent, which connects turtles so they can form networks, graphs

and aggregates. NetLogo is fully customizable, for example, the user can set the size of

the patches and/or the world. Another example of the type of customization is the ability

to set the size, shape or colour of the turtles.

The GUI of NetLogo, see Figure 10, is structured in a tab way and is composed by

3 tabs: Interface, Information and Procedures. The Interface tab is the graphical part of

NetLogo, i.e. it is in this part that the user can insert buttons, create graphics and see the

world behaviour. The Information tab can be used to retrieve and/or change some

information about the objective, functioning or bugs that the model may have. This is

useful for the users (that are not the designer/developer) as a starting point to know the

expected behaviour of the model. The Procedures tab is where the code is built, i.e. the

creating the model with the desired characteristics and expected behaviour.

Figure 10 – NetLogo User Interface environment

The GUI has also a Command Center that permits the user to insert, in a live mode,

a list of desired commands. This could be useful, for example to see if a certain variable

has the correct value.

The graphic update rate could be made in two different ways: continuous mode and

tick based mode. On continuous mode, the graphics are updated on continuous mode,

29

e.g., the user sees the world evolving when something changes. The disadvantage of this

mode is the increase of the simulation time, due to the constant change of the world. If

the model doesn’t require a constant view update, the tick mode should be chosen. In

this mode the view is only updated when the tick command appear in the Procedure tab.

The tick mode also makes the simulation time processor independent, making the total

returned time in ticks that is the same on every processor, for the same simulation.

NetLogo world, like the real world has North, South, East and West coordinates,

has its own coordinates for the movement of the turtles. These coordinates will be

important later on and are represented in the Figure 11 . As an example, if the desired

movement of a turtle is on the upper way, the turtle must be oriented by 0º.

Figure 11 - NetLogo world coordinates

As stated before, is in the procedures tab that the programming is made. Just to give

a few examples of the ease of programming see the following examples:

Table 4 – NetLogo encoding examples

Desired action Encoding Comments

Create an agent crt 1 Which means ―Create 1 turtle‖

Move agent one patch

upper way

set heading 0

fd 1
Faces agent in upper way

Move agent 1 patch

Check if patch ahead is

empty

if not any? product-

on patch-ahead 1 []
Checks if on the next patch is any

agent called product

Remove first item from

an array (e.g. service-list)

set service-list

remove-item 0

service-list

Removes the first (0) item from

the array named ―service-list‖

Count the total number

of pallet on the system

count product-on

patches
Counts the products (i.e. pallets)

that are in the system (i.e. patches

in NetLogo terminology)

For a more detailed description on NetLogo refer to [Wilensky, 1999].

0º

90º

180º

270º

30

5. Self-organizing Agent-based Model for an Automation System

During the development of this work an application to demonstrate the benefits of

bio-inspired techniques for the industrial automation domain was developed. For that

propose and based on the conclusions of the previous chapter, the NetLogo tool was

selected.

5.1 Description of the Case Study

The case study corresponds to the FlexLink® Dynamic Assembly System (DAS)

30, depictured in Figure 12, which is a modular factory concept platform for assembly,

inspection, test, repairing and packing applications [Leitão et al., 2010].

Figure 12 - FlexLink DAS 30 system (located at Schneider Electric GmbH in

Seligenstadt, Germany)

The used DAS 30 transfer system layout is composed by several conveyors

arranged in a closed-loop configuration. The main part of the transfer system is made of

nine conveyors (C1-C9). These conveyors can be of the unidirectional and cross types.

The unidirectional conveyor provides an input and an output port, and the cross

conveyor provides transfers not only in the longitudinal but also in transversal axis. The

system also has two lower conveyors (C10-C11). These two conveyors have the same

behaviour as the normal unidirectional conveyors, but are physically longer to

accomplish the distance (note that in the upper level there are three conveyors side to

side). Two lifter units (L1-L2) are responsible for the interface between the upper and

lower part of the system, and for transferring pallets into and out of the production

system. Also notice that each lifter only can carry one palette at each time.

31

Figure 13 represents the system, contributing for a better understanding of its

functioning, namely the possible directions at each conveyor.

Figure 13 - Modular composition of the assembly system

The pallets move into the system through L1 and conveyor C4. From that conveyor

the pallets move throughout the system with the possible alternatives. The conveyor C2

and C8 are associated to the two workstations, W1 and W2 respectively. The conveyors

have the possibility to halt the pallets for processing. If the pallets have to leave the

system they must go to conveyor C6 and, if L2 available, they exit.

The identification of pallets is done by using RFID (Radio-Frequency

IDentification) technology. For this purpose, the conveyors C2, C4, C6 and C8 are

equipped with RFID readers that are able to read/write information from/to RFID tags

attached to the pallets.

When circulating in the system, a pallet is faced with several decision points, e.g. at

C4 and C6. Considering a pallet at C4, the decision point represents two alternative paths

to convey the pallet, upon which it can either continue straight on, or turn in the

direction of the workstation W2. The decision to be taken is related to the service list to

be performed and by the best path available.

5.2 Implementation of the Agent-based Model using NetLogo

The agent-based model designed within NetLogo for the described case study,

which user interface is illustrated in Figure 14, comprises two types of agents: the

pallets (e.g. turtles) and the resources (e.g. patches). Each one of these types of agents

possesses a specific set of attributes and behaviors.

32

Figure 14 - NetLogo interface for the agent-based model

5.2.1 The Agents Attributes

The resources agents represent the conveyors, lifters and workstations included in

the system. The resource agents representing conveyors have the following attributes:

directions, pheromones_blue, pheromones_yellow, pheromones_W1, pheromones_W2,

exit, velocity, availability and malfunction.

The directions attribute is a list of the possible ways that the conveyor to convey

the pallet. Since in NetLogo the movements are in 2D the only possible moments are

Up, Down, Left and Right (refer to Figure 11 for orientation). In this way, the list has

the following format [0º 90º 180º 270º]. The possible movements have the respective

number of orientation and the not allowed movements are signalled by putting ―-1‖ in

the correspondent position. As an example, the configuration for the conveyor C4 is [-1

90 180 -1] which means that the conveyor can move the pallet forward or down.

The four attributes with respect to the pheromones are only used in the stigmergy

mode (refer to chapter 5.2.2.3). They all look the same and all stores information about

the best know path to a given objective. The difference between them lies precisely in

the objective, e.g., pheromones_W1 gives the level of pheromone to get to the

workstation 1 and the pheromones_blue, stores the level to the exit by the blue pallet.

The exit attribute indicates the exit of the system which means that all operations

were made on a given pallet and it is out of the system and the velocity attribute gives

the amount of time (in ticks) that a given conveyor takes to move one pallet. The

availability and malfunction attributes gives the state of a given conveyor; in case of

pallet

moving

part being

processed

part arriving to

the system

agent-based

model

33

negative in either of them, the conveyor cannot transport a pallet, being the first one

related to the presence of a pallet and the second one to indicate the conveyor

malfunction.

The pallet agent has the following main attributes: memory, birth time, death time,

service list, orders, status, and time-of-processing.

The memory attribute stores the path, in the stigmergy mode, made by the pallet

throughout the system, making this way possible to update later on the pheromone level

in the right conveyors. The birth time and death time are attributes that stores the time

of creation and exit time, respectively. These attributes are used to calculate some

performance parameters.

The service list attribute contains the schedule of tasks for the pallet, as an example,

it can have the following value [W1 OUT], meaning that the pallet must first go to the

Workstation 1 and then exit the system. The orders attribute is used in the T-invariant

mode, and stores the selected path (extracted from the T-invariant, as described later) to

achieve the next objective in the service list. The status attribute acts like a flag that tells

the pallet that is being processed by a workstation. The last attribute, time-of-

processing, tells the workstation the amount of time that the pallet must be processed.

5.2.2 Implementation of the Agents Behaviour

These agents are regulated by a set of simple behavioural rules. As example, Figure

15 illustrates a flowchart that governs the behaviour of the pallet agents during their

life-cycle. Basically, the pallet agents make movements within the system to execute the

list of services required to perform the product that the pallet carries on. Before to make

a movement, a pallet agent checks that the conveyor ahead is available (e.g. doesn’t

have any pallet) and is not breakdown. If the next movement involves one of the lifters

it is also checked the above presumptions. The movement is only made if these two

criteria are met. In case of more than one alternative path to evolve, the pallet agent

applies a decision method to determine the best solution.

Additionally, it is possible to verify that if the goal is the execution of an operation

in a workstation (i.e. that process the pallet), the pallet stays there until the processing is

completed.

34

Figure 15 – Pallet movement execution flowchart

Each pallet agent has embedded functions to decide, in conflict situations, about the

best path to be taken. In this work, three distinct functions were implemented [Barbosa

and Leitão, 2010]: random, T-invariant and stigmergy modes.

5.2.2.1 Random mode

In the random mode, the pallet takes a simple random movement when facing more

than one possible route to take. The random choice is made only with the available

routes. For example, if the pallet is on the conveyor C4 the random movement is taken

considering only the 90º and 180 º movements. If the pallet is on the conveyor of the

associated workstation and was not already machined, the pallet enters on processing

mode, removing the first item of the service list.

When the service list is completed and the pallet is on the correspondent exit patch,

the agents calculates some performance parameters (refer to chapter 5.2.5).

The implementation of the random mode is made of the following manner.

35

Procedure random

 read possible directions of present patch

 choose direction randomly

 make movement if patch available and not malfunctioning

End

In this pseudo code is only represented the functionality of the movements. For

example, the processing part is not represented.

5.2.2.2 T-invariant mode

The second decision function is based on the work presented in [Leitão et al., 2010]

and uses the knowledge extracted from the Petri nets models used to represent the

system’s layout, namely the T-invariants, xi, that represent work cycles [Zurawski and

Zhou, 1994]. The decision algorithm comprises two steps:

 Identify the alternative paths, by determining for each T-invariant, if it contains

simultaneously the current location of the pallet and its destination location.

 Choose the best path, by evaluating the identified alternative paths taking into

consideration a set of weighted criteria, namely distance, time and energy

consumption.

As an example, considering a pallet located in C4 and aiming to go to the

workstation located at C2, two different paths are available based on the following T-

invariants:

 x1={C4, C5, C6, C3, C2, C1}

 x2={C4, C7, C8, C9, C6, C3, C2, C1}

These two paths will be evaluated according to a set of criteria, and the one that better

fulfils the criteria will be selected. Note that these two paths are the elementary ones;

others can be achieved considering the use of the lifters and the lower level of the

system.

The implementation of the T-invariant mode is made of the following manner.

Procedure t-invariant

If empty orders

read first service list order

search for path with start and finish patch

store orders with t-invariant option

remove first order from service list

End if

36

make movement if patch available and not malfunctioned

End

In this pseudo code is only represented the functionality of the movements. For

example, the processing part is not represented.

5.2.2.3 Stigmergy mode

The stigmergy decision mode is based on the concept of stigmergy. This mode

consists in the lay down of signs by the pallets. The pallets when moving in the system

memorize the path taken. After reach a goal (e.g. one workstation), the pallet update the

correspondent pheromone level that lead to the goal. Before to update, the repeated

moves are deleted, preventing the update of closed loops. Then, other pallets can then

sense the most updated pheromone level and choose the best path.

In this mode the first pallets, due to the empty values of pheromones, move in a

random manner, updating the trail every time a goal is reached.

Several parameters are used in the implementation of the pheromone mechanism,

namely:

 Pheromone deposition, which reflects the intensity to be deposited in the patch

(reinforcing the previous existing value). This value is weighted according to the

path length, conducting to the selection of the shortest paths. As an example, if

one given pallet takes more time than other to complete the same route, the

pheromone deposition of the first one is less intense. In each patch there are four

different levels of pheromones (as seen before). Each one respecting the

correspondent objective.

 Evaporation level, which represents the natural process of evaporation along the

time. This guarantees that the worst paths are dissipated if they are not reinforced

by the other pallets.

 Decision level, this parameter represents the value, above which the pallet

follows the pheromone trail and stops moving in a random manner.

If a pallet faces a situation of more than two alternative paths (e.g. with two

pheromone levels above the decision level threshold) the pallet takes the path with a

higher intensity of pheromone.

Regardless of the movement taken the pallet always stores the make movement.

37

The pheromones method can be encoded by the following pseudo code.

Procedure pheromones

If empty orders

read first service list order

remove first order from service list

End if

read pheromone level to goal

If pheromone level to objective < pheromone decision level

 walk random if patch available and not malfunctioned

store movement in memory

Else

 find heading of maximum pheromone level

make movement if patch available and not malfunctioned

store movement in memory

End if

End

In this pseudo code is only represented the functionality of the movements. For

example, the processing part is not represented.

5.2.3 Implementation of the Graphical Aspects

The graphical aspect of the developed application is presented in Figure 16. In the

left side are presented the user controls and the results area. The users controls are

useful to set the parameters and simulation control. In the right pane is the depicted

system where the evolution of the simulation can be observed.

38

Figure 16 - GUI of the developed application

The decision method can be selected by the user through a chooser button (in the

NetLogo nomenclature). This is done by selecting the correct decision mode before to

start the simulation (see Figure 17). If desired, the method can also be changed in the

middle of the simulation.

Figure 17 - Method chooser

In Figure 18 the parameters of the pallets are configured. The time-to-create-box

parameter defines the time interval between the arrivals of pallets to the system. The

creation time is given in ticks, meaning, with the example of the figure, that at each 15

ticks a pallet is created. Since we have two types of pallets, i.e. Blue and Yellow, the

creation of the pallet is randomly, which means that could be a Blue or a Yellow one.

39

The other two parameters, i.e. num-box-blue and num-box-yellow, are used to set the

number of each type of pallets to create.

Figure 18 - Pallet creation parameters

The processing times of each pallet in the system resources are set using the sliders

of Figure 19. In the given example the Blue pallets are processed during 9 ticks and the

Yellow one by 6 ticks.

Figure 19 - Machine parameters

The malfunction zone gives the user the possibility to introduce a disturbance in the

system at a given time during the simulation. For that propose, a time of malfunction

must be set in conjunction with the malfunction conveyor. For example, if a

malfunction is to be introduced at 1000 ticks at C5, these parameters must be set at the

slider and the chooser. If no malfunction is desired the time-to-malfunction parameter

must be set to zero.

Figure 20 - Malfunction settings

The stigmergy decision mode uses some parameters that must be adjusted. As

stated before, there are three parameters to be taken into consideration: pheromone-

decision-level, evaporation-level and pheromone-deposition (for more information

about the use of these parameters, please refer to 5.2.2.3). These parameters are

configured using the sliders in the following figure.

40

Figure 21 - Pheromones parameter adjustments

On the right side of the application interface (Figure 16), it is possible to visualize

the behaviour of the system, namely the movement of the pallets, conveyors and lifters

(see Figure 22).

Figure 22 – The view of the system modeled in NetLogo

When the simulation is on run mode, the pallets movement can be observed and the

expected behaviour confirmed.

5.2.4 Simulation Setup, Running and Global Behaviour

The simulation parameters are configured by pressing the Setup button (see Figure

23). When pressed, this button, configures, among other things, the size of the world,

defines the conveyors behaviour and resets all values.

41

Figure 23 - Setup and Run buttons

In a pseudo code form, the setup procedure can be described as follows.

Procedure setup

 clear all

 setup graphical world

 setup conveyors parameters

 setup lifters parameters

 setup input and output

End

The Run button starts the simulation entering in a cycle which is only terminated

when all created pallets have exited the system. Each cycle is started by checking the

malfunctions, checking the machines that are currently processing and, if possible,

generating a pallet. After that and depending of the chosen decision method, the

correspondent procedure is called and a movement is made upon the decision rules.

When all the pallets present in the system made their movement, the simulation time

(i.e. tick count) is incremented and plots are updated. After all the pallets have exited

the system, the variables are calculated and data is saved in a file.

In the same manner the run button executes the following pseudo code.

Procedure run

 While number of pallets < total

check for malfunctions

 check for machine processing

 generate random box

 If method = random

 call random procedure

 If method = t-invariant

 call t-invariant procedure

 If method = pheromones

 call pheromones procedure

 update tick cont

 update plots

 End while

calculate variables

save data to file

End procedure

42

5.2.5 Implementation of the Statistical Procedures

In all the previous methods, when the exit patch is reached by a pallet, some

variables are calculated or updated. The total time since the pallet entered the system

until it exits is calculated and stored in a global variable. Also, the total time subtracted

by the manufacturing time is calculated and stored in a global variable.

If the simulation was running on the pheromone mode the level of pheromone in

the travelled path is also updated. Before the update, the repeated moves are deleted,

preventing the update of closed loops.

In a pseudo code form, the procedure that is executed after a pallet exit the system

can be described as follows.

Procedure exit

 For each pallet

 calculate MLT

 calculate transport time

 If pheromone mode

 remove duplicated movements

 update pheromone level in patch

 End if

 End for

End

When the simulation is completed the average values of these variables are

calculated and presented to the user. The first one is identified as average MLT and

mean the time a pallet need to exit the system since their entrance. The second one is the

average percentage transport time that gives the amount of time spent in transporting

operations regarding the total time. Other parameters are the makespan that is the total

time to execute all pallets and the Work in Process (WIP) that represents the amount of

pallets that are simultaneously in the system. Here it is calculated the maximum value of

the WIP and the average value.

These performance parameters are displayed in the Results area (see Figure 24).

43

Figure 24 - Results area

All the values are returned at the end of the simulation execution, except the

instantaneous value of the WIP that is plotted in the graphic along the time execution.

44

6. Analysis of the Experimental Results

The agent-based production control system modelled using the NetLogo is, at this

stage, ready to be simulated under different scenarios, allowing evaluating different

control strategies and alternative rules for the individual behaviour of the distributed

agents. For this purpose, several experimental tests were performed to observe several

performance parameters, such as the WIP, the MLP, the percentage of transport time for

each pallet and the makespan.

The test scenario in the pallet concern is the following: the system is populated by

pallets of two types, each one requiring the execution of one operation in one

workstation. One pallet in the workstation W1 (located at C2) and the other one

requiring the execution of one operation in the workstation W2 (located at C8). After the

pallet is machined the pallet must follow to the exit of the system. The conveyors spend

1 time unit (t.u) to transfer the pallets, the lifters spend 5 t.u.to move the pallets and the

machines W1 and W2 spends respectively 7 t.u. and 5 t.u. to execute their operations. In

the pheromone mode, the configuration parameters are: 0,06 for the level of the

pheromone decision, 0,03 for the evaporation level and 1,5 for the pheromone

deposition. At this stage these parameters were tuned in an empirical manner after the

observation of the system behaviour; in fact, changing these parameters implies a

change in the system behaviour, e.g., if the pheromone decision level is too high, the

pallets could move randomly indefinitely not considering the pheromone trails but if it

is too low, the pallets could not sense the existence of pheromone trails.

During the first set of experimentations, the agent-based model was simulated for

several arrival rates, without the occurrence of disturbances in the system and

considering the different decision functions. From the experimental tests it was

observable that the arrival rate, combined with the processing and transportation times

of the mechatronic devices, influence the traffic jam in the production system. This is, if

the arrival rate is too high, the system gets full and pallets have no available conveyors

to go to. The performed simulations allowed the determination of the best value to flow

the pallets along a production line. Note that being this experimental production system

part of a production line, it is important to balance the production rate in order to avoid

the existence of intermediate buffers (with pallets waiting to be processed) or the

existence of machines waiting for pallets to be processed. The observed minimum time

interval for the arrival of pallets at the input conveyor that guarantees the non-existence

45

of deadlocks or buffers in the system is 8 t.u., 9 t.u. and 15 t.u. for respectively, the

stigmergy, T-invariant and random decision-making approaches.

Table 5a illustrates the experimental results for a scenario where the pallets arrive

to the assembly system according to a deterministic function characterized by 16 t.u. of

interval and without any disturbance occurrence.

Table 5 - Experimental results with breakdown at 300 t.u.

a) without disturbances

b) with disturbances (300 t.u.)

Random T-invariant Stigmergy

Random T-invariant Stigmergy

avg (MLT) 54,54 14,00 17,35

avg (MLT) 59,53 17,61 19,29

avg (%Trans) 89,00 57,14 65,36

avg (%Trans) 89,92 65,96 68,85

avg (WIP) 3,39 0,87 1,08

avg (WIP) 3,67 1,10 1,20

max (WIP) 8,70 2,00 3,20

max (WIP) 9,70 2,00 3,70

makespan 32160 32061 32078

makespan 32441 32049 32059

c) percentage of loss

Random T-invariant Stigmergy

avg (MLT) 9,15% 25,79% 11,18%

avg (%Trans) 1,04% 15,43% 5,35%

avg (WIP) 8,19% 26,44% 11,08%

max (WIP) 11,49% 0,00% 15,63%

makespan 0,87% -0,04% -0,06%

The differences between the T-invariant and the stigmergy approaches with the

random mode can be better seen in Figure 25 (which is a graphical representation of

Table 5a). Here can be observed that the results obtained in the random mode are worst

than the other two approaches, with the last ones presenting very close performance

results.

Figure 25 – Graphical results without breakdown

54,54

89,00

14,00

57,14

17,35

65,36

0,00

25,00

50,00

75,00

100,00

Avg. MLT Avg. % Trans

Random

T-Invariant

Pheromones
3,39

8,70

0,87

2,00

1,08

3,20

0,00

2,00

4,00

6,00

8,00

10,00

avg WIP max WIP

Random

T-Invariant

Pheromones

46

A second set of experimentations was performed to evaluate the response of the

agent-based control model in presence of disturbances. Table 5Erro! A origem da

referência não foi encontrada.b illustrates a scenario that considers the same

assumptions of the previous one but now a breakdown on the conveyor C5 will occur,

which implies that pallets should choose alternative paths to reach their goals (C5

became unavailable at time 300 t.u.).

The results obtained in this experimental test show that the presence of disturbances

strongly affects the WIP and MLT parameters in the several approaches. As illustrated

in Table 5c it is possible to verify that the stigmergy method is the one that presents less

loss of performance in presence of disturbances, reflecting its inherent capabilities to

dynamically self-adapt to changing environments. In fact, each pallet using the

stigmergy method tries to find alternative paths to execute its objective dynamically and

on the fly, minimizing the effects of the disturbance.

Figure 26 shows in a graphic manner the obtained performed results. It is also

possible to observe that, with breakdown at 300 t.u., the results between the best two

approaches are even more close than the previous ones (without malfunction) and the

difference to the random approach is still considerable.

Figure 26 - Graphical results with breakdown at 300 t.u.

Again, the stigmergy method is the most robust approach since it presents the best

value for the minimum interval for the arrival of pallets, namely 8 t.u., 9 t.u. and 16 t.u.

for respectively the stigmergy, T-invariant and random decision-making methods.

A third batch of simulations was made with the presence of disturbances but in this

case, the conveyor C5 becomes unavailable at half time of the makespan of each mode

without disturbances. As can be observed in Table 6b, the mode based on the T-

invariant approach is the one that still presents the overall best results. After the analysis

59,53

89,92

17,61

65,96

19,29

68,85

0,00

25,00

50,00

75,00

100,00

Avg. MLT Avg. % Trans

Random

T-Invariant

Pheromones
3,67

9,70

1,10

2,00
1,20

3,70

0,00

2,00

4,00

6,00

8,00

10,00

12,00

avg WIP max WIP

Random

T-Invariant

Pheromones

47

of the Table 6c, which illustrates the percentage of loss, the stigmergy approach is the

one that exhibits the less percentage of lost (except for the maximum WIP which can be

explained by the fact of the readjustment of the pheromones levels to the new routes,

i.e., during the readjustment period the pallets still don’t have the best path performance

and therefore the system is more occupied). Note that the conveyor breakdown occurs at

a time when the paths are very well defined.

Table 6 – Experimental results with breakdown at half of the makespan

a) without disturbances

b) with disturbances (50% of t.u.)

Random T-invariant Stigmergy

Random T-invariant Stigmergy

avg (MLT) 54,54 14,00 17,35

avg (MLT) 57,33 15,84 18,79

avg (%Trans) 89,00 57,14 65,36

avg (%Trans) 89,53 62,08 68,05

avg (WIP) 3,39 0,87 1,08

avg (WIP) 3,55 0,99 1,17

max (WIP) 8,70 2,00 3,20

max (WIP) 9,30 2,00 4,40

makespan 32160 32061 32078

makespan 32284 32045 32052

c) percentage of loss

Random T-invariant Stigmergy

avg (MLT) 5,12% 13,14% 8,30%

avg (%Trans) 0,60% 8,64% 4,12%

avg (WIP) 4,69% 13,56% 8,40%

max (WIP) 6,90% 0,00% 37,50%

makespan 0,39% -0,05% -0,08%

Figure 27 also shows that, with breakdown at half of the makespan without

breakdown, the results between the best two approaches are still very close and the

difference to the random approach is still considerable.

Figure 27 - Graphical results with breakdown at half of makespan

57,33

89,53

15,84

62,08

18,79

68,05

0,00

25,00

50,00

75,00

100,00

Avg. MLT Avg. % Trans

Random

T-Invariant

Pheromones

3,55

9,30

0,99

2,00

1,17

4,40

0,00

2,00

4,00

6,00

8,00

10,00

avg WIP max WIP

Random

T-Invariant

Pheromones

48

In all cases, the decision function based on the T-invariant mode presents, as

expected, better optimization, since it was performed using a pre-defined global view,

but it presents some lacks in terms of re-configurability of the system layout. In case of

need to change or reconfigure the system layout it is necessary to update the Petri nets

model and consequently to extract a new set of T-invariants. This approach can address

the static, off-line re-configuration but not the on-line reconfiguration (dynamically

performed at run time) [Leitão et al., 2010].

Since, one important feature to be reached is the dynamic system re-configurability,

the stigmergic approach shows to be a promising approach, combining the good

performance with flexibility, adaptability and robustness. In fact, this approach seems

able to cope with changing environments, in particular the product variability and the

layout reconfiguration, due to its decentralized nature and adaptability capability.

It is also very important to compare the evolution of the WIP for the three decision

approaches in order to try to get some complementary conclusions about the system

performance (see Figure 28).

Figure 28 – Graphical evolution of WIP

The observation of the graphic tells that the T-invariant approach is the one that

guarantees a value of the WIP most constant and the Random approach is the one that

have a most inconstant value of the WIP, due to its random nature. In beginning of the

Stigmergy mode it is possible to verify a climbing of the WIP. This is a consequence of

the learning phase, i.e., in this period the pallets are still moving in a random way and

0

2

4

6

8

10

12

1

7
3

1
4

5

2
1

7

2
8

9

3
6

1

4
3

3

5
0

5

5
7

7

6
4

9

7
2

1

7
9

3

8
6

5

9
3

7

1
0

0
9

1
0

8
1

1
1

5
3

1
2

2
5

1
2

9
7

1
3

6
9

1
4

4
1

1
5

1
3

1
5

8
5

1
6

5
7

1
7

2
9

1
8

0
1

1
8

7
3

1
9

4
5
WIP comparison

Random

T-invariant

Stigmergy

49

the pheromones levels are below the decision threshold. The WIP becomes constant

when the pheromone levels are being considered to the pallet movement.

The experimental implementation allowed concluding that the use of a

programming and modelling environment to simulate agent-based control solutions in

general and for manufacturing and automation in particular, contributes for a fast

prototyping and proof of concept [Barbosa and Leitão, 2010]. In fact, the designed

agent-based model can be easily simulated under different scenarios (some of them

impossible or difficult to be created in real world) to validate/improve/optimize control

strategies before its practical realization.

50

7. Conclusions

The work developed in this project aimed to study bio-inspired solutions to solve

several complex problems from different domains and in particular in the manufacturing

and automation domains.

In this work some of the existing bio-inspired methodologies to solve complex

mathematical/engineering problems are analyzed and discussed. Among them are

analysed the ants based algorithms, such as ACO and PSO, the bees algorithms, GA

algorithms, self-organization and artificial immune systems. The conclusion of this

study is that these mechanisms are a good inspiration to be mimicked to solve numerous

daily problems. It is of good practice for the researchers to try to see the part of the

behaviour of interest to be mimicked and not always mimic the whole behaviour if is

not necessary.

Some of the investigation and real life applications of bio-inspired algorithms are

enumerated. The analysis of the constant growth on the number of publications made in

these areas allows concluding that this is an area of enormous growing capacity and of

great interest. Also, promising results are obtained by the majority of the investigations,

making bio-inspired solutions close or even better than the known solutions to a give

problem.

A brief review of some of the most popular ABMs tools was made. It was

concluded that these tools are of great interest to evaluate and/or to be a proof of

concept to bio-inspired algorithms, making this last ones better understood. From the

existing ABM platforms, NetLogo was selected to develop an agent-based application

for a production system, which uses a stigmergy based approach to implement the

decision algorithm to route pallets within the conveyor system.

The several simulations made on the implemented agent-based application proved

that even the simplest implementation of an algorithm based on the behaviour of ants

can achieve good results compared to the optimal, T-invariant, solution. It was shown

that this simple implementation is much better than the random solution. Also, if a more

elaborated algorithm were implemented the expected results would have the tendency to

be better and closer to the best know solution.

As future work, the parameters of the stigmergy approach should be more

extensively tested and refined in order to obtain even better results. An optimization for

51

batch simulations should be developed to easily collect data of a great number of

simulations rounds. Also, the modelling and simulation of more complex scenarios

should be performed, e.g., the behaviour of an identical system coupled to the exit of the

previous one.

More bio-inspired algorithms should be implemented and conclusions drawn on the

best one to this kind of engineering problem. Another important issue to be further

researched in the future is the integration of the modelled agent-based systems with the

real physical world.

52

Bibliography

[Abd-El-Barr et al., 2003] Abd-El-Barr, M., S. Sait, and B. Sarif (2003). Ant colony

algorithm for evolutionary design of arithmetic circuits. Proceedings of the 15th

International Conference on Microelectronics, 2003. ICM 2003., 198 – 201.

[Aggoune et al., 2001] Aggoune, R., A. Mahdi, and M.-C. Portmann (2001).

Genetic algorithms for the flow shop scheduling problem with availability

constraints. Proceedgins of the IEEE International Conference on Systems, Man,

and Cybernetics, 2001 4, 2546 –2551 vol.4.

[Ai and Kachitvichyanukul, 2009] Ai, T. and V. Kachitvichyanukul (2009). A particle

swarm optimization for the vehicle routing problem with simultaneous pickup and

delivery. Computers & Operations Research 36, 1693–1702.

[Albert et al., 2009] Albert, F., S. Koh, C. Chen, C. Loo, and S. Tiong (2009). Path

control of dexterous robotic hand using genetic algorithm. Proceedings of the 4th

International Conference on Autonomous Robots and Agents, 2009. ICARA 2009.,

502 –506.

[Allan, 2009] Allan, R. J. (2009). Survey of agent based modelling and simulation

tools.

[Arnaout et al., 2008] Arnaout, J.-P., R. Musa, and G. Rabadi (2008). Ant colony

optimization algorithm to parallel machine scheduling problem with setups.

Proceeding of the IEEE International Conference on Automation Science and

Engineering, 2008. CASE 2008, 578 –582.

[Aziz et al., 2007] Aziz, N., A. Mohemmed, and B. Daya Sagar (2007). Particle

swarm optimization and voronoi diagram for wireless sensor networks coverage

optimization. Proceeding of the International Conference on Intelligent and

Advanced Systems, 2007. ICIAS 2007, 961 –965.

[Badawy et al., 2005] Badawy, F., H. Abdelazim, and M. Darwish (2005). Genetic

algorithms for predicting the egyptian stock market. Proceeding ot the Enabling

Technologies for the New Knowledge Society: ITI 3rd International Conference

on Information and Communications Technology, 2005, 109 –122.

[Bae et al., 2001] Bae, J. I., D. C. Lee, D. S. Ahn, J. M. Lee, K. E. Kim, and M. S.

Kim (2001). Speed control of fork lift vehicle using a genetic algorithm.

53

Proceedings of the IEEE International Symposium on Industrial Electronics,

2001. Proceedings. ISIE 2001. 3, 1839 –1844 vol.3.

[Barbosa and Leitão, 2010] Barbosa, J. and P. Leitão (2010). Modelling and

simulating self-organizing agent-based manufacturing systems. to appear in the

Proceedings of the 36th Annual Conference of the IEEE Industrial Electronics

Society (IECON’10) Arizona, US, 8-10 November.

[Beckers et al., 1992] Beckers, R., J. Deneubourg, and S. Goss (1992). Trails and u-

turns in the selection of the shortest path by the ant lasius niger. Journal of

theoretical biology 159, 397–415.

[Bell and McMullen, 2004] Bell, J. E. and P. R. McMullen (2004). Ant colony

optimization techniques for the vehicle routing problem. Advanced Engineering

Informatics 18, 41–48.

[Berryman, 2008] Berryman, M. J. (2008). Review of software platforms for agent

based models. Technical report, Defence Science and Technology Organisation,

Edinburgh, Australia.

[Blum and Sampels, 2004] Blum, C. and M. Sampels (2004). An ant colony

optimization algorithm for shop scheduling problems. Journal of Mathematical

Modelling and Algorithms 3, 285–308.

[Bonabeau et al., 1999] Bonabeau, E., M. Dorigo, and G. Theraulaz (1999).

Swarm Intelligence: From Natural to Artificial Systems. Oxford.

[Boubertakh et al., 2009] Boubertakh, H., M. Tadjine, P.-Y. Glorennec, and

S. Labiod (2009). Tuning fuzzy pid controllers using ant colony optimization.

Proceeding of the 17th Mediterranean Conference on Control and Automation,

2009. MED ’09., 13 –18.

[Bousbia and D. Trentesaux, 2002] Bousbia, S. and D. D. Trentesaux (2002). Self-

organization in distributed manufacturing control: State-of-the-art and future

trends. Proceeding of the IEEE International Conference on Systems, Man and

Cybernetics 5.

[Brown and McShane, 2004] Brown, J. and M. McShane (2004). Optimal design of

nanoengineered implantable optical sensors using a genetic algorithm.

54

Proceedings of the 26th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 1, 2105 –2108.

[Bussmann and Sieverding, 2001] Bussmann, S. and J. Sieverding (2001). Holonic

control of an engine assembly plant - an industrial evaluation. Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics, 169–174.

[Caldeira et al., 2007] Caldeira, J., R. Azevedo, C. Silva, and J. Sousa (2007). Supply-

chain management using aco and beam-aco algorithms. Proceedings of the IEEE

International Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007., 1 –6.

[Camazine et al., 2001] Camazine, S., J. L. Deneubourg, N. R. Franks, J. Sneyd,

G. Theraulaz, and E. Bonabeau (2001). Self-Organization in Biological Systems.

Princeton University Press.

[Camilo et al., 2006] Camilo, T., C. Carreto, J. S. Silva, and F. Boavida (2006). An

energy-efficient ant-based routing algorithm for wireless sensor networks. ANTS

Workshop, 49–59.

[Castle and Crooks, 2006] Castle, C. J. E. and A. T. Crooks (2006). Principles and

concepts of agent-based modelling for developing geospatial simulations, centre

for advanced spatial analysis (university college london): Working paper 110.

[Castro and Timmis, 2002] Castro, L. and J. Timmis (2002). Artificial Immune

Systems: A New Computational Intelligence Approach. London: Springer-Verlag.

[Chandramouli and Izquierdo, 2006] Chandramouli, K. and E. Izquierdo (2006). Image

classification using chaotic particle swarm optimization. Proceedings of the IEEE

International Conference on Image Processing, 2006, 3001 –3004.

[Chen et al., 2009] Chen, A.-P., C.-H. Huang, and Y.-C. Hsu (2009). A novel

modified particle swarm optimization for forecasting financial time series.

Proceedings of the IEEE International Conference on Intelligent Computing and

Intelligent Systems, 2009. ICIS 2009. 1, 683 –687.

[Chen and Rogers, 2009] Chen, G. and K. Rogers (2009). Proposition of two

multiple criteria models applied to dynamic multi-objective facility layout

problem based on ant colony optimization. Proceedgins of the IEEE International

Conference on Industrial Engineering and Engineering Management, 2009. IEEM

2009., 1553 –1557.

55

[Chen et al., 2008] Chen, R.-M., S.-T. Lo, C.-L. Wu, and T.-H. Lin (2008). An

effective ant colony optimization-based algorithm for flow shop scheduling.

Proceedgins of the IEEE Conference onSoft Computing in Industrial Applications,

2008. SMCia ’08., 101 –106.

[Chen et al., 2009] Chen, Y.-W., A. Mimori, and C.-L. Lin (2009). Hybrid particle

swarm optimization for 3-d image registration. Proceedings of the 16th IEEE

International Conference on Image Processing (ICIP), 2009, 1753 –1756.

[Cheng et al., 2009] Cheng, C.-T., K. Fallahi, H. Leung, and C. Tse (2009).

Cooperative path planner for uavs using aco algorithm with gaussian distribution

functions. Proceedings of the IEEE International Symposium on Circuits and

Systems, 2009. ISCAS 2009., 173 –176.

[Colson et al., 2009] Colson, C., M. Nehrir, and C. Wang (2009). Ant colony

optimization for microgrid multi-objective power management. Proceedings of

the IEEE/PES Power Systems Conference and Exposition, 2009. PSCE ’09., 1 –7.

[Corry and Kozan, 2004] Corry, P. and E. Kozan (2004). Ant colony optimisation

for machine layout problems. Computational Optimization and Applications 28,

287–310.

[Cui and Potok, 2007] Cui, X. and T. Potok (2007). A particle swarm social

model for multi-agent based insurgency warfare simulation. Proceedings of the

5th ACIS International Conference on Software Engineering Research,

Management Applications, 2007. SERA 2007., 177 –183.

[Das and Bhattacharya, 2009] Das, A. and M. Bhattacharya (2009). A study on

prognosis of brain tumors using fuzzy logic and genetic algorithm based

techniques. Proceedgins of the International Joint Conference on Bioinformatics,

Systems Biology and Intelligent Computing, 2009. IJCBS ’09., 348 –351.

[Deneubourg et al., 1990] Deneubourg, S. Aron, S. Goss, and J. M. Pasteels (1990).

The self-organizing exploratory pattern of the argentine ant. Journal of Insect

Behavior 3(2), 159–168.

[Di Caro and Dorigo, 1998] Di Caro, G. and M. Dorigo (1998). Antnet: Distributed

stigmergetic control for communications networks. Journal of Artificial

Intelligence Research 9, 317–365.

56

[Dong et al., 2007] Dong, Q., S. Kan, L. Qin, and Z. Huang (2007). Sequencing

mixed model assembly lines based on a modified particle swarm optimization

multi-objective algorithm. Proceedings of the IEEE International Conference on

Automation and Logistics, 2007, 2818 –2823.

[Dongming et al., 2008] Dongming, Z., X. Kewen, W. Baozhu, and G. Jinyong

(2008). An approach to mobile ip routing based on qpso algorithm. Proceedings

of the Pacific-Asia Workshop on Computational Intelligence and Industrial

Application, 2008. PACIIA ’08. 1, 667 –671.

[Dorigo, 1992] Dorigo, M. (1992). Optimization, Learning and Natural

Algorithms (in Italian). Ph. D. thesis, Dipartimento di Elettronica, Politecnico di

Milano, Milan, Italy.

[Dorigo, 2007] Dorigo, M. (2007). Ant colony optimization.

[Dorigo and Stützle, 2009] Dorigo, M. and T. Stützle (2009). Ant colony

optimization: Overview and recent advances. Technical Report TR/IRIDIA/2009-

013, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

[Duan et al., 2009] Duan, H., X. Zhang, J. Wu, and G. Ma (2009). Max-min adaptive

ant colony optimization approach to multi-uavs coordinated trajectory replanning

in dynamic and uncertain environments. Journal of Bionic Engineering 6, 161–

173.

[Eberhart and Kennedy, 1995] Eberhart, R. C. and J. Kennedy (1995). A new

optimizer using particle swarm theory. Proceedings of the Sixth International

Symposium on Micromachine and Human Science, 39–43.

[Elmahi et al., 2004] Elmahi, I., S. Merzouk, O. Grunder, and A. Elmoudni (2004). A

genetic algorithm approach for the batches delivery optimization in a supply

chain. Proceedings of the IEEE International Conference on Networking, Sensing

and Control, 2004 1, 299 – 304 Vol.1.

[Fang and Bai, 2009] Fang, X. and T. Bai (2009). Share price prediction using wavelet

transform and ant colony algorithm for parameters optimization. SVM, WRI

Global Congress on Intelligent Systems 3, 288–292.

[Farmer et al., 1986] Farmer, J., N. Packard, and A. Perelson (1986). The immune

system, adaptation and machine learning. Physica D 2, 187—204.

57

[Fausett, 1994] Fausett, L. (1994). Fundamentals of neural networks:

architectures, algorithms, and applications. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc.

[Feurzeig et al., 1970] Feurzeig, W., S. Papert, M. Bloom, R. Grant, and

C. Solomon (1970). Programming-languages as a conceptual framework for

teaching mathematics. SIGCUE Outlook 4(2), 13–17.

[Frisch, 1967] Frisch, K. v. (1967). The Dance Language and Orientation of Bees.

Cambridge, Mass.: The Belknap Press of Harvard University Press.

[Gaing, 2004] Gaing, Z. L. (2004). A particle swarm optimization approach for

optimum design of pid controller in avr system. Proceedings of the IEEE

Transactions on Energy Conversion 19, no.2, 384–391.

[Gao and Chen, 2008] Gao, N. and W. D. Chen (2008). A genetic algorithm for

disassembly scheduling with assembly product structure. Proceedings of the IEEE

International Conference on Service Operations and Logistics, and Informatics,

2008. IEEE/SOLI 2008. 2, 2238 –2243.

[Goss et al., 1989] Goss, S., S. Aron, J. Deneubourg, and J. Pasteels (1989). Self-

organized shortcuts in the argentine ant. Naturwissenschaften 76(12), 579–581.

[Goudos et al., 2008] Goudos, S., I. Rekanos, and J. Sahalos (2008). Emi reduction and

ics optimal arrangement inside high-speed networking equipment using particle

swarm optimization. Proceedings of the IEEE Transactions on Electromagnetic

Compatibility 50(3), 586 –596.

[Grassé., 1959] Grassé., P. P. (1959). La reconstruction du nid et les coordinations

inter-individuelles chez bel-licositermes natalensis et cubitermes sp. la théorie de

la stigmergie: Essai d’interpréta-tion du comportement des termites constructeurs.

Insectes Sociaux 6, 41–84.

[Gravel et al., 2002] Gravel, M., W. Price, and C. Gagné (2002). Scheduling

continuous casting of aluminum using a multiple objective ant colony

optimization metaheuristic. European Journal of Operational Research 143, 218–

229.

58

[Hadeli et al., 2004] Hadeli, P. Valckenaers, M. Kollingbaum, and H. Van Brussel

(2004). Multi-agent coordination and control using stimergy. Computers in

Industry 53, 75–96.

[Holland, 1999] Holland, J. H. (1999). Emergence: From Chaos to Order. Perseus

Publishing.

[Hong, 2009] Hong, L. (2009). A novel artificial immune algorithm for job shop

scheduling. Proceedings of the International Conference on Computational

Intelligence and Natural Computing, 2009. CINC ’09. 1, 38 –41.

[Hong et al., 2007] Hong, W.-C., Y.-F. Chen, P.-W. Chen, and Y.-H. Yeh (2007).

Continuous ant colony optimization algorithms in a support vector regression

based financial forecasting model. Proceedings of the Third International

Conference on Natural Computation, 2007. ICNC 2007. 1, 548 –552.

[Hu et al., 2005] Hu, H., Q. Hu, Z. Lu, and D. Xu (2005). Optimal pid controller

design in pmsm servo system via particle swarm optimization. Proceedings of the

31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON

2005., 5 pp.

[Hu, 2010] Hu, X. (2010). PSO tutorial.

http://www.swarmintelligence.org/tutorials.php.

[Jain and Sharma, 2005] Jain, P. and P. Sharma (2005). Solving job shop layout

problem using ant colony optimization technique. Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, 2005 1, 288 – 292

Vol. 1.

[Jalilvand et al., 2008] Jalilvand, A., A. Kimiyaghalam, A. Ashouri, and

M. Mahdavi (2008). Advanced particle swarm optimization-based pid controller

parameters tuning. Proceedings of the IEEE International Multitopic Conference,

2008. INMIC 2008., 429 –435.

[Jiang et al., 2009] Jiang, B., W. Zhang, and P. Zhang (2009). Research on an

improved genetic algorithm which can improve the node positioning optimized

solution of wireless sensor networks. Proceedgins of the International Conference

on Computational Science and Engineering, 2009. CSE ’09. 2, 949 –954.

59

[Jianhua and Xianfeng, 2010] Jianhua, W. and H. Xianfeng (2010). A hybrid

genetic algorithm for agile supply chain scheduling optimization. Proceedings of

the 2nd International Conference on Future Computer and Communication

(ICFCC), 2010 1, V1–396 –V1–400.

[Johnson, 2010] Johnson, P. E. (2010, available at August 27th). Artificial stock

market.

[Jun, 2009] Jun, L. (2009). A genetic algorithm to logistics distribution vehicle

routing problem with fuzzy due time. Proceedings of the Sixth International

Conference on Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09. 6, 33 –

39.

[Kaijun et al., 2010] Kaijun, L., C. Nanfang, and W. Yuxia (2010). Genetic

optimization of retailer selection in supply chain management. Proceedings of the

2nd IEEE International Conference on Information Management and Engineering

(ICIME), 2010, 124 –127.

[Karlra and Prakash, 2003] Karlra, P. and N. Prakash (2003). A neuro-genetic

algorithm approach for solving the inverse kinematics of robotic manipulators.

Proceedgins of the IEEE International Conference on Systems, Man and

Cybernetics, 2003. 2, 1979 – 1984 vol.2.

[Katayama et al., 2006] Katayama, K., K. Mackin, K. Matsushita, and E. Nunohiro

(2006). Applying brightness information in satellite image data search using

distributed genetic algorithm. Proceedings of the International Conference on

Hybrid Information Technology, 2006. ICHIT ’06. 2, 84 –89.

[Khanna et al., 2006] Khanna, R., H. Liu, and H.-H. Chen (2006). Self-organization of

sensor networks using genetic algorithms. Proceedings of the IEEE International

Conference on Communications, 2006. ICC ’06. 8, 3377 –3382.

[Kulkarni and Shanker, 2007] Kulkarni, P. and K. Shanker (2007). A genetic

algorithm for layout problems in cellular manufacturing systems. Proceedings of

the IEEE International Conference on Industrial Engineering and Engineering

Management, 2007, 694 –698.

[Lazzerini et al., 1999] Lazzerini, B., F. Marcelloni, G. Dini, and F. Failli (1999).

Assembly planning based on genetic algorithms. Proceedings of the 18th

60

International Conference of the North American Fuzzy Information Processing

Society, 1999. NAFIPS., 482 –486.

[Lee et al., 1997] Lee, J.-H., Y. Choi, B.-T. Zhang, and C. S. Kim (1997). Using a

genetic algorithm for communication link partitioning. Proceedings of the IEEE

International Conference on Evolutionary Computation, 1997., 581 –584.

[Lee and Vlachogiannis, 2005] Lee, K. and J. Vlachogiannis (2005). Optimization

of power systems based on ant colony system algorithms: An overview.

Proceedings of the 13th International Conference on Intelligent Systems

Application to Power Systems, 2005., 22 –35.

[Lee et al., 2009] Lee, Y., S.-C. Cheng, C.-C. Chang, and C.-H. Chuang (2009). An

ant colony optimization algorithm for dna copy number analysis in array cgh data.

Proceedings of the International Conference on Complex, Intelligent and

Software Intensive Systems, 2009. CISIS ’09., 842 –847.

[Leeton et al., 2010] Leeton, U., T. Ratniyomchai, and T. Kulworawanichpong (2010).

Optimal reactive power flow with distributed generating plants in electric power

distribution systems. Proceedings of the International Conference on Advances in

Energy Engineering (ICAEE), 2010, 166 –169.

[Lei et al., 2003] Lei, J., Y. Yamada, and Y. Komura (2003). Layout optimization

of manufacturing cells using particle swarm optimization. Proceedings of the

SICE 2003 Annual Conference 1, 392 – 396 Vol.1.

[Leitao, 2008] Leitao, P. (2008). Self-organization in manufacturing systems:

Challenges and opportunities. Proceedings of th Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems Workshops, 2008.

SASOW 2008., 174 –179.

[Leitão, 2009a] Leitão, P. (2009a). Agent-based distributed manufacturing

control: A state-of-the-art survey. Proceedings of the International Journal of

Engineering Applications of Artificial Intelligence 22, n. 7, 979–991.

[Leitão, 2009b] Leitão, P. (2009b). Holonic rationale and self-organization on

design of complex evolvable systems. Proceedings of the 4th Int’l. Conf. on

Industrial Applications of Holonic and Multi-Agent Systems, LNAI 5696,

Springer, 13–24.

61

[Leitão et al., 2010] Leitão, P., J. Alves, J. Mendes, and A. Colombo (2010). Energy

aware knowledge extraction from petri nets supporting decision-making in

service-oriented automation. to appear in the Proceedings of the IEEE

International Symposium on Industrial Electronics.

[Leitão and Restivo, 2006] Leitão, P. and F. Restivo (2006). Adacor: A holonic

architecture for agile and adaptive manufacturing control. Computers in

Industry 57 (2), 121–130.

[Li and Pi, 2009] Li, C. and Y. Pi (2009). A hybrid of particle swarm optimization

and ensemble learning for credit risk assessment. Proc. of the Int’l. Conf. on

Computational Intelligence and Software Engineering, 1–4.

[Li et al., 2008] Li, T., M. Yang, S. Chen, Z. Zhao, and Z. Ge (2008). On qos

anycast routing algorithm based on particle swarm optimization. Proceedings of

the 9th International Conference for Young Computer Scientists, 2008. ICYCS

2008., 386 –391.

[Li and Lei, 2009] Li, Z. and L. Lei (2009). Sensor node deployment in wireless

sensor networks based on improved particle swarm optimization. Proceedings of

the International Conference on Applied Superconductivity and Electromagnetic

Devices, 2009. ASEMD 2009., 215 –217.

[Lima et al., 2007] Lima, M., A. Araujo, and A. Cesar (2007). Adaptive genetic

algorithms for dynamic channel assignment in mobile cellular communication

systems. Proceedings of the IEEE Transactions on Vehicular Technology 56(5),

2685 –2696.

[Liu and Ge, 2008] Liu, H. and S. Ge (2008). Reactive power optimization based on

improved particle swarm optimization algorithm with boundary restriction.

Proceedings of the Third International Conference on Electric Utility

Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008.,

1365 –1370.

[Liu et al., 2005] Liu, H., Z. Xu, and A. Abraham (2005). Hybrid fuzzy-genetic

algorithm approach for crew grouping. Proceedings of the 5th International

Conference on Intelligent Systems Design and Applications, 2005. ISDA ’05., 332

– 337.

62

[Liu et al., 2009] Liu, Z., D. Zhao, X. Zhang, B. Dan, and F. Guan (2009). Reactive

power optimization in power system based on chaos ant colony algorithm.

Proceedings of the International Conference on Sustainable Power Generation

and Supply, 2009. SUPERGEN ’09., 1 –4.

[Logeswari and Karnan, 2010] Logeswari, T. and M. Karnan (2010). An improved

implementation of brain tumor detection using soft computing. Proceedings of the

Second International Conference on Communication Software and Networks,

2010. ICCSN ’10., 147 –151.

[Lu et al., 2008] Lu, C., H. Huang, B. Zheng, J. Fuh, and Y. Wong (2008). An ant

colony optimization approach to disassembly planning. Proceedings of the

International Conference on Apperceiving Computing and Intelligence Analysis,

2008. ICACIA 2008., 81 –84.

[Luke et al., 2005] Luke, S., C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan

(2005). Mason: A multiagent simulation environment. SIMULATION 81(7), 517–

527.

[Lv and Lu, 2009] Lv, H. and C. Lu (2009). A discrete particle swarm optimization

algorithm for assembly sequence planning. Proceedings of the 8th International

Conference on Reliability, Maintainability and Safety, 2009. ICRMS 2009., 1119

–1122.

[Ma et al., 2008] Ma, M., Y. Zhang, H. Tian, and Y. Lu (2008). A fast sar image

segmentation algorithm based on particle swarm optimization and grey entropy.

Proceedings of the Fourth International Conference on Natural Computation,

2008. ICNC ’08. 4, 8 –12.

[Majhi et al., 2008] Majhi, R., G. Panda, G. Sahoo, A. Panda, and A. Choubey (2008).

Prediction of s&p 500 and djia stock indices using particle swarm optimization

technique. Proceedings of the IEEE Congress on Evolutionary Computation,

2008. CEC 2008. (IEEE World Congress on Computational Intelligence)., 1276 –

1282.

[Malisia and Tizhoosh, 2006] Malisia, A. and H. Tizhoosh (2006). Image

thresholding using ant colony optimization. Proceedings of the 3rd Canadian

Conference on Computer and Robot Vision.

63

[MASON, 2010] MASON (2010). Multi agent simulation of neighborhood.

Accessed May 25th, 2010.

[Massotte, 1995] Massotte, P. (1995). Self-organization: A new approach to

improve the reactivity of the production systems. Proc. of the IEEE International

Conference on Emergent Technologies for Factory Automation, 23–32.

[Matlock et al., 2009] Matlock, A., R. Holsapple, C. Schumacher, J. Hansen, and

A. Girard (2009). Cooperative defensive surveillance using unmanned aerial

vehicles. Proceedings of the American Control Conference, 2009. ACC ’09., 2612

–2617.

[Maulik, 2009] Maulik, U. (2009). Medical image segmentation using genetic

algorithms. Proceedings of the IEEE Transactions on Information Technology in

Biomedicine 13(2), 166 –173.

[Meng, 2006] Meng, Y. (2006). A swarm intelligence based algorithm for proteomic

pattern detection of ovarian cancer. Proceedgins of the IEEE Symposium on

Computational Intelligence and Bioinformatics and Computational Biology, 2006.

CIBCB ’06., 1 –7.

[Miller, 2007] Miller, P. (2007). The genius of swarms. National Geographic.

[Montana et al., 1999] Montana, D., G. Bidwell, G. Vidaver, and J. Herrero

(1999). Scheduling and route selection for military land moves using genetic

algorithms. Proceedings of the 1999 Congress on Evolutionary Computation,

1999. CEC 99. 2, 1123 Vol. 2.

[Moore and Sinclair, 1999] Moore, S. and M. Sinclair (1999). Design of routing tables

for a survivable military communications network using genetic algorithms.

Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC

99. 3, 1795 Vol. 3.

[Mori et al., 1998] Mori, K., M. Tsukiyama, and T. Fukuda (1998). Adaptive

scheduling system inspired by immune system. Proceedings of the 1998 IEEE

International Conference on Systems, Man, and Cybernetics, 1998. 4, 3833 –3837

vol.4.

64

[Moudada et al., 2004] Moudada, F., M. Bonani, M. S., A. Guignard, and

D. Floreano (2004). Physical connections and cooperation in swarm robotics.

Proceedings of the 8th Conf. on Intelligent Autonomous Systems, 53–60.

[Márkus et al., 1996] Márkus, A., T. K. Váncza, and L. Monostori (1996). A market

approach to holonic manufacturing. CIRP Annals - Manufacturing

Technology 45(1), 433 – 436.

[Munirajan et al., 2004] Munirajan, V., F. Sahin, and E. Cole (2004). Ant colony

optimization based swarms: implementation for the mine detection application.

Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, 2004 1, 716 –721 vol.1.

[Muraleedharan and Osadciw, 2009] Muraleedharan, R. and L. Osadciw (2009). An

intrusion detection framework for sensor networks using ant colony. Proceedings

of the Conference Record of the Forty-Third Asilomar Conference on Signals,

Systems and Computers, 2009, 275 –278.

[Ning et al., 2004] Ning, L., L. Fei, S. Debao, and H. Chang (2004). Particle swarm

optimization for constrained layout optimization. Proceedings of the Fifth World

Congress on Intelligent Control and Automation, 2004. WCICA 2004. 3, 2214 –

2218 Vol.3.

[Niu et al., 2007] Niu, X., Y. Qiu, and S. Tong (2007). Application of particle

swarm system as a novel parameter optimization technique on spatiotemporal

retina model. Proc. of the 29th Annual Int’l. Conf. of the IEEE Engineering in

Medicine and Biology Society, 5794–5797.

[Nouyan et al., 2009] Nouyan, S., R. Gross, M. Bonani, F. Mondada, and M. Dorigo

(2009). Teamwork in self-organized robot colonies. Proceedings of the IEEE

Transactions on Evolutionary Computation 13, 695–711.

[Ohmori et al., 2010] Ohmori, S., K. Yoshimoto, and K. Ogawa (2010). Solving facility

layout problem via particle swarm optimization. Proceedings of the Third

International Joint Conference on Computational Science and Optimization

(CSO), 2010 1, 409 –413.

65

[Parunak, 1996] Parunak, H. V. (1996). Foundations of Distributed Artificial

Intelligence, Chapter Applications of Distributed Artificial Intelligence in

Industry, pp. 139–164. John Wiley & Sons.

[Parunak, 2005] Parunak, H. V. D. (May 2005). Expert assessment of human-

human stigmergy. Technical report, Analysis for the Canadian Defence

Organization, Altarum Institute, Ann Arbor, Michigan.

[Peña et al., 2006] Peña, J., A. Upegui, and E. Sanchez (2006). Particle swarm

optimization with discrete recombination: An online optimizer for evolvable

hardware. Proc. of the 1st NASA/ESA Conf. on Adaptive Hardware and Systems,

163–170.

[Peng et al., 2000] Peng, H., F. Long, Z. Chi, and W. Su (2000). A hierarchical

distributed genetic algorithm for image segmentation. Proceedings of the 2000

Congress on Evolutionary Computation, 2000. 1, 272 –276 vol.1.

[Pessin et al., 2009] Pessin, G., F. Osorio, D. Wolf, and M. Dias (2009). Genetic

algorithm applied to robotic squad coordination. Proceedings of the Electronics,

Robotics and Automotive Mechanics Conference, 2009. CERMA ’09., 169 –174.

[Pham et al., 2007] Pham, D., A. A., and E. Koc (2007). Manufacturing cell

formation using the bees algorithm. Proc. of the IPROMS Innovative Production

Machines and Systems Virtual Conference.

[Pham et al., 2007] Pham, D., E. Koc, J. Y. Lee, and J. Phrueksanant (2007). Using

the bees algorithm to schedule jobs for a machine. Proc. of the 8th Int’l. Conf. on

Laser Metrology, CMM and Machine Tool Performance, 430–439.

[Pham et al., 2005] Pham, D. T., G. A, K. E, O. S, R. S, and Z. M. (2005). The bees

algorithm. Technical report, Manufacturing Engineering Centre, Cardiff

University, UK.

[Poli, 2007] Poli, R. (May-November 2007). An analysis of publications on particle

swarm optimization applications. Technical report, CSM-469, Department of

Computing and Electronic Systems, University of Essex, Colchester, Essex, UK.

[Qi et al., 2008] Qi, E.-S., J.-Y. Chen, and L. Liu (2008). Supply chain partners

selection based on rvpk algorithm. Proceedings of the 4th International

66

Conference on Wireless Communications, Networking and Mobile Computing,

2008. WiCOM ’08., 1 –4.

[Qiu et al., 2009] Qiu, H., W. Zhou, and H. Wang (2009). A genetic algorithm-

based approach to flexible job-shop scheduling problem. Proceedings of the Fifth

International Conference on Natural Computation, 2009. ICNC ’09. 4, 81 –85.

[Railsback et al., 2006] Railsback, S. F., S. L. Lytinen, and S. K. Jackson (2006).

Agent-based simulation platforms: Review and development recommendations.

SIMULATION 82(9), 609–623.

[Ramirez-Rosado and Bernal-Agustin, 1998] Ramirez-Rosado, I. and J. Bernal-

Agustin (1998). Genetic algorithms applied to the design of large power

distribution systems. Proceedings of the IEEE Transactions on Power

Systems 13(2), 696 –703.

[Regue et al., 2001] Regue, J.-R., M. Ribo, J.-M. Garrell, and A. Martin (2001). A

genetic algorithm based method for source identification and far-field radiated

emissions prediction from near-field measurements for pcb characterization.

Proceedings of the IEEE Transactions on Electromagnetic Compatibility 43(4),

520 –530.

[Ren and Cheng, 2009] Ren, B. and L. Cheng (2009). Smt automatic optical

inspection path planning based on mdspso algorithm. Proceedings of the

International Conference on Computational Intelligence and Natural Computing,

2009. CINC ’09. 2, 134 –137.

[Sallez et al., 2009] Sallez, Y., T. Berger, and D. Trentesaux (2009). A stigmergic

approach for dynamic routing of active products in fms. Computers in

Industry 60, 204–216.

[Samanta and Nataraj, 2009] Samanta, B. and C. Nataraj (2009). Application of particle

swarm optimization and proximal support vector machines for fault detection.

Swarm Intelligence 3, n. 4, 303–325.

[Satheesh Kumar et al., 2009] Satheesh Kumar, R., P. Asokan, and S. Kumanan

(2009). Artificial immune system-based algorithm for the unidirectional loop

layout problem in a flexible manufacturing system. The International Journal of

Advanced Manufacturing Technology 40, 553–565. 10.1007/s00170-008-1375-y.

67

[Sethuram and Parashar, 2006] Sethuram, R. and M. Parashar (2006). Ant colony

optimization and its application to boolean satisfiability for digital vlsi circuits.

Proceedings of the International Conference on Advanced Computing and

Communications, 2006. ADCOM 2006., 507 –512.

[Shan et al., 2007] Shan, H., S. Li, J. Huang, Z. Gao, and W. Li (2007). Ant colony

optimization algorithm-based disassembly sequence planning. Proceedings of the

International Conference on Mechatronics and Automation, 2007. ICMA 2007.,

867 –872.

[Sharma et al., 2009] Sharma, S., R. Mohapatra, B. Biswal, and B. Choudhury (2009).

Generation of robotic assembly sequence using ant colony optimization.

Industrial and Information Systems (ICIIS), 2009 International Conference on,

520 –525.

[Shi et al., 2009] Shi, D., J. He, and L. Wang (2009). Job shop scheduling problem

with a novel particle swarm optimization based on tabu search. Proceedgins of the

International Conference on Artificial Intelligence and Computational

Intelligence, 2009. AICI ’09. 2, 97 –100.

[Sim and Sun, 2002] Sim, K. M. and W. H. Sun (2002). Multiple ant-colony

optimization for network routing. Proceedgins of the First International

Symposium on Cyber Worlds, 2002. Proceedings., 277 – 281.

[Sinha et al., 2009] Sinha, A., H. Aditya, M. Tiwari, and F. Chan (2009). Multi-agent

based petroleum supply chain coordination: A co-evolutionary particle swarm

optimization approach. Proceedings of the World Congress on Nature

Biologically Inspired Computing, 2009. NaBIC 2009., 1349 –1354.

[Skinner, 2010] Skinner, M. (2010). Genetic algorithms overview.

[Sun et al., 2008] Sun, R., X. Wang, and G. Zhao (2008). An ant colony

optimization approach to multi-objective supply chain model. Proceedings of the

Second International Conference on Secure System Integration and Reliability

Improvement, 2008. SSIRI ’08., 193 –194.

[Sun and Teng, 2002] Sun, Z.-G. and H.-F. Teng (2002). An ant colony optimization

based layout optimization algorithm. Proceedings of the 2002 IEEE Region 10

68

Conference on Computers, Communications, Control and Power Engineering

TENCON ’02. 1, 675 – 678 vol.1.

[Suva et al., 2004] Suva, C., I. Sousa, J. Sa da Costa, and T. Runkler (2004). A

multi-agent approach for supply chain management using ant colony optimization.

Proceeddings of the IEEE International Conference on Systems, Man and

Cybernetics, 2004 2, 1938 – 1943 vol.2.

[Teodorovic, 2008] Teodorovic, D. (2008). Swarm intelligence systems for

transportation engineering: Principles and applications. Transportation Research -

Part C 16, 651–667.

[Tewolde et al., 2008] Tewolde, G., D. Hanna, and R. Haskell (2008). Hardware

pso for sensor network applications. Proceedings of the Swarm Intelligence

Symposium, 2008. SIS 2008. IEEE, 1 –8.

[Thamarajah, 1998] Thamarajah, A. (1998). A self-organizing model for scheduling

distributed autonomous manufacturing systems. Cybernetics Systems 29 (5), 461–

480.

[Thangaraj et al., 2009] Thangaraj, R., M. Pant, and A. Nagar (2009).

Maximization of expected target damage value using quantum particle swarm

optimization. Proceedings of the Second International Conference on

Developments in eSystems Engineering (DESE), 2009, 329 –334.

[Tian et al., 2008] Tian, J., W. Yu, and S. Xie (2008). An ant colony optimization

algorithm for image edge detection. Proceedings of the IEEE Congress on

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on

Computational Intelligence)., 751 –756.

[Timmis et al., 2008] Timmis, J., A. Hone, T. Stibor, and E. Clark (2008). Theoretical

advances in artificial immune systems. Theoretical Computer Science 403(1), 11

– 32.

[Tobias and Hofmann, 2004] Tobias, R. and C. Hofmann (2004). Evaluation of free

java-libraries for social-scientific agent based simulation. Journal of Artificial

Societies and Social Simulation 7.

[Toderici et al., 2010] Toderici, M., S. Toderici, and M. Imecs (2010). Optimization of

induction motor control using genetic algorithms. Proceedings of the 2010 IEEE

69

International Conference on Automation Quality and Testing Robotics (AQTR), 3,

1 –6.

[Tohka et al., 2007] Tohka, J., E. Krestyannikov, I. Dinov, A. Graham, D. Shattuck,

U. Ruotsalainen, and A. Toga (2007). Genetic algorithms for finite mixture model

based voxel classification in neuroimaging. Proceedings of the IEEE Transactions

on Medical Imaging 26(5), 696 –711.

[Tong et al., 2004] Tong, Z., L. Ning, and S. Debao (2004). Genetic algorithm for

vehicle routing problem with time window with uncertain vehicle number.

Proceedings of the Fifth World Congress on Intelligent Control and Automation,

2004. WCICA 2004. 4, 2846 – 2849 Vol.4.

[Tsai and Chou, 2006] Tsai, J.-T. and J.-H. Chou (2006). Circuit tolerance design

using an improved genetic algorithm. Proceedings of the 9th International

Conference on Control, Automation, Robotics and Vision, 2006. ICARCV ’06., 1 –

6.

[Tunjongsirigul and Pongchairerks, 2010] Tunjongsirigul, B. and P. Pongchairerks

(2010). A genetic algorithm for a vehicle routing problem on a real application of

bakery delivery. Proceedings of the 2010 International Conference on Electronic

Computer Technology (ICECT), 214 –217.

[Vaario and Ueda, 1996] Vaario, J. and K. Ueda (1996). Self-organisation in

manufacturing systems. Proceedings of the Japan- USA Symposium on Flexible

Automation, Boston, US, 1481–1484.

[Van Ast et al., 2009] Van Ast, J., R. Babuska, and B. De Schutter (2009). Fuzzy ant

colony optimization for optimal control. Proceedings of the American Control

Conference, 2009. ACC ’09., 1003 –1008.

[Wai and Su, 2006] Wai, R.-J. and K.-H. Su (2006). Supervisory control for linear

piezoelectric ceramic motor drive using genetic algorithm. Proceedings of the

IEEE Transactions on Industrial Electronics 53(2), 657 – 673.

[Wang et al., 2008] Wang, G., Y. Yan, X. Zhang, J. Shangguan, and Y. Xiao (2008).

A simulation optimization approach for facility layout problem. Proc. of the IEEE

Int’l. Conf. on Industrial Engineering and Engineering Management, 734–738.

70

[Wang et al., 2005] Wang, X.-N., Y.-J. Feng, and Z.-R. Feng (2005). Ant colony

optimization for image segmentation. Proceedings of the International

Conference on Machine Learning and Cybernetics, 2005. 9, 5355 –5360 Vol. 9.

[Wilensky, 1999] Wilensky, U. (1999). Netlogo.

http://ccl.northwestern.edu/netlogo/.

[Wu and Tan, 2009] Wu, J. and Y. Tan (2009). A particle swarm optimization

algorithm for grain logistics vehicle routing problem. Proceedings of the ISECS

International Colloquium on Computing, Communication, Control, and

Management, 2009. CCCM 2009. 3, 364 –367.

[Xia and Wu, 2005] Xia, W. and Z. Wu (2005). A hybrid particle swarm optimization

approach for job-shop scheduling problem. The International Journal of

Advanced Manufacturing Technology, 360–366.

[Xu et al., 2009] Xu, D.-S., X.-Y. Ai, and L.-N. Xing (2009). An improved ant

colony optimization for flexible job shop scheduling problems. Proceedings of the

International Joint Conference on Computational Sciences and Optimization,

2009. CSO 2009. 1, 517 –519.

[Yamada et al., 2003] Yamada, Y., K. Ookoudo, and Y. Komura (2003). Layout

optimization of manufacturing cells and allocation optimization of transport

robots in reconfigurable manufacturing systems using particle swarm

optimization. Proc. of the Int’l. Conf. on Intelligent Robots and Systems.

[Yuan and Zou, 2009] Yuan, X.-e. and Y. Zou (2009). Technology program

financial forecast model based on caco-svm. Proceedings of the International

Workshop onIntelligent Systems and Applications, 2009. ISA 2009., 1 –4.

[Zhang et al., 2008] Zhang, B., Y. Yang, and L. Gan (2008). Dynamic control of

wind/photovoltaic hybrid power systems based on an advanced particle swarm

optimization. Proceedings of the IEEE International Conference on Industrial

Technology, 2008. ICIT 2008., 1 –6.

[Zhang et al., 2008] Zhang, J., H. S. Chung, A. W. Lo, and T. Huang (2008).

Optimization of power electronic circuits using ant colony system. Proceedings of

the IEEE Transactions on Power Electronics 24, 147–162.

71

[Zhang and hai Wang, 2008] Zhang, Q. and X. hai Wang (2008). Region water supply

system optimization based on binary and continuous ant colony algorithms.

Proceedings of the International Conference on Intelligent Computation

Technology and Automation (ICICTA), 2008 1, 130 –134.

[Zhang and Wu, 2008] Zhang, R. and C. Wu (2008). An effective immune

particle swarm optimization algorithm for scheduling job shops. Proceedings of

the 3rd IEEE Conference on Industrial Electronics and Applications, 2008. ICIEA

2008., 758 –763.

[Zhao et al., 2009] Zhao, D., L. Luo, and K. Zhang (2009). An improved ant colony

optimization for communication network routing problem. Proceedings of the

Fourth International Conference on Bio-Inspired Computing, 2009. BIC-TA ’09.,

1 –4.

[Zhengxiong and Xinsheng, 2010] Zhengxiong, G. and G. Xinsheng (2010). A

particle swarm optimization for the motion planning of wheeled mobile robot.

Proceedings of the 8th World Congress on Intelligent Control and Automation

(WCICA), 2010, 2410 –2414.

[Zurawski and Zhou, 1994] Zurawski, R. and M. Zhou (1994). Petri nets and industrial

applications: A tutorial. Proceedings of the IEEE Transactions on Industrial

Electronics 41(6), 567 –583.

72

Attachments

globals [

 tapetes

 lifter1

 lifter2

 list_length

 new_directions

 OUT-blue

 OUT-yellow

 count-box-blue

 count-box-yellow

 exit-found?

 exit-total

 possible-exits

 aux-directions

 product-exit-time

 average-product-exit-time

 distance-to-jump

 P1

 P2

 P3

 P4

 P5

 P6

 P7

 P8

 P9

 P10

 P11

 P12

 P13

 next-heading

 create-next-box?

 IN-free

 last-create-time

 %trans-time

 makespan

 product-trans-time

 W1-time-of-processing

 W2-time-of-processing

 already-processed?

 max-pheromones-blue

 max-pheromones-yellow

 maximum-pheromone-level

]

breed [product]

breed [workstation]

patches-own[

 bifurcacao?

 directions

 pheromones_blue

 pheromones_yellow

 pheromones_W1

 pheromones_W2

 exit?

 ID

 velocity

 availability

73

 malfunction?

]

product-own[

 memory

 birth-time

 death-time

 service-list

 orders

 processing

 time-of-processing

]

;Cria o Sistema de tapetes.************************

to setup

 ca

 set-patch-size 40

 resize-world -5 5 -5 5

 set tapetes patches with [

 pycor = -1 and pxcor >= -1 and pxcor < 2

 or

 pycor = 1 and pxcor >= -1 and pxcor < 2

 or

 pycor = 0 and pxcor >= -1 and pxcor < 2

 or

 pycor = -4 and pxcor >= -1 and pxcor < 2

]

 ask tapetes [

 set pcolor white

 set bifurcacao? TRUE

 set exit? FALSE

]

;**

 set lifter1 patches with [

 pxcor = -2 and pycor >= -4 and pycor <= 0

]

 ask lifter1 [

 set pcolor grey

 set bifurcacao? TRUE

 set exit? FALSE

 set availability TRUE

]

 set lifter2 patches with [

 pxcor = 2 and pycor >= -4 and pycor <= 0

]

 ask lifter2 [

 set pcolor grey

 set bifurcacao? TRUE

 set exit? FALSE

 set availability TRUE

]

;**

 setup-bifurcacao?

 setup-exit?

 setup-workstation

 set count-box-blue 0

 set count-box-yellow 0

 set OUT-blue 0

 set OUT-yellow 0

 set product-exit-time []

 set product-trans-time []

74

end

to setup-plot

 set-current-plot "WIP"

 set-plot-y-range 0 num-box-yellow + num-box-blue

end

to setup-bifurcacao?

 ask patches[set plabel-color Blue]

 ask patch -1 1 [

 set directions [-1 -1 180 -1]

 set pheromones_blue [-1 -1 0 -1]

 set pheromones_yellow [-1 -1 0 -1]

 set pheromones_W1 [-1 -1 0 -1]

 set pheromones_W2 [-1 -1 0 -1]

 set plabel "C1"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 0 1 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set plabel "C2"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 1 1 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set plabel "C3"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch -1 0 [

 set directions [-1 90 180 -1]

 set pheromones_blue [-1 0 0 -1]

 set pheromones_yellow [-1 0 0 -1]

 set pheromones_W1 [-1 0 0 -1]

 set pheromones_W2 [-1 0 0 -1]

 set plabel "C4"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 0 0 [

 set directions [-1 90 -1 -1]

 set pheromones_blue [-1 0 -1 -1]

 set pheromones_yellow [-1 0 -1 -1]

75

 set pheromones_W1 [-1 0 -1 -1]

 set pheromones_W2 [-1 0 -1 -1]

 set plabel "C5"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 1 0 [

 set directions [0 90 -1 -1]

 set pheromones_blue [0 0 -1 -1]

 set pheromones_yellow [0 0 -1 -1]

 set pheromones_W1 [0 0 -1 -1]

 set pheromones_W2 [0 0 -1 -1]

 set plabel "C6"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch -1 -1 [

 set directions [-1 90 -1 -1]

 set pheromones_blue [-1 0 -1 -1]

 set pheromones_yellow [-1 0 -1 -1]

 set pheromones_W1 [-1 0 -1 -1]

 set pheromones_W2 [-1 0 -1 -1]

 set plabel "C7"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 0 -1 [

 set directions [-1 90 -1 -1]

 set pheromones_blue [-1 0 -1 -1]

 set pheromones_yellow [-1 0 -1 -1]

 set pheromones_W1 [-1 0 -1 -1]

 set pheromones_W2 [-1 0 -1 -1]

 set plabel "C8"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 1 -1 [

 set directions [0 -1 -1 -1]

 set pheromones_blue [0 -1 -1 -1]

 set pheromones_yellow [0 -1 -1 -1]

 set pheromones_W1 [0 -1 -1 -1]

 set pheromones_W2 [0 -1 -1 -1]

 set plabel "C9"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch -1 -4 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

76

 set pheromones_W2 [-1 -1 -1 0]

 set plabel "C10"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 1 -4 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set plabel "C11"

 set velocity 2

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch -2 0 [

 set directions [-1 90 -1 -1]

 set pheromones_blue [-1 0 -1 -1]

 set pheromones_yellow [-1 0 -1 -1]

 set pheromones_W1 [-1 0 -1 -1]

 set pheromones_W2 [-1 0 -1 -1]

 set plabel "L1"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

 ask patch 2 0 [

 set directions [-1 90 180 -1]

 set pheromones_blue [-1 0 0 -1]

 set pheromones_yellow [-1 0 0 -1]

 set pheromones_W1 [-1 0 0 -1]

 set pheromones_W2 [-1 0 0 -1]

 set plabel "L2"

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

]

;**

 ask patch -2 -1 [

 set directions [0 -1 -1 -1]

 set pheromones_blue [0 -1 -1 -1]

 set pheromones_yellow [0 -1 -1 -1]

 set pheromones_W1 [0 -1 -1 -1]

 set pheromones_W2 [0 -1 -1 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L11"

]

 ask patch -2 -2 [

 set directions [0 -1 -1 -1]

 set pheromones_blue [0 -1 -1 -1]

 set pheromones_yellow [0 -1 -1 -1]

 set pheromones_W1 [0 -1 -1 -1]

77

 set pheromones_W2 [0 -1 -1 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L12"

]

 ask patch -2 -3 [

 set directions [0 -1 -1 -1]

 set pheromones_blue [0 -1 -1 -1]

 set pheromones_yellow [0 -1 -1 -1]

 set pheromones_W1 [0 -1 -1 -1]

 set pheromones_W2 [0 -1 -1 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L13"

]

 ask patch -2 -4 [

 set directions [0 -1 -1 -1]

 set pheromones_blue [0 -1 -1 -1]

 set pheromones_yellow [0 -1 -1 -1]

 set pheromones_W1 [0 -1 -1 -1]

 set pheromones_W2 [0 -1 -1 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L14"

]

 ask patch 2 -1 [

 set directions [-1 -1 180 -1]

 set pheromones_blue [-1 -1 0 -1]

 set pheromones_yellow [-1 -1 0 -1]

 set pheromones_W1 [-1 -1 0 -1]

 set pheromones_W2 [-1 -1 0 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L21"

]

 ask patch 2 -2 [

 set directions [-1 -1 180 -1]

 set pheromones_blue [-1 -1 0 -1]

 set pheromones_yellow [-1 -1 0 -1]

 set pheromones_W1 [-1 -1 0 -1]

 set pheromones_W2 [-1 -1 0 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L22"

]

 ask patch 2 -3 [

 set directions [-1 -1 180 -1]

 set pheromones_blue [-1 -1 0 -1]

 set pheromones_yellow [-1 -1 0 -1]

 set pheromones_W1 [-1 -1 0 -1]

 set pheromones_W2 [-1 -1 0 -1]

78

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L23"

]

 ask patch 2 -4 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set ID -1

 set plabel "L24"

]

 ask patch 0 -4 [

 set directions [-1 -1 -1 270]

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set velocity 1

]

;***

 set maximum-pheromone-level 99999

end

to create-box [box-color]

 set-default-shape product "box"

 ask patch -3 0 [

 ifelse count product-here = 0 [set IN-free TRUE] [set IN-free

FALSE]

];end ask patches

 if IN-free and (ticks - last-create-time) >= time-to-create-box [

 create-product 1 [

 setxy -3 0

 set size 0.5

 set heading 90

 set color box-color

 set birth-time ticks

 if color = Blue [set service-list ["W2" "OUT"]

 set count-box-blue count-box-blue + 1]

 if color = Yellow [set service-list ["W1" "OUT"]

 set count-box-yellow count-box-yellow + 1]

 set orders []

 set processing FALSE

 set time-of-processing 0

 set memory []

]

 set last-create-time ticks

]

end

to setup-exit?

 ask patches[

 if pxcor = -3 and pycor = 0 [

79

 set pcolor Green

 set exit? FALSE

; set ID "IN"

 set bifurcacao? FALSE

 set plabel "IN"

 set directions [-1 90 -1 -1]

 set velocity 1

 set malfunction? FALSE

 set availability TRUE

 set pheromones_blue [-1 -1 -1 0]

 set pheromones_yellow [-1 -1 -1 0]

 set pheromones_W1 [-1 -1 -1 0]

 set pheromones_W2 [-1 -1 -1 0]

 set ID -1

]

]

 ask patches[

 if pxcor = 3 and pycor = 0 [

 set pcolor red

 set exit? TRUE

 ; set ID "OUT"

 set plabel "OUT"

 set malfunction? FALSE]

 set availability TRUE

]

end

to setup-workstation

 ask patch 0 2 [

; set directions [0 -1 -1 -1]

 set plabel "W1"

; set velocity 1

 set pcolor Yellow

]

 ask patch 0 -2 [

; set directions [0 -1 -1 -1]

 set plabel "W2"

; set velocity 1

 set pcolor Yellow

]

set-default-shape workstation "person"

create-workstation 1[

 set size .5

 setxy 0 2

 set color red

]

create-workstation 1[

 set size .5

 setxy 0 -2

 set color red

]

end

to find-exit-random?

set exit-found? FALSE

set aux-directions []

set already-processed? FALSE

 ask product[

 lifters-available?

 ifelse not exit? [

 ask patch-here[

80

 set distance-to-jump velocity

 set new_directions remove -1 directions]

 ifelse not bifurcacao? and processing = FALSE [if not any?

product-on patch-ahead distance-to-jump and not [malfunction?] of

patch-ahead distance-to-jump and [availability] of patch-ahead

distance-to-jump[jump distance-to-jump]]

 [set list_length length new_directions

 set heading item random list_length new_directions

 if first service-list = "W1" and plabel = "C2" and processing =

FALSE [

 set service-list remove-item 0 service-list

 set processing TRUE

 set time-of-processing time-of-processing + 1

 set color color + 10

 set pcolor 127

]

 if first service-list = "W2" and plabel = "C8" and processing

= FALSE [

 set service-list remove-item 0 service-list

 set processing TRUE

 set time-of-processing time-of-processing + 1

 set color color + 10

 set pcolor 127]

 if [plabel] of patch-ahead distance-to-jump = "L1" and plabel !=

"IN" and not processing and not any? product-on patch-ahead

distance-to-jump [jump distance-to-jump

 set already-processed? TRUE]

 if [availability] of patch-ahead distance-to-jump [

 if plabel = "IN" and [availability] of patch-ahead distance-to-

jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if plabel = "C10" and [availability] of patch-ahead distance-

to-jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if plabel = "C6" and [availability] of patch-ahead distance-to-

jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if not any? product-on patch-ahead distance-to-jump and not

[malfunction?] of patch-ahead distance-to-jump [

 if [plabel] of patch-ahead distance-to-jump = "L2" and

[availability] of patch-ahead distance-to-jump and not processing

and not any? product-on patch-ahead distance-to-jump [jump

distance-to-jump

 set already-processed? TRUE]

 if [plabel] of patch-ahead distance-to-jump = "L1" and

[availability] of patch-ahead distance-to-jump and not processing

and not any? product-on patch-ahead distance-to-jump [jump

distance-to-jump

 set already-processed? TRUE]]

 if plabel = "L2" and first service-list != "OUT" and not

processing and not already-processed? and not any? product-on

patch-ahead distance-to-jump [set heading 180

 jump distance-to-jump

 set already-processed? TRUE]

81

 if plabel = "L2" and first service-list = "OUT" and not

processing and not already-processed? and not any? product-on

patch-ahead distance-to-jump [set heading 90

 jump distance-to-jump

 set already-processed? TRUE]

 if not any? product-on patch-ahead distance-to-jump and not

processing and not [malfunction?] of patch-ahead distance-to-jump

and not already-processed? [jump distance-to-jump]

]

]

]

;************ else exit **********

 [count-exit-box]

]

end

to find-exit-function?

set P1 ["C4" "C5" "C6" "C3" "C2" "C1" "C4"]

set P2 ["C4" "C7" "C8" "C9" "C6" "C3" "C2" "C1" "C4"]

set P3 ["C4" "C5" "C6" "L2" "C11" "C10" "L1" "C4"]

set P4 ["C4" "C5" "C6" "L2" "C11" "C10" "L1" "C4" "C5" "C6" "C3" "C2"

"C1" "C4"]

set P5 ["C4" "C5" "C6" "L2" "C11" "C10" "L1" "C4" "C7" "C8" "C9" "C6"

"C3" "C2" "C1" "C4"]

set P6 ["C5" "C6" "L2" "OUT"]

set P7 ["L2" "L2D" "L2D" "L2D" "L2D" "C11" "C10" "L1UD" "L1U" "L1U"

"L1U" "L1" "C4"]

set P8 ["C7" "C8" "C9" "C6" "L2" "OUT"]

set P9 ["C3" "C2" "C1" "C4"]

set P10 ["C9" "C6" "L2" "OUT"]

set P11 ["C1" "C4"]

set P12 ["L2" "OUT"]

set P13 ["C7" "C8" "C9" "C6" "C3" "C2" "C1" "C4"]

ask product [

 lifters-available?

 ask patch-here [set distance-to-jump velocity]

 if plabel = "IN" and not any? product-on patch-ahead distance-to-

jump and not processing and [availability] of patch-ahead

distance-to-jump [

 jump distance-to-jump]

 if (xcor = -2) and (ycor = -1) [

 set heading 0

 jump distance-to-jump

 set orders remove-item 0 orders

]

 if plabel = "L1" and not any? product-on patch-ahead distance-to-

jump and empty? orders and not processing and [availability] of

patch-ahead distance-to-jump [

 if first service-list = "W1" [set orders P1]

 if first service-list = "W2" [set orders P2]

 if first service-list = "OUT" [set orders P6]

]

 if plabel = "C4" and empty? orders and not processing [

 ;ver qual a próxima ordem no service-list e atribuir

 if first service-list = "W1" and not processing [set orders P1

 set orders remove-item 0 orders]

 if first service-list = "W2" and not processing [set orders P2

 set orders remove-item 0 orders]

 if first service-list = "OUT" and not processing [

82

 set heading 90

 ifelse not any? product-on patch-ahead distance-to-jump and not

processing and [availability] of patch-ahead distance-to-jump [

set orders P6]

 [set orders P8]]

]

 if not empty? orders and not processing [

 next-heading? first orders

 set heading next-heading

 if not any? product-on patch-ahead distance-to-jump and not

processing and not [malfunction?] of patch-ahead distance-to-jump

and [availability] of patch-ahead distance-to-jump [

 jump distance-to-jump

 if first service-list = "W1" and plabel = "C2" [set processing

TRUE

 set service-list remove-item 0 service-list

 set color color + 10

 set pcolor 127]

 if first service-list = "W2" and plabel = "C8" [set processing

TRUE

 set service-list remove-item 0 service-list

 set color color + 10

 set pcolor 127]

 set orders remove-item 0 orders

 if any? product-on patch-ahead distance-to-jump and plabel = "C6"

and last orders = "C4" and not processing and not [malfunction?]

of patch-ahead distance-to-jump [

 set orders P7]

 if plabel = "C6" and not processing and not [malfunction?] of

patch-ahead distance-to-jump and not [availability] of patch-ahead

distance-to-jump [

 set orders P9]

 if plabel = "C6" and not processing and not [malfunction?] of

patch-ahead distance-to-jump and [availability] of patch-ahead

distance-to-jump and first service-list = "OUT" [

 set orders P12]

]

]

 if [malfunction?] of patch-ahead distance-to-jump [

 if first service-list = "OUT" and not processing [set orders P8]

 if first service-list = "W1" and not processing [set orders P2

 set orders remove-item 0 orders]

 if first service-list = "W2" and not processing [set orders P2

 set orders remove-item 0 orders]

]

 if plabel = "C8" and empty? orders and not processing and first

service-list = "OUT" [set orders P10]

 if plabel = "C2" and empty? orders and not processing and first

service-list = "OUT" [set orders P11]

]

count-exit-box

end

to find-exit-pheromones?

set exit-found? FALSE

set aux-directions []

set already-processed? FALSE

 ask product[

 let aux-scent []

 lifters-available?

83

 ifelse not exit? [

 ask patch-here[

 set distance-to-jump velocity

 set max-pheromones-blue max pheromones_blue

 set max-pheromones-yellow max pheromones_yellow

]

 ifelse not bifurcacao? and not processing [if not any? product-

on patch-ahead distance-to-jump and not [malfunction?] of patch-

ahead distance-to-jump and [availability] of patch-ahead

distance-to-jump[jump distance-to-jump]]

 [if not processing [

 ifelse (first service-list = "W1") or (first service-list =

"W2") [

 ifelse (color = Blue) or (color = Blue + 10) and (max

pheromones_W2) > pheromones-decision-level [set heading item

(position max pheromones_W2 pheromones_W2) directions

 let labelp [plabel] of patch-here

 let scent-position item (position (max pheromones_W2)

pheromones_W2) directions

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]

 [ifelse (color = Yellow) or (color = Yellow + 10) and (max

pheromones_W1) > pheromones-decision-level [set heading item

(position (max pheromones_W1) pheromones_W1) directions

 let labelp [plabel] of patch-here

 let scent-position item (position max pheromones_W1

pheromones_W1) directions

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]

 [set new_directions remove -1 directions

 set list_length length new_directions

 set heading item random list_length new_directions

 let labelp [plabel] of patch-here

 let scent-position heading

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]]]

 [ifelse (color = Blue) or (color = Blue + 10) and (max

pheromones_blue) > pheromones-decision-level [set heading item

(position max pheromones_blue pheromones_blue) directions

 let labelp [plabel] of patch-here

 let scent-position item (position (max pheromones_blue)

pheromones_blue) directions

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]

 [ifelse (color = Yellow) or (color = Yellow + 10) and (max

pheromones_yellow) > pheromones-decision-level [set heading item

(position (max pheromones_yellow) pheromones_yellow) directions

 let labelp [plabel] of patch-here

 let scent-position item (position max-pheromones-yellow

pheromones_yellow) directions

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]

 [set new_directions remove -1 directions

 set list_length length new_directions

 set heading item random list_length new_directions

 let labelp [plabel] of patch-here

84

 let scent-position heading

 set aux-scent lput labelp aux-scent

 set aux-scent lput scent-position aux-scent

 set memory lput aux-scent memory]]]

 if first service-list = "W1" and plabel = "C2" and not

processing [

 set service-list remove-item 0 service-list

 set processing TRUE

 set time-of-processing time-of-processing + 1

 set color color + 10

 set pcolor 127

 update-pheromones-to-workstation-W1]

 if first service-list = "W2" and plabel = "C8" and not

processing [

 set service-list remove-item 0 service-list

 set processing TRUE

 set time-of-processing time-of-processing + 1

 set color color + 10

 set pcolor 127

 update-pheromones-to-workstation-W2]

 if [plabel] of patch-ahead distance-to-jump = "L1" and plabel !=

"IN" and not processing and not any? product-on patch-ahead

distance-to-jump [jump distance-to-jump

 set already-processed? TRUE]

 if [availability] of patch-ahead distance-to-jump [

 if plabel = "IN" and [availability] of patch-ahead distance-to-

jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if plabel = "C10" and [availability] of patch-ahead distance-

to-jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if plabel = "C6" and [availability] of patch-ahead distance-to-

jump and not processing and not [malfunction?] of patch-ahead

distance-to-jump and not any? product-on patch-ahead distance-to-

jump [jump distance-to-jump

 set already-processed? TRUE]

 if not any? product-on patch-ahead distance-to-jump and not

[malfunction?] of patch-ahead distance-to-jump [

 if [plabel] of patch-ahead distance-to-jump = "L2" and

[availability] of patch-ahead distance-to-jump and not processing

and not any? product-on patch-ahead distance-to-jump [jump

distance-to-jump

 set already-processed? TRUE]

 if [plabel] of patch-ahead distance-to-jump = "L1" and

[availability] of patch-ahead distance-to-jump and not processing

and not any? product-on patch-ahead distance-to-jump [jump

distance-to-jump

 set already-processed? TRUE]]

 if plabel = "L2" and first service-list != "OUT" and not

processing and not already-processed? and not any? product-on

patch-ahead distance-to-jump [set heading 180

 jump distance-to-jump

 set already-processed? TRUE]

 if plabel = "L2" and first service-list = "OUT" and not

processing and not already-processed? and not any? product-on

patch-ahead distance-to-jump [set heading 90

 jump distance-to-jump

85

 set already-processed? TRUE]

 if plabel = "C6" and first service-list != "OUT" and not

processing and not already-processed? and not any? product-on

patch-ahead distance-to-jump [set heading 180

 jump distance-to-jump

 set already-processed? TRUE]

 if not any? product-on patch-ahead distance-to-jump and not

processing and not [malfunction?] of patch-ahead distance-to-jump

and not already-processed? [jump distance-to-jump]

]

 if not already-processed? and [malfunction?] of patch-ahead

distance-to-jump [

 let temp position heading directions

 set pheromones_W1 replace-item temp pheromones_W1 0

 set pheromones_W2 replace-item temp pheromones_W2 0

 set pheromones_blue replace-item temp pheromones_blue 0

 set pheromones_yellow replace-item temp pheromones_yellow 0

]

]

]

]

 [count-exit-box]

]

end

to next-heading? [final]

 set heading 90

 if [plabel] of patch-ahead distance-to-jump = final [set next-

heading 90]

 set heading 0

 if [plabel] of patch-ahead distance-to-jump = final [set next-

heading 0]

 set heading 270

 if [plabel] of patch-ahead distance-to-jump = final [set next-

heading 270]

 set heading 180

 if [plabel] of patch-ahead distance-to-jump = final [set next-

heading 180]

 if final = "L1U" [set next-heading 0]

 if final = "L2D" [set next-heading 180]

 if final = "L1UD" [set next-heading 270]

end

to update-pheromones-to-workstation-W1

 set memory remove-duplicates memory

 let life-time (ticks - birth-time)

 foreach memory [let temp first memory

 let patch-label first temp

 let patch-heading last temp

 ask patches with [plabel = patch-label and ID = -1] [let temp2

position patch-heading directions

 ifelse ((item temp2 pheromones_W1) + (pheromone-deposition * (8

+ W1-time-of-processing) / life-time)) > maximum-pheromone-level

[

 set pheromones_W1 replace-item temp2 pheromones_W1

maximum-pheromone-level]

 [set pheromones_W1 replace-item temp2 pheromones_W1

((item temp2 pheromones_W1) + (pheromone-deposition * (8 + W1-

time-of-processing) / life-time))]]

 set memory remove-item 0 memory]

 set memory []

86

end

to update-pheromones-to-workstation-W2

 set memory remove-duplicates memory

 let life-time (ticks - birth-time)

 foreach memory [let temp first memory

 let patch-label first temp

 let patch-heading last temp

 ask patches with [plabel = patch-label and ID = -1] [let temp2

position patch-heading directions

 ifelse ((item temp2 pheromones_W2) + (pheromone-deposition * (4

+ W2-time-of-processing) / life-time)) > maximum-pheromone-level

[

 set pheromones_W2 replace-item temp2 pheromones_W2 maximum-

pheromone-level]

 [set pheromones_W2 replace-item temp2 pheromones_W2 ((item

temp2 pheromones_W2) + (pheromone-deposition * (4 + W2-time-of-

processing) / life-time))]]

 set memory remove-item 0 memory]

 set memory []

end

to count-exit-box

ask product [

 if plabel = "OUT" [if color = Blue + 10 [set OUT-blue OUT-blue +

1

 set death-time ticks

 let life-time (death-time - birth-time)

 set product-exit-time lput (death-time - birth-time) product-

exit-time

 set product-trans-time lput (death-time - birth-time - blue-

time-of-processing) product-trans-time

 if method = "Pheromones" [

 set memory remove-duplicates memory

 foreach memory [let temp first memory

 let patch-label first temp

 let patch-heading last temp

 ask patches with [plabel = patch-label and ID = -1] [let

temp2 position patch-heading directions

 ifelse ((item temp2 pheromones_blue) + (pheromone-deposition

* (8 + blue-time-of-processing) / life-time)) > maximum-

pheromone-level [

 set pheromones_blue replace-item temp2 pheromones_blue

maximum-pheromone-level]

 [set pheromones_blue replace-item temp2 pheromones_blue

((item temp2 pheromones_blue) + (pheromone-deposition * (8 + blue-

time-of-processing) / life-time))]]

 set memory remove-item 0 memory]

]

 die]

 if color = Yellow + 10 [set OUT-yellow OUT-yellow + 1

 set death-time ticks

 let life-time (death-time - birth-time)

 set product-exit-time lput (death-time - birth-time) product-

exit-time

 set product-trans-time lput (death-time - birth-time - yellow-

time-of-processing) product-trans-time

 if method = "Pheromones" [

 set memory remove-duplicates memory

 foreach memory [let temp first memory

87

 let patch-label first temp

 let patch-heading last temp

 ask patches with [plabel = patch-label and ID = -1] [let

temp2 position patch-heading directions

 ifelse ((item temp2 pheromones_yellow) + (pheromone-

deposition * (12 + yellow-time-of-processing) / life-time)) >

maximum-pheromone-level [

 set pheromones_yellow replace-item temp2 pheromones_yellow

maximum-pheromone-level]

 [set pheromones_yellow replace-item temp2

pheromones_yellow ((item temp2 pheromones_yellow) + (pheromone-

deposition * (12 + yellow-time-of-processing) / life-time))]]

 set memory remove-item 0 memory]

]

 die]

]

]

end

to evaporation

 ask tapetes [

 foreach pheromones_blue [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue (? - evaporation-level)]

 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue 0]]]

 foreach pheromones_yellow [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow (? - evaporation-level)]

 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow 0]]]

 foreach pheromones_W1 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W1 replace-item (position ?

pheromones_W1) pheromones_W1 (? - evaporation-level)]

 [set pheromones_W1 replace-item (position ? pheromones_W1)

pheromones_W1 0]]]

 foreach pheromones_W2 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W2 replace-item (position ?

pheromones_W2) pheromones_W2 (? - evaporation-level)]

 [set pheromones_W2 replace-item (position ? pheromones_W2)

pheromones_W2 0]]]

]

 ask lifter1 [

 foreach pheromones_blue [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue (? - evaporation-level)]

 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue 0]]]

 foreach pheromones_yellow [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow (? - evaporation-level)]

 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow 0]]]

 foreach pheromones_W1 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W1 replace-item (position ?

pheromones_W1) pheromones_W1 (? - evaporation-level)]

 [set pheromones_W1 replace-item (position ? pheromones_W1)

pheromones_W1 0]]]

 foreach pheromones_W2 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W2 replace-item (position ?

pheromones_W2) pheromones_W2 (? - evaporation-level)]

88

 [set pheromones_W2 replace-item (position ? pheromones_W2)

pheromones_W2 0]]]

]

 ask lifter2 [

 foreach pheromones_blue [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue (? - evaporation-level)]

 [set pheromones_blue replace-item (position ?

pheromones_blue) pheromones_blue 0]]]

 foreach pheromones_yellow [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow (? - evaporation-level)]

 [set pheromones_yellow replace-item (position ?

pheromones_yellow) pheromones_yellow 0]]]

 foreach pheromones_W1 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W1 replace-item (position ?

pheromones_W1) pheromones_W1 (? - evaporation-level)]

 [set pheromones_W1 replace-item (position ? pheromones_W1)

pheromones_W1 0]]]

 foreach pheromones_W2 [if ? != -1 [ifelse (? - evaporation-

level) > 0 [set pheromones_W2 replace-item (position ?

pheromones_W2) pheromones_W2 (? - evaporation-level)]

 [set pheromones_W2 replace-item (position ? pheromones_W2)

pheromones_W2 0]]]

]

end

to lifters-available?

 ifelse (count product-on lifter1) >= 1 [ask patch -2 0 [set

availability FALSE] ask patch -2 -4 [set availability FALSE]]

 [ask patch -2 0 [set availability TRUE] ask patch -2 -4 [set

availability TRUE]]

 ifelse (count product-on lifter2) >= 1 [ask patch 2 0 [set

availability FALSE]]

 [ask patch 2 0 [set availability TRUE]]

end

to calculate-average-time

 set average-product-exit-time mean product-exit-time

 set %trans-time (mean product-trans-time) / average-product-

exit-time * 100

 set makespan ticks

end

to check-availability

 ask patches [

 ifelse count product-here >= 1 [set availability FALSE]

 [set availability TRUE]

]

end

to machine-processing

 ask product [

 if color = Blue + 10 [

 if processing = TRUE and time-of-processing <= blue-time-of-

processing [set time-of-processing time-of-processing + 1

 set W2-time-of-processing W2-time-of-processing + 1

]

 if processing = TRUE and time-of-processing > blue-time-of-

processing [set processing FALSE

 set pcolor White]]

89

 if color = Yellow + 10 [

 if processing = TRUE and time-of-processing <= yellow-time-of-

processing [set time-of-processing time-of-processing + 1

 set W1-time-of-processing W1-time-of-processing + 1

]

 if processing = TRUE and time-of-processing > yellow-time-of-

processing [set processing FALSE

 set pcolor White]]

]

end

to check-malfunction?

 ask patches[ifelse plabel = Malfunction [set malfunction? TRUE]

 [set malfunction? FALSE]]

end

to update-plot

 set-current-plot "WIP"

 set-current-plot-pen "WIP"

 plot count product-on patches

end

to executar

 if ticks >= time-of-malfunction and time-of-malfunction != 0 [set

Malfunction "C5"]

 ifelse random 2 = 0 [if count-box-blue < num-box-blue and OUT-

blue != num-box-blue [create-box Blue]]

 [if count-box-yellow < num-box-yellow and OUT-yellow != num-box-

yellow [create-box Yellow]]

 check-malfunction?

 machine-processing

 check-availability

 if method = "Random" [find-exit-random?]

 if method = "T-invariant" [find-exit-function?]

 if method = "Pheromones" [find-exit-pheromones?

 evaporation]

 tick

 update-plot

 if OUT-blue = num-box-blue and OUT-yellow = num-box-yellow [

 calculate-average-time

 export-all-plots "d:/plots.csv"

 stop

]

end

