
 

 

Jena Research Papers in 
Business and Economics 

 
 

ABSALOM: Balancing assembly 
lines with assignment restrictions 

Armin Scholl, Malte Fliedner, Nils Boysen 

02/2008 

 

 
 
 

Jenaer Schriften zur Wirtschaftswissenschaft 
 
 
 

Working and Discussion Paper Series  
School of Economics and Business Administration 

Friedrich-Schiller-University Jena 
 

ISSN 1864-3108 
 
Publisher:  

Wirtschaftswissenschaftliche Fakultät 
Friedrich-Schiller-Universität Jena 
Carl-Zeiß-Str. 3, D-07743 Jena 

www.jbe.uni-jena.de 

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

 

 

www.jbe.uni-jena.de 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224757727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSALOM: Balancing assembly lines

with assignment restrictions

Armin Scholl

Chair of Decision Analysis and Management Science, Friedrich-Schiller-University Jena, 
Carl-Zeiß-Straße 3, D-07743 Jena, e-Mail: armin.scholl@wiwi.uni-jena.de (corresponding author)

Malte Fliedner

Institute of Industrial Management, University of Hamburg, Von-Melle-Park 5, D-20146 Hamburg,
e-Mail: fliedner@econ.uni-hamburg.de

Nils Boysen

Chair of Operations Management, Friedrich-Schiller-University Jena, Carl-Zeiß-Straße 3, 
D-07743 Jena, e-Mail: nils.boysen@uni-jena.de

Assembly line balancing problems (ALBPs) arise whenever an assembly line is configured, re-
designed or adjusted. An ALBP consists of distributing the total workload for manufacturing
products among the work stations along the line. On the one hand, research has focussed on de-
veloping effective and fast solution methods for exactly solving the simple assembly line bal-
ancing problem (SALBP). On the other hand, a number of real-world extensions of SALBP
have been introduced but solved with straightforward and simple heuristics in many cases.
Therefore, there is a lack of procedures for exactly solving such generalized ALBP. 

In this paper, we show how to extend the well-known solution procedure SALOME (INFORMS
J. Computing 9, 319-334), which is able to solve even large SALBP instances in a very effective
manner, to a problem extension with different types of assignment restrictions (called AR-
ALBP). The extended procedure is given the acronym ABSALOM. It consists of a favourable
branching scheme, an arsenal of bounding rules and a variety of logical tests using ideas from
constraint programming.

Computational experiments show that ABSALOM is a very promising exact solution approach
though the additional assignment restrictions complicate the problem and require some compo-
nents of SALOME to be modified in a relaxing manner. 

Keywords: assembly line balancing; assignment restrictions; combinatorial optimization;
branch-and-bound



1

1.  Introduction and notation

Assembly lines are flow-oriented production systems which are typical in the industrial produc-
tion of high quantity standardized commodities and even gain importance in low volume pro-
duction of customized products. Among the decision problems which arise in managing such
systems, assembly line balancing problems are important tasks in medium-term production
planning (cf., e.g., Baybars 1986; Becker and Scholl 2006; Boysen et al. 2007). 

An assembly line consists of (work) stations k=1,...,m arranged along a conveyor belt or a sim-
ilar material handling equipment. The workpieces (jobs) are consecutively launched down the
line and are moved from station to station. At each station, certain operations are repeatedly per-
formed regarding the cycle time (maximum or average time available for each workcycle). The
decision problem of optimally partitioning (balancing) the assembly work among the stations
with respect to some objective is known as the Assembly Line Balancing Problem (ALBP).

Manufacturing a product on an assembly
line requires distributing the total amount of
work into a set V = {1,...,n} of elementary
operations named tasks which constitute the
nodes of a precedence graph. Performing a
task i takes a task time (node weight) ti and
requires certain equipment of machines and/or skills of workers. Due to technological and or-
ganizational conditions, precedence relations between the tasks have to be observed. A prece-
dence relation (i, j) means that task i must be finished before task j can be started and is repre-
sented as an arc in the precedence graph. Within the arc set E of the graph any arc is removed,
which is redundant because it connects nodes that are also connected by a path with more than
a single arc. Furthermore, we assume that the graph G = (V,E,t) is acyclical and numbered
topologically. An example of a precedence graph is given in Figure 1.

The following sets are useful to describe the precedence relations:

• set of direct predecessors of task 

• set of direct successors (followers) of task 

Assuming  to be the transitive closure of E, which contains an arc for each path in the prec-
edence graph, we further define:

• set of all predecessors of task 

• set of all successors of task 

Any type of ALBP consists in finding a feasible line balance, i.e., an assignment of each task
to a station such that the precedence constraints and possible further restrictions are fulfilled.
The set Sk of tasks assigned to a station k (=1,...,m) constitutes its station load, the cumulated
task time  is called station time. When a fixed common cycle time c is given,
a line balance is feasible only if the station time of neither station exceeds c. In case of t(Sk) < c,
the station k has an idle time of c – t(Sk) time units in each cycle, i.e., it is repeatedly unproduc-
tive for this time span.

Figure 1. Precedence graph

1
6

2
6

7
4

6
5

5
4

4
5

3
5

10
2

9
5

8
2

Pi := h  h i,( ) E∈{ } i V∈

Fi := j  i j,( ) E∈{ } i V∈

E∗

Pi
∗ := h  h i,( ) E∗∈{ } i V∈

Fi
∗ := j  i j,( ) E∗∈{ } i V∈

t Sk( ) := tjj Sk∈∑



2

The most popular ALBP is called Simple Assembly Line Balancing Problem (SALBP). It has the
following characteristics (cf. Baybars 1986; Scholl 1999, ch. 2.2; Boysen et al. 2007): 

• mass-production of one homogeneous product; given production process

• paced line with fixed cycle time c

• deterministic (and integral) operation times tj

• no assignment restrictions besides the precedence constraints

• serial line layout with m stations

• all stations are equally equipped with respect to machines and workers

• maximize the line efficiency  with total task time 

Several problem versions arise from varying the objective as shown in Table 1. The tuple-nota-
tions specify the characterizations of the problem versions within the recent classification
scheme of Boysen et al. (2007).

Since SALBP-F is an NP-complete feasibility prob-
lem, the optimization versions of SALBP, which
may be solved by iteratively examining several in-
stances of SALBP-F, are NP-hard (cf. Wee and
Magazine 1982; Scholl 1999, ch. 2.2.1.5). Recent
surveys covering SALBP models and procedures are
given by Erel and Sarin (1998), Scholl (1999, ch. 2,
4, 5), Rekiek et al. (2002b) as well as Scholl and Becker (2006).

In this paper, we focus on SALBP-1 and its extension to assignment restrictions defining the
new problem ARALBP-1, but the same transformations apply to the other versions of the prob-
lem. The remainder of the paper is organized as follows: In Section 2, different types of assign-
ment restrictions are described and surveyed leading to the extended line balancing problem. A
mathematical program for this problem is given in Section 3. Section 4 is devoted to describing
the exact solution procedure ABSALOM that is based on the well-established procedure SALOME

for SALBP-1. Computational experiments are reported in Section 5. A summary and statements
on future research issues in Section 6 conclude the paper.

2.  Assignment restrictions

In practice, there are usually constraints which restrict the assignment of tasks to stations in ad-
dition to the cycle time constraint and the precedence relations. The following types of assign-
ment restrictions are considered in literature (cf. Boysen et al. 2007; cf. Scholl 1999, ch. 1.3.4):

• Task restrictions, also called zoning constraints, either link a set of tasks which have to be
assigned to the same station (  in the classification scheme of Boysen et al. 2007)
or ensure that incompatible tasks are assigned to different stations ( ). Especially, if
resources are not explicitly considered, task restrictions are a convenient way to make sure
that tasks which require an expensive resource share the same station (e.g. Dar-El and
Rubinovitch 1979) or that tasks which require different equipment that cannot be provided
at the same station are assigned to different stations. 

Eff tsum / m c⋅( )= tsum tjj 1=
n∑=

Table 1. Versions of SALBP

cycle time c
given minimize

no
. m

 o
f

st
at

io
ns

given
SALBP-F

[  |  |  ]
SALBP-2

[  |  | c]

minimize
SALBP-1
[  |  | m]

SALBP-E
[  |  | E]

α5 link=
α5 inc=



3

• Resource (attribute) restrictions: Furthermore, the assignment of tasks to a station might
be subject to constraints on the cumulated value of particular task attributes ( ).
For example, the space for placing machines or material boxes as well as for storing mate-
rial or tools, which are required for performing the tasks, might be scarce. Then, station
loads are only acceptable if the cumulated space needs of required resources is not exceed-
ing the available space (e.g., Kim and Park 1995; Pastor et al. 2002; Sawik 2002; Bautista
and Pereira 2007). Another constraint might concern the cumulated requirement on the
operators’ grip strengths which must not exceed a certain threshold from an ergonomic
point of view (Carnahan et al. 2001).

• Station restrictions: Regularly, there are restrictions on assigning tasks to certain stations.
Such restrictions are particularly relevant when the line is already installed and should be
rebalanced without rearranging all the equipment. For example, tasks can be restricted to a
certain type of stations ( ; Johnson 1983). This might be the case, if workpieces
need to undergo position changes while they are processed. Then, a task can only be
assigned to a station where the workpiece is in the position required (Lapierre and Ruiz
2004). Tasks which need heavy machinery or handling equipment fixed to a certain station
must be performed there ( ). In other cases, stations might have conditions that pre-
vent a task from being carried out ( ).
In general, the assignment of a task might be restricted to a certain zone of the line (station
interval) or to a set of single stations that provide the conditions required.
Remark: While Johnson (1983) considers the type of a station as a variable (for each station
a type is to be chosen),  assumes that for each station the type is already predeter-
mined such that tasks which require another type are excluded from the respective stations.
As a consequence,  (and also  as a special case with each station being
another type) can be modelled as  by simply excluding all stations that do not ful-
fill the conditions. The Johnson approach can be modelled using  such that tasks
which require different station types are incompatible with each other.

• Distance restrictions: Sometimes, the production process can also require to observe mini-
mum distances ( ) or maximum distances ( ) between tasks measured in
time, space, sequence or station positions (see Buxey 1974; Pastor and Corominas 2000). A
minimum distance, e.g., has to be observed in cases where color or glue has to dry before
further tasks can be performed at the corresponding area on the workpiece. A maximum dis-
tance is, e.g., be defined when melted metal must be prevented from cooling down before a
certain other task is carried out.

Table 2 gives an overview on the research papers dealing with assignment restrictions. Obvi-
ously, the task restrictions are seen to be most relevant, while distance restrictions have not at-
tracted considerable attention, because there seem to be only very few realistic examples for
minimum or maximum distances covering more than two neighbouring stations. Thus in most
cases, the simpler task restrictions (linking which expresses a maximum distance of 0 and in-
compatibility which expresses a minimum distance of one station) are sufficient special cases.
This lack of importance is accompanied with a considerable effort for including general dis-
tance restrictions into a solution procedure as will be discussed later.

α5 cum=

α5 type=

α5 fix=
α5 excl=

α5 type=

α5 type= α5 fix=
α5 excl=

α5 inc=

α5 min= α5 max=



4

Additionally, Table 2 summarizes the results of a poll among 34 enterprises of the automobile,
electronics and machine construction industries which run one or more assembly lines. The last
column of the table states the numbers of those firms where the respective assignment restric-
tions occur. Obviously, all restriction types are really existant and most are of significant im-
portance. Though minimum distances are mentioned by 13 firms and maximum distances, by 4
firms, the application details make clear that in almost every case a minimum distance of type
"inc" and a maximum distance of type "link" is meant. 

Up to now, a lot of heuristic procedures and a few exact approaches have been proposed for
solving ALBP with a selection of the assignment restriction mentioned above. But there is no
exact solution procedure available for the case of simultaneously considering several types of
assignment restrictions.

Extending the simple assembly line balancing problem of type 1 (SALBP-1) by adding the dif-
ferent types of assignment restrictions, we get a problem which we call ARALBP-1 (Assign-
ment Restricted Assembly Line Balancing Problem of type 1). In the recent classification
scheme of Boysen et al. (2007), ARALBP-1 is denoted as [link, inc, cum, excl, fix, type, min,
max| | m ]. Even if only a subset of the restriction types are present, we will use the same name
of the problem. The other problem versions (cf. Table 1) are to be defined accordingly.

Table 2. Survey of research on assignment restrictions

references firms

link

Bhattacharjee and Sahu (1987), Boysen and Fliedner (2008), Buxey (1974), Deckro (1989), 
Gökcen and Erel (1997), Hautsch et al. (1972), Klenke (1977), Lapierre and Ruiz (2004), 
Miralles (2005), Pastor and Corominas (2000), Pinnoi and Wilhelm (1997), Rekiek et al. 
(2001, 2002), Roberts and Villa (1970), Schofield (1979), Vilarinho and Simaria (2002, 
2006), Zäpfel (1975)

13

inc

Agnetis et al. (1995), Bautista and Pereira (2002), Bautista et al. (2000), Bhattacharjee and 
Sahu (1987), Boysen and Fliedner (2008), Buxey (1974), Deckro (1989), Gökcen and Erel 
(1997), Klenke (1977), Lapierre and Ruiz (2004), Park et al. (1997), Pastor and Corominas 
(2000), Pinnoi and Wilhelm (1997), Rekiek et al. (2001), Schofield (1979), Vilarinho and 
Simaria (2002, 2006), Zäpfel (1975)

7

cum
Arcus (1966), Bautista and Pereira (2007), Boysen and Fliedner (2008), Carnahan et al. 
(2001), Kim and Park (1995), Liu and Chen (2002), Miralles (2005) Pastor et al. (2002), Pin-
noi and Wilhelm (1997), Sawik (2002), Wilhelm and Gadidov (2004)

18

fix

Agnetis et al. (1995), Arcus (1966), Bartholdi (1993), Bhattacharjee and Sahu (1987), Kim et 
al. (2000), Leu et al. (1994), Malakooti and Kumar (1996), Miltenburg (1998), Pastor et al. 
(2002), Raouf and Tsui (1982), Rekiek et al. (2001, 2002), Schofield (1979), Vilarinho and 
Simaria (2006)

19

excl Raouf and Tsui (1982), Schofield (1979) 6

type
Bartholdi (1993), Gadidov and Wilhelm (2000), Johnson (1983, 1991), Kim et al. (2000), 
Lapierre and Ruiz (2004), Lapierre et al. (2006), Lee et al. (2001), Pastor and Corominas 
(2000), Pinnoi and Wilhelm (1997), Rekiek et al. (2001)

27

min – 13

max Buxey (1974), Deckro (1989), Pastor and Corominas (2000) 4

α5



5

3.  Mathematical program for ARALBP-1

In the following, we extend the standard mathematical program for SALBP-1 (cf. Bowman
1960, White 1961, Thangavelu and Shetty 1971, Patterson and Albracht 1975, Scholl 1999, p.
29) by adding the different types of assignment restrictions to represent the extended problem
ARALBP-1. 

Other models which consider some of the assignment restrictions (mostly linked tasks or fixed
stations, which are included easily) are given by, among others, Bautista and Pereira (2007),
Deckro (1989), Gökcen and Erel (1997), Pastor and Corominas (2000), Pastor et al. (2004),
Pinnoi and Wilhelm (1997), Vilarinho and Simaria (2006). 

The proposed integer linear program is based on binary assignment variables  and a valid
upper bound  on the number of stations (cf. Scholl 1999, ch. 2.2.2.2):

for  and 

The assumption that n is a single sink node of the precedence graph allows for a simple deter-
mination of the number of stations actually required. If there are several sink nodes in the orig-
inal graph, a fictitious sink node with task time 0 is defined as successor of all original sink
nodes and given the (increased) label n. 

The number of variables can be reduced by computing earliest and latest stations based on the
relative task times  of the tasks j = 1,...,n, i.e., the portion of the cycle time required by
the tasks. The earliest station Ej and the latest station , respectively, to which a task j can
be assigned feasibly if at most  stations are available, is computed as follows (cf. Saltzman
and Baybars 1987):

   and          for (1)

Thus, task j can only be assigned to one of the stations out of the set of feasible stations
. The station sets can be used to reduce the number of variables

such that  has only to be defined for  and . As a consequence, only a subset
 of the tasks are potentially assignable to the stations k = 1,..., . 

To observe the station restrictions, the station sets  have to be reduced by deleting all sta-
tions to which an assignment of task j is not allowed ( ). In case that only a sin-
gle station is allowed ( ), the set contains only this specific station. If the resulting set is
empty, the problem has no feasible solution due to contradicting precedence relations and sta-
tion constraints.

A minimum distance  between two tasks i and j requires that the stations  and , to
which i and j are assigned, fulfill .  Similarly, a maximum distance  be-
tween tasks i and j requires that the inequality  holds. If in either case the relation

 is additionally required, this is achieved by imposing the precedence relation . 

Notice that  would only state that i and j are incompatible. Similarly,  represents
linked tasks. In order to define consistent distance requirements,  must hold for all task
pairs. As non-restricting default values, we might use  and .

xjk
m

xjk
1

0⎩
⎨
⎧

=
if task j is assigned to station k

otherwise
j V∈ k 1 … m, ,=

τj tj / c=
Lj m( )

m

Ej := τj τh
h Pj

∗∈∑+ Lj m( ) := m 1 τj τh
h Fj

∗∈∑+–+ j V∈

FSj Ej Ej 1 … Lj m( ), ,+,{ }=
xjk j V∈ k FSj∈

Bk j V ∈  k FSj∈{ }= m

FSj
α5 excl type,{ }∈

α5 fix=

dij 2≥ ki kj
kj ki–   dij≥ dij 1≥

kj ki–   dij≤
ki kj< i j,( )

dij 1= dij 0=
dij dij≤

dij 0= dij m 1–=



6

Due to the topological numeration of vertices and the symmetry of the distance measurement,
it is sufficient to consider task relationships with . In the following, this is always assumed
unless the opposite is stated explicitly. The following sets of task pairs are distinguished:

IT set of all pairs of tasks  which are incompatible to each other

LT set of all pairs of tasks  which are linked to each other

LD set of all pairs of tasks  with minimum (lower bound) distance 

UD set of all pairs of tasks  with maximum (upper bound) distance 

Following parameters are used to describe the resource restrictions:

R set of scarce resources (e.g., storage space, space for machinery, manual labor)

Ar capacity of resource  available at each station (e.g., storage space available, number 
of tool places at a robot, physical capacity of manual labor per cycle)

ujr usage of resource r by task  (e.g., storage space required for the parts mounted by 
task j, number of tools required by task j, amount of physical labor capacity necessary for 
performing task j); relative resource usage 

Since the time can also be seen as a scarce resource, we may interpret it as a resource 0 with
,  and . The set of resources is extended to . Using this

transformation, we can compute strengthened earliest and latest stations as well as more re-
stricted sets  as follows:

  for (2)

for (3)

Binary linear program for ARALBP-1

The objective function minimizes the index m of the station the sink node n is assigned to.

Minimize (4)

such that the following restrictions are fulfilled.

Occurrence and station restrictions: Each task is assigned to exactly one station out of the

feasible station set .

for all (5)

Cycle time restrictions: The station time (sum of operation times of tasks assigned) must

not exceed the cycle time in any station k.

i j<

i j V∈,

i j V∈,

i j V∈, dij 2≥

i j V∈, dij 1≥

r R∈

j V∈

τjr ujr  Ar⁄=

A0 c= uj0 tj= τj0 τj= R0 R 0{ }∪=

FSj

Ej := max τjr τhrh Pj
∗∈∑+  r R0∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

j V∈

Lj m( ) := m 1 m– ax τjr τhrh Fj
∗∈∑+  r R0∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

+ j V∈

m x( ) k x⋅ nk
k FSn∈
∑=

FSj

xjk
k FSj∈
∑ 1= j V∈



7

        for k = 1,..., (6)

Resource restrictions: Concerning each resource r, the joint (additive) requirement of tasks

assigned to station k must not exceed the capacity of that resource available at k. Obviously,

these restrictions are of the same type as the cycle time constraint such that (6) could be

included in (7) by choosing .

        for k = 1,...,  and (7)

Precedence relations: A task j must not be assigned to an earlier station than its predeces-

sor i. This needs only be checked if the station intervals overlap.

for all  with (8)

Incompatible tasks i and j must not be assigned to the same station k in case that this is

actually possible.

for all  and (9)

Linked tasks i and j must be assigned to the same station. Obviously, if the tasks have no

possible station in common, i.e., , no feasible solution exists.

for all (10)

Minimum distances: Precedence-related tasks i and j must be assigned to stations which

differ at least by the minimum distance. 

for all (11)

If the tasks are not related by precedence, all relevant station intervals of length  are con-

sidered. Let  be the station interval starting with station k, i.e., .

Furthermore, let Kij be the set of all relevant starting stations k where a station interval to be

examined might start, i.e., . Using

these sets, the minimum distance restrictions of unrelated tasks are formulated as:

for all  and (12)

Note that by modelling the constraints in this manner, it is avoided to introduce additional

binary variables to represent which task is performed earlier. Furthermore, note that the def-

inition of set Kij could be refined to reduce the number of constraints but this would result in

an unnecessarily complicated presentation. The formulation given can be used for prece-

dence-related tasks in a simplified manner but the restrictions (11) are more intuitive.

tj xjk ⋅
j Bk∈
∑  c≤ m

r R0∈

ujr xjk ⋅
j Bk∈
∑  Ar≤ m r R∈

k xik⋅
k FSi∈
∑ k xjk⋅

k FSj∈
∑≤ i j,( ) E∈ Li Ej>

xik xjk+ 1≤ i j,( ) IT∈ k FSi FSj∩∈

FSi FSj∩ ∅=

k xik⋅
k FSi∈
∑ k xjk⋅

k FSj∈
∑= i j,( ) LT∈

k xjk⋅
k FSj∈
∑ k xik ⋅

k FSi∈
∑  dij≥– i j,( ) LD E∗∩∈

dij
Tkij Tkij k … k dij 1–+,,{ }=

Kij min Ei Ej,{ } … max Li m( ) Lj m( ),{ } dij– 1+, ,{ }=

xih 
h FSi Tkij∩∈

∑ xjh  1≤
h FSj Tkij∩∈

∑+ i j,( ) LD E∗–∈ k Kij∈



8

Maximum distances: Two tasks i and j with a maximum station distance must be assigned

to stations which do not differ by more than the allowed value. If the tasks are related by

precedence, inequality (13) is sufficient. If they are not related by precedence, the maximal

distance must be guaranteed in the other direction, too, as modelled in (14). Note that one of

both restrictions for such a task pair is automatically fulfilled due to a negative value at the

left-hand side while the other restriction observes the maximum distance (or both left-hand

sides are zero if the tasks are in the same station).

for all (13)

for all (14)

Variable definition: The binary variables representing the assignment of task j to station k

(value 1) or not (value 0) are defined as follows.

for  and (15)

4.  ABSALOM – An exact solution procedure

SALBP-1 and, thus, its generalization ARALBP-1 are NP-hard optimization problems. There-

fore, having formulated a mathematical program as done in Section 3 is usually not sufficient

to get optimal solutions in case of complex real-world instances. Even though the speed of

standard optimization software like XPress-MP, CPLEX or LINDO has increased dramatically

in the last years, they are often not able to find an optimal solution in an adequate span of time

(cf. Scholl et al., 2006, who performed comprehensive experiments for another extension of

SALBP-1). As a consequence, there is a need for spezialized solution procedures which exploit

the problem structure.

For optimizing SALBP-1, a lot of specialized procedures are available. Surveys are given in
Baybars (1986), Ghosh and Gagnon (1989), Scholl (1999, ch. 2.2.2 and 4.1) as well as Scholl
and Becker (2006). 

Computational experiments showed that the procedure SALOME of Scholl and Klein (1997), im-
proved by Scholl and Klein (1999), is one of the best exact solution methods available for
SALBP-1 (cf. Scholl and Klein 1997; Sprecher 1999; Scholl and Klein 1999; Miltenburg 2006).
Therefore, we take SALOME as the basis of developing a branch-and-bound procedure for AR-
ALBP-1. The new procedure is called ABSALOM (SALOME for Assignment Bounded problems)
and intensively uses bound arguments, dominance rules and reduction procedures which utilize
and combine concepts from both, combinatorial optimization and constraint programming.

In the following, we describe all components and steps of the new procedure. The components
already included in SALOME are only described very shortly companied with comprehensive de-
scriptions of the modifications necessary. For detailed descriptions of SALOME see Scholl and
Klein (1997) as well as Scholl (1999, ch. 4.1.4).

k xjk⋅
k FSj∈
∑ k xik ⋅

k FSi∈
∑  dij≤– i j,( ) UD∈

k xik ⋅
k FSi∈
∑ k xjk ⋅

k FSj∈
∑–  dij≤ i j,( ) UD E∗–∈

xjk 0 1,{ }∈ j V∈ k FSj∈



9

Due to the minor importance of maximum distance restrictions (cf. Section 2) and the fact that
those restrictions require different successful components of SALOME to be deactivated or re-
laxed, we only describe a version of ABSALOM that considers task, resource and station restric-
tions as well as minimal distances. The latter are restricted to the case that only tasks which are
(directly or indirectly) related by precedence are subject to such distances. This restriction is not
very limiting because minimal distances usually arise from such relationships.

4.1.  Preprocessing

At first, the minimum distances are removed from the problem by modifying the problem data.
For each pair , the following is to be done: Generate a chain of articificial tasks
h1,...,hH with  and place them in-between i and j by introducing the arcs  and

. Set durations and attribute usages of all artificial tasks to zero. Furthermore, set all pairs
,  and  for  of neighbouring tasks incompatible. After hav-

ing solved the modified problem, the additional tasks can simply be deleted from the solution.

Remark: Alternatively, the minimum distances could be integrated into the enumeration
scheme, the bounding procedures and logical tests directly requiring different modifications. In-
stead, we choose the simple transformation approach described above, because these distances
are rather rare in practice as stated in Section 2. Even if they occur, only a few such distances
with small distance values (often not more than two or three stations) will be present. Then, only
some additional artificial tasks have to be inserted which do not complicate enumeration and
bound computation considerably. Any such task being available in a station to be loaded can be
prefixed immediately without influencing the usual load enumeration at all (cf. Section 4.4). 

Second, the precedence graph is modified by merging linked tasks into mega nodes. This has
the advantage of getting a reduced number of nodes and precedence relations. Furthermore, the
merged tasks have larger task times being advantageous with respect to bounding (in particular,
heads and tails get strengthened; Section 4.3) and the success of dominance and (domain) re-
duction rules (e.g., the Jackson dominance rule; Section 4.4).

The following steps have to be performed to build the modified precedence graph :

(1) Set  and  to initialize the graph.

(2) Remove an arbitrary linked pair  from the set LT and initialize a set . 

(3) Add all tasks to J which are linked to any task already in J. Remove the corresponding task
pairs from LT. Repeat this step, until no further task can be added to J.

(4) Add all tasks to J which are members of a path connecting two tasks .

(5) Build a new mega node with index h by merging all tasks of J. This requires transfering all
properties and relationships of the tasks contained in J to node h: 

• The task time and resource usages are computed by summing up the individual values:
,  for all  

i j,( ) LD E∗∩∈
H dij 1–= i h1,( )

hH j,( )
i h1,( ) hH j,( ) hi hi 1+,( ) i 1 … H 1–, ,=

G' V' E',( )=

V' := V E' := E

i j,( ) J := i j,{ }

i j, J∈

th := tj
j J∈∑ uhr := ujr

j J∈∑ r R∈



10

• The mega node h inherits all precedence relationships from its members. For each arc
 with  and , an arc (q,h) is added to  and for each 

with  and , an arc (h,q) is added, if not already contained in .

• The set of feasible stations of mega node h consists of all stations which are feasible for
all tasks in J, i.e., .

• Incompatibilities between tasks j from J with tasks q outside J need to be transferred to
node h by . To simplify pre-
sentation, we assume that for each pair , the set IT also contains the reverse
pair . This redundancy is also assumed for the other sets, if useful, and removes the
necessity to differentiate between situations where  and such where .

(6) Update the node set, i.e., , and remove all pairs involving the tasks 
from  and IT.

(7) Repeat the steps (2) to (6) until LT is empty.

(8) To remove redundant arcs from , finally compute the transitive closure of the remaining
graph and update the predecessor and successor sets accordingly. Renumber the tasks in 
according to a topological odering.

Contradicting requirements of assignment constraints might make a merging to mega nodes im-
possible. This is, e.g., the case whenever the sum of task times exceeds the cycle time, two tasks
in J are additionally defined to be incompatible or have a positive minimum distance or 
for any mega node h. If such a contradiction is detected, the whole procedure can be terminated,
since no feasible solution exists.

In order to apply the Jackson dominance rule, potential dominances have to be computed and
stored in a set PD containing pairs  of tasks with i potentially dominating j (for the defini-
tion of potential dominances see Section 4.4). 

To compute a global lower bound LB, all bound arguments of SALOME (LB1 to LB7) are ap-
plied. The maximum of those values serves as the initial LB. How these bounds are modified to
cope with assignment restrictions is explained in Section 4.3.

The initial global upper bound is set to  to indicate that a feasible solution has not
been found yet. If no maximal number of stations  is given by the problem data,  is
used.

4.2.  Branching

In the following, we summarize the branching scheme of SALOME and describe how to modify
it in order to solve ARALBP-1. For details see Scholl and Klein (1997) and Scholl (1999, ch.
4.1.4).

The original problem and each resulting subproblem are branched by building complete loads
for a station k to form an enumeration tree each level of which corresponds to one station
(station-oriented branching). In the basic branching scheme, the stations are built in forward di-
rection such that the levels k=1,2,... of the tree correspond to the stations k. The nodes are gen-
erated following the laser search (depth-first-search) principle, i.e., in each node of the current

q j,( ) E'∈ j J∈ q V' J–∈ E' j q,( ) E'∈
j J∈ q V' J–∈ E'

FSh := FSj
j J∈
∩

IT := IT q h,( )  q V' J–( ) for which  j J∈∃ : q j,( ) IT∈∈{ }∪
q j,( ) IT∈

j q,( )
j q< j q>

V' := V' h{ }∪ J– j J∈
E'

E'
V'

FSh  { }=

i j,( )

UB m 1+=
m m n=



11

branch, only one descending node is built and developed at a time. At each revisit of a node an-
other load is built and followed to the next level.

When searching for  a station load to be branched, it is examined whether or not this load is com-
patible to the current (local) lower bound of the node just being inspected. This lower bound is
based on the most simple lower bound argument for SALBP-1, , which is ob-
viuosly also valid for ARALBP-1 (for further bound arguments see Section 4.3). The sum of all
task times must be divided among the stations observing that no more than c time units are avail-
able at each station. If the quotient is not integral, the value can be rounded up to the next inte-
ger, because only complete stations are possible. Depending on the current value LB of the
lower bound, there is idle time (balance delay time) BD(LB) =  which is unavoida-
ble. That is, in the root node (level k=0) each load for the first station the idle time of which is
no larger than BD(LB), i.e., , is compatible with the initial lower bound
LB. All loads fulfilling this condition are branched the first time they are generated, because
they do not need to enlarge the number of stations required, i.e., the current value of LB. The
remaining loads form a second class, because they require at least LB+1 stations to be installed.
These loads are considered for branching not before all loads of the first class have been exam-
ined and the (local) lower bound has been increased by one station. 

In any node at a level  with local lower bound LLB, a sequence of loads for the stations
h=1,...,k have already been built and might consume parts of the balance delay.  The remaining
idle time is computed as RIk := . Through the remaining idle time
RIk, the possible loads of station k+1 can also be subdivided into two classes. The first class
contains all station loads with an idle time of at most RIk time units; the second one contains all
other possible station loads. 

This technique of (locally) presorting the loads in each node is called local lower bound method
(LLBM). It has the advantages to consider the most promising branches first and to strengthen
lower bounds as soon as possible and has been proven to be very successful in accelerating the
search by Scholl and Klein (1997, 1999). 

Nevertheless, the sequence in which tasks are combined to trial station loads is still important,
because the remaining tasks of a reduced problem decide on the possibilities to form loads for
later stations. On the one hand, stations at the beginning of the line may be loaded with a small
amount of idle time by combining tasks with small task times first. On the other hand, remaining
large tasks possibly not able to share a station with each other may lead to very bad loads in later
stations. In order to find good feasible solutions in the first branches of the tree, it is promising
to prefer tasks with large task times and resource requirements and/or such which make availa-
ble many successors. This is achieved by using a dynamic renumbering of tasks, i.e., in each
node of the enumeration tree the tasks potentially assignable to the current station are renum-
bered in a manner which is favourable for finding promising loads first. On principle, the re-
numbering scheme based on priority values  and  introduced by Scholl and Klein (1999) is
used. This scheme assures that the topological ordering is preserved. In order to account for as-
signment restrictions, the renumbering scheme has been modified. The priority values are com-
puted such that all resources (recall that the cycle time can be interpreted as a resource) are con-

LB1 tsum / c=

LB c tsum–⋅

c t S1( )  BD LB( )≤–

k 1>

BD LLB( ) c t Sh( )–( )
h 1=
k∑–

pj qj



12

sidered with the scarcest one (with respect to utilization rate) defining the priority value, respec-
tively (for computing earliest stations Ej and latest stations Lj(m) see Section 3 and 4.3):

  and    (16)

As recommended in Scholl and Klein (1999), the order strength of the precedence graph
 is used to decide on which priority values are used for renumbering. If

OS < 0.4, the priority values pj (maximal average relative utilization per station) are used for
renumbering purposes. Otherwise, the priority values qj (generalized positional weights), which
more directly refer to the precedence structure of the graph, are applied.

Assuming that the stations are built in forward direction from the first to the last, the shortly
described branching process of SALOME can be applied to ARALBP-1 without any change and
is, thus, contained in ABSALOM, too.

In case that no station restrictions are to be considered, the same procedure can be applied in
backward direction by reversing the precedence graph, i.e., building stations from the last to the
first. Furthermore, the bidirectional branching method of SALOME can also be used. It con-
sists of systematically alternating forward and backward steps, so that for each node it is decided
whether a forward or backward step is taken next. The decision is based on a priority rule fol-
lowing the same ideas as the local renumbering scheme. For details see Scholl and Klein (1997).  

If station restrictions are present, backward or bidirectional branching is not useful, because the
final station numbers cannot be identified from the backward perspective as long as the resulting
total number of stations is not known. Thus, it cannot be decided if a partial solution (partially)
generated in backward direction is feasible or not before it is completed by assigning all remain-
ing tasks and finally arranging the stations. 

4.3.  Bounding

A node of the enumeration tree is fathomed whenever its (local) lower bound LB is equal to or
greater than the current upper bound UB (number of stations in the incumbent, i.e., best known
solution). The (local) lower bound LB is defined as the maximal value obtained by the bound
arguments described below. Bounding is performed for each maximal undominated load (cf.
Section 4.4) before the corresponding subproblem is actually build.

The simple capacity bound  can be extended to  by additionally considering the task
attributes as follows:

  with   for  and (17)

Each resource including the time as basic resource  defines an own bound LB1, the largest
of which is used as . If the bound is to be applied to a residual problem, the remaining sums
based on unassigned tasks only are to be considered. This bound argument is equivalent to the
capacity bound for resource constraint project scheduling (Klein and Scholl 1999).

pj := 
max τjr  r R0∈{ }

Lj LLB( ) Ej– 1+
------------------------------------------- qj := max τjr τiri Fj

∗∈∑+  r R0∈
⎩ ⎭
⎨ ⎬
⎧ ⎫

OS E∗   n n 1–( )⋅( )⁄=

LB1 LB1'

LB1' max 
usum

r

Ar
-----------  r R0∈
⎩ ⎭
⎨ ⎬
⎧ ⎫

= usum
r ujr

j 1=

n
∑= r R∈ usum

0 tsum=

r 0=
LB1'



13

The counting bounds LB2, LB3 and LB6 contained in SALOME (cf. Scholl 1999, ch. 2.2.2.1)
can be modified in a similar manner by computing a bound value for each resource  and
taking the maximal value which is then rounded up if necessary. For LB2, the resource-depend-
ent values are computed as the number of tasks with  plus half of the number of tasks
with  for . Additionally, LB2 can be increased by adding 1 for each task which
is incompatible to all tasks considered in the computation of LB2 before. LB3 represents a more
detailed view with respect to thirds of the resource supply (for details of both bound types see
Johnson 1988, Scholl and Klein 1999). The logic behind these simple counting bounds is com-
bined and extended to form a more sophisticated bound LB6 (cf. Berger et al. 1992).

The one-machine bound LB4 is based on heads and tails, the computation of which might be
strengthened due to the different resources (Johnson 1988, Scholl and Klein 1999). Since com-
puting the head of a task requires to know the heads of all predecessors in a recursive manner
(see below),  the heads have to be computed following a topological ordering. Equivalently, tails
are computed in a reverse topological order.

A head  can be computed for each resource  by applying the logics of LB1, LB2, and
LB3 to the predecessor set  as described by Scholl (1999, ch. 2.2.2.1) for the resource type
time by replacing (relative) durations by (relative) resource usages . Additionally, a one-ma-
chine problem can be solved for each r with  defining the set of jobs to be scheduled. The
jobs are sorted according to non-decreasing heads and the minimal makespan obtained for this
list of jobs serves as a possible head for task j. The maximum of these (still unrounded) single
head values for resource r serves as the initial value of the head . Non-integral values  may
be strengthened whenever task j does not fit into the last of the  first stations, i.e.,

. In such a case,  is rounded up to the next integer .

Obviously, task j cannot be assigned to the first  stations, because its
predecessors occupy this number of stations completely with regard to at least one resource r.
The earliest station to which task j can be assigned feasibly then is given by:

(18)

Because the resource-individual heads are required in computing heads of follower tasks by the
one-machine problem recursively, each value  smaller than  is finally raised to this
value, i.e., .

Tails  are computed in an analogous manner by applying the method for computing heads to
the reverse precedence graph or by considering the successor sets  instead of the predecessor
sets , respectively. As results, we get tails  for each task j and resource  and the
maximal integer tails  (lower bound on the number of stations following the one task j is as-
signed to).

Let m be a trial number of stations. Then, the latest station for task j, provided that at most m
stations are available, is computed as:

(19)

To compute a lower bound LB4 to the overall problem, a fictitious sink node n+1 with
 for all  and connected with all original sinks and a fictitious source node 0

r R0∈

ujr Ar / 2>
ujr Ar / 2= r R0∈

ajr r R0∈
Pj

∗
τjr

Pj
∗

ajr ajr
ajr

ajr τjr ajr>+ ajr ajr

aj := max ajr   r R0∈{ }

Ej := min k FSj  k aj>∈{ }

ajr Ej 1–
ajr := max ajr Ej 1–,{ }

nj
Fj

∗
Pj

∗ njr r R0∈
nj

Lj m( ) := max k FSj  k m nj–≤∈{ }

τn 1 r,+ 0= r R0∈



14

with  for all r and connected with all original source nodes are introduced. For each re-
source , a lower bound is computed as follows, based on a makespan minimizing one-
machine problem with heads and tails (cf. Carlier 1982):

  for (20)

The maximal of those bound values serves as LB4: (21)

(22)

Since LB4 is computationally more expensive than LB2 and LB3, this bound is only determined
in the root node. In all other nodes, earliest and latest stations are computed based on the logic
of LB1 as follows. Additionally, it is accounted for that no task must be assigned to an earlier /
later station than one of its predecessors / successors.

(23)

(24)

Based on earliest and latest stations (computed by (18) and (19) or (23) and (24)), the feasible
stations bound LB5 (cf. Scholl and Becker 2006) is defined as the smallest number of stations
for which each task has at least one feasible station:

(25)

Finally, the SALBP-2 based bound LB7 can also be applied to ARALBP-1 by extending the
underlying bounds on the cycle time (resource time) to all resource types. For each trial value
m, a lower bound  on the cycle time is computed by a (simple) bound argument for
SALBP-2. If  holds, no feasible solution with at most m stations can exist. Thus, m is
increased by 1 and the process is repeated. Otherwise, m constitues a first lower bound on the
number of stations. Starting with the current value of m, the same logic is applied to all other
resources  one after the other. In each case, a lower bound  on the required amount
of resource r per station is computed by adapting the SALBP-2 bound. If  holds, m
is increased and a new bound  is computed. Otherwise, the next resource r is considered.
After having examined all resources, the current value of m constitutes the lower bound LB7.
As bound argument for SALBP-2 we use the one originally proposed by Scholl and Klein
(1997). 

Both, LB5 and LB7, are based on the so-called destructive improvement, a technique from con-
strained programming originally applied to the resource constrained project scheduling problem
(cf. Klein and Scholl 1999). Trial numbers of stations are contradicted (destroyed) by domain
reduction and other logical tests.

Of course, further bound arguments, including the one proposed by Fleszar and Hindi (2003),
could be integrated (see the survey in Scholl and Becker 2006). However, we restrict ourselves
to the bound arguments originally contained in SALOME in order to be comparable to former
studies.

τ0r 0=
r R0∈

LB4r := max an 1 r,+  n0r   max ajr τjr njr+ +   j 1 … n, ,={ },{ , } r R0∈

LB4 := max LB4r  r R0∈{ }

Ej' := min k FSj  k max τjr τiri Pj
∗∈∑+   r R0∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

k Ei   i Pj
∗∈∀≥∧≥∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

Lj' m( ) := max k FSj  k m 1 m– ax τjr τir
i Fj

∗∈∑+   r R0∈
⎩ ⎭
⎨ ⎬
⎧ ⎫

k Li  ∀ i Fj
∗∈≤∧+≤∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

LB5 := min m Z+ ∈  Lj m( ) Ej   j V∈∀≥{ }

c m( )
c m( ) c>

r R∈ Ar m( )
Ar m( ) Ar>

Ar m( )



15

4.4.  Logical tests

SALOME contains a number of locical tests, namely, the maximum load rule, the task time in-
crementing rule, the Jackson dominance rule, the tree dominance rule and dynamic prefixing
(cf. Scholl and Klein 1997, 1999; Scholl 1999, ch. 3.3.2.3). These rules combine approaches
from combinatorial optimization and constraint programming.

Maximum load rule (MLR)

A feasible load Sk for a station k (based on known loads for stations 1,..., ) is defined to be
maximal if it is not possible to assign an additional, yet unassigned task in a feasible manner.
When solving SALBP-1, a load is maximal if no task can be added without violating the prec-
edence constraints and exceeding the cycle time. In case of ARALBP-1, the definition of load
maximality is to be extended to additionally observe station restrictions, task incompatibilities
and resource restrictions. As a consequence, loads which are non-maximal with respect to
SALBP-1 might be maximal for ARALBP-1.

For SALBP-1, it is known that at least one optimal solution consists of maximal loads only and,
thus, only maximal loads must be considered for branching (Jackson 1956). The same is obvi-
ously true for ARALBP-1, because no advantage with respect to the resulting number of stations
can be obtained by delaying an assignable task, i.e. assigning it to a later station and leaving the
respective capacity of the current station unused. By the way of contrast, maximal task distances
would require to deactivate the MLR, because observing the distances might require to delay
tasks. Besides practical irrelevance, this was a reason to exclude maximal distances.

(Extended) Task Time Incrementing Rule (TTIR)

It is used prior to enumeration in the root node to increase times  and, by analogy, resource
requirements  of some tasks j in order to improve bound computations, if possible. 

In its most simple form for SALBP-1, the TTIR is used to raise the time  of a task j to c if the
condition  is fulfilled with , because this condition ensures
that task j cannot be combined with any other task in the same station (cf. Johnson 1988). 

We apply and extend a more versatile version of the rule (see Scholl 1999, ch. 4.1.2.3) which
examines more directly whether or not a task can be combined with any other one. In order to
do so, the following sets are computed:

for  with (26)

(27)

Considering a pair  of tasks,  is defined to contain all tasks lying on paths connecting
h and j or j and h, respectively. The set CTj collects all tasks which are potentially combinable
with task . Combinable tasks (1) must have at least one feasible station in common and (2)
must not be incompatible and (3) must not exceed the resource capacities together with all in-
termediate tasks. If the set  is empty, no task is potentially combinable with j and the re-

k 1–

tj
ujr

tj
tj tmin c>+ tmin min th  h V∈{ }=

FPhj := FPjh := Fh
∗ Pj

∗∩( ) F∗j Ph
∗∩( )∪ h j< h j V∈,

CTj := h V ∈  FSj FSh  { } h j,( ) IT∉ ujr∧ uhr uiri FPhj∈∑+ Ar r∀ R0 ∈≤+∧≠∩
⎩ ⎭
⎨ ⎬
⎧ ⎫

h j,( ) FPhj

j V∈

CTj



16

source requirements can be set to the capacities for all resources, i.e.,  for all ,
which includes raising the task time  to .

After having successfully increased particular resoure requirements, lower bounds might be im-
proved (e.g., LB1 due to increased  values) and enumeration will usually be accelerated.

Jackson Dominance Rule (JDR)

The JDR (Jackson 1956, strengthened by Scholl and Klein 1997) is applied to reduce the num-
ber of alternative loads which have to be considered for a certain station k. It is based on poten-
tial dominance. In case of SALBP-1, a task h potentially dominates another task j that is not re-
lated to h by precedence, if  and  hold. 

The rule is applied (in forward direction) to exclude a maximal station load Sk from being bran-
ched if at least one task  can be replaced feasibly by a still unassigned task h which po-
tentially dominates j. The conditions of potential dominance ensure that each complete solution
which contains the excluded load, i.e.,  and  with some station , can be trans-
formed into an equivalent feasible solution with j and h exchanged. This is due to the fact that
all successors of task j are successors of h as well ( ) and, thus, cannot start before h is
finished. Hence, the sequence of j and h is not important for the successors of j. Together with

 it is ensured that  replacing h by j is feasible in . So, it is sufficient to complete the
dominating (feasible) load in station k.

For ARALBP-1, the definition of the potential dominance is to be extended. Now, the following
conditions must be fulfilled to constitute a potential dominance of task h over task j: 

• h and j are not related by precedence and  (see above)

•  for all task j can replace task h in Sq concerning all resources

• task j can replace task h in Sq concerning station restrictions

• task j can replace task h in Sq concerning incompatibilities

If all conditions are fulfilled as equations, the lower-numbered task is defined to be dominating.

The JDR is also applied in the extended version proposed by Scholl and Klein (1999), where a
load  is excluded due to an unassigned task h which can replace a subset  feasibly and
potentially dominates each . Additionally, the conditions  must be fulfilled
for each  to ensure that h can be replaced by the complete set J in Sq.

Modification of the Task Renumbering. In order to find feasible solutions as fast as possible, the
task renumbering explained in Section 4.2 is modified according to potential dominances. By
giving each task j which is potentially dominated by a task h a larger number than h, dominating
station loads are built prior to dominated ones.

Tree dominance rule (TDR)

The TDR identifies partial solutions which contain the same set of tasks than another, previ-
ously enumerated one. A maximal undominated load  is excluded if the set of tasks currently
assigned to , ...,  have already been assigned to at most k stations in an earlier step. Thus,
this rule necessitates to store the station needs for each already assigned subset of tasks. An
memory-saving and easy-to-access method is based on a tree structure introduced by Nourie

ujr := Ar r R0∈
tj uj0= A0 c=

usum
r

Fj Fh
∗⊆ tj th≤

j Sk∈

j Sk∈ h Sq∈ q k>

Fj Fh
∗⊆

tj th≤ Sq

Fj Fh
∗⊆

ujr uhr≤ r R0∈

FSh FSj⊆

ITj ITh⊆

Sk J Sk⊆
j J∈ uhr ujrj J∈∑≥

r R0∈

Sk
S1 Sk



17

and Venta (1991). The TDR can be applied to ARALBP-1 without modifications as it is a
straight-forward extension of the MLR to more than one stations (provided that no maximal task
distances are considered). 

Dynamic prefixing (DP)

DP is a reduction rule directly exploiting the concept of earliest and latest stations (cf. Section
3) and can be viewed as avoiding predictable bounding in later stages of the following subtree.
Before finding station loads of a current station k by enumeration, prefixing is used to assign
tasks which cannot be assigned to a later station than k. 

In case of SALBP-1, a temporary prefixing is performed with respect to the current local lower
bound LLB, i.e., a task j is (temporarily) prefixed to the currently considered station k if

. The prefixed tasks remain in station k until the local lower bound LLBk is in-
creased. Due to the equation , no new temporary prefixing can occur in
station k for the increased local bound. This technique is analogously applicable in backward
direction based on earliest stations . In either case it also applies to ARALBP-1.

Additionally, the station restrictions may enforce a final prefixing for the current node of the
tree. This is the case if the current station k is the largest station index contained in the set of
feasible stations  for a task j. Then, this task must be assigned to k to obtain a feasible solu-
tion at all, irrespective of the current value of LLB. If this is not possible for such a task due to
capacity restrictions or incompatibilities, the current node of the tree needs to be fathomed.

5.  Computational experiments

We describe a number of computational experiments and analyse their results to examine the
performance of ABSALOM.

5.1.  Data sets

Up to now, there are no systematic data sets available for ARALBP-1. As a consequence, we
generate a number of data sets by systematically varying the influence of different types of as-
signment restrictions. As a basis, we use the well-known benchmark data set for SALBP-1 (cf.
Scholl 1999, ch. 7.1; available for download at the homepage for assembly line optimization re-
search: www.assembly-line-balancing.de). This data set consist of 269 instances, based on 25
precedence graphs having 8 to 297 nodes each connected to several cycle times. Three configu-
rations have been used to generate data sets.

Setting 1: Data sets for task and resource restrictions

In this setting, the task and resource assignment restrictions  are consid-
ered and variied in a full factorial manner. The following parameters are used and variied in the
given sets (parameter values in parantheses are only considered in individual tests).

number of resources; 

ratio of linked task pairs (in %); 

ratio of incompatible task pairs (in %); 

Lj LLB( ) k=
Lj m 1+( ) Lj m( ) 1+=

Ej

FSj

α5 link inc cum,,{ }∗∈

R R 0 1 2( ) 3, , ,{ }∈

LR LR 0 2( ) 5 7( ) 10 20( ), , , , ,{ }∈

IR IR 0 2( ) 5 7( ) 10 20( ), , , , ,{ }∈



18

For each combination  tested, a data set with 269 instances is generated from the
benchmark set for SALBP-1. For each instance, it is ensured that the optimal and known
SALBP-1 solution remains feasible and, thus, optimal. This gives opportunity to test the per-
formance of algorithms on the best possible basis.

Consider a SALBP-1 instance and a corresponding optimal solution given as a sequence of sta-
tion loads  and by assignment variables  for  which specify the index of
the station task j is assigned to, i.e.  if . In order to maintain feasibility and optimal-
ity of the SALBP-1 solution , the data parameters required are set as follows:

• Resource restrictions: For each resource , the capacity is set to  (normaliza-
tion). Each station gets these initial capacities as  for  and .
For each , the tasks j are considered in order of their numbering. The resource require-
ment  is randomly chosen from the interval  with  using uniformly distrib-
uted random numbers. Afterwards, the station capacity is reduced to . This
process is repeated until all tasks have been considered. If  is reached for some sta-
tion k, the possible remaining tasks in  get zero requirements. 

• Linked tasks: Each pair of tasks  both of which are assigned to the same station, i.e.,
, is considered and defined as a linked pair with given probability LR based on uni-

formly distributed random numbers.

• Incompatible tasks: The pairs  of tasks assigned to different stations in the SALBP-1
solution, are defined to be incompatible with given probability IR also using uniformly dis-
tributed random numbers.

A first collection of data sets is obtained by considering the restriction types separately. In each
case all parameter values given above are examined. In order to restrict the total effort, a second
collection of data sets is obtained by combining all parameter values not set in parantheses. This
amounts to 34 data sets each of which consists of 269 instances, i.e., a total of 9,146 instances
(see Table 3).

Setting 2: Data sets including station restrictions

Because considering station restrictions requires ABSALOM to be restricted to forward direction,
these restrictions are added separately. An additional parameter is used:

SR ratio of restricted feasible station sets (in %); 

Initially, the earliest and latest stations are defined as  and  for all , where
 serves as an arbitrarily chosen upper bound on the number of stations. The tasks

are selected with probability SR. For each selected task j the station interval is randomly re-
duced as follows:  is set to a value in , while  gets a value in  using uniformly
distributed random numbers. If  results, the situation of a fixed station ( ) is
present. In other cases,  is reflected by restricting the task to a certain segment of the
line. Finally, 10% of the station indices in the resulting sets  are removed ran-
domly to reflect .

R LR IR,,( )

S1 S2 …S
m∗, , zj j V∈

zj k= j Sk∈

r R∈ Ar 100=
Ark 100= r R∈ k 1 … m∗, ,{ }∈

r R∈
ujr 0 Ark,[ ] k zj=

Ark := Ark ujr–
Ark 0=

Sk

i j,( )
zi zj=

i j,( )

SR 0 25 50 75 100, , , ,{ }∈

Ej := 1 Lj := m j V∈
m 1.5 m∗⋅=

Ej 1 zj,[ ] Lj zj m,[ ]
Ej Lj zj= = α5 fix=

α5 type=
FSj Ej … Lj, ,{ }=

α5 excl=



19

The different values of SR are combined with two selected combinations 
and  to consider station restrictions alone and combined with all other
types of assignment restrictions. This results in 10 data sets (2,690 instances; see Table 4).

Setting 3: Data set for time- and space- constrained SALBP-1

Bautista and Pereira (2007) consider a time- and space-constrained problem, which consists of
SALBP-1 extended by a single resource constraint interpreted as limited space ( ). No fur-
ther assignment restrictions are considered. The data set also uses the benchmark set for
SALBP-1 and generates the data for resource  as follows:

 for all  and (28)

5.2.  Results for test setting 1

Up to now, there does not exist another exact solution procedure for ARALBP-1. Thus, we use
the flexible heuristic AVALANCHE of Boysen and Fliedner (2008) as a benchmark procedure.
This heuristic is a two-stage method using an ant colony system heuristic at the first stage and
a shortest-path computation at the second stage. It is the only procedure flexible enough to cope
with many extensions of assembly line balancing problems simultaneously.

The experiments were run on a personal computer with an Intel Pentium IV processor of 1,5
GHz clock speed and 512 MByte of RAM. For each instance a time limit of 500 sec. was
imposed on ABSALOM, while AVALANCHE is configured as follows: Linked tasks are merged to
mega nodes prior to applying the procedure. In each run of AVALANCHE, 1000 iterations with a
population size of 25 sequence vectors (ants) are performed.

The following measures are used to evaluate the algorithms:

• # opt.: number of proven optima found (out of 269 instances in each data set)

• # found: number of optima found (the optimal solution is retrieved, i.e., the final UB is
equal to m*, but could not necessarily be proven within the given time span)

• rel. dev.: average relative deviation from minimal number of stations (or best known lower
bound if the optimum is still unknown which is the case for one of the 269 instances)

• total time: average computation time (with values of 500 sec. for time outs of ABSALOM)

Table 3 summarizes the results. Obviously, ABSALOM clearly outperforms AVALANCHE with re-
spect to all measures. It finds much more optimal solutions (86% vs. 35%; see the summarizing
row 34), the relative deviations from optimum are better by an order of magnitude (1% vs. 11%
on average) and even computation times are comparable (80 vs. 46 sec. on average). Further-
more, a considerable number of proven optimal solutions is obtained (85%), which is not
achievable by the heuristic procedure AVALANCHE unless it is supplemented with bounding pro-
cedures.  

Considering isolated variations of the three parameters shows that the number of resource cons-
traints |R| has the greatest impact on the procedures’ performance (rows 0 to 3). In both cases,
the different measures deteriorate considerably. 

A milder increase in complexity and loss in solution quality is obtained by incompatibility cons-
traints (rows 9 to 13). These constraints make the assignment of tasks to stations more sensitive,

R LR IR,,( ) 0 0 0, ,( )=
R LR IR,,( ) 3 5 5, ,( )=

R 1=

r 1=

uj1 tn j– 1+ un j– 1 0,+= = j V∈ A1 A0 c= =



20

because less unassigned tasks may remain which can be combined to form favourable loads. By
the way of contrast, the portion of linked tasks has only minor influence on the algorithmic per-
formance, respectively (rows 4 to 8). Reduction in problem size by merging tasks and increased
complexity of combining larger tasks seem to counterbalance each other. When combined, lin-
ked tasks attenuate the influence of incompatibilities on solution quality (e.g., see rows 5, 10,
and 14 or 5, 12, and 15). The same effect is to be observed in combination with one (rows 18 to
25) or three resource constraints (rows 26 to 33) and valid for both procedures.

To summarize, ABSALOM turns out be an effective procedure for solving balancing problems
with task and resource restrictions, while AVALANCHE is not competitive. This is due to the fact
that the latter procedure is a multi-purpose solution approach not specially designed for a spe-
cific problem configuration.

Table 3. Results of ABSALOM and AVALANCHE for setting 1

ABSALOM (bidirectional) AVALANCHE

row 
no.

problem 
type |R| LR LR # opt. # found rel. dev. total time # found rel. dev. total time

0 SALBP-1 0 0 0 254 262 0,06% 30,80 162 2,19% 63,55
1 resource 

constraints
only

1 0 0 225 229 0,82% 85,20 67 11,85% 58,03
2 2 0 0 200 202 2,04% 133,21 53 16,80% 59,56
3 3 0 0 202 202 2,79% 130,36 51 19,40% 61,57
4

linked tasks 
only

0 2 0 250 257 0,10% 37,74 157 2,51% 54,60
5 0 5 0 252 257 0,11% 35,43 159 2,48% 46,23
6 0 7 0 248 254 0,13% 40,15 158 2,40% 40,31
7 0 10 0 247 252 0,17% 44,78 152 2,76% 34,82
8 0 20 0 250 254 0,15% 35,90 160 2,46% 24,86
9

incompa-
tible tasks 

only

0 0 2 256 262 0,22% 30,13 135 3,85% 51,40
10 0 0 5 250 256 0,42% 39,82 115 6,29% 55,77
11 0 0 7 247 253 0,45% 46,86 97 8,28% 56,76
12 0 0 10 239 245 0,76% 64,44 94 11,05% 57,01
13 0 0 20 224 230 1,38% 88,42 79 19,27% 59,03
14

linked and 
incompati-
ble tasks

0 5 5 245 250 0,23% 49,68 121 5,56% 41,00
15 0 5 10 243 249 0,29% 51,28 101 8,13% 45,00
16 0 10 5 248 254 0,14% 43,82 125 4,64% 35,91
17 0 10 10 239 245 0,26% 60,76 116 6,28% 40,19
18

a single
resource 

constraint

1 0 5 214 216 1,18% 107,52 63 16,09% 55,93
19 1 5 0 228 231 0,72% 82,58 71 9,55% 40,38
20 1 5 5 224 226 0,75% 88,44 64 12,51% 37,59
21 1 0 10 204 206 1,68% 123,51 60 19,88% 57,45
22 1 10 0 230 233 0,60% 78,54 86 8,12% 30,10
23 1 5 10 218 220 0,93% 100,08 71 14,57% 41,06
24 1 10 5 226 229 0,75% 82,68 81 9,78% 29,21
25 1 10 10 226 228 0,80% 83,04 89 11,00% 30,97
26

several 
resource 

constraints

3 0 5 197 197 3,16% 139,89 52 22,64% 56,18
27 3 5 0 207 207 2,24% 120,83 59 13,79% 48,99
28 3 5 5 215 213 2,20% 107,85 62 15,81% 42,49
29 3 0 10 197 195 3,39% 143,30 55 25,47% 56,63
30 3 10 0 217 219 1,83% 99,91 72 11,92% 37,95
31 3 5 10 218 220 1,84% 99,58 81 12,95% 34,34
32 3 10 5 213 213 2,15% 113,31 65 17,64% 46,09
33 3 10 10 220 222 1,80% 97,38 79 13,59% 35,33

34 all total 7773 
(84,99%)

7888
(86,25%) 1,07% 79,92 3212

(35,12%) 10,93% 46,07



21

5.3.  Results for test setting 2

For setting 2, AVALANCHE is not applicable, because its approach to solving the problem re-
quires data that is independent from the actual position of a station on the line. ABSALOM must
be applied as a forward procedure, because the final station position is necessary for examining
station restrictions but not known when backward branching is performed. So, we only give re-
sults of the forward version of ABSALOM.  

Table 4 summarizes the results obtained for variied ratio of station restrictions SR with two set-
tings for the other parameters. Comparing the performance of the forward procedure with the
bidirectional one for SALBP-1 (rows 0 in Table 3 and Table 4) reveals that the forward proce-
dure is considerably less effective as has already been stated by Scholl and Klein (1997). 

With respect to the station restrictions, the results are quite surprising: The smaller the feasible
station sets  (increasing SR), the more complex the problems seem to be. One could have
expected the opposite, because shrinking station sets leads to reduced solution spaces. However,
it seems to be more complex to find favourable task combinations when sets are small as is the
case with increasing incompatibilies (see Section 5.2). This dependency between SR and solu-
tion quality is found for both settings of the remaining parameters even though at different qual-
ity levels. 

5.4.  Results for test setting 3

Finally, we compare ABSALOM and AVALANCHE with the best ant algorithm ANTS developed
by Bautista and Pereira (2007) for the time- and space-constrained SALBP-1. In order to be
comparable, the time limit is set to 30 sec. for ABSALOM (for ANTS Bautista and Pereira set a
limit of 120 sec. but used a slower computer). AVALANCHE is used without a time limit because
it is not a specialized procedure with some overhead due to generality.

Table 4 summarizes the results. ABSALOM finds proven optimal solutions for 183 instances
(68%). Since only this part of optimal solutions is known, the relative deviations are computed
based on the best known lower bounds (equal to the optimal value if known). As a consequence
the average relative deviation of 3.57% is an upper bound on the true average deviation which
should be fairly smaller. 

Table 4. Results of ABSALOM for setting 2

ABSALOM (forward)
row no. |R| LR LR SR # opt. # found rel. dev. total time

0 0 0 0 0 231 218 0,46% 109,22
1 0 0 0 25 228 219 0,49% 104,89
2 0 0 0 50 229 219 0,51% 101,67
3 0 0 0 75 228 219 0,57% 101,99
4 0 0 0 100 218 211 0,74% 109,87
5 3 5 5 0 191 194 2,91% 152,08
6 3 5 5 25 193 193 2,94% 154,38
7 3 5 5 50 183 188 3,66% 164,16
8 3 5 5 75 188 188 3,99% 160,65
9 3 5 5 100 185 186 4,68% 161,18

FSj



22

In order to compare the results to those given by Bautista and Pereira (2007), we additionally
use the optimal SALBP-1 solutions as reference points. Due to the additional resource con-
straint, a SALBP-1 solution is usually not feasible for the resulting ARALBP-1 instance. How-
ever, the number of stations in the optimal SALBP-1 solution serves as a (rather weak) lower
bound. The measures "# found" and "rel.dev." refer to these SALBP-1 based bounds. On this
basis, ABSALOM outperforms ANTS, because it finds the same number of stations as in the
SALBP-1 solution (which is sufficient but not necessary for being optimal for ARALBP-1; see
above) for 66 instances while this is achieved by ANTS for only 52 instances. The average rela-
tive deviation from SALBP-1 bounds is considerably smaller for ABSALOM. This is especially
remarkable since ABSALOM is designed as  an exact solution procedure and thus needs to use
most of its computational resources to examine all branches of the enumeration tree (i.e., the
complete solution space) explicitly or implicitly, while ANTS is a specialized heuristic for just
this problem setting which can concentrate on promising parts of the solution space. 

Though AVALANCHE takes significantly longer computation times it is not competitive. This is
partly due to its flexibility overhead as mentioned before and shows the need for specialized
procedures.

6.  Conclusions and future research

In this paper, we have introduced and modelled the assembly line balancing problem with as-
signment restrictions (ARALBP-1). For solving this problem, the branch-and-bound procedure
ABSALOM has been developed, which is an extension of the well-known procedure SALOME for
the simple assembly line balancing problem (SALBP-1). Comprehensive computational exper-
iments based on extended benchmark data sets indicate that the new procedure is effective in
finding optimal or at least near-optimal solutions. 

The inclusion of assignment restrictions into the successful solution approach of SALOME con-
tributes to closing the gap between assembly line optimization research and practice (Boysen et
al. 2008), because such restrictions are relevant in almost any real-world problem setting. Fur-
thermore, more complex real-world problem extensions might be tackled by flexible search pro-
cedures based on the repeated solution of ARALBP-1 instances by ABSALOM (for such an ap-
proach based on repeated solution of SALBP-1 instances, see Scholl et al. 2006). 

For example, assignment restrictions are obviously helpful in modelling and solving ALBPs for
lines with large workpieces such as automobiles or lorries where only a part of the mounting
positions can be reached within the same station or workplace due to distance, access or position
restrictions as is the case with, among others, two-sided lines. Once defined, due to actual con-
ditions on the line or within a search process as mentioned above, such restrictions can be mod-
elled by incompatibility constraints and station restrictions. Similarly, assignment restrictions

Table 5. Results of ABSALOM, AVALANCHE and ANTS for setting 3

ABSALOM AVALANCHE ANTS

# opt. rel. dev. # found rel. dev. total time # found rel. dev. total time # found rel. dev.
183 3.57% 66 9.19% 10.54 25 18.13% 62.73 52 11.06%

related to ARALBP-1 related to SALBP-1 related to SALBP-1 related to SALBP-1 



23

might be useful for ALBP extensions such as selecting the station equipments (e.g., tasks that
require different machines or tools which cannot be located in the same station are to be set in-
compatible) or positioning material boxes at the stations (restricted storage space might be mod-
elled as resource restriction).

Future research should identify and analyze these and further problem extensions that might be
solved based on assignment restrictions and develop ARALBP-1 based search procedures (us-
ing an exact procedure like ABSALOM or heuristics for ARALBP-1) in order to be able to solve
more real-world problems in a satisfactory manner than it is possible up to now.

References

Agnetis, A., A. Ciancimino, M. Lucertini, M. Pizzichella. 1995. Balancing flexible lines for car components
assembly. Internat. J. Product. Res. 33 333–350.

Arcus, A.L. 1966. COMSOAL: A computer method of sequencing operations for assembly lines. Internat. J.
Product. Res. 4 259–277.

Bartholdi, J.J. 1993. Balancing two-sided assembly lines: A case study. Internat. J. Product. Res. 31 2447–2461.

Bautista, J., J. Pereira. 2002. Ant algorithms for assembly line balancing. Lecture Notes in Comp. Sci. 2463 65–
75.

Bautista, J., J. Pereira. 2006. Ant algorithms for a time and space constrained assembly line balancing problem.
European J. Oper. Res. 177 2016-2032.

Bautista, J., R. Suarez, M. Mateo, R. Companys. 2000. Local search heuristics for the assembly line balancing
problem with incompatibilities between tasks. Proceedings of the 2000 IEEE International Conference on
Robotics and Automation, San Francisco, CA, 2404–2409.

Baybars, I. 1986. A survey of exact algorithms for the simple assembly line balancing problem. Management Sci.
32 909-932.

Becker, C., A. Scholl. 2006. A survey on problems and methods in generalized assembly line balancing. Euro-
pean J. Oper. Res. 168 694-715.

Berger, I., J. Bourjolly, G. Laporte. 1992. Branch-and-bound algorithms for the multi-product assembly line bal-
ancing problem. European J. Oper. Res. 58 215-222.

Bhattacharjee, T.K., S. Sahu. 1987. A heuristic approach to general assembly line balancing. Internat. J. Oper. &
Product. Management 8 67-77.

Bowman, E. 1960. Assembly-line balancing by linear programming. Oper. Res. 8 385-389.

Boysen, N., M. Fliedner, 2008. A versatile algorithm for assembly line balancing. European J. Oper. Res. 184 39-
55.

Boysen, N., M. Fliedner, A. Scholl. 2007. A classification of assembly line balancing problems. European J.
Oper. Res. 183 674-693.

Boysen, N., M. Fliedner, A. Scholl. 2008. Assembly line balancing: Which model to use when? Internat. J. Prod-
uct. Economics 111 509-528.

Buxey, G.M. 1974. Assembly line balancing with multiple stations. Management Sci. 20 1010–1021.

Carlier, J. 1982. The one-machine sequencing problem. European J. Oper. Res. 11 42-47.

Carnahan, B.J., B.A. Norman, M.S. Redfern. 2001. Incorporating physical demand criteria into assembly line bal-
ancing. IIE Transactions 33 875–887.

Dar-El, E., Y. Rubinovitch. 1979. MUST - A multiple solutions technique for balancing single model assembly
lines. Management Sci. 25 1105-1114.

Deckro, R.F. 1989. Balancing cycle time and workstations. IIE Transactions 21 106–111.

Erel, E., S.C. Sarin. 1998. A survey of the assembly line balancing procedures. Product. Plann. & Contr. 9 414-
434.

Gadidov, R., W. Wilhelm. 2000. A cutting plane approach for the single-product assembly system design prob-
lem. Internat. J. Product. Res. 38 1731–1754.

Ghosh, S., R.J. Gagnon. 1989. A comprehensive literature review and analysis of the design, balancing and sched-
uling of assembly line systems. Internat. J. Product. Res. 27 637-670.



24

Gökcen, H., E. Erel. 1997. A goal programming approach to mixed-model assembly line balancing problem.
Internat. J. Product. Economics 48 177–185.

Hautsch, K., H. John, H. Schürgers. 1972. Taktabstimmung bei Fließarbeit mit dem Positionswert-Verfahren.
REFA-Nachrichten 25 451–464.

Jackson, J.R. 1956. A computing procedure for a line balancing problem. Management Sci. 3 261-271.

Johnson, R.V. 1983. A branch and bound algorithm for assembly line balancing problems with formulation irreg-
ularities. Management Sci. 29 1309-1324.

Johnson, R.V. 1988. Optimally balancing large assembly lines with "FABLE". Management Sci. 34 240-253.

Johnson, R.V. 1991. Balancing assembly lines for teams and work groups. Internat. J. Product. Res. 29 1205-
1214.

Kim, Y.K., Y. Kim, Y.J. Kim. 2000. Two-sided assembly line balancing: a genetic algorithm approach. Product.
Plann. & Contr. 11 44–53.

Kim, H., S. Park. 1995. A strong cutting plane algorithm for the robotic assembly line balancing problem. Inter-
nat. J. Product. Res. 33 2311–2323.

Klein, R., A. Scholl. 1999.  Computing lower bounds by destructive improvement - An application to resource-
constrained project scheduling. European J. Oper. Res. 112 322-346.

Klenke, H. 1977. Ablaufplanung bei Fließfertigung. Gabler, Wiesbaden.

Lapierre, S.D., A.B. Ruiz. 2004. Balancing assembly lines: An industrial case study. J. Oper. Res. Soc. 55 589–
597.

Lapierre, S.D., A. Ruiz, P. Soriano. 2006. Balancing assembly lines with tabu search. European J. Oper. Res. 168
826–837.

Lee, T.O., Y. Kim, Y.K. Kim. 2001. Two-sided assembly line balancing to maximize work relatedness and slack-
ness. Comp. & Indust. Engin. 40 273–292.

Leu, Y.Y., L.A. Matheson, L.P. Rees. 1994. Assembly line balanc ing using genetic algorithms with heuristicgen-
erated initial populations and multiple evaluation criteria, Dec. Sci. 25 581-606.

Liu, C.-M., C.-H. Chen. 2002. Multi-section electronic assembly line balancing problems: A case study. Product.
Plann. & Contr. 13 451-461.

Malakooti, B., A. Kumar. 1996. A knowledge-based system for solving multi-objective assembly line balancing
problems. Internat. J. Product. Res. 34 2533–2552.

Miltenburg, J. 1998. Balancing U-lines in a multiple U-line facility. European J. Oper. Res. 109 1–23.

Miltenburg, J. 2006. Optimally balancing large assembly lines: Updating Johnson´s 1988 FABLE algorithm.
INFOR: Inform. Syst. and Oper. Res. 44 23-47.

Miralles, C. 2005. Solving procedures for the assembly line worker assignment and balancing problem: applica-
tion to sheltered work centres for disabled. XI Escuela Latinoamericana de Verano en Investigación de Oper-
aciones, Villa de Leyva, Colombia (http://elavio2005.uniandes.edu.co/ResumenesParticipantes/Lunes/
MirallesCristobal_R.pdf).

Nourie, F.J., E.R. Venta. 1991. Finding optimal line balances with OptPack. Oper. Res. Letters 10 165-171.

Park, K., S. Park. W. Kim. 1997. A heuristic for an assembly line balancing problem with incompatibility, range,
and partial precedence constraints. Comp. & Indust. Engin. 32 321–332.

Pastor, R., C. Andres. A. Duran, M. Perez. 2002. Tabu search algorithms for an industrial multi-product and
multi-objective assembly line balancing problem, with reduction of the task dispersion. J. Oper. Res. Soc. 53
1317–1323.

Pastor, R., A. Corominas. 2000. Assembly line balancing with incompatibilities and bounded workstation loads.
Ricerca Operativa 30 23–45.

Pastor, R., A. Corominas, A. Lusa. 2004. Different ways of modelling and solving precedence and incompatibility
constraints in the assembly line balancing problem. Frontiers in Artificial Intelligence and Applications 113
359-366.

Patterson, J.H., J.J. Albracht. 1975. Assembly-line balancing: Zero-one programming with Fibonacci search.
Oper. Res. 23 166 - 172.

Pinnoi, A., W.E. Wilhelm. 1997. A family of hierarchical models for assembly system design. Internat. J. Prod-
uct. Res. 35 253–280.

Raouf, A., C. Tsui. 1982. A new method for assembly line balancing having stochastic work elements. Comp. &
Indust. Engin. 6 131–148.



25

Rekiek, B., P. de Lit, F. Pellichero, T. L’Eglise, P. Fouda, E. Falkenauer, A. Delchambre. 2001. A multiple objec-
tive grouping genetic algorithm for assembly line design. J. Intell. Manufact. 12 467–485.

Rekiek, B., P. de Lit, A. Delchambre. 2002. Hybrid assembly line design and user’s preferences. Internat. J. Prod-
uct. Res. 40 1095–1111.

Roberts, S.D., C.D. Villa. 1970. On a multiproduct assembly line-balancing problem. AIIE Trans. 2 361–364.

Saltzman, M.J., I. Baybars. 1987. A two-process implicit enumeration algorithm for the simple assembly line
balancing problem. European J. Oper. Res. 32 118-129.

Sawik, T. 2002. Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line. European J.
Oper. Res. 143 115–124.

Schofield, N.A. 1979. Assembly line balancing and the application of computer techniques. Comp. & Indust.
Engin. 3 53-59.

Scholl, A. 1999. Balancing and sequencing assembly lines. 2nd edn. Physica, Heidelberg. 

Scholl, A., C. Becker. 2006. State-of-the-art exact and heuristic solution procedures for simple assembly line bal-
ancing. European J. Oper. Res. 168 666-693.

Scholl, A., N. Boysen, M. Fliedner. 2006. The sequence-dependent assembly line balancing problem. OR Spec-
trum (to appear).

Scholl, A., R. Klein. 1997. SALOME: A bidirectional branch and bound procedure for assembly line balancing.
Informs J. Computing 9 319-334.

Scholl, A., R. Klein. 1999. Balancing assembly lines effectively - A computational comparison. European J. Oper.
Res. 114 50-58.

Sprecher, A. 1999. A competitive branch-and-bound algorithm for the simple assembly line balancing problem.
Internat. J. Product. Res. 37 1787–1816.

Thangavelu, S.R., C.M. Shetty. 1971. Assembly line balancing by zero-one integer programming. AIIE Trans. 3
61-68.

Vilarinho, P.M., A.S. Simaria. 2002. A two-stage heuristic method for balancing mixed-model assembly lines
with parallel workstations. Internat. J. Product. Res. 40 1405–1420.

Vilarinho, P.M., A.S. Simaria. 2006. ANTBAL: An ant colony optimization algorithm for balancing mixed-model
assembly lines with parallel workstations. Internat. J. Product. Res. 44 291-303.

Wee, T.S., M.J. Magazine. 1982. Assembly line balancing as generalized bin packing. Oper. Res. Letters 1/2 56–
58.

White, W.W. 1961. Comments on a paper by Bowman. Oper. Res. 9 274-276.

Wilhelm, W.E., R. Gadidov. 2004. A branch-and-cut approach for a generic multiple-product, assembly-system
design problem. Informs J. Computing 16 39-55.

Zäpfel, G. 1975. Ausgewählte fertigungswirtschaftliche Optimierungsprobleme von Fließfertigungssystemen.
Beuth, Berlin.


	ADPB.tmp
	Armin Scholl, Malte Fliedner, Nils Boysen


