
Multi-Criteria Optimization in Answer Set
Programming

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub

Institut für Informatik, Universität Potsdam

Abstract
We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems
via Answer Set Programming (ASP). In particular, we conceive a new solving algorithm, based on
conflict-driven learning, allowing for non-uniform descents during optimization. We apply these
techniques to solve realistic Linux package configuration problems. To this end, we describe the
Linux package configuration tool aspcud and compare its performance with systems pursuing
alternative approaches.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem
Proving, I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, Multi-Criteria Optimization, Linux Package
Configuration

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.1

1 Introduction

Solving multi-criteria optimization problems is of great interest in various application domains
because it allows for identifying the best solutions among all feasible ones. The quality
of a solution is often associated with costs or rewards subject to minimization and/or
maximization, respectively.

As detailed in the extended version of this paper (cf. [8]), we are interested in solving
Linux package configuration problems by appeal to the multi-criteria optimization capacities
of Answer Set Programming (ASP; [3]). To this end, we develop novel general-purpose
strategies and heuristics in the context of modern (conflict-driven learning) ASP solving [10].
In particular, we conceive a new optimization algorithm allowing for non-uniform descents
during optimization. In multi-criteria optimization, this enables us to optimize criteria in
the order of significance, rather than pursuing a rigid lexicographical descent. We illustrate
the impact of our contributions by appeal to our Linux package configuration tool aspcud
and its performance in comparison with alternative approaches.

Pioneering work in this area was done by Tommi Syrjänen in [15, 16], using ASP for
representing and solving configuration problems for the Debian GNU/Linux system. In
fact, ASP allows for defining such problems through sequences of cost functions represented
by (multi)sets of literals with associated weights. For instance, in the approach taken by
smodels [13], cost functions are expressed through a sequence of #minimize (and #maximize)
statements. Optimal models are then computed via a branch-and-bound extension to smodels’
enumeration algorithm. Similarly, dlv [11] offers so-called weak constraints, serving the same
purpose.

© Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Multi-Criteria Optimization in Answer Set Programming

2 Background

The semantics of a (ground extended) logic program Π is given by particular models, called
answer sets; see [13] for details. In addition to rules, Π can contain #minimize statements
of the form

#minimize[`1 = w1@L1, . . . , `n = wn@Ln].

Besides literals `i and integer weights wi for 1 ≤ i ≤ n, a #minimize statement includes
integers Li providing priority levels [9]. The #minimize statements in Π distinguish optimal
answer sets of Π in the following way. For any set X of atoms and integer L, let ΣX

L denote
the sum of weights wi such that `i = wi@L occurs in some #minimize statement in Π and
`i holds wrt X. We also call ΣX

L the utility of X at priority level L. An answer set X of Π
is dominated if there is an answer set Y of Π such that ΣY

L < ΣX
L and ΣY

L′ = ΣX
L′ for all

L′ > L, and optimal otherwise. Note that greater priority levels are more significant than
smaller ones, which allows for representing sequences of several optimization criteria. Finally,
letting `i denote the complement of a literal `i, the following can be used as a synonym for a
#minimize statement: #maximize[`1 = w1@L1, . . . , `n = wn@Ln].

3 Multi-Criteria Optimization Algorithm

As detailed in [13], #maximize statements can be turned into #minimize statements,
literals with negative weights be transformed such that weights become positive, and multiple
priority levels be collapsed into a single one by scaling the weights of literals, where all
such transformations keep the optimal answer sets intact. However, while the elimination of
#maximize statements and negative weights can be done locally, collapsing priority levels
may lead to very large weights and also disguises an original multi-criteria optimization
problem. Hence, we assume here that optimization criteria are represented in terms of
a #minimize statement over literals associated with non-negative weights and, notably,
priority levels; i.e., priorities are not eliminated. The restriction to non-negative weights
has the advantages that the sum of weights is monotonically increasing the more literals are
assigned to true and that 0 is a (trivial) lower bound of the optimum at each priority level.

As mentioned in the introduction, multi-criteria optimization can in principle be accom-
plished by extending a standard enumeration algorithm, like the one of smodels [13], in
the following way: for every solution, memorize its vector of utilities, backtrack, and check
(during propagation) that assignments generated in the sequel induce a lexicographically
smaller vector of utilities (otherwise backtrack). This simple approach requires only the
most recent utility vector to be stored, and optimality of the last solution is proven once
the residual problem turns out to be unsatisfiable. But the simplicity comes along with the
drawback that the number of intermediate solutions, encountered before an optimal one, is
completely up to “luck” of the underlying enumeration algorithm. In fact, if no additional
measures are taken, such multi-criteria optimization is logically identical to optimization of a
single priority level along with scaled weights of literals.

The observation that plenty intermediate solutions improving only at low-priority utilities
can gravely obstruct the convergence towards a global optimum gave the main impetus to our
new approach to multi-criteria optimization in ASP. As noted in [2] for Maximum Satisfiability
(MaxSAT) and Pseudo-Boolean Optimization (PBO), a better idea is to optimize priority
levels stepwise in the order of significance, rather than to optimize all priority levels at
once. Thereby, we adhere to the strategy of successively improving upper bounds given

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub 3

by intermediate solutions. On the one hand, focusing on one priority level after the other
settles the issue of intermediate solutions improving only at low-priority levels. On the
other hand, it leads to the situation that, before optimization proceeds to the next priority
level, optimality at the current level must be verified by proving unsatisfiability wrt an
infeasible upper bound. Beyond the fact that accomplishing such unsatisfiability proofs
can be a bottleneck (cf. [1]), they imply that too strong bounds need to be taken back
before optimization can proceed at the next level. In particular, with solvers like clasp [10],
exploiting conflict-driven learning, also the learned constraints that rely on an infeasible
upper bound must be retracted. To this end, we make use of assumptions assigned at a
solver’s root level [6], i.e., unbacktrackable literals allowing for the selective (de)activation
of constraints. In fact, a speculative upper bound is imposed via an assumption such that
a corresponding constraint is not satisfied by making the assumption. If the upper bound
turns out to be infeasible, the respective constraint and all learned information relying
on it can then easily be discarded by irrevocably assigning the complement of the former
assumption. Likewise, if the upper bound is feasible, the former assumption can be fixed, so
that constraints involving it may be simplified and apply unconditionally in the sequel. In
the following, we detail how (dedicated) multi-criteria optimization can be accomplished in
modern (conflict-driven learning) Boolean constraint solvers, thereby exploiting assumptions
to circumvent the need of a relaunch after an unsatisfiability proof.

Our algorithm augmenting conflict-driven learning (cf. [5, 12]) with multi-criteria op-
timization is shown in Algorithm 1. The sequence 〈L1, . . . ,Llow〉 determined in the first
line contains the priority levels of the input #minimize statement in decreasing order of
significance. The counters assm, prio, and step, initialized to 1 in the second line, are used to
generate new assumptions on demand, to identify the current priority level to be optimized,
and to determine the amount by which the upper bound ought to be decreased when a
solution is found. The latter is always 1, thus yielding a linear decrease, if the input leap flag
is false, while an exponential scheme (described below) is applied otherwise. Furthermore, the
lower bound lb, set to 0 in the third line, stores the greatest value such that unsatisfiability
has been proven for smaller bounds at the current priority level. In fact, the optimization of
a priority level is finished once the utility of a solution matches the lower bound. In the loop
in Line 4–45, the optimization-specific information, kept in counters and the lower bound, is
used to guide conflict-driven search. As usual, the loop starts in Line 5 with a deterministic
Propagate step, assigning literals implied by the current assignment. Afterwards, one
of the following is the case: a conflict (Line 6–23), a solution (Line 24–44), or a heuristic
decision (Line 45). While the latter simply leads to reentering the loop, the first two cases
deserve more attention. We describe next the reaction to a solution and then the one to a
conflict.

Upon encountering a solution, we start by checking whether its objective value at the
current priority level provides us with a new (non-speculative) upper bound. This is clearly
the case if the current solution is the first one, as tested via assm = 1 in Line 25, and
setting recd to true informs our algorithm that the upper bound needs to be recorded before
proceeding to the next priority level. On the other hand, if a speculative upper bound
ubprio−step has already been imposed, the current solution witnesses that this bound is
feasible. Hence, a respective optimization constraint is made unconditional by fixing the
former assumption αassm in Line 27. In view of this, adding another constraint before
proceeding to the next priority level is required only if the current solution’s objective value
is smaller than ubprio−step, as tested in Line 28. The sequence 〈ub1, . . . , ublow〉 of upper
bounds given by the current solution is memorized in Line 30 and printed along with an

ICLP 2011

4 Multi-Criteria Optimization in Answer Set Programming

Algorithm 1: CDNL-OPT
Input: A logic program Π, a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln], and a

flag leap ∈ {true, false}.
1 〈L1, . . . ,Llow〉 ← 〈max({L1, . . . , Ln} \ {L1, . . . ,Lm−1})〉1≤m≤|{L1,...,Ln}|
2 assm ← prio ← step ← 1 // assumption, priority, and step counter
3 lb ← 0 // lower bound
4 loop
5 Propagate // deterministically assign implied literals
6 if conflict then
7 if at root level then // unsatisfiability modulo optimization constraint
8 if assm = 1 then exit
9 Assign αassm // deactivate old optimization constraint

10 lb ← (ubprio−step) + 1
11 while prio ≤ low and ubprio = lb do
12 if recd = true then Add #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
13 lb ← 0
14 recd ← true
15 prio ← prio + 1
16 if prio > low then exit
17 step ← 1
18 assm ← assm + 1
19 Add

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
20 Assume αassm // activate new optimization constraint
21 else
22 Analyze // analyze conflict and add (violated) conflict constraint
23 Backjump // unassign literals until conflict constraint is unviolated

24 else if solution then
25 if assm = 1 then recd ← true // upper bound of witness yet unrecorded
26 else
27 Assign αassm // fix old optimization constraint
28 if (Σ1≤i≤n,Li=Lprio,`iassigned to true wi) < ubprio−step then recd ← true
29 else recd ← false
30 〈ub1, . . . , ublow〉 ← 〈Σ1≤i≤n,Li=Lm,`iassigned to true wi〉1≤m≤low
31 print answer set along with 〈ub1, . . . , ublow〉
32 prio′ ← prio
33 while prio ≤ low and ubprio = lb do
34 if recd = true then Add #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
35 lb ← 0
36 recd ← true
37 prio ← prio + 1
38 if prio > low then exit
39 if prio = prio′ and leap = true then step ← min{2 ∗ step, d(ubprio−lb)/2e}
40 else step ← 1
41 assm ← assm + 1
42 Add

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
43 Assume αassm // activate new optimization constraint
44 Backjump // unassign literals until optimization constraint is unviolated

45 else Decide // non-deterministically assign some literal

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub 5

answer set of the input program Π in Line 31. Then, the loop in Line 33–37 proceeds to
the next priority level to optimize, depending on whether the condition ubprio = lb holds in
Line 33. If so, it means that the upper bound witnessed by the solution at hand matches the
lower bound at a priority level, so that no further improvement is possible. Furthermore,
if the current upper bound still needs to be recorded, a corresponding #sum constraint, as
available in ASP input languages [14, 7], is added to the constraint database of the solver in
Line 34; this makes sure that future solutions cannot exceed the lower bound lb at a forsaken
priority level. Also note that lb is set to the minimum 0 in Line 35, so that proceeding by
more than one priority level is possible only if some upper bound given by the solution at
hand is trivially optimal. After finishing the loop in Line 33–37, multi-criteria optimization
has been accomplished if the test prio > low succeeds in Line 38, meaning that the utilities
〈ub1, . . . , ublow〉 cannot be improved. Otherwise, an amount by which the current upper
bound ought to be decreased is determined in Line 39–40. If the priority level has not been
changed and the leap flag is true, we take the minimum of the double former step size and
half of the gap between the upper and lower bound as the amount by which to decrease
the upper bound. This exponential scheme aims at balancing two objectives: try to skip
non-optimal intermediate solutions while decreasing the upper bound, but do not provoke
many unnecessary (and potentially hard) proofs of unsatisfiability. Given the next step
size, an optimization constraint, being the disjunction of a fresh literal αassm and a #sum
constraint enforcing the new (speculative) upper bound, is added to the constraint database
of the solver in Line 42, and αassm is assumed in Line 43, so that any further solution must
fall below the speculative upper bound ubprio−step. Finally, backjumping in Line 44 retracts
literals (but not αassm assumed at the root level) in order to re-enable the search for solutions
satisfying the new optimization constraint.

In case of a conflict, we distinguish whether it is encountered at the root level or beyond it.
The latter means that the conflict is related to decisions made previously (in Line 45), so that
regular conflict analysis and backjumping (cf. [5, 12]) can in Line 22–23 be applied to identify
a reason in terms of a conflict constraint and to resume search at a point where the conflict
constraint yields an implication. On the other hand, a conflict at the root level indicates
unsatisfiability. Provided that assm = 1 does not hold in Line 8, i.e., if Π has some answer
set, there is no solution meeting the upper bound ubprio−step. This bound is imposed by the
most recently added optimization constraint, which is in Line 9 retracted by assigning αassm ,
thus withdrawing the former assumption and unconditionally satisfying the optimization
constraint (as well as all conflict constraints relying on it). Furthermore, the unsatisfiability
relative to the upper bound provides us with the lower bound (ubprio−step) + 1, assigned
to lb in Line 10. As in the case of a solution, the loop in Line 11–15 proceeds to the next
priority level to optimize, where a gap between the lower and upper bound leaves room
for improvements. If such a level prio exists, i.e., prio > low does not hold in Line 16, the
step size is reduced to 1 in Line 17, and the next optimization constraint along with a fresh
assumption are put into effect in Line 18–20. By reducing the step size to the smallest value
that would still improve ubprio, we reset the exponential scheme applied if the input leap flag
is true. This directs search to first check whether improvements are possible at all before
reattempting to decrease the upper bound more aggressively.

Multi-criteria optimization via Algorithm 1 is implemented in clasp from version 2.0.0
on. We do not detail the implementation here, but mention matters of interest. To begin
with, note that clasp stores a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln] in
a single optimization constraint, using as data-structure a two-dimensional array of size
|{L1, . . . , Ln}| ∗ |{`1, . . . , `n}| with w1, . . . , wn as its (non-zero) entries. Furthermore, the

ICLP 2011

6 Multi-Criteria Optimization in Answer Set Programming

vector 〈ubm〉1≤m≤|{L1,...,Ln}| of upper bounds is initialized to 〈∞m〉1≤m≤|{L1,...,Ln}| and then
updated whenever a solution is found. For one, this permits to accomplish the simple
approach to multi-criteria optimization, described at the beginning of this section, via
lexicographic comparisons without scaling weights in view of priority levels. For another,
dedicated multi-criteria optimization wrt a current priority level prio merely requires to
(temporarily) ignore upper bounds at less significant priority levels, thus providing easy
means to strengthen the readily available optimization constraint by subtracting the value of
step from ubprio (cf. Line 19 and 42 of Algorithm 1). To further facilitate such steps, clasp
includes a single assumption α in its optimization constraint and, for the most significant
priority level L = max{L1, . . . , Ln}, sets the weight w@L of α to (

∑
1≤i≤n,Li=L wi)+1. This

makes sure that α belongs to every conflict constraint relying on the optimization constraint,
so that these conflict constraints can be fixed (by discharging α) or withdrawn, respectively,
immediately upon encountering either a solution or a conflict. To this end, clasp invokes
the method strengthenTagged() when a solution is found and removeTagged() when a
root-level conflict occurs, while keeping the assumption α in place at the root level; applying
either method turns α into a fresh assumption without presuming any particular solver state,
as otherwise required when performing constraint database simplifications.

The command-line parameters --opt-hierarch and --opt-heuristic allow for configur-
ing (multi-criteria) optimization in clasp. If the value 0 is provided for the former, simple lex-
icographic optimization (without assumptions) is applied, while 1 and 2 switch to Algorithm 1
with the leap flag set to false and true, respectively. Furthermore, --opt-heuristic de-
termines how #minimize statements are taken into account in clasp’s decision heuristics
(Line 45 of Algorithm 1). While 0 falls back to the default heuristic, a static sign heuristic,
preferably falsifying literals that occur in a #minimize statement, is applied for 1. Value 2
switches to a dynamic heuristic that, after a solution has been found, falsifies its literals
in a #minimize statement until a conflict is encountered. Finally, 3 combines 1 and 2,
thus falsifying literals subject to minimization if a respective variable is selected, while
also picking such variables after a solution has been found (until hitting a conflict). The
additional parameter --restart-on-model is a prerequisite for the values 2 and 3 to be
effective; without it, they drop down to 0 and 1, respectively.

4 Experiments

We developed the tool aspcud1 applying our approach to multi-criteria optimization in ASP to
Linux package configuration. At the start, aspcud translates a package configuration problem
in Common Upgradability Description Format (CUDF; [17]) into ASP facts, described in the
extended version of this paper [8]. The translation involves mapping CUDF package formulas
to sets of packages (clauses) and tracing virtual packages that cannot directly be installed
back to packages that implement them. Such flattening makes the problem encoding (cf. [8])
in ASP more convenient. Beyond syntactic simplifications, the translation by aspcud also
exploits optimization criteria and package interdependencies to reduce the resulting ASP
instance.

As ASP tools, aspcud (version 1.3.0) exploits gringo (version 3.0.3) for grounding and
clasp (version 2.0.0-RC2) for solving. To illustrate the impact of the strategies and heuristics
supported by clasp, our experiments consider several variants of it. Three settings are

1 http://www.cs.uni-potsdam.de/wv/aspcud

http://www.cs.uni-potsdam.de/wv/aspcud

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub 7

obtained by configuring --opt-hierarch with the values described above, indicated by a
subscript:

clasp0: optimizing whole utility vectors (as described at the beginning of Section 3 and
implemented also in smodels as well as clasp versions below 2.0.0),
clasp1: applying Algorithm 1 with the leap flag set to false, and
clasp2: applying Algorithm 1 with the leap flag set to true.

We further combine each claspi (i ∈ {0, 1, 2}) with optimization-oriented heuristics, activated
by setting --opt-heuristic to the value indicated by a superscript:

clasp0
i : applying no optimization-specific decision heuristic,

clasp1
i : applying the static sign heuristic to falsify literals of a #minimize statement,

clasp2
i : falsifying literals of a #minimize statement that were contained in a recent

solution, and
clasp3

i : combining the sign heuristic of clasp1
i with the dynamic approach of clasp2

i .
We thus obtain twelve variants of clasp, each invoked with the (additional) command-
line parameters --sat-prepro, --heuristic=vsids, --restarts=128, --local-restarts,
and --solution-recording, which turned out to be helpful on large underconstrained
optimization problems confronted in Linux package configuration. As mentioned above,
clasp2

i and clasp3
i further require --restart-on-model to be effective, and we indicate the

use of this parameter by writing claspj
i -r, where “-r” is mandatory for j ∈ {2, 3} but optional

for j ∈ {0, 1}. The reasonable combinations of the variable options amount to 18 variants of
clasp to perform the optimization within aspcud.

For comparison, we also consider the package configuration tools cudf2msu2 (version 1.0),
cudf2pbo3 (version 1.0), and p2cudf 4 (version 1.11). The PBO-based approaches of cudf2pbo
and p2cudf are closely related to multi-criteria optimization in ASP via Algorithm 1, while
the MaxSAT approach of cudf2msu utilizes unsatisfiable cores to iteratively refine lower
bounds. The tools included for comparison belong to the leaders in a recent trial-run5, called
MISC-live, of the competition organized by mancoosi.

Table 1 reports experimental results on package configuration problems used in the recent
MISC-live run,6 divided by the tracks paranoid, trendy, and user1–3, each applying a different
combination of optimization criteria. Note that the number of lexicographically ordered
utilities is two in the paranoid track, three in the user1 track, and four in the trendy and
user2–3 tracks. We ran the five criteria combinations on 117 instances considered in the
paranoid and trendy tracks of the MISC-live run (all instances except for the ones in the
“debian-dudf” category, which were not available for download). For each track, the column
headed by S provides the sums of solvers’ scores according to the MISC-live ranking: a solver
that returns a solution earns b+ 1 points, where b is the number of solvers that returned
strictly better solutions; a solver that returns no solution earns 2 ∗ s points, where s is the
total number of participating solvers (s = 21 in our case); finally, a solver that crashes or
returns a wrong solution (i.e., an invalid installation profile) is awarded 3 ∗ s points (for s as
before). Note that a smaller score is better than a greater one, and solvers are ranked by
their scores in ascending order. The columns headed by T/O report total runtimes per solver

2 http://sat.inesc-id.pt/~mikolas/cudf2msu.html
3 http://sat.inesc-id.pt/~mikolas/cudf2pbo.html
4 http://wiki.eclipse.org/Equinox/p2/CUDFResolver
5 http://www.mancoosi.org/misc-live/20101126
6 The results of (a preliminary version of) aspcud in this trial-run were scrambled due to scripting

problems, which led to complete failure rather than a sub-optimal solution if an optimum could not be
proven in time.

ICLP 2011

http://sat.inesc-id.pt/~mikolas/cudf2msu.html
http://sat.inesc-id.pt/~mikolas/cudf2pbo.html
http://wiki.eclipse.org/Equinox/p2/CUDFResolver
http://www.mancoosi.org/misc-live/20101126

8 Multi-Criteria Optimization in Answer Set Programming

paranoid trendy user1 user2 user3
Solver S T/O S T/O S T/O S T/O S T/O

clasp0
0-r 431 2,287/6 1730 23,829/ 80 935 14,349/35 525 5,097/12 1031 14,184/37

clasp0
0 416 2,294/6 2375 29,781/105 1727 21,897/73 1224 14,697/45 671 11,178/21

clasp1
0-r 410 2,210/6 1560 22,660/ 73 898 13,466/30 502 4,654/ 9 980 13,682/35

clasp1
0 410 2,326/6 2079 26,471/ 92 1723 21,525/72 922 10,767/31 658 10,675/23

clasp2
0-r 427 2,135/6 712 16,867/ 51 527 5,891/11 426 2,981/ 5 587 7,628/20

clasp3
0-r 429 2,134/6 740 17,079/ 52 507 5,863/12 425 3,044/ 6 576 7,769/21

clasp0
1-r 425 2,428/6 579 16,713/ 50 550 5,819/14 434 3,000/ 6 710 8,958/25

clasp0
1 417 2,418/6 549 16,544/ 50 475 5,318/12 411 2,538/ 5 502 6,279/16

clasp1
1-r 429 2,405/6 622 17,304/ 50 518 5,908/13 438 2,976/ 6 676 8,938/23

clasp1
1 427 2,372/6 613 16,946/ 49 490 5,478/12 416 2,562/ 5 496 6,144/16

clasp2
1-r 427 2,352/6 571 16,646/ 50 518 5,358/13 418 2,582/ 5 471 6,356/16

clasp3
1-r 429 2,346/6 547 16,386/ 50 499 5,306/12 413 2,498/ 5 497 6,255/16

clasp0
2-r 425 2,392/6 806 16,598/ 50 523 5,583/13 421 2,677/ 6 479 5,548/12

clasp0
2 417 2,364/7 748 17,132/ 50 487 5,823/14 422 2,583/ 5 482 5,592/15

clasp1
2-r 416 2,378/6 752 17,269/ 52 492 5,663/12 414 2,409/ 5 451 5,349/11

clasp1
2 425 2,365/6 864 17,128/ 51 517 6,151/15 412 2,681/ 5 463 5,972/14

clasp2
2-r 445 2,402/6 706 16,551/ 50 528 5,788/13 419 2,700/ 5 436 5,519/13

clasp3
2-r 434 2,345/6 748 16,982/ 51 518 5,850/14 415 2,559/ 5 457 5,360/13

cudf2msu 610 3,051/8 669 5,318/ 8 1270 8,709/18 548 3,238/ 7 504 4,750/ 9
cudf2pbo 465 2,727/7 1082 21,302/ 68 520 6,168/13 462 3,575/ 7 537 3,487/ 8
p2cudf 463 2,920/8 696 19,105/ 60 516 3,947/ 7 573 6,927/16 577 8,063/21

Table 1 Results on package configuration problems used in a recent MISC-live run.

in seconds followed by the number of instances on which the solver was aborted, either before
finding the optimum or while still attempting to prove it (or unsatisfiability, respectively).
These statistics are used for tie-breaking wrt scores in MISC-live ranking, and they also yield
valuable information regarding solvers’ capabilities to prove optima: after 280 seconds of
running, closeness of runtime exhaustion (300 seconds) is signaled to a solver, so that the
remaining time can be used to output the best solution found so far. Accordingly, we count
solutions returned after more than 280 seconds as aborts, which are not reflected in scores
(columns S) if output solutions happen to be optimal without the proof being completed.
We ran our experiments under MISC-live conditions on an Intel Quad-Core Xeon E5520
machine, possessing 2.27GHz processors and 48GB main memory, under Linux. The best
scores and runtimes obtained among the variants of clasp as well as the best ones among its
competitors are highlighted in bold face in Table 1.

Recall that two optimization criteria are applied in the paranoid track, three in the
user1 track, and four in the remaining tracks. One may expect solvers optimizing criteria
in the order of significance (all but the variants of clasp0) to have greater advantages the
longer the sequence of criteria is. In fact, we observe that clasp0, optimizing criteria in
parallel, is competitive in the paranoid track; in particular, the static sign heuristic applied
by the variants of clasp1

0 helps them to achieve the smallest score. However, the gap to other
solvers is not large, neither in terms of scores nor runtimes. Unlike this, the disadvantages of
clasp0

0 and clasp1
0 variants are remarkable in the other four tracks; they are compensated to

some extent by the optimization-oriented dynamic variable selection applied by clasp2
0-r and

clasp3
0-r. Comparing the variants of clasp1 and clasp2, applying Algorithm 1, we note that

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub 9

they are less sensitive to heuristic aspects. Nonetheless, their relative performance varies
over tracks, thus not suggesting any universal strategy to multi-criteria optimization. For
instance, the variants of clasp1, decreasing upper bounds linearly, are more successful than
clasp2 variants in the trendy track, where the large total runtimes and numbers of aborts
indicate that many instances were hard to complete (proving optima failed in many cases).
On the other hand, the exponential decrease scheme of clasp2 enables some of its variants to
achieve the smallest score and runtime in the user3 track. Finally, comparing the variants of
clasp with its three competitors, we observe that the ASP-based approach to Linux package
configuration is highly competitive. In particular, its consistent performance is confirmed by
scores, while each of the other tools achieved an impressive runtime (mainly by succeeding
to prove optima) in some track: cudf2msu in trendy, cudf2pbo in user3, and p2cudf in user1.
Unfortunately, cudf2msu produced non-optimal solutions and crashes in two tracks, trendy
and user1, so that its ranking in these two tracks is not very conclusive.

5 Discussion

We presented an approach to dedicated multi-criteria optimization in ASP. In particular,
we detailed the use of assumptions in modern (conflict-driven learning) Boolean constraint
solvers, so that speculative upper bounds can be imposed temporarily and withdrawn after
unsatisfiability proofs without relaunching the solver. In fact, our approach is readily
applicable in related areas like PBO and MaxSAT. Albeit Linux package configuration tools
based on these formalisms may already exploit similar techniques, we are unaware of precise
specifications of them. In the future, regular comparisons in competitions by mancoosi could
provide a fruitful platform for improving and sharing methods of optimization.

The interested reader is referred to the extended version of this paper [8] for a detailed
description of solving Linux package configuration problems by appeal to the multi-criteria
optimization capacities introduced in the previous sections.

Acknowledgments

This work was partly funded by DFG grant SCHA 550/8-2. We are grateful to Daniel Le
Berre for useful discussions on the subject of this work and to the mancoosi project team for
organizing MISC(-live).

References
1 J. Argelich, D. Le Berre, I. Lynce, J. Marques-Silva, and P. Rapicault. Solving Linux

upgradeability problems using Boolean optimization. In I. Lynce and R. Treinen, editors,
Proceedings of the First International Workshop on Logics for Component Configuration
(LoCoCo’10), pages 11–22. 2010.

2 J. Argelich, I. Lynce, and J. Marques-Silva. On solving Boolean multilevel optimization
problems. In C. Boutilier, editor, Proceedings of the Twenty-first International Joint Con-
ference on Artificial Intelligence (IJCAI’09), pages 393–398. AAAI Press/The MIT Press,
2009.

3 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

4 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS
Press, 2009.

5 A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Biere et al. [4], pages 99–130.

ICLP 2011

10 Multi-Criteria Optimization in Answer Set Programming

6 N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella,
editors, Proceedings of the Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT’03), pages 502–518. Springer-Verlag, 2004.

7 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A
user’s guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net.

8 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimization in
ASP and its application to Linux package configuration. Available at http://www.cs.
uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf.

9 M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In J. Del-
grande and W. Faber, editors, Proceedings of the Eleventh International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’11), pages 345–351. Springer-
Verlag, 2011.

10 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solv-
ing. In M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007.

11 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, 2006.

12 J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
Biere et al. [4], pages 131–153.

13 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

14 T. Syrjänen. Lparse 1.0 user’s manual. Available at http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz.

15 T. Syrjänen. A rule-based formal model for software configuration. Technical Report A55,
Helsinki University of Technology, 1999.

16 T. Syrjänen. Including diagnostic information in configuration models. In J. Lloyd, V. Dahl,
U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. Stuckey, editors,
Proceedings of the First International Conference on Computational Logic (CL’00), pages
837–851. Springer-Verlag, 2000.

17 R. Treinen and S. Zacchiroli. Common upgradability description format (CUDF) 2.0. Tech-
nical Report 003, mancoosi — managing software complexity, 2009.

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://www.cs.uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

	Introduction
	Background
	Multi-Criteria Optimization Algorithm
	Experiments
	Discussion

