2,572 research outputs found

    Temporal Answer Set Programming

    Get PDF
    Answer Set Programming (ASP) has become a popular way for representing different kinds of scenarios from knowledge representation in Artificial Intelligence. Frequently, these scenarios involve a temporal component which must be considered. In ASP, time is usually represented as a variable whose values are defined by an extensional predicate with a finite domain. Dealing with a finite temporal interval has some disadvantages. First, checking the existence of a plan is not possible and second, it also makes difficult to decide whether two programs are strongly equivalent. If we extend the syntax of Answer Set Programming by using temporal operators from temporal modal logics, then infinite time can be considered, so the aforementioned disadvantages can be overcome. This extension constitutes, in fact, a formalism called Temporal Equilibrium Logic, which is based on Equilibrium Logic (a logical characterisation of ASP). Although recent contributions have shown promising results, Temporal Equilibrium Logic is still a novel paradigm and there are many gaps to fill. Our goal is to keep developing this paradigm, filling those gaps and turning it into a suitable framework for temporal reasoning

    Modularity in answer set programs

    Get PDF
    Answer set programming (ASP) is an approach to rule-based constraint programming allowing flexible knowledge representation in variety of application areas. The declarative nature of ASP is reflected in problem solving. First, a programmer writes down a logic program the answer sets of which correspond to the solutions of the problem. The answer sets of the program are then computed using a special purpose search engine, an ASP solver. The development of efficient ASP solvers has enabled the use of answer set programming in various application domains such as planning, product configuration, computer aided verification, and bioinformatics. The topic of this thesis is modularity in answer set programming. While modern programming languages typically provide means to exploit modularity in a number of ways to govern the complexity of programs and their development process, relatively little attention has been paid to modularity in ASP. When designing a module architecture for ASP, it is essential to establish full compositionality of the semantics with respect to the module system. A balance is sought between introducing restrictions that guarantee the compositionality of the semantics and enforce a good programming style in ASP, and avoiding restrictions on the module hierarchy for the sake of flexibility of knowledge representation. To justify a replacement of a module with another, that is, to be able to guarantee that changes made on the level of modules do not alter the semantics of the program when seen as an entity, a notion of equivalence for modules is provided. In close connection with the development of the compositional module architecture, a transformation from verification of equivalence to search for answer sets is developed. The translation-based approach makes it unnecessary to develop a dedicated tool for the equivalence verification task by allowing the direct use of existing ASP solvers. Translations and transformations between different problems, program classes, and formalisms are another central theme in the thesis. To guarantee efficiency and soundness of the translation-based approach, certain syntactical and semantical properties of transformations are desirable, in terms of translation time, solution correspondence between the original and the transformed problem, and locality/globality of a particular transformation. In certain cases a more refined notion of minimality than that inherent in ASP can make program encodings more intuitive. Lifschitz' parallel and prioritized circumscription offer a solution in which certain atoms are allowed to vary or to have fixed values while others are falsified as far as possible according to priority classes. In this thesis a linear and faithful transformation embedding parallel and prioritized circumscription into ASP is provided. This enhances the knowledge representation capabilities of answer set programming by allowing the use of existing ASP solvers for computing parallel and prioritized circumscription

    Introspecting Preferences in Answer Set Programming

    Get PDF
    This paper develops a logic programming language, ASP^EP, that extends answer set programming language with a new epistemic operator >~_x where x in {#,supseteq}. The operator are used between two literals in rules bodies, and thus allows for the representation of introspections of preferences in the presence of multiple belief sets: G >~_# F expresses that G is preferred to F by the cardinality of the sets, and G >~_supseteq F expresses G is preferred to F by the set-theoretic inclusion. We define the semantics of ASP^EP, explore the relation to the languages of strong introspections, and study the applications of ASP^EP by modeling the Monty Hall problem and the principle of majority

    Inductive learning of answer set programs

    Get PDF
    The goal of Inductive Logic Programming (ILP) is to find a hypothesis that explains a set of examples in the context of some pre-existing background knowledge. Until recently, most research on ILP targeted learning definite logic programs. This thesis constitutes the first comprehensive work on learning answer set programs, introducing new learning frameworks, theoretical results on the complexity and generality of these frameworks, algorithms for learning ASP programs, and an extensive evaluation of these algorithms. Although there is previous work on learning ASP programs, existing learning frameworks are either brave -- where examples should be explained by at least one answer set -- or cautious where examples should be explained by all answer sets. There are cases where brave induction is too weak and cautious induction is too strong. Our proposed frameworks combine brave and cautious learning and can learn ASP programs containing choice rules and constraints. Many applications of ASP use weak constraints to express a preference ordering over the answer sets of a program. Learning weak constraints corresponds to preference learning, which we achieve by introducing ordering examples. We then explore the generality of our frameworks, investigating what it means for a framework to be general enough to distinguish one hypothesis from another. We show that our frameworks are more general than both brave and cautious induction. We also present a new family of algorithms, called ILASP (Inductive Learning of Answer Set Programs), which we prove to be sound and complete. This work concerns learning from both non-noisy and noisy examples. In the latter case, ILASP returns a hypothesis that maximises the coverage of examples while minimising the length of the hypothesis. In our evaluation, we show that ILASP scales to tasks with large numbers of examples finding accurate hypotheses even in the presence of high proportions of noisy examples.Open Acces

    Linear-Time Temporal Answer Set Programming

    Get PDF
    [Abstract]: In this survey, we present an overview on (Modal) Temporal Logic Programming in view of its application to Knowledge Representation and Declarative Problem Solving. The syntax of this extension of logic programs is the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). In the paper, we focus on the main recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL but involves a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). As a result, we obtain a proper extension of the stable models semantics for the general case of temporal formulas in the syntax of LTL. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between finite and infinite trace length. We also provide further useful results, such as the translation into other formalisms like Quantified Equilibrium Logic and Second-order LTL, and some techniques for computing temporal stable models based on automata constructions. In the remainder of the paper, we focus on practical aspects, defining a syntactic fragment called (modal) temporal logic programs closer to ASP, and explaining how this has been exploited in the construction of the solver telingo, a temporal extension of the well-known ASP solver clingo that uses its incremental solving capabilities.Xunta de Galicia; ED431B 2019/03We are thankful to the anonymous reviewers for their thorough work and their useful suggestions that have helped to improve the paper. A special thanks goes to Mirosaw Truszczy´nski for his support in improving the quality of our paper. We are especially grateful to David Pearce, whose help and collaboration on Equilibrium Logic was the seed for a great part of the current paper. This work was partially supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), R´egion Pays de la Loire, France, (projects EL4HC and etoiles montantes CTASP), European Union COST action CA-17124, and DFG grants SCHA 550/11 and 15, Germany

    Multi-Criteria Optimization in Answer Set Programming

    Get PDF
    We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems via Answer Set Programming (ASP). In particular, we conceive a new solving algorithm, based on conflictdriven learning, allowing for non-uniform descents during optimization. We apply these techniques to solve realistic Linux package configuration problems. To this end, we describe the Linux package configuration tool aspcud and compare its performance with systems pursuing alternative approaches

    Automating Disease Management Using Answer Set Programming

    Get PDF
    Management of chronic diseases such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD) is a major problem in health care. A standard approach that the medical community has devised to manage widely prevalent chronic diseases such as chronic heart failure (CHF) is to have a committee of experts develop guidelines that all physicians should follow. These guidelines typically consist of a series of complex rules that make recommendations based on a patient\u27s information. Due to their complexity, often the guidelines are either ignored or not complied with at all, which can result in poor medical practices. It is not even clear whether it is humanly possible to follow these guidelines due to their length and complexity. In the case of CHF management, the guidelines run nearly 80 pages. In this paper we describe a physician-advisory system for CHF management that codes the entire set of clinical practice guidelines for CHF using answer set programming. Our approach is based on developing reasoning templates (that we call knowledge patterns) and using these patterns to systemically code the clinical guidelines for CHF as ASP rules. Use of the knowledge patterns greatly facilitates the development of our system. Given a patient\u27s medical information, our system generates a recommendation for treatment just as a human physician would, using the guidelines. Our system will work even in the presence of incomplete information. Our work makes two contributions: (i) it shows that highly complex guidelines can be successfully coded as ASP rules, and (ii) it develops a series of knowledge patterns that facilitate the coding of knowledge expressed in a natural language and that can be used for other application domains

    A System for Explainable Answer Set Programming

    Get PDF
    [Abstract] We present xclingo, a tool for generating explanations from ASP programs annotated with text and labels. These annotations allow tracing the application of rules or the atoms derived by them. The input of xclingo is a markup language written as ASP comment lines, so the programs annotated in this way can still be accepted by a standard ASP solver. xclingo translates the annotations into additional predicates and rules and uses the ASP solver clingo to obtain the extension of those auxiliary predicates. This information is used afterwards to construct derivation trees containing textual explanations. The language allows selecting which atoms to explain and, in its turn, which atoms or rules to include in those explanations. We illustrate the basic features through a diagnosis problem from the literature.Ministerio de Asuntos Económicos y Transformación Digital; TIN2017-84453-PXunta de Galicia; ED431G 2019/0

    Encoding Hard String Problems with Answer Set Programming

    Get PDF
    Despite the simple, one-dimensional nature of strings, several computationally hard problems on strings are known. Tackling hard problems beyond sizes of toy instances with straight-forward solutions is infeasible. To solve these problems on datasets of even small sizes, effort has to be put into the conception of algorithms leveraging profound characteristics of the input. Finding these characteristics can be eased by rapidly creating and evaluating prototypes of new concepts in how to tackle hard problems. Such a rapid-prototyping method for hard problems is answer set programming (ASP). In this light, we study the application of ASP on five NP-hard optimization problems in the field of strings. We provide MAX-SAT and ASP encodings, and empirically reason about the merits and flaws when working with ASP solvers

    Incremental answer set programming

    Get PDF
    • …
    corecore