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ABSTRACT 

 

 

 

METAHEURISTIC APPROACH TO SOLVING U-SHAPED ASSEMBLY LINE 

BALANCING PROBLEMS USING A RULE-BASE CODED GENETIC ALGORITHM 

 

 

 

The need to achieve line balancing for a U-shaped production line to minimize production 

time and cost is a problem frequently encountered in industry.  This research presents an efficient 

and quick algorithm to solve the U-shape line-balancing problem.  Heuristic rules used to solve a 

straight line-balancing problem (LBP) were modified and adapted so they could be applied in a U-

shape line-balancing problem model. By themselves, the heuristic rules, which were adapted from 

straight-line systems, can produce good solutions for the U-shape LBP, however, there is nothing 

that guarantees that this will be the case. One way to achieve improved solutions using heuristic 

rules can be accomplished by using a number of rules simultaneously to break ties during the task 

assignment process. In addition to the use of heuristic and simultaneous heuristic rules, basic 

genetic operations were used to further improve the performance of the assignment process and 

thus obtain better solutions.  

Two genetic algorithms are introduced in this research: a direct-coded and an indirect-

coded model. The newly introduced algorithms were compared with well-known problems from 

literature and their performance as compared to other heuristic approaches showed that they 

perform well. 
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 The indirect-coded genetic algorithm uses the adapted heuristic rules from the LBP as 

genes to find the solutions to the problem. In the direct-coded algorithm, each gene represents an 

operation in the LBP and the position of the gene in the chromosome represents the order in which 

an operation, or task, will be assigned to a workstation.  

The indirect-coded genetic algorithm introduces sixteen heuristic rules adapted from the 

straight LBP for use in a U-shape LBP.  Each heuristic rule was represented inside the chromosome 

as a gene. The rules were implemented in a way that precedence is preserved and at the same time, 

facilitate the use of genetic operations. Comparing the algorithm’s results with known results from 

literature, it obtained better solutions in 26% of the cases; it obtained an equivalent solution in 

62% of the cases (not better, not worse); and a worse solution the remaining 12%.  

The direct-coded genetic algorithm introduces a new way to construct an ordered 

arrangement of the task assignation without violating any precedence. This method consists of 

creating a diagram that is isomorphic to the original precedence diagram to facilitate the 

construction of the chromosome. Also, crossover and mutation operations are conducted in a way 

that precedence relations are not violated. The direct-coded genetic algorithm was tested with the 

same set of problems as the indirect-coded algorithm. It obtained better solutions than the known 

solutions from literature in 22% of the cases; 72% of the problems had an equivalent solution; and 

6% of the time it generated a solution less successful than the solution from literature.  

Something that had not been used in other genetic algorithm studies is a response surface 

methodology to optimize the levels for the parameters that are involved in the response model. 

The response surface methodology is used to find the best values for the parameters (% of children, 

% of mutations, number of genes, number of chromosomes) to produce good solutions for 
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problems of different sizes (large, medium, small). This allows for the best solution to be obtained 

in a minimum amount of time, thus saving computational effort.  

Even though both algorithms produce good solutions, the direct-coded genetic algorithm 

option requires less computational effort.  Knowing the capabilities of genetic algorithms, they 

were then tested in two real industry problems to improve assembly-line functions. This resulted 

in increased efficiency in both production line. 
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CHAPTER 1 

 1 INTRODUCTION 

 

 

 

Nowadays, companies around the world are producing high-quality products to sell at the 

lowest possible price. This is not because they do not want to raise more revenue through the sale 

of products but rather, they are facing the necessity of increasing their participation in the market 

because competitors also are selling high-quality products at low prices. There are several 

techniques to continuously improve quality and reduce operation costs. One of these techniques is 

called Line Balancing. The line balancing problem (LBP) entails assigning approximately the same 

amount of workload to each workstation, or worker, in an assembly line. According to Milas 

(1990), “The assembly line exists when we assemble or handle any device or product in a planned, 

sequential manner with two or more operators performing tasks of repetitive work at established 

workstations.”  

Assembly line configurations are among the most important components in manufacturing. 

Almost all industrial problems come from some sort of assembly line. The most fundamental 

obstacle to overcome to gain efficiency in the assembly line configuration is to balance the line 

(i.e., to solve the LBP). When the product has many operations and the demand is high, the process 

of balancing the line becomes more and more difficult. According to Ajenblit (1998), there are 

two types of optimization problems for the LBP. “In the Type I problem, the cycle-time (maximum 

amount of time that can be spent at each workstation) is fixed and the objective is to minimize the 

required number of workstations. The Type II problem attempts to minimize the maximum cycle-

time, given a fixed number of workstations.” Type II balancing problems generally occur when 
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the organization wants to produce the optimum number of items using a fixed number of stations 

without any expansion. (Li-yun X. et al. 2014). In industry, the Type I LBP is most prevalent, thus 

this research is focused only on the Type I LBP. 

Just-in-Time (JIT) and Lean Manufacturing methods have driven industries to search for 

manufacturing methodologies with lean concepts and high efficiency in both inventory and labor. 

This is why many assembly lines are now being designed U-shaped. A straight production line is 

shown in Figure 1.1. 

 
Figure 1.1: Straight Production Line 

Assembly line workstations arranged in a line are not the most efficient arrangement. In a 

U-shaped line balancing arrangement the workers operate inside the U, which offers some 

advantages that the straight-line shape assembly does not: communication among workers is better, 

workers can see other processes, and it is easier to assign multiple workstations to a single operator. 

When in-line production systems are compared with U-shaped production systems, the latter 

always assigns a more balanced amount of work to the operators. This always results in fewer 

workers and better material handling. Figure 1.2 shows the flow of the U-shaped assembly line. 
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Figure 1.2: U-shaped Production Line 

The LBP offers manufacturers the opportunity to reduce the number of operators through 

optimizing the process of assigning tasks. This is why the LBP is of great interest among 

researchers and many methods have been developed to find a solution. However, it was not until 

1994 that the first research work was published regarding the U-shaped balancing problem 

(Miltenburg and Wijngaard, 1994). 

Miltenburg and Wijngaard (1994) adopted the heuristic methods developed for the 

traditional LBP and adapted them for use in the U-shaped form. They came up with a procedure 

involving dynamic programming, but due to the high computational costs of this technique, it was 

used only for small problems.  

This research introduces two heuristic methods, called Genetic Algorithms, using direct- 

and indirect-codification. These algorithms combine a rule-based method with an evolutionary 

algorithm. The aforementioned method will help in solving the Type I U-shaped balancing 

problem,  providing solutions that simultaneously satisfy the precedence restrictions, result in 

fewer work stations, minimize  the smoothness index (Formula [1]), and do not exceed a given 

cycle time. 
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 𝑓(𝑥) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 √∑
(𝑠𝑚𝑎𝑥−𝑠𝑘)2

𝑚
𝑚
𝑘=1  [1] 

where sk is the total workstation k time, smax is the total maximum time of all workstations, and m 

is the number of workstations. 

 

The inputs for design of the assembly line system are listed below: 

 Precedence network of tasks, 

 Task times, which may be either deterministic or probabilistic, and 

 Cycle time, or number of workstations. 

The precedence network defines the immediate precedence relationships among the tasks 

of assembling a product. Figure 1.3 shows a typical precedence diagram where each circle 

represents an operation and the number above it indicates its task time. 

 
Figure 1.3: Typical Precedence Network Diagram 
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 The execution of each task requires certain time, known as task time. This may be 

deterministic or probabilistic. The cycle time is the time between consecutive releases of the 

completed assemblies at the end of the line. It is also the total time (maximum time) allocated to 

each workstation in the assembly line. All workstations have the same cycle time. 

The formula for the cycle time is as follows [2]:  

  𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑒𝑟 𝑠ℎ𝑖𝑓𝑡

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑝𝑒𝑟 𝑠ℎ𝑖𝑓𝑡
 [ 2 ] 

The cycle time and the number of workstations are expected to be inversely proportional. 

The greater the cycle time, the smaller the number of workstations required; having more work 

stations results in smaller cycle times. If the objective is to minimize the number of workstations 

for a given production rate, it is usually referred as a Type I problem. If the goal is to maximize 

the production rate by minimizing the sum of a given number of workstations, it is referred as a 

Type II problem. 

The formula to compute the balancing efficiency percentage is given below [3]: 

 𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ×𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
 × 100 [ 3 ] 

In the balancing efficiency formula, the sum of all task times and cycle time is given as an 

input. The cycle is computed based on a desired production volume of a product to be assembled 

in the line. The balancing efficiency is the ratio between the sum of the task times and the total 

time that is provided to execute all the tasks (number of workstations × cycle time). This research 

studies only the Type I LBP where the goal is to minimize the number of workstations. The formula 

clearly shows that the fewer the number of workstations, the greater the balancing efficiency and 

the fewer is the requirement of resources (operators). If the sum of the task times and the total time 
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provided to execute them were the same, there would be an efficiency of 100%. The prime 

objectives of the assembly LBP are the following: 

 To subdivide the tasks in a given precedence network into a number of 

workstations for a given cycle time subject to the following two constraints such 

that the balancing efficiency is maximized (Type I problem):  

o non-violation of the precedence constraints among the tasks, and  

o processing time sums of the tasks assigned to each workstation are less 

than or equal to the given cycle time.  

 To subdivide the tasks in a given precedence network into a given number of 

workstations without violating the precedence constraints among the tasks such 

that the cycle time is minimized (Type II problem). 
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CHAPTER 2 

 2 LITERATURE REVIEW 

 

 

 

2.1 Line-Balancing Problem Classification 

Line-balancing problems can be classified by three parameters that differentiate them. 

They can be classified by the nature of task times, number of models produced, and the flow shape. 

The number of models refers to the different versions of a product. Each of these parameters 

creates two categories, making a total of eight different types of LBP. The nature of task times can 

be either deterministic or probabilistic; they differ in the variability of the task times. The 

probabilistic variation of task times is characterized by a probability distribution, while the 

deterministic task times can be approximated by a fixed value. The number of models produced is 

separated as single model (one model) and multi model (more than one model). The flow shape 

can be either straight (line) or U-shaped. 

This results in the following types: 

1. Single-model deterministic straight-type problem 

2. Single-model deterministic U-shape problem 

3. Single-model probabilistic straight-type problem 

4. Single-model probabilistic U-shape problem 

5. Multi-model deterministic straight-type problem 

6. Multi-model deterministic U-shape problem 

7. Multi-model probabilistic straight-type problem 

8. Multi-model probabilistic U-shape problem 

The LBP classification scheme is shown in Figure 2.1: 
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Figure 2.1 Line Balancing Problem Classification 

This research focuses on the single model, deterministic, U-shaped LBP. 

2.2 Single-Model Deterministic U-shape LBP 

Miltenburg and Wijngaard (1994) produced the first publication about the U-shaped LBP. 

They pointed out an approach to balancing systems arranged in a U-shape way. They showed that 

this kind of arrangement of the LBP produces a more complex problem than the one dealt with in 

the traditional LBP. This is because tasks can be assigned to workstations by moving forward, 

backward, or simultaneously in the precedence network. Following this publication, researchers 

have been trying to solve this NP-hard problem by using different approaches. 

The literature for this type of problem is classified based on the methods that have been 

previously used to attempt to solve it (Sivasankaran and Shahabudeen, 2014). These methods are 

as follows: 

 Exact Solutions 

o Enumeration procedure 

LBP

Single model

Deterministic 
Task times

Line

U-shape

Probabilistic 
Task times

Line

U-shape

Multi Model

Deterministic 
Task times

Line

U-shape

Probabilistic 
Task times

Line

U-shape
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o Integer programming 

o Shortest path algorithm 

o Other exact solution approaches 

 

 Heuristics 

o Simulated annealing algorithm 

o Ant colony optimization algorithm 

o Multi-pass random assignment algorithm 

o Critical path method 

o Other heuristic approaches 

 Stochastic Methods 

2.2.1 Exact Solutions 

2.2.1.1 Enumeration Procedure 

Suppose the following precedence network has a cycle time of six, as represented in Figure 2.2. 

 

 
Figure 2.2: Enumeration Process Precedence Network 

To solve the U-shape LBP, it is necessary to find the solution that produces the fewest 

workstations. Recall that a U-shape LBP can move from left to right as well as from right to left. 

Thus, this problem can begin with either operation 1 or operation 6. Table 2.1 bellow shows 

these two options. 
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Table 2.1: Enumeration Process Workstation 1 

Ws1 

V Assign Tr V2 

1, 6 1 2 0 

1, 6 6 3 
4 

5 

 

This table represents the first workstation. V indicates the available operations to assign, 

Tr is the time remaining after assigning an operation, and V2 is the next operation/s that can be 

completed with the remaining time. Tasks can continue to be assigned until the remaining time is 

no longer sufficient for the next task. If the remaining time is less than the task time of the next 

operations, they cannot be completed and must move on to the next workstation. As seen in the 

table, the two options lead to two different outcomes that branch the problem in two directions. 

This is only the start: every workstation may branch into two or more options. 

Continuing with the first option to the second workstation, named Workstation 2 of 

Option 1, the available tasks are now 2, 3 or 6, as seen in Table 2.2. 

Table 2.2: Enumeration Process Workstation 2 

Ws 2 

Op 1 

V Assign Tr V2 Tr2 

2, 3, 6 2 0 0 0 

2, 3, 6 3 1 0 0 

2, 3, 6 6 3 
4 0 

5 1 

 

Workstation 2 branches off into four more options. The third workstation for the first 

option shown in the above table would result in the branches shown in Table 2.3. At this point, 

tasks 1 and 2 have been assigned. Continuing this procedure with the first option (operation 3), 

the next step would be as shown in Table 2.4. 
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Table 2.3: Enumeration Process Workstation 3 

Ws 3 

Op 1.1 

V Assign Tr V2 Tr2 

3, 4, 6 3 1 0 0 

3, 4, 6 4 3 6 0 

3, 4, 6 6 3 
4 0 

5 1 

 

Table 2.4: Enumeration Process Workstation 4 

Ws 4 

Op 1.1.1 

V Assign Tr V2 Tr2 

4, 5, 6 4 3 
5 1 

6 0 

4, 5, 6 5 4 
4 1 

6 1 

4, 5, 6 6 3 
4 0 

5 1 

 

At this point, there will only be one operation remaining for every option. Following 

option one again, the final work station would be as shown in Table 2.5. 

Table 2.5: Enumeration Process Workstation 5 

Ws 5 

Op 1.1.1.1 

V Assign Time remaining V2 

6 6 3 0 

Ws 5 

Op 1.1.1.2 

V Assign Time remaining V2 

5 5 4 0 

Ws 5 

Op 1.1.1.3 

V Assign Time remaining V2 

6 6 3 0 

Ws 5 

Op 1.1.1.4 

V Assign Time remaining V2 

4 4 3 0 

Ws 5 

Op 1.1.1.5 

V Assign Time remaining V2 

5 5 4 0 

Ws 5 

Op 1.1.1.6 

V Assign Time remaining V2 

4 4 3 0 

 

This process would have to be continued for all possible solutions. In Appendix B, the 

complete process is shown. The path followed out of all possible paths is shown in Figure 2.3. 
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Figure 2.3 Enumeration Process Diagram 

There are a total of eight optimal solutions to this problem that require only four 

workstations.  A large number of possible solutions have been obtained from a simple problem. 

In a more complicated problem, it would be significantly more difficult and less convenient to 

manually look for every possible outcome and select the best one. A branch and bound approach 

can help to improve this process. In the branch and bound procedure, workstations are evaluated 

to determine which branch has better feasibility than the others. This way it is not necessary to 

evaluate every single branch. An example of this is demonstrated by Miralles (2008). 
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2.2.1.2 Integer Programming 

Integer programming is a field that uses a mathematical optimization, or feasibility 

program, in which some or all of the variables are restricted to be integers. Solving the LBP using 

this approach can result in a very large and long problem, even with a small precedence diagram. 

To understand how this method is used to solve the LBP, an example is presented below. 

The assembly of a certain product requires the balancing of a line. Cycle time and task 

times are given in Table 2.6. 

Table 2.6: Task Times for Integer Programming Problem 

Task Time 

1 40 

2 75 

3 50 

4 35 

5 80 

CT 100 

 

This is a Type ILBP with the objective to minimize the number of workstations. The 

precedence network for this problem is shown in Figure 2.4. 
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Figure 2.4: Precedence Network for Integer Programming Problem 

Let Xij = 1 if task i goes to station j, otherwise Xij = 0. 

Pij is a weighted value that is used to ensure the least number of workstations will be used 

by giving priority in the objective function to the smallest workstation number. 

C is the cycle time. 

The general mathematical formulation for a U-shaped LBP Type I is shown below [4]: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑ 𝑃𝑖𝑗𝑋𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1  [ 4 ] 

subject to: 

Cycle time  

 ∑ 𝑇𝑖𝑋𝑖𝑗 ≤ 𝐶 ∀ 𝑗𝑛
𝑖=1  [ 5 ] 

Unit Assignment 

 ∑ 𝑋𝑖𝑗 ∀ 𝑖𝑚
𝑗=1  [ 6 ] 

Precedence 

 𝑋𝑘𝑗 ≤ ∑ 𝑋𝑖𝑗 ∀ 𝑖, 𝑘𝑚
𝑗=1  [ 7 ] 

Expanding the objective function where i = a, b, c, d, e and j = 1, 2, 3, 4, 5 assigning positional 

weights one, two, three, four, and five to each workstation resulting in the following: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑋𝑎1 + 2𝑋𝑎2 + 3𝑋𝑎3 + 4𝑋𝑎4 + 5𝑋𝑎5 + 𝑋𝑏1 + 2𝑋𝑏2 + 3𝑋𝑏3 + 4𝑋𝑏4 + 5𝑋𝑏5 + 𝑋𝑐1

+ 2𝑋𝑐2 + 3𝑋𝑐3 + 4𝑋𝑐4 + 5𝑋𝑐5 + 𝑋𝑑1 + 2𝑋𝑑2 + 3𝑋𝑑3 + 4𝑋𝑑4 + 5𝑋𝑑5 + 𝑋𝑒1

+ 2𝑋𝑒2 + 3𝑋𝑒3 + 4𝑋𝑒4 + 5𝑋𝑒5 

Applying the cycle time restriction results in: 

40𝑋𝑎1 + 75𝑋𝑏1 + 50𝑋𝑐1 + 35𝑋𝑑1 + 80𝑋𝑒1 ≤ 100 

40𝑋𝑎2 + 75𝑋𝑏2 + 50𝑋𝑐2 + 35𝑋𝑑2 + 80𝑋𝑒2 ≤ 100 

40𝑋𝑎3 + 75𝑋𝑏3 + 50𝑋𝑐3 + 35𝑋𝑑3 + 80𝑋𝑒3 ≤ 100 

40𝑋𝑎4 + 75𝑋𝑏4 + 50𝑋𝑐4 + 35𝑋𝑑4 + 80𝑋𝑒4 ≤ 100 

40𝑋𝑎5 + 75𝑋𝑏5 + 50𝑋𝑐5 + 35𝑋𝑑5 + 80𝑋𝑒5 ≤ 100 

After applying unit assignment restrictions, the following is revealed: 

𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 + 𝑋𝑎4 + 𝑋𝑎5 = 1 

𝑋𝑏1 + 𝑋𝑏2 + 𝑋𝑏3 + 𝑋𝑏4 + 𝑋𝑏5 = 1 

𝑋𝑐1 + 𝑋𝑐2 + 𝑋𝑐3 + 𝑋𝑐4 + 𝑋𝑐5 = 1 

𝑋𝑑1 + 𝑋𝑑2 + 𝑋𝑑3 + 𝑋𝑑4 + 𝑋𝑑5 = 1 

𝑋𝑒1 + 𝑋𝑒2 + 𝑋𝑒3 + 𝑋𝑒4 + 𝑋𝑒5 = 1 

Finally, the precedence restrictions are: 

𝑋𝑏1 ≤ 𝑋𝑎1 

𝑋𝑏2 ≤ 𝑋𝑎1 + 𝑋𝑎2 

𝑋𝑏3 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 



 

16 

 

𝑋𝑏4 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 + 𝑋𝑎4 

𝑋𝑏5 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 + 𝑋𝑎4 + 𝑋𝑎5 

Since a is the immediate predecessor of c, then the following occurs: 

𝑋𝑐1 ≤ 𝑋𝑎1 

𝑋𝑐2 ≤ 𝑋𝑎1 + 𝑋𝑎2 

𝑋𝑐3 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 

𝑋𝑐4 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 + 𝑋𝑎4 

𝑋𝑐5 ≤ 𝑋𝑎1 + 𝑋𝑎2 + 𝑋𝑎3 + 𝑋𝑎4 + 𝑋𝑎5 

Likewise, c is the predecessor of d, so: 

𝑋𝑑1 ≤ 𝑋𝑐1 

𝑋𝑑2 ≤ 𝑋𝑐1 + 𝑋𝑐2 

𝑋𝑑3 ≤ 𝑋𝑐1 + 𝑋𝑐2 + 𝑋𝑐3 

𝑋𝑑4 ≤ 𝑋𝑐1 + 𝑋𝑐2 + 𝑋𝑐3 + 𝑋𝑐4 

𝑋𝑑5 ≤ 𝑋𝑐1 + 𝑋𝑐2 + 𝑋𝑐3 + 𝑋𝑐4 + 𝑋𝑐5 

The final restriction says that e has two predecessors, b and d. Applying these restrictions results 

in the following: 

𝑋𝑒1 ≤ 𝑋𝑏1 + 𝑋𝑑1 

𝑋𝑒2 ≤ 𝑋𝑏1 + 𝑋𝑑1 + 𝑋𝑏2 + 𝑋𝑑2 
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𝑋𝑒3 ≤ 𝑋𝑏1 + 𝑋𝑑1 + 𝑋𝑏2 + 𝑋𝑑2 + 𝑋𝑏3 + 𝑋𝑑3 

𝑋𝑒4 ≤ 𝑋𝑏1 + 𝑋𝑑1 + 𝑋𝑏2 + 𝑋𝑑2 + 𝑋𝑏3 + 𝑋𝑑3 + 𝑋𝑏4 + 𝑋𝑑4 

𝑋𝑒5 ≤ 𝑋𝑏1 + 𝑋𝑑1 + 𝑋𝑏2 + 𝑋𝑑2 + 𝑋𝑏3 + 𝑋𝑑3 + 𝑋𝑏4 + 𝑋𝑑4 + 𝑋𝑏5 + 𝑋𝑑5 

A branch and bound procedure is used to solve this system of equations and inequalities, 

and it is determined that the number of workstations required is four. The tasks are assigned to 

the workstations as shown in Table 2.7. 

Table 2.7: Integer-Programming Problem Results 

Workstation Task(s) 

1 A, C 

2 B 

3 D 

4 E 

 

This rather small problem reveals that30 constraints and 25 variables were generated. As 

a problem becomes more complex and longer, the process for solving it becomes very time 

consuming and computationally expensive. For any problem, the maximum number of 

constraints and variables can be calculated with the following formulas [8]: 

 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 𝑖 ∗ 𝑝𝑟 + 2𝑖 [ 8 ] 

𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑖2 

where i is the number of tasks and pr is the number of precedence requirements. 

An integer programming solution to this example problem is listed in Appendix C. 
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2.2.1.3 Dynamic Programming and Branch and Bound 

Exact solution procedures for the straight LBP are based on either dynamic programming 

or branch and bound procedures. The first dynamic programming procedure developed by Jackson 

(1956) and modified by Held .et al. (1963), subdivides the solution process in stages that 

correspond to stations. Following Jackson and Held’s contributions, there have been other 

researchers who have developed dynamic programming approaches, like Gutjahr and Nemhauser 

(1964), Schrage and Baker (1978), and Easton et al. (1989). The branch and bound procedures are 

divided into those that are station oriented or task oriented. Some examples of these branch and 

bound procedures for the straight LBP are Hoffman (1993), Berger et al. (1992), Johnson (1993), 

and Sprecher (2003). After these publications, many of the methods have been adapted for the U-

shaped LBP such as Chun-Hung et al. (2010) for dynamic programming, and Miralles (2008) for 

branch and bound. 

Ogan and Azizoglu (2015) considered a U-shape assembly LBP where each task uses a 

specific set of equipment and each type of equipment has a specific cost. Their goal was to assign 

the tasks along with the equipment to the workstations to minimize the total equipment cost. They 

formulated a mixed-integer linear programming model that was used only for small problems. 

Also, they proposed a branch and bound algorithm that uses precedence relations and lower 

bounds. The approach they proposed can be used to solve small-sized problems. 

 

2.2.1.4 Shortest Path Algorithm 

Gokcen et al. (2005) modeled the U-shaped LBP as a shortest route model based on the 

one developed by Gutjahr and Nemhauser (1964) where they used a shortest route in a finite 

directed network. This approach can be used as the framework for developing a more efficient 
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heuristic to solve the U-shape problem. This approach is not suitable for large problems and it does 

not show alternative solutions that could also be obtained with the same number of workstations. 

2.2.1.5 Other Exact Solution Approaches 

Other exact solution methods have been developed, like the goal-programming model to 

solve the U-shape LBP that was developed by Gocken and Agpak (2006). They used their model 

to optimize different objectives by considering assignment constraints, cycle-time constraints, 

workstation constraints, and task-load constraints. They used three goals in their model. The first 

goal with priority level one is to restrict the maximum number of workstations. The second goal 

with priority level two, restricts the cycle time to not exceed a given value. The final goal of priority 

level three stipulates that the number of tasks per workstation should not exceed a fixed value. To 

test the application of their model, they used numerical examples. In this goal-programming 

approach, the objective function is constructed using the deviation variables assigned to goal 

constraints with stated weights. They tested their model using various randomized examples and 

compared them to the solution of the straight LBP. It was shown that the U-shape model gives 

better results. 

The number of possible solutions in the U-shaped LBP increases greatly as the number of 

tasks increase. With such a vast search space it is nearly impossible to obtain an efficient solution 

using a deterministic algorithm, which computes a function on a one-to-one basis, meaning it 

includes all countable possibilities. However, many attempts have been made to use an exact 

approach (Held and Karp (1963), Jackson (1956), and Mertens (1967)). None of these methods 

have proven to be of practical use for large problems due to their computational and time 

inefficiency. 



 

20 

 

2.2.2 Heuristics 

2.2.2.1 Simulated Annealing 

For simulated annealing algorithms, Ozcan and Toklu (2009) developed a hybrid 

improvement heuristic to the straight and U-shape LBP. This was based on the idea of adaptive 

learning and simulated annealing to maximize the balancing efficiency and reduce the variation of 

workloads. The adaptive learning approach could be also be used in other meta-heuristics. 

Jayaswal and Agarwal (2014) developed a simulated annealing approach to solve the U-

shape LBP by not only assigning workers to workstations, but also by proposing a U-shape LBP 

that takes into account equipment, arguing that most problems in the literature do not take into 

account the equipment needed to perform the tasks. They pointed out that it is often desirable to 

reduce certain task times by assigning more workers or alternative equipment at a given 

workstation. The problem in such cases is not only to reduce the times, but to assign alternatives 

(number of workers and equipment type) to the workstations. Research on such resource-

dependent assembly LBPs is scarce. The authors address the problem of resource-dependent U-

shaped LBPs and proposed a simulated annealing-based metaheuristic. The simulated annealing 

generates good solutions. 

2.2.2.2 Ant Colony Optimization 

Ant colony optimization (ACO) algorithms, are inspired by observation of real ant colonies in 

nature. An interesting behavior of the ants is how they follow the paths between their nests and 

food sources. As they are traveling through these paths, they leave behind a substance called a 

pheromone. Ants can detect these pheromones and follow paths that are marked with strong 

concentrations of pheromones. By following these paths, the pheromone concentration is 
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reinforced and more ants follow that route, this is how a colony of ants finds the shortest route 

from their nests to the food source. 

Zhang et al.(2008) proposed a new design of ant colony optimization to solve the U-shaped 

LBP so that the number of workstations is minimized. The proposed algorithm uses the trial 

information that is deposited between the task and its position, and also an adapted version of 

pheromone summation rules. The proposed method adopts local and global pheromone updating 

to explore the solutions.  Pheromones are used so that a trail can be followed pointing to the 

different solutions. A pheromone trail refers to the desirability of assigning a task to a workstation. 

Pheromones are indicators that are left when a path is explored, a path is more likely to be explored 

if it has a higher concentration of pheromones. Couglu et al. (2009) compared this algorithm with 

a simulated annealing algorithm and found the ant colony optimization algorithm outperforms the 

simulated annealing algorithm. To reach an ultimate value solution using this algorithm, its 

parameter may be optimized using Taguchi’s technique. 

2.2.2.3 Multi-pass Random Assignment Algorithm 

Yegul et al. (2010) saw the U-shaped LBP and considered a new algorithm to minimize 

the total number of stations for a given cycle time. They found a special two-sided design in which 

one side was arranged as a U-shape and the other as a traditional straight line. By proposing a 

multi-pass random assignment algorithm, they could potentially find the minimum number of work 

stations to assemble a product. Once the initial solution is generated, tasks are classified in five 

types depending on the direction in which they can be assigned. The multi-pass random assignment 

consists in changing tasks from one side to the other by randomly selecting one of the five types. 

There is no statistical evidence presented in this publication to ensure that this heuristic approach 
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performs well and this is the only recent research publication in this area. However, with the few 

literature sources available, researchers claim that it does in fact perform well. 

2.2.2.5 Critical Path Method 

Avikal (2013) developed this heuristic-based method to reduce the number of workstations. 

The problem is solved by treating the network as a project network and using a critical-path method 

to divide the critical and non-critical activities. Temporary workstations are created to assign the 

critical activities by priority. These new workstations will be kept if the slack time is minimal. 

This process continues until all tasks are assigned to a workstation. Avikal (2013) concentrated on 

the advantages of the U-shape layout in contrast with the straight line model. This is a graph-based 

method that could be incorporated with other methods to improve their performance. 

2.2.2.6 Other Approaches 
 

Several heuristic-based methods for the traditional assembly LBP have been developed. 

Baybars (1984) and Talbot et al. (1981) review and evaluate these different approaches. Another 

proposed solution considers a five-phase method using task elimination, decomposition and 

heuristics (Baybars 1986).  Also, a genetic algorithm was used to obtain near optimal solutions to 

the traditional assembly LBP in combination with heuristic-based methods like the method 

proposed by Leu, Matheson and Rees (1994). Leu, Matheson and Rees used five heuristic rules to 

generate the initial population of their proposed genetic algorithm. Then they used two objectives: 

one was to minimize the mean square idle time and the other was to minimize the mean idle time. 

Manavizadeh et al. (2015) proposed a multi-objective approach to solve a U-shaped mixed-

model assembly line to minimize the cycle times, the waste in each station and the work overload. 

To minimize the three objective functions, a heuristic algorithm was designed. They begin the 
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algorithm with an initial solution using branch and bound for each one of the objectives 

individually. Then, each solution was put into the other objective models and the objective values 

were found. The combination of these objectives for this kind of problem had not been studied in 

previous publications. They compared straight line with U-shape line problems so that decision 

makers can compare the results of both cases and choose the shape of the assembly line they want 

to use. 

2.2.3 Stochastic Methods 

In the majority of the cases deterministic problems can be adapted to stochastic problems. 

Stochastic solutions are rarely used in real problems, they may be implemented when a 

deterministic model does not give desired results. Stochastic approaches to solve the LBP have 

been explored using: heuristics (Liu et al., 2005), simulated annealing (Ozcan, 2010, Cakir et al., 

2011), genetic algorithm (Baykasoglu and Ozbakir, 2007), and shortest path algorithm (Boysen 

and Fliedner, 2008). The stochastic solutions are for single model, straight line and U-shape line 

balancing problems. The execution times of the tasks are probabilistic and in the majority of the 

applications, a normal distribution is used. The stochastic approach is widely studied but in reality, 

most industries use standard task times for balancing their assembly lines, this standard time is 

recalculated periodically so that the assembly line is adjusted and maintained balanced.  

A stochastic problem can be solved using a deterministic approach, the main difference is 

that in a deterministic problem, tasks are assigned to a workstation as long as their task times do 

not exceed the cycle time. In the stochastic problem, a probability that the station time is not 

exceeded is calculated. For a stochastic problem where the task times are normally distributed, this 

probability is calculated by dividing the remaining time after assigning a task to a workstation by 

the square root of the sum of the variances of tasks assigned (Z-value). Tasks are assigned to a 
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workstation as long as the probability calculated does not exceed the desired probability, otherwise 

a new workstation must be opened. 
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CHAPTER 3 

 3 PROBLEM STATEMENT 

 

 

 

The main objective of the Type 1 U-shaped LBP is to assign tasks to workstations so that 

the number of stations is minimized. This involves the allocation of tasks subject to capacity and 

precedence constraints. This is depicted in Figure 3.1 below: 

 
Figure 3.1 Task Assignation to Workstations 

The scope of this research is restricted to the Type I U-shaped LBP. 

3.1 U- Line Balancing Problem Constraints 

The constraints associated with the U-shaped LBP are the following: 

 Capacity 

 Precedence 

Capacity constraints restrict the total number of tasks that can be assigned to a workstation 

based on the U-line cycle time. The cycle time is established by the user based on the production 

requirements. 
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The sum of all task processing times grouped in a workstation is called station load. This 

load cannot exceed the cycle time to satisfy the demanded requirements. Station load can be 

calculated using the equation [9]: 

 𝑆𝑙𝑜𝑎𝑑 = ∑ 𝑡𝑖
𝑛
𝑖=1  [ 9 ] 

Where n is the number of tasks assigned to a workstation. The theoretical minimum number 

of workstations (without taking into account precedence restrictions) can be calculated as follows 

[10]. 

 𝑊𝑠𝑀𝑖𝑛 =  
∑ 𝑡𝑖

𝑁
𝑖=1

𝐶𝑇
 [ 10 ] 

Where t is the task time and N is the total number of tasks in a given problem. The time 

remaining in a work station is Tr = CT-Sload. 

3.2 Precedence Constraints 

Due to the technical characteristics of products, manufacturing operations must follow a 

certain order. These are called precedence constraints. All these relationships create what is called 

a precedence network. This network can be represented as a diagram. An example of a precedence 

diagram is illustrated in Figure 3.2. 

 
Figure 3.2 Precedence Diagram 
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The assignment of tasks to workstations must satisfy these precedence relationships. For 

the traditional LBP the precedence relationship must be followed in a single direction, but, as 

stated by Miltenburg and Wijngaard (1994), the U-shaped LBP, allows for precedence 

relationships to be satisfied from left to right and also from right to left. This produces a more 

complex problem than when production systems are arranged in a line. 

3.4 Two Genetic Algorithms 

In complexity theory, problems can be categorized by their difficulty and the time required 

to solve them. There are four general categories. These categories, listed in increasing difficulty, 

are P, NP, NP-Complete and NP-hard, where P is the easiest (solvable in P time) and NP-hard is 

the most difficult one. The traditional (linear) assembly LBP is known to be NP-hard. According 

to Debora and Wainwright (1986), if there are m tasks and r ordering constraints then there are 

m!/2r possible tasks sequences.  

The U-shaped LBP has been an attractive topic among researchers since 1994. 

Nonetheless, there is still a vast area of undiscovered knowledge. This research introduces two 

genetic algorithms, one direct-coded and the other indirect-coded that contribute to the 

development of solutions to the NP-hard problem. These genetic algorithms obtain good solutions 

and sometimes optimal solutions addressing two objectives—the first objective is to minimize the 

number of workstations required and the second objective is to minimize a smoothness index. The 

efficiency of the algorithms is increased by separating the problems according to their size (small, 

medium, large). This creates a specific model to a range of problems that results in reducing the 

computational effort required to arrive at solutions. These two genetic algorithms are further 

explained in chapters 5 and 6.  
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CHAPTER 4 

4 SOLUTION TO THE U-SHAPE BALANCING PROBLEM  

USING HEURISTIC RULES 

 

 

 

Many heuristic approaches can be found in the literature to solve the simple LBP. Some of 

the most popular techniques are discussed by Talbot, Patterson and Gehrlein (1980). All of this 

research is based on the traditional LBP (straight line). The heuristic rules from the traditional in-

line balancing problem were adapted by Martinez and Duff (2004) so that they could now be used 

in a U-shape LBP. 

4.1 Heuristic Rules to Solve the U-Shaped LBP 

Ten heuristic rules were adopted for their use in this research to find solutions to the Type 

I U-shaped LBP. All these heuristic rules were previously used to solve the simple LBP. However, 

some modifications were made to allow them to work for the U-shaped LBP.  In the original 

heuristic rules, a task could be assigned only if all of its predecessors had been assigned. However, 

in the modified heuristic rules, a task can be assigned if all the predecessors or the successors of a 

given task have been assigned. This allows for tasks to be assigned following the precedence 

diagram from left to right but also from right to left. 

The heuristic rules proposed in this research generate weights for every task, these weights 

are used during the task assignment process. The value of the weight for the tasks determine which 

tasks have more priority to be assigned to a workstation from the set of assignable tasks. 
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Following are ten heuristic rules used in this research. The first rule was posted by Miltenburg 

and Wijngaard (1994). The other nine heuristic rules are introduced in this research for solving the 

U-shaped LBP.  

 

1. The Modified Ranked Positional Weight, Miltenburg and Wijngaard (1994), 2. Maximum 

Total Number of Follower Tasks or Precedence Tasks, 

3. Minimum Total Number of Follower Tasks or Precedence Tasks, 

4. Maximum Task Time, 

5. Minimum Task Time, 

6. Maximum Number of Immediate Followers or Immediate Precedence Tasks, 

7. Minimum Number of Immediate Followers or Immediate precedence Tasks, 

8. Minimum U-line Upper Bound, 

9. Minimum U-line Lower Bound, and 

10. U-line Minimum Slack.  

These heuristic rules are described in detail below: 

Let 
p

k  be the set of tasks that must precede task k, and 
s

k  be the set of tasks which must 

succeed task k. Then, at any time the set of assignable tasks, V= {k | all i
p

k or all j
s

k } have 

already been assigned. 

 

1. Maximum Ranked Positional Weight 

The priority function p(k), called the U-line Maximum Ranked Positional Weight, is defined as 

[11]: 

 

 p(k) =max












 


s
k

p
k ii

jtktitkt


)()(,)()(  [ 11 ] 
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2. Maximum Total Number of Follower Tasks or Precedence Tasks 
 

The priority function pmaxnfk(k), called the U-line Maximum Total Number of Follower or 

Precedence Tasks [12] 

 

 pmaxnfk(k )=max  s

k

p

k tasksofnumbertasksofnumber   ,  [ 12 ] 

 

3. Minimum Total Number of Follower Tasks or Precedence Tasks 
 

The priority function pminnfk(k), called the U-line Minimum Total Number of Follower or 

Precedence Tasks [13] 

 pminnfk(k )=min  s

k

p

k tasksofnumbertasksofnumber   ,  [ 13 ] 

 

4. Maximum Task Time 

The priority function pMtk(k), called the U-line Maximum Task Time [14] 

 

 PMtk(k) = )(kt  [ 14 ] 

 

5. Minimum Task Time 

The priority function pmtk(k), called the U-line Maximum Task Time [15] 

 

 Pmtk(k) = )(kt  [ 15 ] 

 

6. Maximum Number of Immediate Followers or Immediate Precedence Tasks 

Let 
ip

k  be the set of tasks that must immediately precede task k, and 
is

k  be the set of tasks that 

must immediately succeed task k.  

The priority function pmaxipis(k), called the U-line Maximum Number of Immediate Followers or 

Immediate precedence Tasks. [16] 

 pmaxipis(k) =max(
ip

k ,
is

k } [ 16 ] 

 

7. Minimum Number of Immediate Followers or Immediate Precedence Tasks 

The priority function pminipis(k), called the U-line Maximum Number of Immediate Followers or 

Immediate Precedence Tasks. [17] 

 pminipis(k) =max(
ip

k ,
is

k } [ 17 ] 

 

8. Minimum U-line Upper Bound 
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Let (x)+ be the least integer >x and c be the cycle time. 

 

The priority function pub(k), called the U-line Upper Bound [18] 

 

 pub(k) =min





















































p
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s
k ji
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/))()((1,/))()((1
 [ 18 ] 

 

9. Minimum U-line Lower Bound 

 

The priority function plb(k), called the U-line Lower Bound [19] 

 

 Plb(k) =min
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 [ 19 ] 

10. U-line Minimum Slack 

 

The priority function Pslack(k), called the U-line Minimum slack [20] 

 

 Pslack(k)= pub(k)- plb(k) [ 20 ] 

4.2 Assigning Tasks to Work Stations 

The step-by-step procedure is given below: 

1. Read the data: task time, task number, cycle time, and precedence relations. 

2. Compute the weights for each task using the desired heuristic rule. 

3. Rank the task based on the weights computed in Step 2 and give the same 

rank for the tasks whose weights are equal. 

4. Determine the set of assignable tasks V and assign the task with the best rank 

calculated in Step 3. If a tie occurs, resolve it using the maximum task time. If it 

does not resolve the tie, use the maximum task number.  
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5. Has the cycle time at the station been completely filled? Is no one task time 

from V less than or equal to the remaining time in the station? If yes go to Step 6. 

If no, go to Step 4. 

6. Is V=Ø? If yes, stop. If no, open a new station and go to Step 4. 

 

An illustration of this assignment process uses heuristic rule 2: Maximum Total Number 

of Follower Tasks or Precedence Tasks and the Jackson’s Problem (Table 4.1). The assignable 

tasks for the first station are V= {1,11}. Since pmaxnfk(1 )=10 and pmaxnfk(11 )=10..The tie can be 

broken by using the maximum task time, max(t(1),t(11))=max(6,4)=6, and the assignment of  task 

1, then V={11,2,4,3,5. As task 11 has the highest priority and sufficient cycle time remaining, it is 

also assigned to workstation 1. The remaining assignment process is described in Table 4.1. 
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Table 4.1: Task Assignment Process for the Jackson’s Problem Using Heuristic Rule 2 

Maximum Total Number of Follower Tasks or Precedence Tasks 

Station V           Will fit station Rank Assigned Time 

remaining 

in station 

1 1 1

1 

    1 11         1 1         1 4 

2 3 4 5 11  2   5 11  3   4 1   11 0 

                                       

2 2 3 4 5 9 10 2 3 4 5 9 10 3 4 4 4 2 3 9 5 

2 3 4 5 7 10 2 3  5 7 10 3 4  4 3 3 10 0 

                                        

3 2 3 4 5 7 8 2 3 4 5 7 8 3 4 4 4 3 4 7 7 

2 3 4 5 8   2 3 4 5 8   3 4 4 4 4   2 5 

3 4 5 6 8   3  5 6    4  4 4    3 0 

                                        

4 4 5 6 8     4 5 6 8     4 4 4 4     4 3 

5 6 8    5 6      4 4      6 1 

5 8     5       4       5 0 

5 8           8           4           8 4 

 

4.3 Computational Results Using the Heuristic Rules 

Eight sets of LBPs representative of various problem types were taken from the literature. 

Each problem consists of a precedence diagram, tasks times and cycle time. Since each problem 

is solved with different heuristic rules, this set of cases can be considered to constitute 80 problems.  

For each of the eight problems, line balance solutions were obtained using the ten heuristic 

rules described above (see Tables 4.2 through 4.5). 
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Table 4.2: Results Obtained for Aase’s and Bowman’s Problems 

Heuristic Rule Problem 

Aase 

Tasks=9 

CT=50 

Bowman 

Tasks=8 

CT=20 

1 5-301 4-9 

2 5-35 4-8 

3 5-20 4-9 

4 5-15 4-8 

5 5-45 4-17 

6 5-35 4-8 

7 5-20 4-9 

8 5-02* 4-8 

9 5-20 4-9 

10 5-0* 4-5 
1 5-30 denotes 5 stations plus 30 times units on a sixth station. 
2 5-0 Denotes that the time remaining in station 5 is zero.  

* Denotes that the minimum number of stations (sum of all task times/cycle time) was found. 

 

Table 4.3: Results Obtained for Dar-El’s and Jackson’s Problems 

Heuristic Rule Problem 

Dar-El  

Tasks=11 

CT=48 

Jackson 

Tasks=11 

CT=10 

1 3-42* 4-9* 

2 3-45* 4-8* 

3 4-8 4-9* 

4 3-44* 4-8* 

5 4-45 4-17* 

6 3-45* 4-8* 

7 4-8 4-9* 

8 3-42* 4-8* 

9 3-44* 4-9* 

10 3-47* 4-5* 
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Table 4.4: Results Obtained for Johnson’s and Ponnambalam Aravindan and Naidu’s Problems 

Heuristic Rule Problem 

Johnson  

Tasks=5 

CT=45 

Ponnambalam 

Aravindan and 

Naidu  

Tasks=12 

CT=10 

1 4-0* 5-5 

2 4-0* 5-6 

3 4-0* 5-9 

4 3-40* 5-5 

5 4-0* 6-7 

6 4-0* 5-7 

7 4-0* 5-5 

8 4-0* 5-5 

9 4-0* 5-5 

10 4-0* 5-5 

 

Table 4.5: Results Obtained for Scholl and Klein’s and Tonge’s Problems 

Heuristic Rule Problem 

Scholl and 

Klein  

Tasks=12 

CT=10 

Tonge 

Tasks=21 

CT=20 

1 6-6 5-7* 

2 6-0* 5-7* 

3 6-8 5-12* 

4 6-7 5-5* 

5 8-7 5-13* 

6 6-6 5-11* 

7 6-7 5-5* 

8 6-0* 5-7* 

9 6-8 5-12* 

10 6-7 5-10* 

 

The precedence network diagrams for the eight problems can be found in Appendix A. The 

number of times in which a heuristic rule produced results achieving the minimum number of work 

stations are summarized on Table 4.6.  
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Table 4.6: Summary of Heartstring Rules Producing Balances Achieving the Minimum Number 

of Workstations 

Rule Times achieving 

minimum number of 

workstations 

1 4 

2 5 

3 3 

4 4 

5 3 

6 4 

7 3 

8 6 

9 4 

10 5 

 

These results show that heuristic rule 8 produced results achieving the minimum number of 

workstations six times. Heuristic rules 2 and 10 produced results achieving the minimum number 

of work stations five times. Heuristic rules 1, 4, 6 and 9 produced results achieving the minimum 

number of workstations four times. Finally, heuristic rules 3, 5 and 7 produced results achieving 

the minimum number of workstations three times. 
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CHAPTER 5 

 5 INDIRECT-CODED GENETIC ALGORITHM 

 

 

 

In a genetic algorithm coded indirectly, the solution does not necessarily represent a 

solution in reality. The solutions require external information and a non-trivial translating process 

to be used in real life. Usually, indirect coding is computationally pricier in time and memory. 

Nonetheless, it can be more effective as it contains more knowledge about the problem. 

In this indirect-coded genetic algorithm, each gene in the chromosome represents a 

heuristic rule and the length of the chromosome may vary. This is because the genes do not 

represent the tasks themselves but rather, they provide rules as to how they will be assigned. A 

more detailed explanation is provided in section 5.4. 

The heuristic rules described in Chapter 4 can produce good solutions for the U-shaped LBP, 

however, there is nothing that guarantees that will be the case. Six new heuristic rules are 

introduced to this procedure. These rules are as listed below: 

11. Minimum sum of following task times [21]: 

pminsk(k) =min













 s

ki

it


)(  [ 21 ] 

12. Maximum sum of following task times [22]: 

pmaxsk(k) =max













 s

ki

it


)(  [ 22 ] 

13. Minimum sum of preceding task times [23]: 
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pminpk(k) =min















p
ki

it


)(  [ 23 ] 

14. Maximum sum of preceding task times [24]: 

pmaxpk(k) =max















p
ki

it


)(  [ 24 ] 

15. Random minimum weight [25]: 

Pnrand = min R  [ 25 ] 

where R is a random integer between 1 and N and N is the total number of tasks. 

16. Random maximum weight [26]: 

Pnrand = max R  [ 26 ] 

where R is a random integer between 1 and N and N is the total number of tasks. 

 

 One way to get improved solutions using these heuristic rules is to use a number of rules 

simultaneously to break ties during the task assignment process. It can be done with the 

implementation of a genetic algorithm. Genetic algorithms are search algorithms based on the 

mechanics of natural selection and natural genetics. There are three basic operators found in every 

genetic algorithm: reproduction, crossover and mutation. 

5.1 Reproduction 

The process of selection is done starting with a population of ordered chromosomes 

according to their value of aptitude (number of workstations) and smoothness index. In this step 

of the process, the percentage of chromosomes to which the crossover operation will be applied is 

selected, as well as the chromosomes that will pass on to the next generation before the mutation 

process. 
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5.2 Crossover 

The whole idea of creating new generations of chromosomes through genetic operations is 

to find better solutions than the ones in the initial population. In a nutshell, crossover is to select 

two parent chromosomes and combine their characteristics to produce new child chromosomes.  

The number of child chromosomes produced is equal to the number of parents involved in the 

crossover. The process of crossover used for this research is presented below. 

Suppose two parent chromosomes of equal length have been selected, as shown in Figure 

5.1. Two crossover points are selected represented by the dashed line. 

 
Figure 5.1: Crossover Parents 

To create the child chromosomes, the middle parts of the two parents must be swapped. 

The resulting children are depicted in Figure 5.2. 

 
Figure 5.2: Crossover Children 
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These children are similar to their parents in that they preserve the start and end portions 

of the chromosome. The purpose of this method is to search for solutions that are similar to those 

of the parent chromosomes. Searching for around chromosomes that are more fit will most likely 

result in another optimal solution, but this is not always the case. 

5.3 Mutation 

Mutation is an operation that will be applied to every chromosome that was previously 

selected to mutate. Its purpose is to diversify the population so that the solutions don’t come from 

the same traits every time. This allows for a broader search of all possible chromosomes. The gene 

in which a chromosome is mutated is selected randomly. The place where this gene will be 

replaced is also selected at random. The rest of the chromosome is preserved as it was before. An 

example of this is shown in Figure 5.3. 

 
Figure 5.3: Mutation Example 

5.4 Decodification 

 

As mentioned earlier, an indirect-coded genetic algorithm consists of chromosomes made 

up by genes that represent a heuristic rule. For example, in a chromosome that looks like the one 

on Figure 5.4, each gene doesn’t tell which task to assign, but rather, indicates which heuristic rule 

to use to assign a task. 
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Figure 5.4 Indirect-Coded Chromosome 

Tasks are assigned to workstations according to the precedence diagram and using the 

specified heuristic rule. If a tie occurs between tasks selected, the next gene will be used until ties 

no longer prevail. However, if a tie cannot be resolved the whole chromosome is unfit and a low 

fitness value should be assigned to it. This process continues until all tasks have been assigned. 

For this genetic algorithm, the following steps are used (based on the method proposed by 

Ponnambalam, Aravindan and Mogilesswar (2000)) for the simple LBP adapted to the U-shaped 

LBP). 

1. Get the data needed for the LBP: Number of tasks, task number, cycle time, and precedence 

relation.  

2. Initialize the population randomly. Each gene in a chromosome represents one heuristic 

rule; here the chromosome is using random values between 0 and 16, as 16 heuristic rules 

are being used. 

3. Step-by-step, assign the task to workstations using the heuristic rule number represented 

by the genes. If a tie occurs, follow with the next gene until the tie is broken. Continue until 

all genes are exhausted. If during any time of the task assignment process the tie cannot be 

broken after all genes are exhausted, assign low fitness values to that chromosome so it 

will not be considered for the next generation. Similarly, assign the task to workstations 

using the remaining chromosomes. 

4. Calculate the values of the two objectives: number of work stations and smoothness index. 
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5. If an optimal solution or desired result is not obtained in the first interaction, continue with 

the reproduction crossover and mutation to obtain the new generation and go to Step 5. 

5.5 Numerical Example 

Jackson’s Problem (Figure 5.5) is used to illustrate the procedure. 

 
Figure 5.5: Jackson’s Problem 

All the required information is shown in the figure above: the cycle time for this problem 

will be of 11 (CT = 11), the initial population will be of 20 chromosomes, and the number of genes 

per chromosome will be 15. Table 5.1 shows the initial population. Using chromosome number 

one, Table 5.2 shows the solution of the U-shaped LBP.  
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Table 5.1 Jackson’s Problem Initial Population 

Chromosomes 

1 11,13,15,14,11,4,16,7,15,16,7,14,11,14,6 

2 15,1,5,16,9,12,6,5,8,1,8,14,6,14,15 

3 1,4,2,4,1,7,10,1,14,2,3,11,10,13,3 

4 6,1,15,8,10,14,12,10,2,11,14,3,10,3,9 

5 6,6,16,7,7,8,5,12,13,12,14,10,11,10,16 

6 5,16,10,9,4,16,3,6,1,14,16,2,4,5,13 

7 13,1,7,5,9,16,2,7,14,14,8,11,14,6,16 

8 2,13,2,2,8,4,8,3,6,7,6,14,12,6,1 

9 14,6,2,1,14,5,8,1,11,8,16,7,9,16,9 

10 1,4,8,10,8,13,9,9,9,12,12,3,1,5,15 

11 12,12,1,9,7,14,5,7,13,15,9,7,6,5,5 

12 15,13,8,1,4,15,16,12,12,3,6,3,9,6,2 

13 9,15,16,9,3,13,4,10,11,6,7,7,3,6,1 

14 7,9,13,8,10,10,1,10,2,16,7,12,5,4,8 

15 15,3,10,12,4,5,12,4,3,9,14,7,7,8,8 

16 4,15,1,1,8,5,4,11,1,5,3,12,15,11,2 

17 9,1,11,16,5,12,11,16,7,5,7,12,10,8,2 

18 6,12,15,1,2,1,7,7,9,6,4,11,9,4,5 

19 5,13,5,16,9,2,15,13,4,9,3,11,10,6,16 

20 14,9,8,11,7,8,6,11,8,7,8,6,5,3,10 

 

Table 5.2 Jackson’s Problem Solution 

Station V Will fit Rank Rule used Assigned Time left 

1 1,11 1,11, 1,7, 11 1 5 

1 2,3,4,5,11 2,3,5,11, 7,7,7,1, 13 11 1 

1 2,3,4,5,9,10 5, 5, 15 5 0 

2 2,3,4,9,10 2,3,4,9,10, 2,2,2,7,5, 14   

2 2,3,4,9,10 2,3,4,9,10, 2,4,4,6,6, 11 2 9 

2 3,4,6,9,10 3,4,6,9,10, 3,1,6,3,3, 4 4 2 

2 3,6,9,10 6, 6, 16 6 0 

3 3,8,9,10 3,8,9,10, 2,2,2,2, 7   

3 3,8,9,10 3,8,9,10, 4,3,5,4, 15 8 5 

3 3,9,10 3,9,10, 4,4,1, 16 10 0 

4 3,9 3,9, 2,2, 7   

4 3,9 3,9, 2,7, 14 3 6 

4 7,9 7,9, 5,6, 11 7 3 

5 9 9, 7, 14 9 6 
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V is the set of tasks that satisfy the precedence relation, but only some of the tasks will fit 

in the workstation with the time remaining. As is shown, the heuristic rules were followed as they 

appear in the first chromosome. However, tasks were assigned only if there was no tie using that 

heuristic rule. The final result is depicted in Figure 5.5 below: 

 
Figure 5.6: Jackson’s Problem Solution  
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CHAPTER 6 

 6 DIRECT-CODED GENETIC ALGORITHM 

 

 

 

The direct-coded genetic algorithm is fed with entry data specific to each problem. Each 

problem has its own number of tasks, task times, precedence constraints and cycle times. The 

direct-coded genetic algorithm differs from the indirect-coded algorithm in that the direct 

algorithm doesn’t have the number of genes as a variable—the number of genes it uses is the 

number of tasks that the specific problem has. Once this data is applied, an initial population is 

generated. Now the search for an ideal chromosome begins—a chromosome that generates a 

solution with the theoretical optimum number of workstations. If no such chromosome is found, a 

new population is generated using the genetic operators: parent-child selection (reproduction), 

crossover, mutation and evaluation. This process is carried out until the termination criteria are 

met. Figure 6.1 shows how this logical process is followed. 

 
Figure 6.1: Genetic Algorithm Logic 
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Once the termination criteria are met, the genetic algorithm returns the following exit 

elements: 

 The least number of workstations found given the entry data, 

 A list of tasks assigned to each workstation, 

 The variation of workloads distributed to workstations, and 

 The number of iterations done to achieve the result. 

6.1 Codification 

The first step in constructing a genetic algorithm is to define a genetic representation, 

referred to as a codification. The codification scheme used in this research is an integer codification 

presented by Yow-YuhLeu et al. (1994) for the straight LBP. Each chromosome represents a 

possible solution to the LBP. Every task is sequentially listed in the order it will be assigned to the 

workstations—a process known as representation oriented to a sequence. Each gene of the 

chromosome contains the task number that it represents. 

6.2 Initial Population 

The initial population is generated randomly. The number of chromosomes is always 

constant. Many of the possible combinations of genes are irrelevant because they violate the 

precedence constraints. The method used to generate a valid random sequence of genes is as 

follows. 

Step 1: Select a set of tasks that don’t have precedence tasks and place them in an empty 

chromosome.  

Step 2: Select a task that is available at random (uniform distribution) and add it to the 

chromosome.  
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Step 3: Remove from the set of tasks without precedence the selected task. Add all of the 

immediate successors of the task if all of their predecessors are already in the chromosome.  

Step 4: If there are still tasks available, return to Step 2, otherwise, finish the process.  

Note that in Step 3, the set of available tasks is refreshed with tasks that satisfy the 

precedence constraints. By using this method, the original precedence diagram is represented by a 

linear, isomorphic graph. This way ensures that the initial population of chromosomes is feasible. 

Figure 6.2 and 6.3 show the precedence diagram for Jackson’s Problem and the isomorphic 

representation used in this research respectively. 

 

Figure 6.2: Jackson’s Problem Precedence Diagram 

 

 

Figure 6.3: Jackson’s Problem Isomorphic Representation 
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This isomorphic diagram makes it easier to see the layout that could be implemented after 

solving the U-shape LBP. Using the original precedence diagram, it is difficult to visualize how 

the U-shape assembly line would result but using the generated isomorphic diagram. It is easier to 

represent it as a U-shape as shown in Figure 6.4. 

 

Figure 6.4: U-shaped Isomorphic Diagram 

 

6.3 De-codification 

A sequence-oriented representation does not violate the precedence constraints and 

therefore is denominated feasible sequence. A feasible sequence generates multiple task 

assignations to the workstations instead of one. It is necessary to appropriately decode each 

chromosome to assign a single solution to it. This unique solution is the one that gets an aptitude 

(number of workstations) and smoothness index. The method used to decode the chromosome is 

described below. 

Step 1: Create an empty workstation.  

Step 2: If neither the first or last task in the chromosome has a task time less than or equal 

than the available time, return to Step 1.  

Step 3: If only one of the tasks’ time is less or equal, assign it to the workstation. Subtract 

the task time from the available time and eliminate the task from the chromosome. If more than 
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one task could be assigned, select one at random. If the chromosome still has tasks, return to Step 

2, if not, end the process. 

6.4 Evaluation 

Each member of the population is evaluated to determine the probability of it surviving in 

the next generation or of it being selected for one of the genetic operations. This probability is 

calculated based on two parameters obtained from each chromosome. The first and most important 

parameter is determined by the number of workstations resulting from decoding the chromosome. 

The objective of the first parameter is to minimize the number of workstations (Aptitude). The 

objective of the second parameter is to minimize the variation of workloads among the 

workstations (Smoothness Index). According to Yeo Keun Kim (2000), there are several benefits 

when the assembly line operates in this manner. The production rate is increased. 

6.5 Reproduction 

The process of reproduction is done starting with a population of ordered chromosomes 

according to their value of aptitude and suaveness. In this step of the process, the percentage of 

chromosomes to which the crossover operation will be applied, is selected. The chromosomes that 

will pass on to the next generation before the mutation process are also selected. 

6.6 Crossover 

The whole idea of producing new generations of chromosomes through genetic operations 

is to improve the solutions of those in the initial population. 

Basically, crossover is to select two parent chromosomes with the best fitness values and 

combine their characteristics to produce new child chromosomes.  The number of child 

chromosomes produced is equal to the number of parents involved in the crossover. These child 



 

50 

 

chromosomes also represent a feasible solution. The process of crossover used for this research is 

presented below. 

Suppose two parent chromosomes of equal length have been selected from Jackson’s 

problem, as shown in Figure 6.5. Two crossover points are selected, represented by the dashed 

lines. 

 
Figure 6.5: Crossover Parents 

The middle parts of the two parents must be swapped to create the child chromosomes. 

However, this is not simple, as feasibility must be maintained. To create the first child, the first 

and last portion of parent 1 are positioned, leaving all the middle components missing. All of the 

missing tasks will be placed in the order in which appear in parent chromosome 2. The second 

child is produced similarly, except the end parts are taken from parent 2 and the middle portion 

follows parent one’s order. The resulting children are depicted in Figure 6.6. 

 
Figure 6.6: Crossover Children 



 

51 

 

Since both parent chromosomes represented a feasible solution, and the children were 

produced in a way that no precedence constraints are violated, both resulting chromosomes are 

feasible, too. It should be acknowledged that these children are similar to their parents in that they 

preserve the end parts of the chromosome. The purpose of this method is to search for solutions 

that are similar to the chromosome we have. 

6.7 Mutation 

Mutations will be applied to every chromosome that was previously selected to mutate. For 

the algorithm used in this research, a certain type of mutation called mixed mutation was used. 

The place where a chromosome is mutated is selected randomly. The portion of the chromosome 

that will not be mutated will be preserved identically. The rest of the chromosome is generated in 

the same way that the initial population was generated, preserving feasibility. The mutation itself 

starts at a task that has no precedence and continues until all tasks have been assigned. An example 

of this is shown in Figure 6.7. 

 
Figure 6.7: Mutation Example 

6.8 Termination Criteria 

Once a new population is generated, termination criteria are checked. If these aren’t met, 

another iteration must be done to generate a new population. 



 

52 

 

There are three criteria used to determine when to stop the genetic algorithm. When any of 

these three is met, the procedure ends. The first criterion is finding the ideal theoretical solution. 

The theoretical number of workstations is given by dividing the sum of task times by the cycle 

time. This is a very rare situation, even using dynamic programming. 

The second criterion specifies that if the total number of iterations is reached, no more 

cycles should start.  

The last of the three criteria ends the process if in a certain number of iterations there hasn’t 

been an improvement of at least 1%. 

The maximum number of iterations has the objective of balancing the convergence of the 

algorithm towards an optimum result. This number of iterations depends on the size of the problem 

to be solved. If there are many tasks in the problem then a greater number of iterations is 

recommended, otherwise only a few iterations are recommended. 

6.9 Parameters 

The effectiveness of the results of a genetic algorithm is greatly influenced by the initial 

parameters. It is important to select these parameters in a way that results in good solutions in a 

small amount of time. A procedure to select these parameters is presented in Chapter 7. 

6.10 Numerical Example 

The same problem used in Chapter 5 is used to be solved using a direct-coded genetic 

algorithm. Once again, the task times, number of tasks and precedence network are preserved. The 

length of each chromosome will be equal to the amount of tasks this time. So, starting with a 

population of 20 chromosomes, the population appears as shown in Table 6.1. 

  



 

53 

 

Table 6.1 Jackson’s Problem Population Using Direct-Coded Genetic Algorithm 

Chromosome 

1 1,2,6,4,5,8,3,7,10,9,11 

2 1,3,5,4,2,7,6,9,8,10,11 

3 1,3,2,5,4,7,6,8,10,9,11 

4 1,4,5,3,7,2,6,9,8,10,11 

5 1,2,3,6,5,4,7,8,10,9,11 

6 1,3,2,6,5,4,8,10,7,9,11 

7 1,5,3,2,4,6,8,10,7,9,11 

8 1,2,4,3,5,6,7,8,9,10,11 

9 1,2,3,6,4,5,7,8,10,9,11 

10 1,5,4,3,2,6,7,9,8,10,11 

11 1,2,3,4,5,7,6,8,10,9,11 

12 1,5,2,6,4,3,8,10,7,9,11 

13 1,2,4,6,8,5,10,3,7,9,11 

14 1,4,3,2,5,7,6,9,8,10,11 

15 1,5,3,2,6,4,7,9,8,10,11 

16 1,5,4,3,2,7,9,6,8,10,11 

17 1,3,5,2,4,6,8,10,7,9,11 

18 1,3,2,4,5,7,9,6,8,10,11 

19 1,5,4,2,6,8,3,10,7,9,11 

20 1,5,4,3,2,7,9,6,8,10,11 

 

The solution to the U-shaped LBP from chromosome one is shown in Table 6.2. 

Table 6.2: Jackson’s Problem Solution Using Direct-Coded Genetic Algorithm 

Station V Will Fit Assigned Time left 

1 1,11 1,11 1 5 

1 2,11 2,11 11 1 

2 2,9 2,9 2 9 

2 6,9 6,9 9 4 

2 6,10 6 6 2 

3 4,10 4,10 4 4 

3 5,10 5 5 3 

4 8,10 8,10 8 5 

4 3,10 3,10 3 0 

5 7,10 7,10 10 6 

5 7 7 7 3 
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A graphical representation of what this solution would look like the diagram presented in 

Figure 6.8. 

 
Figure 6.8: Jackson’s Problem Solution Using Direct-Coded Genetic Algorithm 

This represents a solution from the initial population. After applying genetic operators, 

solutions should improve. The best solutions from the initial population (high fitness values) are 

chosen to reproduce and better child chromosomes are created. This process is repeated until one 

or more of the termination criteria are met. 

This heuristic approach to solving the U-shape LBP is computationally efficient because it 

searches only for solutions that are very likely to produce good solutions. Even if the best result 

isn’t achieved, each iteration makes the population ever so slightly better.  
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CHAPTER 7 

 7 EXPERIMENTAL RESULTS 

 

 

 

To demonstrate the effectiveness of the direct- and indirect-coded genetic algorithm from 

previous chapters, a response surface analysis was conducted to obtain the best values for the 

parameters to be used in the algorithms and reduce the computational time needed to obtain 

solutions. Using these values, the solutions were compared with the results of known problems 

taken from the literature. Figure 7.1 shows the process followed to carry out the experimentation. 

 
Figure 7.1: Experimentation Process 

 

These results were then compared to the optimal solution (theoretic), as well as solutions 

obtained using other heuristic methods. 

•Response 
surface •Initial population 

and genetic 
operations 
experimentation

•Obtaining an 
optimized model •Result analysis
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7.1 A Response Surface Model 

Response Surface Methods are designs and models for working with continuous treatments 

when the goal is to find optimum values or to describe the response (Oehlert 2000). The first goal 

for the Response Surface Method is to find the optimum response. When there are constraints on 

the design data, the experimental design has to meet requirements of the constraints. The second 

goal is to understand how the response changes in a given direction by adjusting the design 

variables 

7.1.1 First-Order Response Surface 

 

The relationship between the response variable y and independent variables is usually 

unknown. In general, the low-order polynomial model is used to describe the response surface f. 

A polynomial model is usually a sufficient approximation in a small region of the response surface. 

Therefore, depending on the approximation of the unknown function f, either first-order or second-

order models are employed. Furthermore, the approximated function f is a first-order model when 

the response is a linear function of independent variables. A first-order model with N experimental 

runs carried out on q design variables and a single response y can be expressed as follows [27]:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑞𝑥𝑖𝑞 + 𝜀𝑖  =  𝛽0 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗 + 𝜀𝑖   (𝑖 = 1,2…𝑛)𝑞
𝑗=1  [ 27 ] 

The response y is a function of the design variables x1, x2,…,xq, plus the experimental error, and 

the 𝛽𝑗’s are regression coefficients. In general, a linear multiple-regression model with a q 

independent variable takes the form of equation 27.  

where n > q. The ith observation of the jth independent variable (or factor level) is denoted by xij. 

The data structure for the multiple linear regression model is shown in Table 7.1. 
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Table 7.1: Data for Multiple-Regression Model 

y x1 x2 … xq 

y1 x11 x12 … x1q 

y2 x21 x22 … X2q 

. . . … . 

. . . … . 

. . . … . 

yn xn1 xn2 … xnq 

 

The multiple-regression model can be written in a matrix form: 

𝑦 = 𝑋𝛽 + 𝑒 [ 28 ] 

where: 

𝑦 =  [

𝑦1

𝑦2

⋮
𝑦𝑛

]        𝑋 = [

1 𝑥11
𝑥12 … 𝑥1𝑞

1 𝑥21
𝑥22 … 𝑥2𝑞

⋮
1

⋮
𝑥𝑛2

⋮ ⋮
𝑥𝑛2 … 𝑥𝑛𝑞

]     𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑞

]      𝑒 = [

𝜀1

𝜀2

⋮
𝜀𝑛

]  

y is an (n X 1) vector of observations, X is an (n X k) matrix of values of the independent variables 

(or factor levels), ß is a (k X 1) vector of regression coefficients, and e is an (n X 1) vector of 

random errors (Montgomery 2005).  

If X is a (k X k) nonsingular matrix, then the linear system y = Xß + e has a unique least squares 

solution given by β = (X'X)-1 X' y. The estimated regression equation is y = Xβ. 
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7.1.2 Fitting Second-Order Model 

 

There are many designs available for fitting a second-order model. The most popular one is 

the central composite design (CCD). This design was introduced by Box and Wilson. It consists 

of factorial points (from a 2q design and 2q-k fractional factorial design), center points and axial 

points. The following is the representation of 2q axial points:  

x1 x2 … xq 

-a 0 … 0 

a 0 … 0 

0 -a … 0 

0 a … 0 

… … … … 

0 0 … -a 

0 0 … a 

 

The idea behind a response surface approach is to select the experimental points so that 

they satisfy some optimality criterion about the model to be used. There are many types of designs 

that can be used for this purpose. A good strategy is to try with a simple design that has extra 

degrees of freedom for validation and for checking model adequacy. When a first-order model 

with center points shows evidence of lack of fit, axial points can be added to the designed 

experiment to create the CCD. The number of center points nc at the origin and the distance a of 

the axial runs from the design center are two parameters in the CCD design. Lack of fit is 

determined by comparing the response prediction with the response measurements at the center 
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points and this provides information about the curvature of the surface. The additional axial points 

enable an estimation of the quadratic terms. Figure 7.2 illustrates the graphical view of a central 

composite design for q = 2 factors.  

 

Figure 7.2 Central Composite Design for q = 2 

 

7.1.2 Analyzing the Stationary Point 

 

The second-order models can exhibit mathematical features such as minimums, 

maximums, ridges and saddle points. If an optimum exists, then this point could be a stationary 

point or a point on the boundary. The stationary point is the combination of design variables where 

the surface is at either a maximum, a minimum, or a saddle point. If the stationary point is a saddle 

point, then it is not a local maximum or a minimum. This means that the surface curves upward in 

some direction and downward in other directions from the stationary point. When the surface is 

curved in some directions, but is relatively constant in other directions, this type of surface is called 

ridge system (Oehlert 2000). The stationary point can be found by using matrix algebra. The fitted 

second-order model in matrix form is as follows: 
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�̂� =  �̂�0 + 𝑥′𝑏 + 𝑥′𝐵𝑥 [ 29 ] 

The derivative of y with respect to the elements of the vector x is: 

𝜕�̂�

𝜕𝑥
= 𝑏 + 2𝐵𝑥 = 0 [ 30 ] 

Therefore, the solution to stationary point is: 

𝑥𝑠 = −
1

2
𝐵−1𝑏 [ 31 ] 

Where: 

𝑏 =

[
 
 
 
 
�̂�1

�̂�2

⋮
�̂�𝑞]

 
 
 
 

  𝑎𝑛𝑑  𝐵 = [

�̂�11,
�̂�12

2
, … ,

�̂�1𝑞

2

�̂�22, … ,
�̂�2𝑞

2

𝑠𝑦𝑚.
⋱

�̂�𝑞𝑞

2

] [ 32 ] 

b is a (q X 1) vector of the first-order regression coefficients and B is a (q X q) symmetric matrix 

whose main diagonal elements are the quadratic coefficients (�̂�𝑖𝑖 ) and whose off diagonal elements 

are one-half the mixed quadratic coefficients (𝛽𝑖𝑗 𝑖 ≠  𝑗) (Montgomery 2005). In result, the 

estimated response value at the stationary point can be calculated as: 

�̂� =  𝛽0̂ + 𝑥𝑠
′𝑏 [ 33 ] 

The linear, quadratic and interaction terms in the model were found by the Least Squares Method. 

Usually, a Box-Wilson strategy is used for optimizing the response of the model but, due 

to the nature of our problem, a different approach had to be used. Using the traditional method for 

continuous variables, a non-integer value can be obtained and that wouldn’t be valid since it 

doesn’t make sense to use 2.5 mutations or 15.75 children in the algorithm. This is a problem 
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where there are categorical variables that take on discrete values. However, the categorical 

variables have a natural ordering in the decision space. Thus, the generation of the response surface 

was done by treating the variables as if they were continuous variables, but the optimization was 

performed by exhaustive search.  Values, after decoding, corresponding to an integer value were 

sequentially evaluated using the regression polynomial model found by the least squares method. 

This way, the minimum computational time and its corresponding optimal solutions for the 

execution of the two proposed algorithms were found. The coded values that correspond to an 

integer number for each variable are shown in Appendix D. 

7.2 Classification of problems using the genetic algorithm in solved problems from literature. 

The 12 LBPs were classified depending on the number of operations, resulting in a total of 

61 problems. The three groups, namely A, B and C, contain problems depending on the number 

of tasks. Group A has problems with a number of tasks ranging between 0-20, group B from 21-

50, and group C comprises those that have more than 50 tasks. Then there was a comparison 

between the ideal theoretical number of stations (N), and the best solution found using a heuristic 

method (NHEU) according to Ajenbilt (1982). The problems, along with their cycle times and the 

best solutions found, are shown in Table 7.2. 
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Table 7.2: Problems With Best Solutions 

Problem Tasks Cycle Time Group N NHEU 

Mertens 

(1967) 

7 6 

7 

8 

10 

15 

18 

A 4.8 

4.1 

3.6 

2.9 

1.9 

1.6 

6 

5 

5 

3 

2 

2 

Bowman 

(1960) 

8 20 A 3.7 5 

Jaeschke 

(1964) 

9 6 

7 

8 

10 

18 

A 6.2 

5.3 

4.6 

3.7 

2.1 

8 

7 

6 

4 

3 

Jackson 

(1956) 

11 7 

9 

10 

13 

14 

21 

A 6.6 

5.1 

4.6 

3.5 

3.3 

2.2 

8 

6 

5 

4 

4 

3 

Dar-El (1957) 11 48 

62 

95 

A 3.8 

3 

2 

4 

4 

3 
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Table 7.2.: Problems With Best Solutions (cont.) 

Mitchell 

(1957) 

21 14 

15 

21 

B 7.5 

7 

5 

8 

8 

6 

Heskiaoff 

(1968) 

28 138 

205 

216 

256 

324 

342 

B 7.4 

5 

4.7 

4 

3.2 

3 

8 

6 

5 

4 

4 

3 

Sawyer 

(1970) 

30 25 

26 

30 

36 

41 

54 

75 

B 13 

12 

10.8 

9 

7.9 

6 

4.3 

15 

14 

12 

10 

9 

7 

5 

Kilbridge 

(1961) 

45 57 

79 

92 

110 

138 

184 

B 9.7 

7 

6 

5.1 

4 

3 

10 

8 

7 

6 

5 

4 

Tounge 

(1969) 

70 176 

364 

410 

468 

527 

C 19.9 

9.6 

8.6 

7.5 

6.7 

21 

10 

9 

8 

7 

Arcus (1963) 83 5048 

5853 

6842 

7571 

8412 

8898 

10816 

C 15 

12.9 

11.1 

10 

9 

8.5 

7 

16 

14 

12 

11 

10 

9 

8 

Arcus (1963) 111 5755 

8847 

10027 

10743 

11378 

17067 

C 26.1 

17 

15 

14 

13.2 

8.8 

27 

18 

16 

15 

14 

9 
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7.3 Results for the Indirect-Coded Genetic Algorithm 

7.3.1 Analysis of the results using Response Surface Analysis. 

 

Previous research done on solving the LBP using genetic algorithms does not implement 

any sort of methodology to determine the values for the size of the population, the number of 

mutations, or the number of crossover operations. They use fixed values for these variables that 

are arbitrarily selected and kept throughout the algorithm’s process. Using an analysis of the 

response surface, the response time in which solutions are obtained can be used to select values 

for the variables so that solutions can be obtained in a minimized amount of time. A 

response surface methodology is widely used in engineering and statistics areas and by 

implementing it in this experiment, the best levels for the number of chromosomes, number of 

mutations and number of reproductions to minimize computational time can be selected. 

A response surface was performed on four factors and two levels to find the significant 

factors that affect the average time in which problems are solved in each group using the 

percentage of children (x1), the percentage of mutations (x2), the number of chromosomes (x3) 

and the number of genes (x4), which are the initial parameters of genetic algorithm. Table 7.3 

shows levels used for the four factors. 

Table 7.3: Four Factors of Surface Response Model 

Factor Variable -1 0 1 

% of children x1  20  40  60  

% of mutations x2  10 20 30 

# Chromosomes x3  10  55  100  

# Genes  x4  10  16  22  
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The central composite design was used with a factorial 24, eight axial points and four center 

runs with α = 1. A total of 28 runs for each of the problems and 200 generations was conducted. 

Whenever the best solution was found the execution time was recorded and an average from these 

times was calculated for each of the three groups. Table 7.4 shows a face-centered central 

composite design with four center points and the response values for each of the groups (A, B and 

C). 

  



 

66 

 

Table 7.4 Face-Centered Central Composite Design with Center Points and Response Values. 

Run PtType Blocks x1 x2 x3 x4 Group A Group B Group C 

1 1 1 -1 -1 -1 -1 124.157 854.76 737.64 

2 1 1 1 -1 -1 -1 34.524 372.57 391.40 

3 1 1 -1 1 -1 -1 35.750 514.91 816.60 

4 1 1 1 1 -1 -1 13.475 798.70 1251.90 

5 1 1 -1 -1 1 -1 199.206 1490.61 2086.76 

6 1 1 1 -1 1 -1 85.527 681.94 937.50 

7 1 1 -1 1 1 -1 87.795 1143.09 1428.00 

8 1 1 1 1 1 -1 42.630 730.95 985.66 

9 1 1 -1 -1 -1 1 18.718 336.12 509.04 

10 1 1 1 -1 -1 1 3.636 109.85 148.40 

11 1 1 -1 1 -1 1 5.815 214.70 202.44 

12 1 1 1 1 -1 1 63.882 544.61 762.72 

13 1 1 -1 -1 1 1 63.135 1453.95 1678.30 

14 1 1 1 -1 1 1 74.151 335.16 420.80 

15 1 1 -1 1 1 1 59.163 605.07 701.40 

16 1 1 1 1 1 1 134.381 641.62 824.40 

17 -1 1 -1 0 0 0 48.830 911.88 1073.27 

18 -1 1 1 0 0 0 53.565 699.15 1028.55 

19 -1 1 0 -1 0 0 98.940 681.45 570.96 

20 -1 1 0 1 0 0 49.918 463.87 729.56 

21 -1 1 0 0 -1 0 37.268 287.65 202.86 

22 -1 1 0 0 1 0 108.444 508.05 806.78 

23 -1 1 0 0 0 -1 100.604 1235.39 1348.27 

24 -1 1 0 0 0 1 57.728 863.64 1200.81 

25 0 1 0 0 0 0 48.933 876.00 1126.20 

26 0 1 0 0 0 0 70.681 700.80 1126.20 

27 0 1 0 0 0 0 59.807 876.00 1051.12 

28 0 1 0 0 0 0 48.933 700.80 976.04 

 

Table 7.5 shows the results of analyzing the two-level design with center points for group 

A. 
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Table 7.5: Group A Complete Model Results 

 

As seen in Table 7.5, all of the P-Values yielded for the main effects indicate that the terms 

were significant (i.e., less than 0.1).The interactions and squared terms that yielded significant 

results were x1 squared, x1*x2, x1*x4, and x2*x4.  

To see if the model complies with the assumptions of the residuals being random and 

normally distributed, both a normal probability plot and a scattered plot is shown. Figures 7.3 and 

7.4 show the scattered plot and normal probability plot. 
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Figure 7.3: Residuals Scattered Plot of Group A 

 

 
Figure 7.4: Group A Residuals Normal Distribution 

 



 

69 

 

If the residuals plot approximately along a straight line, then the normality assumption is 

satisfied. In Figure 7.4, the residuals can be judged as normally distributed; therefore, the 

normality assumption is satisfied. Figure 7.3 shows the residuals versus the fitted values.  If the 

regression model is correct and the assumptions are satisfied, the residuals in this plot should be 

structureless; in particular they should be unrelated to any other variable including the predicted 

response. (Montgomery 2005).  These plots do not show any obvious patterns. 

The complete model results (Table 7.3) show that some of the interactions have a large P-

value, meaning that their contribution to the model is not significant. A reduced version of the 

model containing only the significant terms is shown in Table 7.6. 

 

Table 7.6: Group A Reduced Model Results 

 

Using the polynomial from the reduced model and an exhaustive search process, the 

optimum levels of the parameters for group A were found. These values were: 20% children, 30% 

mutations, 10 chromosomes, and 21 genes. 
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A similar process was followed to select the levels for the factors of groups B and C. The 

corresponding tables and figures are shown in Appendix E. 

The selected levels for the factors chosen for each problem are summarized in Table 7.7. 

Table 7.7: Best Levels for Each Factor 
Factor  Group 

A  
Group B  Group C  

% of children  20 36.36  40 

% of mutations  30  18.18 10 

# Chromosomes 10  11  10  

# Genes  21  17 19 

Estimated Response Values (ms) 1.01 253.80 3.37 

 

7.4 Results for the Direct-Coded Genetic Algorithm 

 

For this section, the problems used were the same ones described in the literature. The 12 

problems selected included a variety of task numbers. This results in the same 61 problems used 

for the indirect coded genetic algorithm in the previous section.  

To show the effectiveness of the algorithm, the problems were subjected to 

experimentation. The first step of this process was to determine the initial values of the parameters 

for each of the problems. Suitable selection of these parameter values facilitate the attainment of 

the best solutions. 

7.4.1 Determination of initial parameters 

 

The parameters analyzed in this genetic algorithm are number of chromosomes, percentage 

of children and percentage of mutations. The three mentioned are shown in Table 7.8 below with 

some initial levels. 
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Table 7.8: Initial Parameters 

Parameter Number of Levels Values 

Number of Chromosomes 2 10, 100 

% of children 2 20, 60 

% of mutations 2 10, 30 

 

Each problem is executed during 200 generations and the time it takes for it to reach a 

solution with the least number of workstations is recorded. This means that the output is the 

average of time in which the best solution is found. 

A response surface of second degree was developed to link the average time it takes to 

solve the problems from each group given a percentage of children (x1), the percentage of 

mutations (x2), and the number of chromosomes (x3). These are precisely the variables for the 

initial parameters and the ones where an optimal value is desired. The objective of the 

experiment is to minimize the time in which the best solution is met throughout 200 generations. 

Table 7.9 lists the levels of factors that are coded and used in this experimental design. 

Table 7.9: Parameter Levels 

Parameter Variable 
Codification 

-1 0 1 

% of children 𝑥1 20 40 60 

% of mutations 𝑥2 10 20 30 

Chromosomes 𝑥3 10 55 100 

 

The Central Composite Design is made up by a complete factorial 23, four axial points with 

α = 1 for a cubic design and four center point iterations. The values of response for each of the 

groups and a face-centered central composite design with four center points is shown in Table 

7.10. 
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Table 7.10: Face-Centered Central Composite Design and Response Values 

Run 𝑥1 𝑥2 𝑥3 
Average time (ms) elapsed 

Group A Group B Group C 

1 -1 -1 -1 12.4762 136.07 30.22 

2 1 -1 -1 3.4286 155.93 59.33 

3 -1 1 -1 12.4762 69.19 68.06 

4 1 1 -1 4.3333 81.15 92.22 

5 -1 -1 1 24.8571 885.52 981.06 

6 1 -1 1 27.6667 1263.78 965.39 

7 -1 1 1 28.3810 658.67 130.78 

8 1 1 1 33.5714 856.41 246.56 

9 -1 0 0 13.6190 308.44 579.94 

10 1 0 0 13.7143 271.56 249.61 

11 0 -1 0 15.3333 697.56 681.11 

12 0 1 0 14.5714 526.67 661.33 

13 0 0 -1 3.2381 50.59 53.17 

14 0 0 1 24.3333 1427.59 1331.67 

15 0 0 0 12.4286 479.56 525.28 

16 0 0 0 14.5714 475.81 107.06 

17 0 0 0 12.4286 568.37 520.11 

18 0 0 0 15.2857 560.30 385.56 

 

An analysis of the response surface design was done for each of the three groups. Figures 

7.11-7.12 show the results of the analysis for group A. 

Table 7.11: Group A Complete Model Results 
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As seen in Table 7.11, the P-Values indicate that the main factors are all significant. The 

only terms that were not significant in the interactions of factors were x1 squared, x3 squared, and 

x1*x2. 

 

Table 7.12: Group A Reduced Model Results 

 

The reduced model was optimized to find the minimum response settings. Using the same 

exhaustive search approach from previous section the best values for the parameters were found. 

The values found for group A were: 54.54% children, 18.18% mutations, and 11 chromosomes. 

A similar process was followed to select the levels for the factors of groups B and C. The 

corresponding tables and figures are shown in Appendix F. 

All the selected levels for groups A, B, and C are summarized in Table 7.13. 

Table 7.13: Best Levels for Each Group 

Parameter Group A Group 

B 

Group C 

% of children 54.54 21.42 20 

% of mutations 18.18 28.57 20 

Number of chromosomes 11 28 10 

Estimated Response Value (ms) 0.89 1.33 22.70 
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7.5 Findings 

After preforming all the statistical analysis, the best levels for factors were found. The percentages 

shown in previous tables equate to an integer value. Table 7.14 shows these values for the direct- 

and indirect-genetic algorithm. 

Table 7.14: Factor Levels Summary 

Indirect Coded 

Factor  Group A  Group B  Group C  

Number of children  
 

2 4 4 

Number of mutations  3 2 1 

Number of Chromosomes 10 11 10 

Number of Genes  21 17 19 

Estimated Response (ms) 1.01 253.80 3.37 

Direct Coded 

Number of children 6 6 2 

Number of mutations 2 8 2 

Number of chromosomes 11 28 10 

Estimated Response (ms) 0.89 1.33 22.70 

 

The indirect-coded genetic algorithm must use the following initial parameter levels: for 

small problems 20%children, 30% mutations, 10 chromosomes and 21 genes. For medium 

problems: 36.36% children, 18.18% mutations, 11 chromosomes and 18 genes. Large problems 

required 40% children, 10% mutations, 10 chromosomes and 19 genes.  

The parameters that were optimized for the directly coded genetic algorithm were as 

follows. For small problems, 54.54% children, 18.18% mutations and 11 chromosomes. Medium 

problems used 21.42% children, 28.57% mutations and 28 chromosomes. For large problems: 20% 

children, 20% mutations and 10 chromosomes. Using these parameters, each of the algorithms 

preforms in the least amount of time. Having said that, the minimum time of the direct-coded 

genetic algorithm is less than the minimum time of the indirect-coded genetic algorithm. This 



 

75 

 

means that the directly coded genetic algorithm obtains solutions faster than the indirectly coded 

one. 

Using these initial parameters, the algorithm was run for each of the problems for all three 

groups. The results were compared with those results obtained from the literature that used other 

heuristic or exact approaches. The findings are presented in Table 7.15. 

  



 

76 

 

Table 7.15: Problem Solutions 

Problem Cycle 

time 

Best solution 

Literature 

solutions 

Directly 

Coded 

Indirectly 

coded 

Mertens (1967) 7 6 6 6 6 

 7 5 5 5 

 8 5 5 5 

 10 3 3 3 

 15 2 2 2 

 18 2 2 2 

Bowman (1960) 8 20 5 4 4 

Jaeschke (1964) 9 6 8 8 8 

 7 7 7 7 

 8 6 6 6 

 10 4 4 4 

 18 3 3 3 

Jackson (1956) 11 7 8 7 7 

 9 6 6 6 

 10 5 5 5 

 13 4 4 4 

 14 4 4 4 

 21 3 3 3 

Dar-El (1964) 11 48 4 4 4 

 62 4 3 3 

 94 3 2 2 

Mitchell (1957) 21 14 8 8 8 

 15 6 8 8 

 21 6 5 5 

Heskiaoff (1968) 28 138 8 8 8 

 205 6 6 5 

 216 5 5 5 

 256 4 4 4 

 324 4 4 4 

 342 3 3 3 

Sawyer (1970) 30 25 15 14 14 

 27 14 13 13 

 30 12 12 11 

 36 10 10 10 

 41 9 8 8 

 54 7 6 6 

 75 5 5 5 

Kilbridge (1961) 45 57 10 10 10 

 79 8 7 7 

 92 7 6 6 

 110 6 5 5 
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 138 5 4 4 

 184 4 3 3 

Tongue (1969) 70 176 21 22 21 

 364 10 10 10 

 410 9 9 9 

 468 8 8 8 

 527 7 7 7 

Arcus (1963) 83 5048 16 16 16 

 5853 14 14 14 

 6842 12 12 12 

 7571 11 11 11 

 8412 10 10 10 

 8898 9 9 9 

 10816 8 8 8 

Arcus (1963) 111 5755 27 28 27 

 8847 18 18 18 

 10027 16 16 16 

 10743 15 15 15 

 11378 14 14 14 

 17067 9 9 9 

 

As seen in the results presented in this chapter, both the direct- and indirect-genetic algorithms 

produce good solutions. Both models of the algorithm obtain solutions better than results obtained 

using other heuristic methods. However, the directly coded method does so at a lower 

computational cost. This means that even though both algorithms obtain the desired results, a 

direct-coded algorithm may arrive to the answer faster than the indirect coded algorithm. 

7.6 Using the Algorithm in a Case Study Production Line 

 

The genetic algorithms proposed in this research produce good results when comparing 

them with known results from the literature. To test their performance using problems other than 

those with known solutions, both the direct- and indirect-genetic algorithms were tested in real 

production lines. 
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7.6.1 Indirect-Coded Genetic Algorithm 

 

For implementation of the algorithm it was necessary to have the number of tasks, task 

time, cycle time, and precedence relationships of the production line. In Figure 7.5, the precedence 

diagram is shown. Inside the circle is the number of the task outside the circle is the time of the 

task; inside the box is the cycle time; and the lines represent the precedence relationships that must 

be met for the specific case of the manufacturing cell of medical products. 

 
Figure 7.5: Precedence Diagram for Medical Product Problem 

 

Currently, the manufacturing cell consists of five workstations. Sometimes the following 

situations occur: the output is not constant, there is low production in the first half of the shift and 

at the end it increases to meet the target goal of the day; downtime is also observed in some stations. 

With the implementation of the indirect-coded genetic algorithm in a manufacturing cell,  

a configuration different than the currently available line was sought to validate if the algorithm is 

able to find a balancing solution that allows reduction of workstations in the manufacturing cell 

without exceeding the cycle time while complying with precedence relationships. 
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The first step of the algorithm is to capture the data in this problem to obtain a table with 

precedence and cycle time of each task (Table 7.16). The second step is to calculate the weights 

for each task (Table 7.17). Population is initialized in the program according to the optimal levels 

of Table 7.14 for group A. Since the problem has only 12 tasks, it is considered a small problem. 

Table 7.18 shows the ten chromosomes that correspond to the initial population of this problem, 

with each gene on chromosome representing a heuristic rule. Tasks are then assigned to 

workstations using the number of rules represented in the genes. If there is a tie, the algorithm 

moves on to the next gene. If there is a tie throughout all the genes, this chromosome is discarded 

and the algorithm moves on to the next (see Martinez and Duff (2004) to better understand the 

process of task allocation). This allocation process is performed by the program. 

Table 7.16: Precedence Relations 
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Table 7.17: Weights for Each Task 

 

Table 7.18: Generated Chromosomes 

 

The algorithm gives different results. Selecting the one having received the smallest 

number of workstations, in this case four, reveals the allocation of tasks at different workstations 

as shown in Table 7.19. 
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Table 7.19: Task Allocation 
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According to the results provided by the algorithm, a workstation can be eliminated, setting 

the cell as shown in Table 7.20. The algorithm was able to reduce from five workstations to only 

four, as shown in Figure 7.6. 

 
Figure 7.6: Task Time vs. Cycle Time after Algorithm 

 

7.6.2 Directly Coded Genetic Algorithm 

 

To demonstrate the effectiveness of the genetic algorithm, it was applied to a real 

production line located at an electronics company in Juarez, Chihuahua, Mexico. To implement 

the directly coded genetic algorithm in this production line, the required information must be 

gathered: number of tasks, the precedence relations, task times and cycle times. This information 

is displayed in Figure 7.7. 
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Figure 7.7: Precedence Diagram for Applied Production Line 

 

The cycle time for the production line problem was 40 seconds. As indicated in Formula 

5, the theoretical minimum number of workstations is given by dividing the sum of the task times 

by the cycle time. For this problem, the theoretical number of workstations required is 12. Running 

the algorithm yields a solution that has precisely 12 workstations. Table 7.20 shows the assignment 

of tasks results. 

Using the cycle time given, the production per shift is 720 finished products. The solution 

to this LBP was implemented in the production line and the production of the assembly line was 

recorded along the course of thirty days. The production results from these thirty days are shown 

in Table 7.21. 

A 95% confidence interval was computed, as well as a normal probability plot, to 

confirm that the production estimated for the given cycle time of 40 seconds is included in this 

interval (720 parts per shift). The confidence interval obtained was: (713,19; 724,21), thus 

including the 720 of the solution. It can then be concluded that the solution of this LBP produces 

the expected results. 
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Table 7.20: Task Assignment for Applied Problem 

Station V Will Fit Assigned 
Time 
Left 

1 1.25 1.25 25 29.85 

1 1.24 1.24 24 18.25 

1 1.23 23 23 0.57 

2 1.22 1.22 1 21.60 

2 2.22 2.22 2 2.70 

3 4.22 4.22 22 20.88 

3 4.21 4 4 3.78 

4 3.21 3.21 3 23.13 

4 10.21 10 10 4.42 

5 7.21 7.21 7 21.43 

5 11.21 11 11 1.56 

6 8.21 8.21 8 21.50 

6 9.21 9 9 1.62 

7 5.21 5.21 21 16.40 

7 5.2 5 5 0.51 

8 6.2 6.2 20 23.20 

8 6.19 6.19 6 5.87 

9 12.19 12.19 12 20.15 

9 13.19 19 19 1.40 

10 13.18 13.18 18 24.88 

10 13.16 13.16 13 3.33 

11 14.16 14.16 14 17.25 

11 15.16 15.16 15 2.13 

12 17.16 17.16 17 23.43 

12 16 16 16 6.96 
 

  



 

85 

 

Table 7.21: Production During 30 Days 

Day Production 

1 714 

2 716 

3 694 

4 727 

5 721 

6 726 

7 739 

8 735 

9 749 

10 695 

11 738 

12 709 

13 735 

14 744 

15 695 

16 697 

17 716 

18 711 

19 719 

20 722 

21 740 

22 718 

23 720 

24 713 

25 725 

26 711 

27 707 

28 697 

29 703 

30 725 
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CHAPTER 8 

 8 SUMMARY AND CONCLUSIONS 

 

 

 

A direct- and an indirect-coded genetic algorithm are developed for solving U-shaped 

LBPs. In the case of the indirect-coded genetic algorithm, sixteen heuristic rules were taken from 

the traditional straight line LBP. However, these rules had never been used in a U-shape model. 

This research introduces a modified version so that they could now be used in the U-shape LBP.  

Each heuristic rule was represented as a gene in the chromosomes for tie-breaking results 

during the task assigning process. For the directly coded algorithm, each chromosome represents 

a solution to the LBP and the genes represent the actual tasks to assign. To construct this 

chromosome, a new method is developed that consists of creating a diagram that is isomorphic to 

the original precedence diagram. Also, crossover and mutation operations are conducted in a way 

that precedence relations are not violated. 

In this research, the two genetic algorithms are tested using 61 problems taken from 

literature review. The solutions that were obtained from the existing methods in the literature 

review were compared to the results obtained by using the two developed genetic algorithms. The 

goals were to increase efficiency by obtaining a solution with the least number of workstations 

possible, to get the solution in the least amount of time, and to have a minimum smoothness index 

for the solution. The indirectly coded genetic algorithm obtained better solutions than the known 

solutions from literature in 26% of the cases; it obtained an equivalent solution in 62% of the cases 

(not better, not worse); and a worse solution the remaining 12%. The directly coded genetic 

algorithm obtained better solutions than the known solutions from literature in 22% of the cases; 
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72% of the problems had a solution that was equivalent; and 6% of the time it generated a solution 

with more workstations than the solutions from literature The directly coded method obtains a 

solution faster than the indirectly coded method. 

The experimental results of the previous chapters show that the proposed genetic 

algorithms solve the U-shaped LBP by effectively finding a desired amount of workstations within 

an acceptable execution time. 

The necessity of obtaining a solution within an acceptable computational time is met. In 

the vast majority of the solved problems, less than a second was needed to arrive with the answer. 

An optimal solution was not found in every case, but in all cases a very good solution was achieved 

in a very small amount of time. 

Another advantage of these algorithms is that they do not attain just a single solution, they 

arrive at various solutions with the same number of workstations. This can be especially  useful in 

a case where a particular solution might not be applicable due to external factors independent from 

precedence constraints and cycle times or where there are additional objective or subjective factors 

that were not considered. 

Knowing what the algorithms are capable of achieving, they were implemented in a real 

industrial scenario. The two genetic algorithms were able to improve production line balance in 

these real-world problems. This demonstrates their successful use in more realistic industry 

problems beyond the theoretical problems from literature review of this research.  

Though the results obtained fulfilled the scope of research expectations, it will still be 

valuable to apply the approaches developed to a broader spectrum of problems—Those having 

larger sizes, more tasks, and more complex precedence relations. Due to the lack of larger problems 
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with known results in the literature, it was not possible in the current research to test the algorithms 

with larger and more complex problems. Future researchers should also experiment with more 

real-world industry problems. 

Additionally, a hybrid approach with the two algorithms could be implemented. The first 

set of solutions from the indirect-coded genetic algorithm can be used as the first initial population 

for the directly coded genetic algorithm. This first population must be better than the one generated 

at random as used in the current version of the direct-coded genetic algorithm. This is possible due 

to the nature of the heuristic rules employed in the indirectly coded genetic algorithm. It is known 

that the first generation obtained by this algorithm leads to good results. The improvement of that 

first generation will result in a better and more productive output of solutions. 
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APPENDIX A 

 

 

 

Figure A1: Aase’s Problem Precedence Diagram 

 

 

 

Figure A2: Bowman’s Problem Precedence Diagram 
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Figure A3: Dar-El’s Problem Precedence Diagram 

 

 

 

 

Figure A4: Jackson’s Problem Precedence Diagram 
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-  

 

Figure A5: Johnson’s Problem Precedence Diagram 

 

Figure A6: Ponnambalam, Aravindan and Naidu’s Problem Precedence Diagram 
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Figure A7: Scholl and Klein’s Problem Precedence Diagram 

 

 

Figure A8: Tonge’s Problem Precedence Diagram 
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APPENDIX B 

Table B1: Enumeration Process Workstation 4 Option 1.1.2 

Ws 4 

Op 1.1.2 

V Assign Tr V2 

3, 5 3 2 5 

3, 5 5 4 3 

 

Table B2: Enumeration Process Workstation 4 Option 1.1.3 

Ws 4 

Op 1.1.3 

V Assign Tr V2 

3, 5 3 2 5 

3, 5 5 4 3 

 

Table B3: Enumeration Process Workstation 4 Option 1.1.4 

Ws 4 

Op 1.1.4 

V Assign Tr V2 

3, 4 3 1 0 

3, 4 4 3 0 
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Table B4: Enumeration Process Workstation 5 Options 1.1.4.1 and 1.1.4.2 

Ws 5 

Op 1.1.4.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.1.4.2 

V Assign Tr V2 

3 3 1 0 

 

Table B5: Enumeration Process Workstation 3 Option 1.2 

Ws 3 

Op 1.2 

V Assign Tr V2 Tr2 

2, 5, 6 2 0 0 0 

2, 5, 6 5 4 6 1 

2, 5, 6 6 3 
4 0 

5 1 

 

Table B6: Enumeration Process Workstation 4 Option 1.2.1 

Ws 4 

Op 1.2.1 

V Assign Tr V2 Tr2 

4, 5, 6 4 3 
5 1 

6 0 

4, 5, 6 5 4 
4 1 

6 1 

4, 5, 6 6 3 
4 0 

5 1 
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Table B7: Enumeration Process Workstation 5 Options 1.2.1.1 to 1.2.1.6 

Ws 5 

Op 1.2.1.1 

V Assign Tr V2 

5 5 4 0 

Ws 5 

Op 1.2.1.2 

V Assign Tr V2 

6 6 3 0 

Ws 5 

Op 1.2.1.3 

V Assign Tr V2 

6 6 3 0 

Ws 5 

Op 1.2.1.4 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.2.1.5 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 1.2.1.6 

V Assign Tr V2 

4 4 3 0 

 



 

103 

 

Table B8: Enumeration Process Workstation 4 Option 1.2.2 

Ws 4 

Op 1.2.2 

V Assign Tr V2 

2, 4 2 0 0 

2, 4 4 3 0 

 

Table B9: Enumeration Process Workstation 5 Option 1.2.2.1 

Ws 5 

Op 1.2.2.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.2.2.1 

V Assign Tr V2 

2 2 1 0 

 

Table B10: Enumeration Process Workstation 4 Option 1.2.3 

Ws 4 

Op 1.2.3 

V Assign Tr V2 

2, 5 2 0 0 

2, 5 5 4 0 
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Table B11: Enumeration Process Workstation 5 Options 1.2.3.1 and 1.2.3.2 

Ws 5 

Op 1.2.3.1 

V Assign Tr V2 

5 5 4 0 

Ws 5 

Op 1.2.3.2 

V Assign Tr V2 

2 2 0 0 

 

Table B12: Enumeration Process Workstation 4 Option 1.2.4 

Ws 4 

Op 1.2.4 

V Assign Tr V2 

2, 4 2 0 0 

2, 4 4 3 0 

 

Table B13: Enumeration Process Workstation 5 Options 1.2.4.1 and 1.2.4.2 

Ws 5 

Op 1.2.4.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.2.4.2 

V Assign Tr V2 

2 2 0 0 
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Table B14: Enumeration Process Workstation 3 Option 1.3 

Ws 3 

Op 1.3 

V Assign Tr V2 

2, 3, 5 2 0 0 

2, 3, 5 3 1 0 

2, 3, 5 5 4 0 

 

Table B15: Enumeration Process Workstation 4 Option 1.3.1 

Ws 4 

Op 1.3.1 

V Assign Tr V2 

3, 5 3 1 0 

3, 5 5 4 0 

 

Table B16: Enumeration Process Workstation 5 Options 1.3.1.1 and 1.3.1.2 

Ws 5 

Op 1.3.1.1 

V Assign Tr V2 

5 5 4 0 

Ws 5 

Op 1.3.1.2 

V Assign Tr V2 

3 3 1 0 

 

Table B17: Enumeration Process Workstation 4 Option 1.3.2 

Ws 4 

Op 1.3.2 

V Assign Tr V2 

2, 5 2 0 0 

2, 5 5 4 0 

 

Table B18: Enumeration Process Workstation 5 and 5 Options 1.3.2.1 and 1.3.2 

Ws 5 

Op 1.3.2.1 

V Assign Tr V2 

5 5 4 0 

Ws 4 

Op 1.3.2 

V Assign Tr V2 

2 2 0 0 
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Table B19: Enumeration Process Workstation 4 Option 1.3.3 

Ws 4 

Op 1.3.3 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 

 

Table B20: Enumeration Process Workstations 5 and 4 Options 1.3.3.1 and 1.3.3 

Ws 5 

Op 1.3.3.1 

V Assign Tr V2 

3 3 1 0 

Ws 4 

Op 1.3.3 

V Assign Tr V2 

2 2 0 0 

 

Table B21: Enumeration Process Workstation 3 Option 1.4 

Ws 3 

Op 1.4 

V Assign Tr V2 

2, 3, 4 2 0 0 

2, 3, 4 3 1 0 

2, 3, 4 4 3 0 

 

Table B22: Enumeration Process Workstation 4 Option 1.4.1 

Ws 4 

Op 1.4.1 

V Assign Tr V2 

3, 4 3 1 0 

3, 4 4 3 0 

 

Table B23: Enumeration Process Workstation 5 Options 1.4.1.1 and 1.4.1.2 

Ws 5 

Op 1.4.1.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.4.1.2 

V Assign Tr V2 

3, 4 3 1 0 
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Table B24: Enumeration Process Workstation 4 Option 1.4.2 

Ws 4 

Op 1.4.2 

V Assign Tr V2 

2, 4 2 0 0 

2, 4 4 3 0 

 

Table B25: Enumeration Process Workstation 5 Options 1.4.2.1 and 1.4.2.2 

Ws 5 

Op 1.4.2.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 1.4.2.2 

V Assign Tr V2 

2, 4 2 0 0 

 

Table B26: Enumeration Process Workstation 4 Option 1.4.3 

Ws 4 

Op 1.4.3 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 

 

Table B27: Enumeration Process Workstation 5 Options 1.4.3.1 and 1.4.3.2 

Ws 5 

Op 1.4.3.1 

V Assign Tr V2 

2, 3 3 1 0 

Ws 5 

Op 1.4.3.2 

V Assign Tr V2 

2, 3 2 0 0 
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Table B28: Enumeration Process Workstation 2 Option 2 

Ws 2 

Op 2 

V Assign Tr V2 

1, 2, 5 1 2 5 

1, 2, 5 2 0 0 

1, 2, 5 5 1 0 

 

Table B29: Enumeration Process Workstation 3 Option 2.1 

Ws 3 

Op 2.1 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 

 

Table B30: Enumeration Process Workstation 4 Options 2.1.1 and 2.1.2 

Ws 4 

Op 2.1.1 

V Assign Tr V2 

3 3 1 0 

Ws 4 

Op 2.1.2 

V Assign Tr V2 

2, 3 2 0 0 

 

Table B31: Enumeration Process Workstation 3 Option 2.2 

Ws 3 

Op 2.2 

V Assign Tr V2 

1, 5 1 2 5 

1, 5 5 4 1 

 

Table B32: Enumeration Process Workstation 4 Options 2.2.1 and 2.2.2 

Ws 4 

Op 2.2.1 

V Assign Tr V2 

3 3 1 0 

Ws 4 

Op 2.2.2 

V Assign Tr V2 

3 3 1 0 

 

Table B33: Enumeration Process Workstation 3 Option 2.3 

Ws 3 

Op 2.3 

V Assign Tr V2 

1, 2, 3 1 2 0 

1, 2, 3 2 0 0 

1, 2, 3 3 1 0 
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Table B34: Enumeration Process Workstation 4 Option 2.3.1 

Ws 4 

Op 2.3.1 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 

 

Table B35: Enumeration Process Workstation 5 Options 2.3.1.1 and 2.3.1.2 

Ws 5 

Op 2.3.1.1 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 2.3.1.2 

V Assign Tr V2 

2 2 0 0 

 

Table B36: Enumeration Process Workstation 4 Option 2.3.2 

Ws 4 

Op 2.3.2 

V Assign Tr V2 

1, 3 1 2 0 

1, 3 3 1 0 

 

Table B37: Enumeration Process Workstation 5 Options 2.3.2.1 and 2.3.2.2 

Ws 5 

Op 2.3.2.1 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 2.3.2.2 

V Assign Tr V2 

1 1 2 0 

 

Table B38: Enumeration Process Workstation 4 Option 2.3.3 

Ws 4 

Op 2.3.3 

V Assign Tr V2 

1, 2 1 2 0 

1, 2 2 0 0 

 

Table B39: Enumeration Process Workstation 5 Options 2.3.3.1 and 2.3.3.2 

Ws 5 

Op 2.3.3.1 

V Assign Tr V2 

2 2 0 0 

Ws 5 

Op 2.3.3.2 

V Assign Tr V2 

1 1 2 0 
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Table B40: Enumeration Process Workstation 2 Option 3 

Ws 2 

Op 3 

V Assign Tr V2 

1, 3, 4 1 2 0 

1, 3, 4 3 1 0 

1, 3, 4 4 1 0 

 

Table B41: Enumeration Process Workstation 3 Option 3.1 

Ws 3 

Op 3.1 

V Assign Tr V2 

2, 3, 4 2 0 0 

2, 3, 4 3 1 0 

2, 3, 4 4 3 0 

 

Table B42: Enumeration Process Workstation 4 Option 3.1.1 

Ws 4 

Op 3.1.1 

V Assign Tr V2 

3, 4 3 1 0 

3, 4 4 3 0 

 

Table B43: Enumeration Process Workstation 5 Options 3.1.1.1 and 3.1.1.2 

Ws 5 

Op 3.1.1.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 3.1.1.2 

V Assign Tr V2 

3 3 1 0 

 

Table B44: Enumeration Process Workstation 4 Option 3.1.2 

Ws 4 

Op 3.1.2 

V Assign Tr V2 

2, 4 2 0 0 

2, 4 4 3 0 

 

Table B45: Enumeration Process Workstation 5 Options 3.1.2.1 and 3.1.2.2 

Ws 5 

Op 3.1.2.1 

V Assign Tr V2 

4 4 3 0 

Ws 5 

Op 3.1.2.2 

V Assign Tr V2 

2 2 0 0 

 

Table B46: Enumeration Process Workstation 4 Option 3.1.3 

Ws 4 

Op 3.1.3 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 
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Table B47: Enumeration Process Workstation 5 Options 3.1.3.1 and 3.1.3.2 

Ws 5 

Op 3.1.3.1 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 3.1.3.2 

V Assign Tr V2 

2 2 0 0 

 

Table B48: Enumeration Process Workstation 3 Option 3.2 

Ws 3 

Op 3.2 

V Assign Tr V2 

1, 4 1 2 0 

1, 4 4 3 0 

 

Table B49: Enumeration Process Workstation 4 Option 3.2.1 

Ws 4 

Op 3.2.1 

V Assign Tr V2 

2, 4 2 0 0 

2, 4 4 3 0 

 

Table B50: Enumeration Process Workstations 5 and 4 Options 3.2.1.1 and 3.2.1.2 

Ws 5 

Op 3.2.1.1 

V Assign Tr V2 

4 4 3 0 

Ws 4 

Op 3.2.1.2 

V Assign Tr V2 

2 2 0 0 

 

Table B51: Enumeration Process Workstation 4 Option 3.2.2 

Ws 4 

Op 3.2.2 

V Assign Tr V2 

1, 2 1 2 0 

1, 2 2 0 0 

 

Table B52 Enumeration Process Workstation 5 Options 3.2.2.1 and 3.2.2.2 

Ws 5 

Op 3.2.2.1 

V Assign Tr V2 

2 2 0 0 

Ws 5 

Op 3.2.2.2 

V Assign Tr V2 

1 1 2 0 

 

Table B53: Enumeration Process Workstation 3 Option 3.3 

Ws 3 

Op 3.3 

V Assign Tr V2 

1, 2, 3 1 2 0 

1, 2, 3 2 0 0 

1, 2, 3 3 1 0 

 

Table B54: Enumeration Process Workstation 4 Option 3.3.1 

Ws 4 

Op 3.3.1 

V Assign Tr V2 

2, 3 2 0 0 

2, 3 3 1 0 

 



 

112 

 

Table B55: Enumeration Process Workstation 5 Options 3.3.1.1 and 3.3.1.2 

Ws 5 

Op 3.3.1.1 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 3.3.1.2 

V Assign Tr V2 

2 2 0 0 

 

Table B56: Enumeration Process Workstation 4 Option 3.3.2 

Ws 4 

Op 3.3.2 

V Assign Tr V2 

1, 3 1 2 0 

1, 3 3 1 0 

 

Table B57: Enumeration Process Workstations 5 and 4 Options 3.3.2.1 to 3.3.3 

Ws 5 

Op 3.3.2.1 

V Assign Tr V2 

3 3 1 0 

Ws 5 

Op 3.3.2.2 

V Assign Tr V2 

1 1 2 0 

Ws 4 

Op 3.3.3 

V Assign Tr V2 

1, 2 1 2 0 

1, 2 2 0 0 

 

Table B58: Enumeration Process Workstation 5 Options 3.3.3.1 and 3.3.3.2 

Ws 5 

Op 3.3.3.1 

V Assign Tr V2 

2 2 0 0 

Ws 5 

Op 3.3.3.2 

V Assign Tr V2 

1 1 2 0 
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APPENDIX C 

 

 

Integer Programming Solution for the LBP Using the Software LINDO 

 

MIN 

X_a1+2X_a2+3X_a3+4X_a4+5X_a5+X_b1+2X_b2+3X_b3+4X_b4+5X_b5+X_c1+2X_c2+3X

_c3+4X_c4+5X_c5+X_d1+2X_d2+3X_d3+4X_d4+5X_d5+X_e1+2X_e2+3X_e3+4X_e4+5X_e

5 

 

 SUBJECT TO 

Applying the cycle time restriction we get: 

 

 40X_a1+75X_b1+50X_c1+35X_d1+80X_e1<=100 

 40X_a2+75X_b2+50X_c2+35X_d2+80X_e2<=100 

 40X_a3+75X_b3+50X_c3+35X_d3+80X_e3<=100 

 40X_a4+75X_b4+50X_c4+35X_d4+80X_e4<=100 

 40X_a5+75X_b5+50X_c5+35X_d5+80X_e5<=100 

 

And after applying unit assignment restrictions: 

 X_a1+X_a2+X_a3+X_a4+X_a5=1 

 X_b1+X_b2+X_b3+X_b4+X_b5=1 

 X_c1+X_c2+X_c3+X_c4+X_c5=1 

 X_d1+X_d2+X_d3+X_d4+X_d5=1 

 X_e1+X_e2+X_e3+X_e4+X_e5=1 

 

And finally, the precedence restrictions: 

 

 X_b1-X_a1<=0 

 X_b2-X_a1-X_a2<=0 
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 X_b3-X_a1-X_a2-X_a3<=0 

 X_b4-X_a1-X_a2-X_a3-X_a4<=0 

 X_b5-X_a1-X_a2-X_a3-X_a4-X_a5<=0 

 

Since a is the immediate predecessor of c, then the following complies: 

 

 X_c1-X_a1<=0 

 X_c2-X_a1-X_a2<=0 

 X_c3-X_a1-X_a2-X_a3<=0 

 X_c4-X_a1-X_a2-X_a3-X_a4<=0 

 X_c5-X_a1-X_a2-X_a3-X_a4-X_a5<=0 

 

Likewise, c is the predecessor of d, so: 

 

 X_d1-X_c1<=0 

 X_d2-X_c1-X_c2<=0 

 X_d3-X_c1-X_c2-X_c3<=0 

 X_d4-X_c1-X_c2-X_c3-X_c4<=0 

 X_d5-X_c1-X_c2-X_c3-X_c4-X_c5<=0 

 

The final restriction says that e has two predecessors, b and d. So, applying these restrictions 

results in: 

 

 X_e1-X_b1-X_d1<=0 

 X_e2-X_b1-X_d1-X_b2-X_d2<=0 

 X_e3-X_b1-X_d1-X_b2-X_d2-X_b3-X_d3<=0 

 X_e4-X_b1-X_d1-X_b2-X_d2-X_b3-X_d3-X_b4-X_d4<=0 

 X_e5-X_b1-X_d1-X_b2-X_d2-X_b3-X_d3-X_b4-X_d4-X_b5-X_d5<=0 
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END 

 INT 25 

 

LP OPTIMUM FOUND AT STEP     12 

 OBJECTIVE VALUE =   8.58823490 

 

 FIX ALL VARS.(   10)  WITH RC >   1.00000 

 SET     X_C1 TO >=     1 AT    1, BND=  -10.16     TWIN= -10.31         57 

 SET     X_B3 TO <=     0 AT    2, BND=  -10.19     TWIN= -10.50         62 

 SET     X_E3 TO <=     0 AT    3, BND=  -11.00     TWIN= -10.43         67 

 

 NEW INTEGER SOLUTION OF    11.0000000     AT BRANCH      3 PIVOT      67 

 BOUND ON OPTIMUM:  10.31250 

 DELETE     X_E3 AT LEVEL     3 

 DELETE     X_B3 AT LEVEL     2 

 DELETE     X_C1 AT LEVEL     1 

 ENUMERATION COMPLETE. BRANCHES=     3 PIVOTS=      67 

 

 LAST INTEGER SOLUTION IS THE BEST FOUND 

 RE-INSTALLING BEST SOLUTION... 

 

        OBJECTIVE FUNCTION VALUE 

 

        1)      11.00000 

 

  VARIABLE        VALUE          REDUCED COST 

      X_A1         1.000000          1.000000 

      X_A2         0.000000          2.000000 
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      X_A3         0.000000          3.000000 

      X_A4         0.000000          4.000000 

      X_A5         0.000000          5.000000 

      X_B1         0.000000          1.000000 

      X_B2         1.000000          2.000000 

      X_B3         0.000000          3.000000 

      X_B4         0.000000          4.000000 

      X_B5         0.000000          5.000000 

      X_C1         1.000000          1.000000 

      X_C2         0.000000          2.000000 

      X_C3         0.000000          3.000000 

      X_C4         0.000000          4.000000 

      X_C5         0.000000          5.000000 

      X_D1         0.000000          1.000000 

      X_D2         0.000000          2.000000 

      X_D3         1.000000          3.000000 

      X_D4         0.000000          4.000000 

      X_D5         0.000000          5.000000 

      X_E1         0.000000          1.000000 

      X_E2         0.000000          2.000000 

      X_E3         0.000000          3.000000 

      X_E4         1.000000          4.000000 

      X_E5         0.000000          5.000000 

 

 

     

   ROW   SLACK OR SURPLUS     DUAL PRICES 

        2)        10.000000          0.000000 
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        3)        25.000000          0.000000 

        4)        65.000000          0.000000 

        5)        20.000000          0.000000 

        6)       100.000000          0.000000 

        7)         0.000000          0.000000 

        8)         0.000000          0.000000 

        9)         0.000000          0.000000 

       10)         0.000000          0.000000 

       11)         0.000000          0.000000 

       12)         1.000000          0.000000 

       13)         0.000000          0.000000 

       14)         1.000000          0.000000 

       15)         1.000000          0.000000 

       16)         1.000000          0.000000 

       17)         0.000000          0.000000 

       18)         1.000000          0.000000 

       19)         1.000000          0.000000 

       20)         1.000000          0.000000 

       21)         1.000000          0.000000 

       22)         1.000000          0.000000 

       23)         1.000000          0.000000 

       24)         0.000000          0.000000 

       25)         1.000000          0.000000 

       26)         1.000000          0.000000 

       27)         0.000000          0.000000 

       28)         1.000000          0.000000 

       29)         2.000000          0.000000 

       30)         1.000000          0.000000 
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       31)         2.000000          0.000000 

 

 NO. ITERATIONS=      69 

 BRANCHES=    3 DETERM.=  1.000E    0 
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APPENDIX D 

 

Table D1: Coded Values for Chromosomes 10-14 

10 -1 11 -0.97778 12 -0.95556 13 -0.93333 14 -0.91111 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

0.00 0.00 -0.18 -0.18 -0.33 -0.33 -0.46 -0.46 -0.57 -0.57 

1.00 1.00 0.73 0.73 0.50 0.50 0.31 0.31 0.14 0.14 

        0.86 0.86 

Table D2: Coded Values for Chromosomes 15-19 

15 -0.88889 16 -0.86667 17 -0.84444 18 -0.82222 19 -0.8 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

                   

-0.67 -0.67 -0.75 -0.75 -0.82 -0.82 -0.89 -0.89 -0.95 -0.95 

0.00 0.00 -0.13 -0.13 -0.24 -0.24 -0.33 -0.33 -0.42 -0.42 

0.67 0.67 0.50 0.50 0.35 0.35 0.22 0.22 0.11 0.11 

    0.94 0.94 0.78 0.78 0.63 0.63 

 

Table D3: Coded Values for Chromosomes 20-24 

20 -0.77778 21 -0.75556 22 -0.73333 23 -0.71111 24 -0.68889 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.50 -0.50 -0.57 -0.57 -0.64 -0.64 -0.70 -0.70 -0.75 -0.75 

0.00 0.00 -0.10 -0.10 -0.18 -0.18 -0.26 -0.26 -0.33 -0.33 

0.50 0.50 0.38 0.38 0.27 0.27 0.17 0.17 0.08 0.08 

1.00 1.00 0.86 0.86 0.73 0.73 0.61 0.61 0.50 0.50 

        0.92 0.92 

Table D4: Coded Values for Chromosomes 25-29 

25 -0.66667 26 -0.64444 27 -0.62222 28 -0.6 29 -0.57778 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.80 -0.80 -0.85 -0.85 -0.89 -0.89 -0.93 -0.93 -0.97 -0.97 

-0.40 -0.40 -0.46 -0.46 -0.52 -0.52 -0.57 -0.57 -0.62 -0.62 

0.00 0.00 -0.08 -0.08 -0.15 -0.15 -0.21 -0.21 -0.28 -0.28 

0.40 0.40 0.31 0.31 0.22 0.22 0.14 0.14 0.07 0.07 

0.80 0.80 0.69 0.69 0.59 0.59 0.50 0.50 0.41 0.41 

    0.96 0.96 0.86 0.86 0.76 0.76 
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Table D5: Coded Values for Chromosomes 30-34 

30 -0.55556 31 -0.53333 32 -0.51111 33 -0.48889 34 -0.46667 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.67 -0.67 -0.71 -0.71 -0.75 -0.75 -0.79 -0.79 -0.82 -0.82 

-0.33 -0.33 -0.39 -0.39 -0.44 -0.44 -0.48 -0.48 -0.53 -0.53 

0.00 0.00 -0.06 -0.06 -0.13 -0.13 -0.18 -0.18 -0.24 -0.24 

0.33 0.33 0.26 0.26 0.19 0.19 0.12 0.12 0.06 0.06 

0.67 0.67 0.58 0.58 0.50 0.50 0.42 0.42 0.35 0.35 

1.00 1.00 0.90 0.90 0.81 0.81 0.73 0.73 0.65 0.65 

        0.94 0.94 

Table D6: Coded Values for Chromosomes 35-39 

35 -0.44444 36 -0.42222 37 -0.4 38 -0.37778 39 -0.35556 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.86 -0.86 -0.89 -0.89 -0.92 -0.92 -0.95 -0.95 -0.97 -0.97 

-0.57 -0.57 -0.61 -0.61 -0.65 -0.65 -0.68 -0.68 -0.72 -0.72 

-0.29 -0.29 -0.33 -0.33 -0.38 -0.38 -0.42 -0.42 -0.46 -0.46 

0.00 0.00 -0.06 -0.06 -0.11 -0.11 -0.16 -0.16 -0.21 -0.21 

0.29 0.29 0.22 0.22 0.16 0.16 0.11 0.11 0.05 0.05 

0.57 0.57 0.50 0.50 0.43 0.43 0.37 0.37 0.31 0.31 

0.86 0.86 0.78 0.78 0.70 0.70 0.63 0.63 0.56 0.56 

    0.97 0.97 0.89 0.89 0.82 0.82 
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Table D7: Coded Values for Chromosomes 40-44 

40 -0.33333 41 -0.31111 42 -0.28889 43 -0.26667 44 -0.24444 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.75 -0.75 -0.78 -0.78 -0.81 -0.81 -0.84 -0.84 -0.86 -0.86 

-0.50 -0.50 -0.54 -0.54 -0.57 -0.57 -0.60 -0.60 -0.64 -0.64 

-0.25 -0.25 -0.29 -0.29 -0.33 -0.33 -0.37 -0.37 -0.41 -0.41 

0.00 0.00 -0.05 -0.05 -0.10 -0.10 -0.14 -0.14 -0.18 -0.18 

0.25 0.25 0.20 0.20 0.14 0.14 0.09 0.09 0.05 0.05 

0.50 0.50 0.44 0.44 0.38 0.38 0.33 0.33 0.27 0.27 

0.75 0.75 0.68 0.68 0.62 0.62 0.56 0.56 0.50 0.50 

1.00 1.00 0.93 0.93 0.86 0.86 0.79 0.79 0.73 0.73 

        0.95 0.95 

Table D8: Coded Values for Chromosomes 45-49 

45 -0.22222 46 -0.2 47 -0.17778 48 -0.15556 49 -0.13333 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.89 -0.89 -0.91 -0.91 -0.94 -0.94 -0.96 -0.96 -0.98 -0.98 

-0.67 -0.67 -0.70 -0.70 -0.72 -0.72 -0.75 -0.75 -0.78 -0.78 

-0.44 -0.44 -0.48 -0.48 -0.51 -0.51 -0.54 -0.54 -0.57 -0.57 

-0.22 -0.22 -0.26 -0.26 -0.30 -0.30 -0.33 -0.33 -0.37 -0.37 

0.00 0.00 -0.04 -0.04 -0.09 -0.09 -0.13 -0.13 -0.16 -0.16 

0.22 0.22 0.17 0.17 0.13 0.13 0.08 0.08 0.04 0.04 

0.44 0.44 0.39 0.39 0.34 0.34 0.29 0.29 0.24 0.24 

0.67 0.67 0.61 0.61 0.55 0.55 0.50 0.50 0.45 0.45 

0.89 0.89 0.83 0.83 0.77 0.77 0.71 0.71 0.65 0.65 

    0.98 0.98 0.92 0.92 0.86 0.86 
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Table D9: Coded Values for Chromosomes 50-54 

50 -0.11111 51 -0.08889 52 -0.06667 53 -0.04444 54 -0.02222 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.80 -0.80 -0.82 -0.82 -0.85 -0.85 -0.87 -0.87 -0.89 -0.89 

-0.60 -0.60 -0.63 -0.63 -0.65 -0.65 -0.68 -0.68 -0.70 -0.70 

-0.40 -0.40 -0.43 -0.43 -0.46 -0.46 -0.49 -0.49 -0.52 -0.52 

-0.20 -0.20 -0.24 -0.24 -0.27 -0.27 -0.30 -0.30 -0.33 -0.33 

0.00 0.00 -0.04 -0.04 -0.08 -0.08 -0.11 -0.11 -0.15 -0.15 

0.20 0.20 0.16 0.16 0.12 0.12 0.08 0.08 0.04 0.04 

0.40 0.40 0.35 0.35 0.31 0.31 0.26 0.26 0.22 0.22 

0.60 0.60 0.55 0.55 0.50 0.50 0.45 0.45 0.41 0.41 

0.80 0.80 0.75 0.75 0.69 0.69 0.64 0.64 0.59 0.59 

1.00 1.00 0.94 0.94 0.88 0.88 0.83 0.83 0.78 0.78 

        0.96 0.96 

Table D10: Coded Values for Chromosomes 55-59 

55 0 56 0.022222 57 0.044444 58 0.066667 59 0.088889 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.91 -0.91 -0.93 -0.93 -0.95 -0.95 -0.97 -0.97 -0.98 -0.98 

-0.73 -0.73 -0.75 -0.75 -0.77 -0.77 -0.79 -0.79 -0.81 -0.81 

-0.55 -0.55 -0.57 -0.57 -0.60 -0.60 -0.62 -0.62 -0.64 -0.64 

-0.36 -0.36 -0.39 -0.39 -0.42 -0.42 -0.45 -0.45 -0.47 -0.47 

-0.18 -0.18 -0.21 -0.21 -0.25 -0.25 -0.28 -0.28 -0.31 -0.31 

0.00 0.00 -0.04 -0.04 -0.07 -0.07 -0.10 -0.10 -0.14 -0.14 

0.18 0.18 0.14 0.14 0.11 0.11 0.07 0.07 0.03 0.03 

0.36 0.36 0.32 0.32 0.28 0.28 0.24 0.24 0.20 0.20 

0.55 0.55 0.50 0.50 0.46 0.46 0.41 0.41 0.37 0.37 

0.73 0.73 0.68 0.68 0.63 0.63 0.59 0.59 0.54 0.54 

0.91 0.91 0.86 0.86 0.81 0.81 0.76 0.76 0.71 0.71 

    0.98 0.98 0.93 0.93 0.88 0.88 
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Table D11: Coded Values for Chromosomes 60-64 

60 0.111111 61 0.133333 62 0.155556 63 0.177778 64 0.2 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.83 -0.83 -0.85 -0.85 -0.87 -0.87 -0.89 -0.89 -0.91 -0.91 

-0.67 -0.67 -0.69 -0.69 -0.71 -0.71 -0.73 -0.73 -0.75 -0.75 

-0.50 -0.50 -0.52 -0.52 -0.55 -0.55 -0.57 -0.57 -0.59 -0.59 

-0.33 -0.33 -0.36 -0.36 -0.39 -0.39 -0.41 -0.41 -0.44 -0.44 

-0.17 -0.17 -0.20 -0.20 -0.23 -0.23 -0.25 -0.25 -0.28 -0.28 

0.00 0.00 -0.03 -0.03 -0.06 -0.06 -0.10 -0.10 -0.13 -0.13 

0.17 0.17 0.13 0.13 0.10 0.10 0.06 0.06 0.03 0.03 

0.33 0.33 0.30 0.30 0.26 0.26 0.22 0.22 0.19 0.19 

0.50 0.50 0.46 0.46 0.42 0.42 0.38 0.38 0.34 0.34 

0.67 0.67 0.62 0.62 0.58 0.58 0.54 0.54 0.50 0.50 

0.83 0.83 0.79 0.79 0.74 0.74 0.70 0.70 0.66 0.66 

1.00 1.00 0.95 0.95 0.90 0.90 0.86 0.86 0.81 0.81 

        0.97 0.97 

Table D12: Coded Values for Chromosomes 65-69 

65 0.222222 66 0.244444 67 0.266667 68 0.288889 69 0.311111 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.92 -0.92 -0.94 -0.94 -0.96 -0.96 -0.97 -0.97 -0.99 -0.99 

-0.77 -0.77 -0.79 -0.79 -0.81 -0.81 -0.82 -0.82 -0.84 -0.84 

-0.62 -0.62 -0.64 -0.64 -0.66 -0.66 -0.68 -0.68 -0.70 -0.70 

-0.46 -0.46 -0.48 -0.48 -0.51 -0.51 -0.53 -0.53 -0.55 -0.55 

-0.31 -0.31 -0.33 -0.33 -0.36 -0.36 -0.38 -0.38 -0.41 -0.41 

-0.15 -0.15 -0.18 -0.18 -0.21 -0.21 -0.24 -0.24 -0.26 -0.26 

0.00 0.00 -0.03 -0.03 -0.06 -0.06 -0.09 -0.09 -0.12 -0.12 

0.15 0.15 0.12 0.12 0.09 0.09 0.06 0.06 0.03 0.03 

0.31 0.31 0.27 0.27 0.24 0.24 0.21 0.21 0.17 0.17 

0.46 0.46 0.42 0.42 0.39 0.39 0.35 0.35 0.32 0.32 

0.62 0.62 0.58 0.58 0.54 0.54 0.50 0.50 0.46 0.46 

0.77 0.77 0.73 0.73 0.69 0.69 0.65 0.65 0.61 0.61 

0.92 0.92 0.88 0.88 0.84 0.84 0.79 0.79 0.75 0.75 

    0.99 0.99 0.94 0.94 0.90 0.90 
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Table D13: Coded Values for Chromosomes 70-74 

70 0.333333 71 0.355556 72 0.377778 73 0.4 74 0.422222 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.86 -0.86 -0.87 -0.87 -0.89 -0.89 -0.90 -0.90 -0.92 -0.92 

-0.71 -0.71 -0.73 -0.73 -0.75 -0.75 -0.77 -0.77 -0.78 -0.78 

-0.57 -0.57 -0.59 -0.59 -0.61 -0.61 -0.63 -0.63 -0.65 -0.65 

-0.43 -0.43 -0.45 -0.45 -0.47 -0.47 -0.49 -0.49 -0.51 -0.51 

-0.29 -0.29 -0.31 -0.31 -0.33 -0.33 -0.36 -0.36 -0.38 -0.38 

-0.14 -0.14 -0.17 -0.17 -0.19 -0.19 -0.22 -0.22 -0.24 -0.24 

0.00 0.00 -0.03 -0.03 -0.06 -0.06 -0.08 -0.08 -0.11 -0.11 

0.14 0.14 0.11 0.11 0.08 0.08 0.05 0.05 0.03 0.03 

0.29 0.29 0.25 0.25 0.22 0.22 0.19 0.19 0.16 0.16 

0.43 0.43 0.39 0.39 0.36 0.36 0.33 0.33 0.30 0.30 

0.57 0.57 0.54 0.54 0.50 0.50 0.47 0.47 0.43 0.43 

0.71 0.71 0.68 0.68 0.64 0.64 0.60 0.60 0.57 0.57 

0.86 0.86 0.82 0.82 0.78 0.78 0.74 0.74 0.70 0.70 

1.00 1.00 0.96 0.96 0.92 0.92 0.88 0.88 0.84 0.84 

        0.97 0.97 

Table D14: Coded Values for Chromosomes 75-79 

75 0.444444 76 0.466667 77 0.488889 78 0.511111 79 0.533333 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.93 -0.93 -0.95 -0.95 -0.96 -0.96 -0.97 -0.97 -0.99 -0.99 

-0.80 -0.80 -0.82 -0.82 -0.83 -0.83 -0.85 -0.85 -0.86 -0.86 

-0.67 -0.67 -0.68 -0.68 -0.70 -0.70 -0.72 -0.72 -0.73 -0.73 

-0.53 -0.53 -0.55 -0.55 -0.57 -0.57 -0.59 -0.59 -0.61 -0.61 

-0.40 -0.40 -0.42 -0.42 -0.44 -0.44 -0.46 -0.46 -0.48 -0.48 

-0.27 -0.27 -0.29 -0.29 -0.31 -0.31 -0.33 -0.33 -0.35 -0.35 

-0.13 -0.13 -0.16 -0.16 -0.18 -0.18 -0.21 -0.21 -0.23 -0.23 

0.00 0.00 -0.03 -0.03 -0.05 -0.05 -0.08 -0.08 -0.10 -0.10 

0.13 0.13 0.11 0.11 0.08 0.08 0.05 0.05 0.03 0.03 

0.27 0.27 0.24 0.24 0.21 0.21 0.18 0.18 0.15 0.15 

0.40 0.40 0.37 0.37 0.34 0.34 0.31 0.31 0.28 0.28 

0.53 0.53 0.50 0.50 0.47 0.47 0.44 0.44 0.41 0.41 

0.67 0.67 0.63 0.63 0.60 0.60 0.56 0.56 0.53 0.53 

0.80 0.80 0.76 0.76 0.73 0.73 0.69 0.69 0.66 0.66 

0.93 0.93 0.89 0.89 0.86 0.86 0.82 0.82 0.78 0.78 

    0.99 0.99 0.95 0.95 0.91 0.91 

 

 



 

125 

 

Table D15: Coded Values for Chromosomes 80-84 

80 0.555556 81 0.577778 82 0.6 83 0.622222 84 0.644444 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.88 -0.88 -0.89 -0.89 -0.90 -0.90 -0.92 -0.92 -0.93 -0.93 

-0.75 -0.75 -0.77 -0.77 -0.78 -0.78 -0.80 -0.80 -0.81 -0.81 

-0.63 -0.63 -0.64 -0.64 -0.66 -0.66 -0.67 -0.67 -0.69 -0.69 

-0.50 -0.50 -0.52 -0.52 -0.54 -0.54 -0.55 -0.55 -0.57 -0.57 

-0.38 -0.38 -0.40 -0.40 -0.41 -0.41 -0.43 -0.43 -0.45 -0.45 

-0.25 -0.25 -0.27 -0.27 -0.29 -0.29 -0.31 -0.31 -0.33 -0.33 

-0.13 -0.13 -0.15 -0.15 -0.17 -0.17 -0.19 -0.19 -0.21 -0.21 

0.00 0.00 -0.02 -0.02 -0.05 -0.05 -0.07 -0.07 -0.10 -0.10 

0.13 0.13 0.10 0.10 0.07 0.07 0.05 0.05 0.02 0.02 

0.25 0.25 0.22 0.22 0.20 0.20 0.17 0.17 0.14 0.14 

0.38 0.38 0.35 0.35 0.32 0.32 0.29 0.29 0.26 0.26 

0.50 0.50 0.47 0.47 0.44 0.44 0.41 0.41 0.38 0.38 

0.63 0.63 0.59 0.59 0.56 0.56 0.53 0.53 0.50 0.50 

0.75 0.75 0.72 0.72 0.68 0.68 0.65 0.65 0.62 0.62 

0.88 0.88 0.84 0.84 0.80 0.80 0.77 0.77 0.74 0.74 

1.00 1.00 0.96 0.96 0.93 0.93 0.89 0.89 0.86 0.86 

        0.98 0.98 
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Table D16: Coded Values for Chromosomes 85-89 

85 0.666667 86 0.688889 87 0.711111 88 0.733333 89 0.755556 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.94 -0.94 -0.95 -0.95 -0.97 -0.97 -0.98 -0.98 -0.99 -0.99 

-0.82 -0.82 -0.84 -0.84 -0.85 -0.85 -0.86 -0.86 -0.88 -0.88 

-0.71 -0.71 -0.72 -0.72 -0.74 -0.74 -0.75 -0.75 -0.76 -0.76 

-0.59 -0.59 -0.60 -0.60 -0.62 -0.62 -0.64 -0.64 -0.65 -0.65 

-0.47 -0.47 -0.49 -0.49 -0.51 -0.51 -0.52 -0.52 -0.54 -0.54 

-0.35 -0.35 -0.37 -0.37 -0.39 -0.39 -0.41 -0.41 -0.43 -0.43 

-0.24 -0.24 -0.26 -0.26 -0.28 -0.28 -0.30 -0.30 -0.31 -0.31 

-0.12 -0.12 -0.14 -0.14 -0.16 -0.16 -0.18 -0.18 -0.20 -0.20 

0.00 0.00 -0.02 -0.02 -0.05 -0.05 -0.07 -0.07 -0.09 -0.09 

0.12 0.12 0.09 0.09 0.07 0.07 0.05 0.05 0.02 0.02 

0.24 0.24 0.21 0.21 0.18 0.18 0.16 0.16 0.13 0.13 

0.35 0.35 0.33 0.33 0.30 0.30 0.27 0.27 0.25 0.25 

0.47 0.47 0.44 0.44 0.41 0.41 0.39 0.39 0.36 0.36 

0.59 0.59 0.56 0.56 0.53 0.53 0.50 0.50 0.47 0.47 

0.71 0.71 0.67 0.67 0.64 0.64 0.61 0.61 0.58 0.58 

0.82 0.82 0.79 0.79 0.76 0.76 0.73 0.73 0.70 0.70 

0.94 0.94 0.91 0.91 0.87 0.87 0.84 0.84 0.81 0.81 

    0.99 0.99 0.95 0.95 0.92 0.92 
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Table D17: Coded Values for Chromosomes 90-94 

90 0.777778 91 0.8 92 0.822222 93 0.844444 94 0.866667 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-1.00 -1.00                

-0.89 -0.89 -0.90 -0.90 -0.91 -0.91 -0.92 -0.92 -0.94 -0.94 

-0.78 -0.78 -0.79 -0.79 -0.80 -0.80 -0.82 -0.82 -0.83 -0.83 

-0.67 -0.67 -0.68 -0.68 -0.70 -0.70 -0.71 -0.71 -0.72 -0.72 

-0.56 -0.56 -0.57 -0.57 -0.59 -0.59 -0.60 -0.60 -0.62 -0.62 

-0.44 -0.44 -0.46 -0.46 -0.48 -0.48 -0.49 -0.49 -0.51 -0.51 

-0.33 -0.33 -0.35 -0.35 -0.37 -0.37 -0.39 -0.39 -0.40 -0.40 

-0.22 -0.22 -0.24 -0.24 -0.26 -0.26 -0.28 -0.28 -0.30 -0.30 

-0.11 -0.11 -0.13 -0.13 -0.15 -0.15 -0.17 -0.17 -0.19 -0.19 

0.00 0.00 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 -0.09 -0.09 

0.11 0.11 0.09 0.09 0.07 0.07 0.04 0.04 0.02 0.02 

0.22 0.22 0.20 0.20 0.17 0.17 0.15 0.15 0.13 0.13 

0.33 0.33 0.31 0.31 0.28 0.28 0.26 0.26 0.23 0.23 

0.44 0.44 0.42 0.42 0.39 0.39 0.37 0.37 0.34 0.34 

0.56 0.56 0.53 0.53 0.50 0.50 0.47 0.47 0.45 0.45 

0.67 0.67 0.64 0.64 0.61 0.61 0.58 0.58 0.55 0.55 

0.78 0.78 0.75 0.75 0.72 0.72 0.69 0.69 0.66 0.66 

0.89 0.89 0.86 0.86 0.83 0.83 0.80 0.80 0.77 0.77 

1.00 1.00 0.97 0.97 0.93 0.93 0.90 0.90 0.87 0.87 

        0.98 0.98 
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Table D18: Coded Values for Chromosomes 95-99 

95 0.888889 96 0.911111 97 0.933333 98 0.955556 99 0.977778 

Children Mutation Children Mutation Children Mutation Children Mutation Children Mutation 

-0.95 -0.95 -0.96 -0.96 -0.97 -0.97 -0.98 -0.98 -0.99 -0.99 

-0.84 -0.84 -0.85 -0.85 -0.87 -0.87 -0.88 -0.88 -0.89 -0.89 

-0.74 -0.74 -0.75 -0.75 -0.76 -0.76 -0.78 -0.78 -0.79 -0.79 

-0.63 -0.63 -0.65 -0.65 -0.66 -0.66 -0.67 -0.67 -0.69 -0.69 

-0.53 -0.53 -0.54 -0.54 -0.56 -0.56 -0.57 -0.57 -0.59 -0.59 

-0.42 -0.42 -0.44 -0.44 -0.45 -0.45 -0.47 -0.47 -0.48 -0.48 

-0.32 -0.32 -0.33 -0.33 -0.35 -0.35 -0.37 -0.37 -0.38 -0.38 

-0.21 -0.21 -0.23 -0.23 -0.25 -0.25 -0.27 -0.27 -0.28 -0.28 

-0.11 -0.11 -0.13 -0.13 -0.14 -0.14 -0.16 -0.16 -0.18 -0.18 

0.00 0.00 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 -0.08 -0.08 

0.11 0.11 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 

0.21 0.21 0.19 0.19 0.16 0.16 0.14 0.14 0.12 0.12 

0.32 0.32 0.29 0.29 0.27 0.27 0.24 0.24 0.22 0.22 

0.42 0.42 0.40 0.40 0.37 0.37 0.35 0.35 0.32 0.32 

0.53 0.53 0.50 0.50 0.47 0.47 0.45 0.45 0.42 0.42 

0.63 0.63 0.60 0.60 0.58 0.58 0.55 0.55 0.53 0.53 

0.74 0.74 0.71 0.71 0.68 0.68 0.65 0.65 0.63 0.63 

0.84 0.84 0.81 0.81 0.78 0.78 0.76 0.76 0.73 0.73 

0.95 0.95 0.92 0.92 0.89 0.89 0.86 0.86 0.83 0.83 

    0.99 0.99 0.96 0.96 0.93 0.93 
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Table D19: Coded Values for Chromosome 100 

100 1 

Children Mutation 

-1.00 -1.00 

-0.90 -0.90 

-0.80 -0.80 

-0.70 -0.70 

-0.60 -0.60 

-0.50 -0.50 

-0.40 -0.40 

-0.30 -0.30 

-0.20 -0.20 

-0.10 -0.10 

0.00 0.00 

0.10 0.10 

0.20 0.20 

0.30 0.30 

0.40 0.40 

0.50 0.50 

0.60 0.60 

0.70 0.70 

0.80 0.80 

0.90 0.90 

1.00 1.00 
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APPENDIX E 

 

 

Table E1: Group B Complete Model Results 
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Figure E1: Residuals Scattered Plot of Group B 
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Figure E2: Group B Residuals Normal Distribution 

 

Table E2: Group B Reduced Model Results 
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Table E3: Group C Complete Model Results 
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Figure E3: Residuals Scattered Plot of Group C 
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Figure E4: Group C Residuals Normal Distribution 

 

Table E4: Group C Reduced Model Results 
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APPENDIX F 

 

 

 

 

Figure F1: Residuals Scattered Plot of Group A 
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Figure F2: Group A Residuals Normal Distribution 

 

Table F1: Group B Complete Model Results 
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Figure F3: Residuals Scattered Plot of Group B 
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Figure F4: Group B Residuals Normal Distribution 

 

Table F2: Group B Reduced Model Results 
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Table F3: Group C Complete Model Results 

 

 

Figure F5: Residuals Scattered Plot of Group C 
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Figure F6: Group C Residuals Normal Distribution 

 

Table F4: Group C Reduced Model Results 

 


