1,582 research outputs found

    A Novel Fast Path Planning Approach for Mobile Devices using Hybrid Quantum Ant Colony Optimization Algorithm

    Full text link
    With IoT systems' increasing scale and complexity, maintenance of a large number of nodes using stationary devices is becoming increasingly difficult. Hence, mobile devices are being employed that can traverse through a set of target locations and provide the necessary services. In order to reduce energy consumption and time requirements, the devices are required to traverse following a Hamiltonian path. This problem can be formulated as a Travelling Salesman Problem (TSP), an NP-hard problem. Moreover, in emergency services, the devices must traverse in real-time, demanding speedy path planning from the TSP instance. Among the well-known optimization techniques for solving the TSP problem, Ant Colony Optimization has a good stronghold in providing good approximate solutions. Moreover, ACO not only provides near-optimal solutions for TSP instances but can also output optimal or near-optimal solutions for many other demanding hard optimization problems. However, to have a fast solution, the next node selection, which needs to consider all the neighbors for each selection, becomes a bottleneck in the path formation step. Moreover, classical computers are constrained to generate only pseudorandom numbers. Both these problems can be solved using quantum computing techniques, i.e., the next node can be selected with proper randomization, respecting the provided set of probabilities in just a single execution and single measurement of a quantum circuit. Simulation results of the proposed Hybrid Quantum Ant Colony Optimization algorithm on several TSP instances have shown promising results, thus expecting the proposed work to be important in implementing real-time path planning in quantum-enabled mobile devices

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    Integrated bio-search approaches with multi-objective algorithms for optimization and classification problem

    Get PDF
    Optimal selection of features is very difficult and crucial to achieve, particularly for the task of classification. It is due to the traditional method of selecting features that function independently and generated the collection of irrelevant features, which therefore affects the quality of the accuracy of the classification. The goal of this paper is to leverage the potential of bio-inspired search algorithms, together with wrapper, in optimizing multi-objective algorithms, namely ENORA and NSGA-II to generate an optimal set of features. The main steps are to idealize the combination of ENORA and NSGA-II with suitable bio-search algorithms where multiple subset generation has been implemented. The next step is to validate the optimum feature set by conducting a subset evaluation. Eight (8) comparison datasets of various sizes have been deliberately selected to be checked. Results shown that the ideal combination of multi-objective algorithms, namely ENORA and NSGA-II, with the selected bio-inspired search algorithm is promising to achieve a better optimal solution (i.e. a best features with higher classification accuracy) for the selected datasets. This discovery implies that the ability of bio-inspired wrapper/filtered system algorithms will boost the efficiency of ENORA and NSGA-II for the task of selecting and classifying features

    Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithm for Chest X-Ray Images Classification: COVID-19 as a Case Study

    Get PDF
    Covid-19 virus has led to a tremendous pandemic in more than 200 countries across the globe, leading to severe impacts on the lives and health of a large number of people globally. The emergence of Omicron (SARS-CoV-2), which is a coronavirus 2 variant, an acute respiratory syndrome which is highly mutated, has again caused social limitations around the world because of infectious and vaccine escape mutations. One of the most significant steps in the fight against covid-19 is to identify those who were infected with the virus as early as possible, to start their treatment and to minimize the risk of transmission. Detection of this disease from radiographic and radiological images is perhaps one of the quickest and most accessible methods of diagnosing patients. In this study, a computer aided system based on deep learning is proposed for rapid diagnosis of COVID-19 from chest x-ray images. First, a dataset of 5380 Chest x-ray images was collected from publicly available datasets. In the first step, the deep features of the images in the dataset are extracted by using the dataset pre-trained convolutional neural network (CNN) model. In the second step, Differential Evolution (DE), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms were used for feature selection in order to find the features that are effective for classification of these deep features. Finally, the features obtained in two stages, Decision Tree (DT), Naive Bayes (NB), support vector machine (SVM), k-Nearest Neighbours (k-NN) and Neural Network (NN) classifiers are used for binary, triple and quadruple classification. In order to measure the success of the models objectively, 10 folds cross validation was used. As a result, 1000 features were extracted with the SqueezeNet CNN model. In the binary, triple and quadruple classification process using these features, the SVM method was found to be the best classifier. The classification successes of the SVM model are 96.02%, 86.84% and 79.87%, respectively. The results obtained from the classification process with deep feature extraction were achieved by selecting the features in the proposed method in less time and with less features. While the performance achieved is very good, further analysis is required on a larger set of COVID-19 images to obtain higher estimates of accuracy

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore