7,115 research outputs found

    On applications of ant colony optimisation techniques in solving assembly line balancing problems

    Get PDF
    PublishedArticleRecently, there is an increasing interest in applications of meta-heuristic approaches in solving various engineering problems. Meta-heuristics help both academics and practitioners to get not only feasible but also near optimal solutions where obtaining a solution for the relevant problem is not possible in a reasonable time using traditional optimisation techniques. Ant colony optimisation algorithm is inspired from the collective behaviour of ants and one of the most efficient meta-heuristics in solving combinatorial optimisation problems. One of the main application areas of ant colony optimisation algorithm is assembly line balancing problem. In this paper, we first give the running principle of ant colony optimisation algorithm and then review the applications of ant colony optimisation based algorithms on assembly line balancing problems in the literature. Strengths and weaknesses of proposed algorithms to solve various problem types in the literature have also been discussed in this research. The main aim is to lead new researches in this domain and spread the application areas of ant colony optimisation techniques in various aspects of line balancing problems. Existing researches in the literature indicate that ant colony optimisation methodology has a promising solution performance to solve line balancing problems especially when integrated with other heuristic and/or meta-heuristic methodologies

    Ant colony optimization for the single model U-type assembly line balancing problem

    Get PDF
    Cataloged from PDF version of article.The assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is the allocation of tasks to an ordered sequence of stations subject to the precedence constraints with the objective of minimizing the number of stations. In a U-line the line is configured into a U-shape topology. In this research, a new heuristic, Ant Colony Optimization (ACO) meta-heuristic, and its variants are proposed for the single model U-type assembly line balancing problem (UALBP). We develop a number of algorithms that can be grouped as: (i) direct methods, (ii) modified methods and (iii) methods in which ACO approach is augmented with some metaheuristic. We also construct an extensive experimental study and compare the performance of the proposed algorithms against the procedures reported in the literature.Alp, ArdaM.S

    A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks

    Full text link
    [EN] In assembly lines, rework stations are generally used for reprocessing defective items. On the other hand, using rework stations for this purpose only might cause inefficient usage of the resources in this station especially in an assembly line with a low defective rate. In this study, a mixed-integer programming model for cycle time minimization is proposed by considering the use of rework stations for performing parallel tasks. By linearizing the non-linear constraint about parallel tasks using a variate transformation, the model is transformed to a linear-mixed-integer form. In addition to different defective rates, different rework station positions are also considered using the proposed model. The performance of the model is analyzed on several test problems from the related literature.Cavdur, F.; Kaymaz, E. (2020). A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks. International Journal of Production Management and Engineering. 8(2):111-121. https://doi.org/10.4995/ijpme.2020.12368OJS11112182Altekin, F. T., Bayindir, Z. P., & Gümüskaya, V. (2016). Remedial actions for disassembly lines with stochastic task times. Computers & Industrial Engineering, 99, 78-96. https://doi.org/10.1016/j.cie.2016.06.027Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combinatorial optimization: the assemble line balancing problem. ORSA Journal on Computing, 6(2), 161-173. https://doi.org/10.1287/ijoc.6.2.161Askin, R. G., & Zhou, M. (1997). A parallel station heuristic for the mixed-model production line balancing problem. International Journal of Production Research, 35(11), 3095-3106. https://doi.org/ 10.1080/002075497194309Bard, J. F. (1989). Assembly line balancing with parallel workstations and dead time. The International Journal of Production Research, 27(6), 1005-1018. https://doi.org/10.1080/00207548908942604Bartholdi, J. J. (1993). Balancing two-sided assembly lines: a case study. International Journal of Production Research, 31(10), 2447-2461. https://doi.org/10.1080/00207549308956868Battaia, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. International Journal of Production Economics, 142(2), 259-277. https://doi.org/10.1016/j.ijpe.2012.10.020Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem. Management science, 32(8), 909-932. https://doi.org/10.1287/mnsc.32.8.909Baykasoglu, A., & Demirkol Akyol, S. (2014). Ergonomic assembly line balancing. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(4), 785-792. https://doi.org/10.17341/gummfd.00296Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European journal of operational research, 168(3), 694-715. https://doi.org/10.1016/j.ejor.2004.07.023Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. European journal of operational research, 183(2), 674-693. https://doi.org/10.1016/j.ejor.2006.10.010Bryton, B. (1954). Balancing of a continuous production line. Master's Thesis, Northwestern University, Evanston.Cercioglu, H., Ozcan, U., Gokcen, H., & Toklu, B. (2009). A simulated annealing approach for parallel assembly line balancing problem. Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 331-341.Efe, B., Kremer, G. E. O., & Kurt, M. (2018). Age and gender-based workload constraint for assembly line worker assignment and balancing problem in a textile firm. International Journal of Industrial Engineering, 25(1), 1-17.Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. The International Journal of Production Research, 27(4), 637-670. https://doi.org/10.1080/00207548908942574Gokcen, H., & Baykoc, Ö. F. (1999). A new line remedial policy for the paced lines with stochastic task times. International Journal of Production Economics, 58(2), 191-197. https://doi.org/10.1016/S0925-5273(98)00123-6Gokcen, H., Agpak, K., & Benzer, R. (2006). Balancing of parallel assembly lines. International Journal of Production Economics, 103(2), 600-609. https://doi.org/10.1016/j.ijpe.2005.12.001Guner, B., & Hasgul, S. (2012). U-Type assembly line balancing with ergonomic factors for balance stability. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(2), 407-415.Kaplan, O. (2004). Assembly line balancing with task paralleling. Master's Thesis, METU, Ankara.Kara, Y., Ozguven, C., Yalcın, N., & Atasagun, Y. (2011). Balancing straight and U-shaped assembly lines with resource dependent task times. International Journal of Production Research, 49(21), 6387-6405. https://doi.org/10.1080/00207543.2010.535039Kara, Y., Atasagun, Y., Gokcen, H., Hezer, S., & Demirel, N. (2014). An integrated model to incorporate ergonomics and resource restrictions into assembly line balancing. International Journal of Computer Integrated Manufacturing, 27(11), 997-1007. https://doi.org/10.1080/0951192X.2013.874575Kazemi, S. M., Ghodsi, R., Rabbani, M., & Tavakkoli-Moghaddam, R. (2011). A novel two-stage genetic algorithm for a mixed-model U-line balancing problem with duplicated tasks. The International Journal of Advanced Manufacturing Technology, 55(9-12), 1111-1122. https://doi.org/10.1007/s00170-010-3120-6Kim, Y. K., Kim, Y., & Kim, Y. J. (2000). Two-sided assembly line balancing: a genetic algorithm approach. Production Planning & Control, 11(1), 44-53. https://doi.org/10.1080/095372800232478Kottas, J. F., & Lau, H. S. (1976). A total operating cost model for paced lines with stochastic task times. AIIE Transactions, 8(2), 234-240. https://doi.org/10.1080/05695557608975072Lau, H. S., & Shtub, A. (1987). An exploratory study on stopping a paced line when incompletions occur. IIE transactions, 19(4), 463-467. https://doi.org/10.1080/07408178708975421Lee, T. O., Kim, Y., & Kim, Y. K. (2001). Two-sided assembly line balancing to maximize work relatedness and slackness. Computers & Industrial Engineering, 40(3), 273-292. https://doi.org/10.1016/S0360-8352(01)00029-8Mutlu, O., & Ozgormus, E. (2012). A fuzzy assembly line balancing problem with physical workload constraints. International Journal of Production Research, 50(18), 5281-5291. https://doi.org/10.1080/00207543.2012.709647Ozcan, U., & Toklu, B. (2010). Balancing two-sided assembly lines with sequence-dependent setup times. International Journal of Production Research, 48(18), 5363-5383. https://doi.org/10.1080/00207540903140750Pinto, P., Dannenbring, D. G., & Khumawala, B. M. (1975). A branch and bound algorithm for assembly line balancing with paralleling. The International Journal of Production Research, 13(2), 183-196. https://doi.org/10.1080/00207547508942985Sabuncuoglu, I., Erel, E., & Alp, A. (2009). Ant colony optimization for the single model U-type assembly line balancing problem. International Journal of Production Economics, 120(2), 287-300. https://doi.org/10.1016/j.ijpe.2008.11.017Salveson, M. E. (1955). The assembly line balancing problem. The Journal of Industrial Engineering, 18-25.Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666-693. https://doi.org/10.1016/j.ejor.2004.07.022Shtub, A. (1984). The effect of incompletion cost on line balancing with multiple manning of work stations. The International Journal of Production Research, 22(2), 235-245. https://doi.org/10.1080/00207548408942450Silverman, F. N., & Carter, J. C. (1986). A cost-based methodology for stochastic line balancing with intermittent line stoppages. Management Science, 32(4), 455-463. https://doi.org/10.1287/mnsc.32.4.455Simaria, A. S., & Vilarinho, P. M. (2001). The simple assembly line balancing problem with parallel workstations-a simulated annealing approach. Int J Ind Eng-Theory, 8(3), 230-240.Sivasankaran, P., & Shahabudeen, P. (2014). Literature review of assembly line balancing problems. The International Journal of Advanced Manufacturing Technology, 73(9-12), 1665-1694. https://doi.org/10.1007/s00170-014-5944-ySuer, G. A. (1998). Designing parallel assembly lines. Computers & industrial engineering, 35(3-4), 467-470. https://doi.org/10.1016/S0360-8352(98)00135-1Suwannarongsri, S., & Puangdownreong, D. (2008). Optimal assembly line balancing using tabu search with partial random permutation technique. International Journal of Management Science and Engineering Management, 3(1), 3-18. https://doi.org/10.1080/17509653.2008.10671032Tiacci, L., Saetta, S., & Martini, A. (2006). Balancing mixed-model assembly lines with parallel workstations through a genetic algorithm approach. International Journal of Industrial Engineering, 13(4), 402.Ugurdag, H. F., Rachamadugu, R., & Papachristou, C. A. (1997). Designing paced assembly lines with fixed number of stations. European Journal of Operational Research, 102(3), 488-501. https://doi.org/10.1016/S0377-2217(96)00248-2Wei, N. C., & Chao, I. M. (2011). A solution procedure for type E simple assembly line balancing problem. Computers & Industrial Engineering, 61(3), 824-830. https://doi.org/10.1016/j.cie.2011.05.01

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Iterative Beam Search for Simple Assembly Line Balancing with a Fixed Number of Work Stations

    Get PDF
    The simple assembly line balancing problem (SALBP) concerns the assignment of tasks with pre-defined processing times to work stations that are arranged in a line. Hereby, precedence constraints between the tasks must be respected. The optimization goal of the SALBP-2 version of the problem concerns the minimization of the so-called cycle time, that is, the time in which the tasks of each work station must be completed. In this work we propose to tackle this problem with an iterative search method based on beam search. The proposed algorithm is able to obtain optimal, respectively best-known, solutions in 283 out of 302 test cases. Moreover, for 9 further test cases the algorithm is able to produce new best-known solutions. These numbers indicate that the proposed iterative beam search algorithm is currently a state-of-the-art method for the SALBP-2

    Ant colony optimization for the single model U-type assembly line balancing problem

    Get PDF
    Cataloged from PDF version of article.An assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is defined as the allocation of tasks to an ordered sequence of stations subject to precedence constraints with the objective of optimizing a performance measure. In this paper, we propose ant colony algorithms to solve the single-model U-type assembly line balancing problem. We conduct an extensive experimental study in which the performance of the proposed algorithm is compared against best known algorithms reported in the literature. The results indicate that the proposed algorithms display very competitive performance against them. & 2009 Elsevier B.V. All rights reserved

    Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines

    Get PDF
    Copyright © 2014 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 31 January 2014, available online: http://www.tandfonline.com/10.1080/00207543.2013.879618Growing interests from customers in customised products and increasing competitions among peers necessitate companies to configure their manufacturing systems more effectively than ever before. We propose a new assembly line system configuration for companies that need intelligent solutions to satisfy customised demands on time with existing resources. A mixed-model parallel two-sided assembly line system is introduced based on the parallel two-sided assembly line system previously proposed by Ozcan et al. (Balancing parallel two-sided assembly lines, International Journal of Production Research, 48 (16), 4767-4784, 2010). The mixed-model parallel two-sided assembly line balancing problem is illustrated with examples from the perspective of simultaneous balancing and sequencing. An agent based ant colony optimisation algorithm is proposed to solve the problem. This algorithm is the first attempt in the literature to solve an assembly line balancing problem with an agent based ant colony optimisation approach. The algorithm is illustrated with an example and its operational procedures and principles explained and discussed
    corecore