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ABSTRACT: Answer set programming (ASP) is an approach to rule-based
constraint programming allowing flexible knowledge representation in vari-
ety of application areas. The declarative nature of ASP is reflected in prob-
lem solving. First, a programmer writes down a logic program the answer
sets of which correspond to the solutions of the problem. The answer sets of
the program are then computed using a special purpose search engine, an
ASP solver. The development of efficient ASP solvers has enabled the use
of answer set programming in various application domains such as planning,
product configuration, computer aided verification, and bioinformatics.

The topic of this thesis is modularity in answer set programming. While
modern programming languages typically provide means to exploit modular-
ity in a number of ways to govern the complexity of programs and their de-
velopment process, relatively little attention has been paid to modularity in
ASP. When designing a module architecture for ASP, it is essential to estab-
lish full compositionality of the semantics with respect to the module system.
A balance is sought between introducing restrictions that guarantee the com-
positionality of the semantics and enforce a good programming style in ASP,
and avoiding restrictions on the module hierarchy for the sake of flexibility of
knowledge representation.

To justify a replacement of a module with another, that is, to be able to
guarantee that changes made on the level of modules do not alter the se-
mantics of the program when seen as an entity, a notion of equivalence for
modules is provided. In close connection with the development of the com-
positional module architecture, a transformation from verification of equiva-
lence to search for answer sets is developed. The translation-based approach
makes it unnecessary to develop a dedicated tool for the equivalence verifi-
cation task by allowing the direct use of existing ASP solvers.

Translations and transformations between different problems, program
classes, and formalisms are another central theme in the thesis. To guarantee
efficiency and soundness of the translation-based approach, certain syntac-
tical and semantical properties of transformations are desirable, in terms of
translation time, solution correspondence between the original and the trans-
formed problem, and locality/globality of a particular transformation.

In certain cases a more refined notion of minimality than that inherent in
ASP can make program encodings more intuitive. Lifschitz’ parallel and pri-
oritized circumscription offer a solution in which certain atoms are allowed
to vary or to have fixed values while others are falsified as far as possible ac-
cording to priority classes. In this thesis a linear and faithful transformation
embedding parallel and prioritized circumscription into ASP is provided.
This enhances the knowledge representation capabilities of answer set pro-
gramming by allowing the use of existing ASP solvers for computing parallel
and prioritized circumscription.

KEYWORDS: modular program development, module theorem, stable mod-
els, compositional semantics, equivalence verification, congruence relations,
parallel and prioritized circumscription, faithful transformations, answer set
programming, nonmonotonic reasoning





TIIVISTELMÄ: Vastausjoukko-ohjelmointi (answer set programming, ASP)
on rajoiteohjelmoinnin osa-alue, jonka sääntöpohjaisen kielen ilmaisuvoima
mahdollistaa monien sovellusongelmien joustavan ja luontevan ratkaisemi-
sen. Ongelmanratkaisun vaiheet tuovat esiin ASP:n deklaratiivisen luonteen.
Ensin kirjoitetaan logiikkaohjelma, eli joukko sääntöjä, jonka stabiilit mallit
vastaavat ongelman ratkaisuja. Tämän jälkeen ohjelman stabiilit mallit las-
ketaan käyttäen erityistä ASP-ratkaisinta. Tehokkaiden ASP-ratkaisimien ke-
hittäminen on mahdollistanut ASP:n hyödyntämisen muun muassa suunnit-
teluongelmien ratkaisemisessa ja tietokoneavusteisessa verifioinnissa.

Tässä väitöskirjassa tarkastellaan modulaarisuutta ASP:ssa. Toisin kuin
perinteisessä ohjelmoinnissa, jossa ohjelmakoodin uudelleenkäyttö ja ohjel-
mien jakaminen pienempiin osiin eli moduuleihin on ollut mahdollista jo
pitkään, ASP-ohjelma nähdään tyypillisesti kokonaisuutena. Kun ohjelmien
koko kasvaa ja niistä tulee monimutkaisempia, on yhä ilmeisempää, että myös
ASP-ohjelmointi hyötyisi vastaavanlaisista ohjelmakehitystä tukevista meka-
nismeista. Tärkeä kriteeri moduulijärjestelmän suunnittelussa on saavuttaa
täysi yhteensopivuus stabiilien mallien semantiikan kanssa niin, että moduu-
lien stabiileista malleista voidaan yhdistellä koko ohjelman stabiili malli ja
päinvastoin. Jotta tämä tavoite saavutetaan, ei voida sallia mielivaltaisten
moduulien yhdistämistä. Pyrkimyksenä on löytää tasapaino rajoitteille niin,
että ne samalla kannustavat hyvään ohjelmointitapaan ja edelleen mahdol-
listavat joustavan tietämyksen esittämisen moduuleilla.

Ekvivalenssin käsitettä tarvitaan, jotta voidaan perustellusti korvata alimo-
duuli toisella laajemmassa kokonaisuudessa. Työssä esitelty modulaarinen
ekvivalenssi on kongruenssi moduulien yhdistämisen suhteen, mikä takaa,
että modulaarisesti ekvivalentit moduulit säilyttävät semantiikan missä tahan-
sa yhdistämisoperaation sallimassa kontekstissa. Jotta ekvivalenssin tarkasta-
miseen ei tarvitsisi kehittää erityistä työkalua, esitellään muunnosfunktioon
pohjautuva menetelmä, joka muuntaa ekvivalenssin tarkastuksen stabiilin
mallin löytämisen ongelmaksi mahdollistaen näin ASP-ratkaisinten käytön.
Tällainen muunnoksiin pohjautuva lähestymistapa mahdollistaakin olemas-
saolevan ASP:n teorian ja työkalujen tehokkaan hyödyntämisen ja muunnok-
set eri ongelmien ja ohjelmaluokkien välillä nousevat yhdeksi työn keskei-
seksi teemaksi. Muunnosten tehokkuutta analysoidaan niiden aikavaativuu-
den, mallivastaavuuden säilyttämisen ja modulaarisuuden suhteen.

On myös sovelluksia, joissa stabiilien mallien minimaalisuus tekee ongel-
man logiikkaohjelmaesityksen muodostamisesta haastavaa. Lifschitz on esit-
tänyt minimimallikäsitteen, joka tuo ratkaisun tällaisiin tilanteisiin. Kaikkien
atomien minimoinnin sijaan määritellään, että joidenkin atomien totuus-
arvot varioivat vapaasti, osan totuusarvot on kiinnitetty ja loput minimoidaan
mahdollisesti eri prioriteeteilla. Tämä minimimallipäättely voidaan upottaa
stabiilien mallien semantiikkaan työssä esitettyä muunnosta käyttäen. Muun-
noksen lineaarisuus ja tarkka mallivastaavuus mahdollistavat, että ASP:n il-
maisuvoimaa voidaan laajentaa hyödyntäen yhä nykyisiä ASP-ratkaisimia.

AVAINSANAT: modulaarinen ohjelmakehitys, stabiilit mallit, kompositio-
naalinen semantiikka, ekvivalenssin verifiointi, kongruenssirelaatio, varioi-
tavat atomit minimimalleissa, mallivastaavuuden säilyttävät muunnokset, vas-
tausjoukko-ohjelmointi, epämonotoninen päättely
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1 INTRODUCTION

In 1988, Gelfond and Lifschitz presented their seminal work titled “The sta-
ble model semantics for logic programming” [53] which introduced a novel
declarative semantics for logic programs with negation. In twenty years the
field which later became known as answer set programming (ASP) [98, 93,
52, 7, 128], has developed into an active research community with roots
in declarative programing [69] and nonmonotonic logics [108], and with
close connections to other fields in knowledge representation and reason-
ing [128, 110], such as, propositional satisfiability (SAT) solving, description
logics, and constraint programming.

In answer set programming the problem at hand is solved declaratively

1. by writing down a logic program the answer sets of which correspond
to the solutions of the problem, and

2. by computing the answer sets of the program using a special purpose
search engine designed for this task.

The need for efficient search engines or solvers for computing answer sets
was realized early on, and already after the mid-1990’s ASP solvers SMOD-
ELS [118] and DLV [72] enabled the successful use of answer set program-
ming in solving various knowledge representation and reasoning tasks. Appli-
cation areas of ASP nowadays include, for example, planning [75], product
configuration [119, 120], computer aided verification [58], wire routing in
VLSI design [42], logical cryptanalysis [59, 1], network security [5], building
a decision support system of NASA space shuttle [6], bioinformatics [8], and
modelling the evolution of natural languages [41, 17].

The stable model semantics was originally presented for normal logic pro-
grams [53] but soon after a generalization for disjunctive logic programs was
proposed [55, 56, 107]. Nowadays, numerous extensions to the underlying
reasoning language have been introduced, motivated by a need to enhance
knowledge representation capabilities in applications domains, [118, 79, 68,
50, 28, 106, 46, 121, 91, 113, 14, 27]. Moreover, there has been a growing
effort to develop even more efficient ASP solving techniques and algorithms,
resulting in a number of new ASP solvers, see [65, 82, 73, 85, 3, 49, 83], for
instance.

The topic of this thesis is modularity in answer set programming. Looking
from a software engineering point of view, it is desirable if not even neces-
sary in the process of developing and maintaining problem encodings, that
there is a compositional approach to answer set programming which allows
composing programs from modules of some kind. In the thesis classes of
SMODELS programs and disjunctive logic programs are considered. These
classes can be seen as two representatives of expressive program classes; the
former is used to solve problems on the first level of polynomial hierarchy,
and the latter on the second level of polynomial hierarchy. Logic programs
are assumed to be finite and propositional. However, as a rule with variables
is typically seen as a shorthand for all its ground instantiations with respect
to the Herbrand universe of the program in ASP, the theory developed in
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this thesis can be extended to handle logic programs with variables, too. The
finiteness assumption could be dropped in many places, but this has a poten-
tial of complicating definitions, and, for instance, with respect to the compu-
tational complexity, finiteness of programs is essential. Further restrictions
are applied, for instance, in module interfaces and module compositions,
when motivated by a “good programming style” in answer set programming
or needed to keep computational complexity on a reasonable level.

In order to exploit the existing theory and tools in answer set programming
as much as possible both on theoretical and on practical aspects, translations
and transformations between different problems, program classes, and for-
malisms form a central theme in this work. To guarantee efficiency and
soundness of this approach, certain syntactical and semantical properties
of transformations are desirable, presented in terms of the translation time,
maintenance of (exact) solution correspondence between the original and
the transformed problem, and locality/globality of the particular transforma-
tion, which naturally intertwines with the theory developed in this thesis.

Modern programming languages typically provide means to exploit mod-
ularity in a number of ways to govern the complexity of programs and their
development process. Indeed, the use of program modules or objects can be
viewed as an example of the divide-and-conquer principle in the art of pro-
gramming. The benefits of modular program development are numerous. A
software system is much easier to design as a set of interacting components
rather than a monolithic system with unclear internal structure. A modular
design is more easily implementable as programming tasks can be delegated
amongst a team of programmers. It also enables the re-use of code organized
as module libraries, for instance.

Although modularity has been studied extensively in the context of con-
ventional logic programs, for example, [20, 103, 90, 16, 48, 95, 57, 43, 88,
122, 25], relatively little attention has been paid to modularity in answer set
programming. However, the problem encodings in ASP usually consist of at
least two parts illustrating the generate-and-test (or guess-and-check) princi-
ple [132, 37, 19, 30, 93, 98, 75, 76] underlying in answer set programming.
A generic problem specification part is used to test an input produced by a
generator part which may vary according to a specific instance. However,
the stable model semantics does not lend itself directly for program compo-
sition. The problem is that in general, stable models associated with parts
of a program do not determine stable models assigned to their union. Such
indivisibility of programs is likely to create problems as program instances
tend to grow along the demands of new application areas of ASP emerging
in semantic web, bioinformatics, and logical cryptanalysis, for instance.

There are two main criteria for the design of the module architecture
adopted in this work. First of all, it is essential to establish the full composi-
tionality of answer set semantics with respect to the module system. Second,
a balance is sought between introducing restrictions that enforce a good pro-
gramming style, and avoiding restrictions on the module hierarchy for the
sake of flexibility of knowledge representation. The approaches to modular-
ity in answer set programming proposed so far are based on a very strict syn-
tactic conditions on the module hierarchy, for instance, by enforcing strat-
ification of some kind, or by prohibiting recursion altogether [38, 123, 37,
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9]. Approaches based on splitting sets [80, 38, 45] are satisfactory from the
point of view of compositional semantics, but typically there is no explicit
interface definition characterizing the interaction between modules. On the
other hand, compositionality aspects are neglected altogether in syntactic
approaches [60, 123] and this aspect of modelling remains completely at the
programmer’s responsibility.

Furthermore, a need for a suitable equivalence relation arises from the
modular setting. It is necessary to be able to justify a replacement of a module
with another, that is, to be able to guarantee that changes made on the level
of modules do not alter the semantics of the program when seen as an entity.
There are several notions of equivalence proposed for logic programs, for ex-
ample in [78, 33, 40, 64, 102, 134]. For instance, if logic programs R1 and
R2 have exactly the same answer sets, they are said to be weakly/ordinarily
equivalent [78], denoted by R1 ≡ R2. Looking this from the answer set
programming perspective, weakly equivalent programs produce the same so-
lutions for the problem they formalize. If R1∪R ≡ R2∪R for all programs R,
then R1 and R2 are said to be strongly equivalent [78], denoted by R1 ≡s R2.
Strongly equivalent programs preserve the solutions to the problem in every
possible context in which they can be placed in.

Instead of designing a dedicated tool for the equivalence verification task,
several approaches have been proposed to transform the problem of equiv-
alence verification to one for which there exists already efficients solvers,
such as, for instance, answer set programming, propositional satisfiability,
and quantified Boolean formulas, [66, 126, 101, 133, 23, 125, 31]. How-
ever, these methods typically treat programs as integral entities which might
limit the usefulness of the translation-based method in a setting where pro-
grams consist of modules. In this thesis the concept of equivalence for ASP
is brought to module-level in close connection with the development of the
compositional module architecture. A transformation from equivalence ver-
ification to search for stable models is developed accordingly, allowing this
way the direct use of existing ASP solvers in verification tasks.

Even though the stable model semantics based on minimality leads to
concise encodings of problems as programs, occasionally knowledge repre-
sentation with answer set programming becomes complicated by the fact that
all atoms appearing in a logic program are false by default. Parallel and pri-
oritized circumscription [74] offer a more refined control of minimization
in which certain atoms are allowed to vary or to have fixed values while oth-
ers are falsified as far as possible. In the prioritized case priority classes for
atoms being minimized are furthermore introduced. Unfortunately, in par-
ticular the varying atoms are not well-supported in answer set programming,
although serious attempts to embed parallel/prioritized circumscription into
disjunctive logic programming have been made [54, 112, 113, 130, 71, 131].

The last part of this thesis consists of an brief introduction to properties
of translation functions in terms of the translation time, exact model corre-
spondence, and modularity. An analysis of parallel circumscription reveals
that even though the varying atoms are of rather global nature, it is possible
to provide an efficient embedding for parallel and prioritized circumscrip-
tion into answer set programming in terms of a linear and faithful translation
function. This allows developing modular encodings using parallel and pri-
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oritized circumscription for problems, which are otherwise hard to formalize
as logic programs when all atoms are minimized. Thus, the knowledge rep-
resentation capability of answer set programming is enhanced as the existing
ASP solvers can be used to compute models for parallel and prioritized cir-
cumscription.
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2 STRUCTURE OF THE THESIS

This thesis consists of a seven chapter summary and the following seven arti-
cles.

[P1] Emilia Oikarinen and Tomi Janhunen. Achieving compositionality
of the stable model semantics for SMODELS programs. Theory and
Practice of Logic Programming, to appear.

[P2] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran.
Modularity aspects of disjunctive stable models. In Chitta Baral, Ger-
hard Brewka, and John Schlipf, editors, Logic Programming and Non-
monotonic Reasoning, Proceedings of the 9th International Confer-
ence, LPNMR 2007, Tempe, AZ, USA, May 2007, volume 4483 of
Lecture Notes in Artificial Intelligence, pages 175–187. Springer.

[P3] Tomi Janhunen and Emilia Oikarinen. Automated verification of weak
equivalence within the Smodels system. Theory and Practice of Logic
Programming, 7(6):697–744, 2007.

[P4] Emilia Oikarinen and Tomi Janhunen. A translation-based approach
to the verification of modular equivalence. Journal of Logic and Com-
putation. Advance Access published, doi:10.1093/logcom/exn039, Au-
gust 2008.

[P5] Tomi Janhunen and Emilia Oikarinen. Capturing parallel circum-
scription with disjunctive logic programs. In José Júlio Alferes and
João Leite, editors, Logics in Artificial Intelligence, Proceedings of the
9th European Conference, JELIA 2004, Lisbon, Portugal, September
2004, volume 3229 of Lecture Notes in Artificial Intelligence, pages
134–146. Springer.

[P6] Emilia Oikarinen and Tomi Janhunen. CIRC2DLP — translating cir-
cumscription into disjunctive logic programming. In Chitta Baral,
Gianluigi Grego, Nicola Leone, and Giorgio Terracina, editors, Logic
Programming and Nonmonotonic Reasoning, Proceedings of the 8th
International Conference, LPNMR 2005, Diamante, Italy, September
2005, volume 3662 of Lecture Notes in Artificial Intelligence, pages
405–409. Springer.

[P7] Emilia Oikarinen and Tomi Janhunen. Implementing prioritized
circumscription by computing disjunctive stable models. In Danail
Dochev, Marco Pistore, and Paolo Traverso, editors, Artificial Intel-
ligence: Methodology, Systems, and Applications, Proceedings of the
13th International Conference, AIMSA 2008, Varna, Bulgaria, Septem-
ber 2008, volume 5223 of Lecture Notes in Artificial Intelligence, pages
167–180. Springer.

The current chapter consists of a brief description of contents and con-
tributions in this thesis. In Chapter 3 basic preliminaries of answer set pro-
gramming and the stable model semantics are given. In Chapter 4 different
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[P1]

[P2]

[P3]

[P4]

generalization

[P5]

implementationgeneralization

application generalization

[P6]

generalization

application

[P7]

Figure 2.1: The relations between articles [P1–P7].

approaches to modularity in logic programming, and especially in answer set
programming are discussed. Chapter 5 introduces a number of equivalence
relations proposed for logic programs under the stable model semantics and
methods for verification of equivalence. In Chapter 6 properties of transla-
tion functions between different program classes are discussed. As an illus-
trating example, a refined notion of minimality presented in terms of parallel
and prioritized circumscription is embedded into answer set programming
using a linear and faithful transformation. Chapter 7 presents some conclu-
sions and topics for future work.

2.1 SUMMARY OF THE ARTICLES IN THE THESIS

The contents of the articles in this thesis are summarized in the following.
In Chapters 4–6 the articles are placed in context with related work. The
relations between the articles are summarized in Figure 2.1.

[P1] A module architecture for SMODELS programs is proposed. The archi-
tecture follows the ideas in [48] and introduces modules with a clearly
defined input/output interface for communication. The stable model
semantics is generalized for modules in a way that compositionality of
the semantics under a module composition operation join is achieved.
The compositionality property, which allows for computation of sta-
ble models separately for the parts of the program, is crystallized in
a module theorem. Furthermore, a concept of modular equivalence
is proposed. As necessary to allow replacements of modules, modular
equivalence is a proper congruence relation for joins of modules.

[P2] The module architecture from [P1] is generalized to cover the class
of disjunctive logic programs. It is demonstrated that the module the-
orem properly generalizes the splitting set theorem by Lifschitz and
Turner [80]. Moreover, a general shifting principle is introduced as
the generalization of a local shifting transformation by Eiter et al. [34]
for program simplification. The modular equivalence relation has the
congruence property in the disjunctive case, too.
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[P3] A translation-based method for verifying weak equivalence [78] of two
SMODELS programs is proposed. The idea is to transform the problem
of verifying whether two logic programs are equivalent to the existence
of stable models by introducing a linear translation function. This way
ASP solvers can be directly utilized for equivalence verification. The
method also covers the verification of visible equivalence [64] for pro-
grams having enough visible atoms. A more general class of weight
constraint programs [118] is covered through a transformation into the
class of SMODELS programs. The implementation of the translation
shows promising performance compared to a naive method of cross-
checking stable models.

[P4] The translation-based method for equivalence verification proposed in
[P3] is modified to cover verification of modular equivalence of SMOD-
ELS program modules introduced in [P1]. The correctness proof of the
translation demonstrates that the use of the module theorem [P1] leads
to significant simplification compared to the proof given in [P3]. Ex-
perimental evaluation of the implementation suggests that the mod-
ularization of equivalence verification leads to potential time savings
especially if the modules involved share a common context.

[P5] An expressiveness analysis shows that there is no linear, modular and
faithful translation function from parallel circumscription to positive
disjunctive logic programs. By relaxing the requirements, however,
the first linear and faithful, though non-modular, translation from par-
allel circumscription [74] to disjunctive logic programs with negation
is introduced.

[P6] An implementation of the translation-based method in [P5] is pre-
sented together with an experimental evaluation. Moreover, the imple-
mentation also covers prioritized circumscription by using Lifschitz’
quadratic scheme [74] to embed prioritized case into parallel circum-
scription.

[P7] The translation from [P5] is generalized to directly cover prioritized
circumscription by a linear and faithful transformation to disjunctive
logic programming. The module theorem for disjunctive logic pro-
gram modules in [P2] is used in arguing the faithfulness of the trans-
lation. The implementation of the linear translation clearly improves
the quadratic one in [P6] and compares favorably to a tool by Wakaki
and Tomita [131].

2.2 CONTRIBUTIONS OF THE AUTHOR

This section summarizes the contributions of the author to the articles con-
stituting this thesis.

The article [P1] is co-authored by T. Janhunen. The key ideas and proofs
are developed by the current author, and the paper is to a large extent written
by the current author. The implementations and the experiments are the
work of co-author.
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The article [P2] is co-authored by T. Janhunen, H. Tompits, and S.
Woltran. The current author is responsible for the proof of the congruence
property of modular equivalence.

The article [P3] is co-authored by T. Janhunen who developed the origi-
nal idea of the translation-based method for verification of equivalence and
is responsible for the implementation of the method. The current author is
responsible for the analysis of the computational complexity, the extension
of the results to weight constraint programs and performing and reporting the
experiments.

The article [P4] is co-authored by T. Janhunen. The paper is jointly writ-
ten with the current author modifying the translation from [P3] to cover the
verification of modular equivalence, and performing the experiments. The
co-author is responsible for the implementation.

The article [P5] is co-authored by T. Janhunen. The paper is jointly writ-
ten, with the co-author responsible for the expressiveness analysis and the
initial idea of the translation for embedding parallel circumscription into dis-
junctive logic programming. The current author is responsible for the cor-
rectness proof of the translation.

The article [P6] is co-authored by T. Janhunen. The paper is jointly writ-
ten, with the co-author responsible for designing the benchmark, and the
current author responsible for the implementation and experimental evalua-
tion.

The article [P7] is co-authored by T. Janhunen. The idea is jointly de-
veloped and the paper is jointly written. The current author is responsible
for the correctness of the translation, its implementation, and performing the
experimental evaluation.
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3 ANSWER SET PROGRAMMING

In this chapter basic concepts of answer set programming are introduced
starting from the syntax of logic programs and continuing with the semantics
based on stable models.

3.1 LOGIC PROGRAMS

A propositional logic program is a finite set of rules which are expressions of
the form

head← body, (3.1)

where the objects allowed to appear as the head of a rule or the body of a rule
are limited by the class of logic programs under consideration. Intuitively the
interpretation for a rule is that head must be satisfied, if body is satisfied. For
example, a normal or basic rule is of the form

a← b1, . . . ,bn,∼c1, . . . ,∼cm, (3.2)

where a and each bi, and cj is a propositional atom, n, m ∈ N, and the
symbol ∼ denotes negation as failure [24] or default negation which differs
from classical negation [55]. A default literal is either an atom a or its default
negation ∼a. A normal logic program R is a finite set of basic rules. The set
of atoms appearing in a program R is denoted by At(R). In the following,
the rules in a program are separated with full stops and the symbol “←” is
omitted if the body of the rule is empty.

In this thesis the classes of SMODELS programs and disjunctive logic
programs are of main interest. The rule types included in the language of
SMODELS programs have been carefully chosen so that they enable knowl-
edge representation in a compact form and are directly and efficiently imple-
mentable in the search engine of the SMODELS system [118]1. The decision
problem whether a program R has a stable model is NP-complete for both
normal logic programs [92] and SMODELS programs (without optimization
statements) [118]. Disjunctive logic programs enable representing problems
in the second level of polynomial hierarchy, that is, deciding whether a dis-
junctive program R has a stable model is ΣP

2 -complete [36]. Normal logic
programs can be seen as a special case of both SMODELS programs and dis-
junctive logic programs. There is also a number of other interesting program
classes, for instance, weight constraint programs [118] of which SMODELS
programs can be viewed as a normal form, extended disjunctive logic pro-
grams [56, 107] which are disjunctive logic programs containing both de-
fault negation and classical negation, nested logic programs [79] which allow
bodies and heads of rules contain arbitrary nested expressions, and logic pro-
grams with aggregates [68, 50, 28, 106, 46, 121, 91].

An SMODELS program R is a finite set of basic constraint rules [118]

1Optimization statements included in the input language of the SMODELS system are,
however, not covered here.
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which are either weight rules of the form

a← w ≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm} (3.3)

or choice rules of the form

{a1, . . . ,ah} ← b1, . . . ,bn,∼c1, . . . ,∼cm (3.4)

where a, ai’s, bj ’s, and ck’s are atoms, h > 0, and n, m ∈ N. In addition, a
weight rule (3.3) involves a weight limit w ∈ N and the respective weights
wbj
∈ N and wck

∈ N associated with each positive literal bj and negative
literal ∼ck. Weight rules (3.3) cover many other kinds of rules as their special
cases, for instance, basic rules (3.2), cardinality rules

a← l ≤ {b1, . . . ,bn,∼c1, . . . ,∼cm}, (3.5)

integrity constraints

⊥ ← b1, . . . ,bn,∼c1, . . . ,∼cm, (3.6)

and compute statements

compute {b1, . . . ,bn,∼c1, . . . ,∼cm}. (3.7)

A cardinality rule (3.5) is essentially a weight rule (3.3) where w = l and
all weights associated with literals equal to 1. A basic rule (3.2) is a special
case of a cardinality rule (3.5) with l = n + m. The intuitive meaning of an
integrity constraint (3.6) is that the conditions given in the body should never
be simultaneously satisfied. The same can be stated using a basic rule

f ← b1, . . . ,bn,∼c1, . . . ,∼cm,∼f (3.8)

where f is a new atom dedicated to integrity constraints. Compute state-
ments (3.7) effectively correspond to sets of integrity constraints ⊥ ← ∼b1,
. . . ,⊥ ← ∼bn and ⊥ ← c1, . . . ,⊥ ← cm. In the SMODELS system [118] the
internal representation of programs is based on rules of the forms (3.2)–(3.5),
and (3.7). Since the basic constraint rules provide a reasonable coverage of
SMODELS programs, other rule types are viewed as syntactic sugar.

A disjunctive logic program R is a finite set of disjunctive rules of the form

a1∨ . . .∨ah ← b1, . . . ,bn,∼c1, . . . ,∼cm, (3.9)

where each ai, bj , and ck is an atom, and h > 0, n, m ∈ N. A basic rule (3.2)
is a special case of a disjunctive rule (3.9) such that h = 1. It is also possible
to allow disjunctive programs to contain integrity constraints (3.6), that is, to
allow h = 0, but the same effect can be obtained using a rule of the form
(3.8) similarly to the case of SMODELS programs.

The classes of SMODELS programs and disjunctive logic programs are de-
noted by Cs and Cd, respectively. Moreover, C ∈ {Cs, Cd} is used to refer to
a class of programs whenever it is not necessary to differentiate between Cs
and Cd. Overall, the goal is to unify the definitions presented in this thesis
to cover both program classes, to the extent that it is possible. Finally, Cn
denotes the class of normal logic programs, and Cn ⊂ Cs and Cn ⊂ Cd.
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The set of atoms appearing in the heads of rules in R ∈ C is denoted by
head(R) and the set of atoms appearing in the bodies of R by body(R). Fur-
thermore, body+(R) (respectively body−(R)) denotes the set of atoms having
positive (respectively negative) body occurrences in R. With a slight abuse
of notation head(r) is used to refer to the atoms appearing in the head of a
rule r, that is, head({r}), and body(r), body+(r), and body−(r) are used in a
similar way. If body(r) = ∅, then r is a fact. An SMODELS program R ∈ Cs
is positive if each rule r ∈ R is a weight rule (3.3) and body−(R) = ∅. A
disjunctive logic program R ∈ Cd is positive if body−(R) = ∅.

Example 3.1. Let G = 〈N, E〉 be a directed graph with n nodes, that is,
N = {1, . . . , n} and E ⊆ N × N . An atom arc(x, y) is used denote that
there is a directed edge from node x to node y in G. The goal is to solve
the Hamiltonian cycle problem for G, that is, to answer whether there is a
cycle in the graph such that each node is visited exactly once returning to
the starting node. To achieve this, a logic program RG ∈ Cs is designed as
follows.

First, the graph G in question is encoded as a set of facts

{arc(x, y). | 〈x, y〉 ∈ E}. (3.10)

An atom hc(x, y) is used to indicate that edge 〈x, y〉 is selected into a can-
didate for a Hamiltonian cycle. The selection is encoded by a set of choice
rules

{{hc(x, y)} ← arc(x, y). | 〈x, y〉 ∈ N ×N}. (3.11)

Together with the constraint (3.16) enforcing c to be false in every model, the
rules in (3.12) and (3.13) are used to guarantee that each node has exactly
one outgoing edge, and the rules in (3.14) and (3.15) give the respective
condition concerning incoming edges,

{c← 2 ≤ {hc(x, 1), . . . , hc(x, n)}. | x ∈ N} (3.12)
∪ {c← ∼hc(x, 1), . . . ,∼hc(x, n). | x ∈ N} (3.13)
∪ {c← 2 ≤ {hc(1, x), . . . , hc(n, x)}. | x ∈ N} (3.14)
∪ {c← ∼hc(1, x), . . . ,∼hc(n, x). | x ∈ N} (3.15)
∪ {d← c,∼d.}. (3.16)

Finally, an atom reached(x) indicates that node x is reachable from the
first node. In order to check that each node is reachable from the first node
along the edges in the cycle, rules are introduced as follows,

{ reached(y)← hc(1, y). | y ∈ N} (3.17)
∪ {reached(y)← reached(x), hc(x, y). | x ∈ N \{1}, y ∈ N}(3.18)
∪ {e← ∼e,∼reached(y). | y ∈ N} (3.19)

The logic program encoding RG of the problem is the union of the rules in
(3.10)–(3.19). �

Given a logic program R ∈ C and atoms a, b ∈ At(R), a depends directly
on b, denoted by b ≤1 a, if and only if R contains a rule r such that a ∈
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head(r) and b ∈ body+(r). The positive dependency graph of R, denoted by
Dep+(R), is a graph with At(R) and {〈b, a〉 | a ≤1 b} as the sets of nodes
and edges, respectively. The reflexive and transitive closure of ≤1 gives rise
to the positive dependency relation ≤ over At(R). A strongly connected
component (SCC) S of Dep+(R) is a maximal set S ⊆ At(R) such that
b ≤ a holds for every a, b ∈ S.

Given a logic program R ∈ C, an interpretation M is a subset of At(R)
defining which atoms in At(R) are true (a ∈ M ) and which are false (a 6∈
M ). The satisfaction relation M |= r is defined for different types of rules r
as follows.

Definition 3.2. Given a logic program R ∈ C and an interpretation M ⊆
At(R),

• a weight rule (3.3) in R is satisfied in M if and only if

w ≤
∑

b∈{b1,...,bn}∩M

wb +
∑

c∈{c1,...,cm}\M

wc

implies a ∈M ,

• a choice rule (3.4) in R is always satisfied in M , and

• a disjunctive rule (3.9) in R is satisfied in M if and only if {b1, . . . ,bn}⊆
M and M ∩ {c1, . . . ,cm} = ∅ imply M ∩ {a1, . . . ,ah} 6= ∅.

An interpretation M ⊆ At(R) is a (classical) model of program R ∈ C,
denoted by M |= R, if and only if M satisfies all the rules in R. Classical
models do not, however, correspond to the intuitive interpretation of rules
seen as inference rules, since a rule is satisfied in M even if only its head it
satisfied.

Example 3.3. Recall the program RG in Example 3.1 designed to solve the
Hamiltonian cycle problem for a directed graph G, the idea being that RG

has an answer set if and only if G has a Hamiltonian cycle.
Consider a graph G1 = 〈{1, 2}, ∅〉, which has no Hamiltonian cycles.

However, an interpretation

M = {hc(1, 2), hc(2, 1), reached(1), reached(2)} ⊆ At(RG1)

satisfies all the rules in RG1 . The empty set of facts in (3.10) is clearly sat-
isfied, and the choice rules in (3.11) are always satisfied by definition. The
rules in (3.12)–(3.16) are satisfied, since c 6∈ M and the bodies of the rules
are not satisfied. Finally, since {reached(1), reached(2)} ⊆ M , the rules in
(3.17)–(3.19) are satisfied. However, M does not represent a solution to the
Hamiltonian cycle problem for G1, and thus classical models do not match
the intuition behind the rules. �

A semantics based on minimal models of positive programs captures the
intuition, however. A minimal model is a model for which there exists no
proper subset that is also a model. More formally, a model M ⊆ At(R) of a
positive logic program R ∈ C is minimal if and only if there is no M ′ |= R
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such that M ′ ⊂ M . Thus, a minimal model of a program can be seen as a
model that maximizes the falsity of atoms. The set of minimal models of a
positive program R ∈ C is denoted by MM(R). Each positive program in
R ∈ Cs has a unique minimal model [118] (for Cn, see [86]), the least model
of R, denoted by LM(R), whereas positive disjunctive programs may have
several minimal models.

3.2 STABLE MODEL SEMANTICS

The stable model semantics [53] generalizes the minimal model semantics
for programs containing negation. The key idea is to pre-evaluate the nega-
tions in the program with respect to a given model candidate and then com-
pute the minimal models for the pre-evaluated program. The pre-evaluation
preserves satisfiability: if M |= R, then M is also a model for the program
obtained from R by pre-evaluating it with respect to M . A model candi-
date M for R is accepted as a stable model if it is a minimal model of the
positive program obtained by pre-evaluating R with respect to M . The se-
mantics for normal logic programs in terms of stable models was proposed
by Gelfond and Lifschitz [53] and was later generalized for disjunctive logic
programs [56, 107]. In [117] the stable model semantics is generalized for
SMODELS programs. However, the reduced program is not explicitly present
in the semantical definitions involving deductive closures [117]. An alterna-
tive definition adopted in [P3] can be viewed as a special case of the defini-
tion given in [118] covering weight constraint programs.

The Gelfond-Lifschitz reduct of program R ∈ C with respect to an inter-
pretation M ⊆ At(R) is defined as follows.

Definition 3.4. Given a logic program R ∈ C and an interpretation M ⊆
At(R), the reduct of R with respect to M , denoted by RM, contains

• a rule a← b1, . . . ,bn if and only if there is a choice rule (3.4) in R such
that a ∈M ∩ {a1, . . . ,ah}, and M ∩ {c1, . . . ,cm} = ∅;

• a rule a ← w′ ≤ {b1 = wb1 , . . . ,bn = wbn} if and only if there is a
weight rule (3.3) in R such that

w′ = max(0, w −
∑

c∈{c1,...,cm}\M

wc); and

• a rule a1∨ . . .∨ah ← b1, . . . ,bn if and only if there is a disjunctive
rule (3.9) in R such that M ∩ {c1, . . . ,cm} = ∅.

An interpretation M ⊆ At(R) is a stable model of a logic program R ∈ C
if and only if M ∈ MM(RM). The set of stable models of program R ∈ C is
denoted by SM(R). Since positive SMODELS programs have a unique min-
imal model, the definition of stable models can alternatively be formulated
for Cs: given a logic program R ∈ Cs, an interpretation M ⊆ At(R) is a
stable model of R if and only if M = LM(RM).
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Example 3.5. Recall Example 3.3 demonstrating that the classical models of
the encoding presented in Example 3.1 for graph G1 = 〈{1, 2}, ∅〉 do not cor-
respond to Hamiltonian cycles. Under the stable model semantics, however,
the encoding works as intended. Consider, for instance, the interpretation

M = {hc(1, 2), hc(2, 1), reached(1), reached(2)} ⊆ At(RG1).

The reduct (RG1)
M contains the following rules,

hc(1, 1)← arc(1, 1). c← 2 ≤ {hc(1, 1), hc(1, 2)}.
hc(1, 2)← arc(1, 2). c← 2 ≤ {hc(2, 1), hc(2, 2)}.
hc(2, 1)← arc(2, 1). c← 2 ≤ {hc(1, 1), hc(2, 1)}.
hc(2, 2)← arc(2, 2). c← 2 ≤ {hc(1, 2), hc(2, 2)}.
d← c.
reached(1)← hc(1, 1). reached(2)← hc(1, 2).
reached(1)← reached(2), hc(2, 1).
reached(2)← reached(2), hc(2, 2).

and has a unique minimal model, LM((RG1)
M) = ∅. Thus, M is not a

stable model of RG1 . In particular, SM(RG1) = ∅, which captures the fact
that graph G1 has no Hamiltonian cycles. In general, given M ∈ SM(RG),
the projection M∩{hc(x, y) | 〈x, y〉 ∈ N×N} corresponds to a Hamiltonian
cycle in G, and there is a bijective correspondence between the Hamiltonian
cycles of G and the stable models of RG.

As another example, consider graph G2 = 〈{1, 2}, {〈1, 2〉, 〈2, 1〉}〉, and
interpretation

M ′ = {arc(1, 2), arc(2, 1), hc(1, 2), hc(2, 1),

reached(1), reached(2)} ⊆ At(RG2).

The reduct of RG2 with respect to M ′ is

(RG2)
M ′

= (RG1)
M ∪ {arc(1, 2). arc(2, 1).}.

It is straightforward to verify that M ′ is the least model of (RG2)
M ′

. Thus,
M ′ ∈ SM(RG2), and

M ′ ∩ {hc(1, 1), hc(1, 2), hc(2, 1), hc(2, 2)} = {hc(1, 2), hc(2, 1)}

represents a Hamiltonian cycle in G2. �
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4 APPROACHES TO MODULARITY

Modern programming languages typically provide means to exploit modu-
larity in a number of ways to govern the complexity of programs and their
development process. In this chapter approaches to modularity in answer set
programming and more generally in logic programming are discussed.

One essential property for a module system is compositional semantics.
When considering how to compose a logic program from smaller parts, mod-
ules, a natural operator for composition is union. Classical propositional
theories are compositional for union, and thus, given any logic programs
R1, R2 ∈ C,

CM(R1 ∪R2) = CM(R1) on CM(R2), (4.1)

where CM(R) = {M ⊆ At(R) |M |= R} and the natural join on of two sets
of interpretations A1 ⊆ 2At(R1) and A2 ⊆ 2At(R2), denoted by A1 on A2, is

{M1 ∪M2 |M1 ∈ A1, M2 ∈ A2, M1 ∩ At(R2) = M2 ∩ At(R1)}. (4.2)

The stable model semantics, however, does not lend itself directly for pro-
gram composition using union. The problem is that in general, stable mod-
els associated with modules do not determine stable models assigned to their
union, see [P1, Example 4.9], for instance.

In addition to compositional semantics, there are several properties de-
sired from a modular logic programming language. For instance, a modular
language should allow abstraction, parameterization, and information hiding
and support re-usability to ease program development and maintenance of
large programs [20]. In order to justify replacement of program components
a non-trivial notion of program equivalence is needed. Finally, the declar-
ativity of logic programming needs to be maintained. Modularity has been
studied extensively within conventional or Prolog-style logic programming.
In their extensive survey, Bugliesi et al.[20] identify two mainstream program-
ming disciplines: programming-in-the-large and programming-in-the-small.

The programming-in-the-large approaches have their roots in the work of
O’Keefe [103] in which logic programs are seen as an elements of an alge-
bra and the operators for composing programs are seen as operators in that
algebra. The fundamental idea is that a logic program should be under-
stood as a part of a system of programs. Program composition is a powerful
tool for structuring programs without any need to extend the underlying lan-
guage of Horn clauses. Several algebraic operations such as union, deletion,
overriding union, closure, revision, and update have been considered. This
approach supports naturally the re-use of the pieces of programs in different
composite programs, and when combined with an adequate equivalence re-
lation also the replacement of equivalent components. Encapsulation and
information hiding can be obtained by introducing suitable interfaces be-
tween components. For example, Mancarella and Pedreschi [90], Brogi et
al. [16, 15], and Gaifman and Shapiro [48] present compositional frame-
works that can be seen as different formulations of the ideas in [103].

The programming-in-the-small approaches build on ideas of Miller [95].
In his approach the composition of modules is modelled in terms of logical
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connectives of a language defined as an extension of Horn clause logic. The
approach by Giordano and Martelli [57] employs the same structural proper-
ties, but suggests a more refined way of modelling the visibility of rules than
the one by Miller.

Program composition and aspects of modularity have also been consid-
ered in a number of different contexts. For instance, Etalle and Teusink [44]
and Verbauten et al. [129] address compositionality issues in the context of
normal open logic programs. Bry [18] considers compositional semantics
for logic programs and deductive databases. Baral et al. [11] consider com-
binations of knowledge bases and introduce algorithms for composing logic
programs so that satisfaction of integrity constraints is enforced. Sakama and
Inoue consider program coordination [114, 115, 116]. In generous coordina-
tion (rigorous coordination, respectively) [116] the idea is to find a program
R such that SM(R) = SM(R1) ∪ SM(R2) (SM(R) = SM(R1) ∩ SM(R2),
respectively). In [114, 115] maximal (minimal) consensus is sought in terms
of a program R such that its stable models are maximal (minimal) elements
of the set {M1 ∪M2 |M1 ∈ SM(R1), M2 ∈ SM(R2)}.

Within answer set programming there is a number of approaches within
involving modularity in some sense, but only few of them describe a flexible
module architecture with a clearly defined interface for module interaction.

Eiter et al. [38] address modularity in the programming-in-the-small sense,
and view program modules as generalized quantifiers [84, 97] the definitions
of which are allowed to nest, that is, program R can refer to another mod-
ule R′ by using it as a generalized quantifier. The main program is clearly
distinguished from subprograms, and it is possible to nest calls to submod-
ules if the so-called call graph is hierarchical, that is, acyclic. Nesting, how-
ever, raises the computational complexity depending on the depth of nesting.
Ianni et al. [60] have another programming-in-the-small approach based on
templates. The semantics of programs containing template atoms is deter-
mined by an explosion algorithm, which basically replaces the template with
a standard logic program. However, the explosion algorithm is not guaran-
teed to terminate if template definitions are used recursively. Baral et al. [9]
use macros, but again, acyclic dependencies between modules are assumed.
Tari et al. [123] extend the language of normal logic programs by introduc-
ing the concept of import rules for their ASP program modules. There are
three types of import rules which are used to import a set of tuples X for a
predicate q from another module. An ASP module is defined as a quadruple
of a module name, a set of parameters, a collection of normal rules and a
collection of import rules. Semantics is only defined for modular programs
with acyclic dependency graph, and answer sets of a module are defined with
respect to the modular ASP program containing it. Also, it is required that
import rules referring to the same module always have the same form.

Programming-in-the-large approaches to modularity in ASP are mostly
based on Lifschitz and Turner’s splitting set theorem [80] or are variants of
it. A component structure induced by a splitting sequence, that is, iterated
splittings of a program, allows a bottom-up computation of answer sets. The
restriction induced is that the dependency graph of the component chain
needs to be acyclic. Eiter et al. [37] consider disjunctive logic programs as
a query language for relational databases. A query program π is instantiated
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with respect to an input database D confined by an input schema R. The
semantics of π determines, for example, the answer sets of π[D] which are
projected with respect to an output schema S. Module architecture is based
on both positive and negative dependencies and no recursion between mod-
ules is tolerated. These constraints enable a straightforward generalization
of the splitting set theorem for the architecture. Faber et al. [45] consider
independent sets which are a specialization of splitting sets. In [51, 7] an
approach based on lp-functions is proposed. An lp-function has an interface
based on input and output signatures. Several operations, for instance in-
cremental extension, interpolation, input opening, and input extension, are
introduced for composing and refining lp-functions. The composition of lp-
functions, however, only allows incremental extension, and thus similarly to
the splitting set theorem there can be no recursion between lp-functions.

The remaining of this chapter is dedicated to a more detailed description
of the module framework by Gaifman and Shapiro [48], and the splitting sets
by Lifschitz and Turner [80]. These approaches are then contrasted with a
module architecture proposed for answer set programming in [P1, P2].

4.1 MODULE FRAMEWORK BY GAIFMAN AND SHAPIRO

The language considered in [48] is that of definite logic programs, that is,
clauses of the form A← B1, . . . , Bn, where A, B1,. . . , Bn are atoms. Atoms
are predicates instantiated with terms, and can thus contain function symbols
and variables in addition to constants. The semantics is based on atomic
consequences, that is, an atom A is a logical consequence of a program P if
and only if A is derivable from R via SLD resolutions. This is different from
answer set programming where the semantics is based on models. However,
the minimal models considered in ASP coincide with atomic consequences
for propositional positive logic programs.

A logic program module Π = 〈R, Im,Ex , Int〉 is a set of clauses R with
partitioning of predicates into imported, exported and internal ones. An im-
ported predicate is supplied to the module by the environment, for example,
another module, and it cannot appear in the head of a clause. Other pred-
icates can appear anywhere. External predicates can be supplied to other
modules, while internal predicates cannot. Communication between mod-
ules is achieved through predicate sharing. Two logic program modules
Π1 = 〈R1, Im1,Ex 1, Int1〉 and Π2 = 〈R2, Im2,Ex 2, Int2〉 are composable,
if Int1 and Int2 are local to Π1 and Π2 and Ex 1 ∩ Ex 2 = ∅. Composition of
modules is defined as

Π1 ⊕ Π2 = 〈R1 ∪R2, (Im1 ∪ Im2) \ (Ex 1 ∪ Ex 2),

Ex 1 ∪ Ex 2, Int1 ∪ Int2〉, (4.3)

that is, basically by taking the union of the sets of clauses and by updating
the module interface accordingly.

Semantics for modules is defined by taking into account the interface re-
strictions. A clause A ← B1, . . . , Bn is an Import/Export clause (I/E-clause)
of Π, if A ∈ Ex and {B1, . . . , Bn} ⊆ Im. An I/E consequence of Π is a
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logical consequence of Π which is an I/E clause, and an atomic I/E conse-
quence is an atomic consequence whose predicate is exported. Furthermore,
modules Π1 and Π2 are semantically equivalent if and only if Π1 and Π2 have
the same minimal 1 I/E consequences, which coincide with the atomic I/E
consequences [48, Theorem 11].

4.2 MODULE STRUCTURE BASED ON SPLITTING SETS

The splitting set theorem is formulated here for programs in Cd instead of the
class of extended disjunctive logic programs in [80].

Definition 4.1. A splitting set for R ∈ Cd is any set U ⊆ At(R) such that for
every rule r ∈ R, if head(r) ∩ U 6= ∅, then head(r) ∪ body(r) ⊆ U .

The set of rules r ∈ R such that head(r) ∪ body(r) ⊆ U is the bottom
of R relative to U , denoted by bU(R). The set tU(R) = R \ bU(R) is the
top of R relative to U which can be partially evaluated with respect to an
interpretation X ⊆ U . The result is a program e(tU(R), X) which contains
a rule

a1∨ . . .∨ah ← b′1 . . . , b′k,∼c′1, . . . ,∼c′l

for each rule (3.9) in tU(R) such that

• {b′1 . . . , b′k} = {b1, . . . , bn} \ U and {c′1 . . . , c′l} = {c1, . . . , cm} \ U ,

• {b1, . . . , bn} ∩ U ⊆ X , and

• ({c1, . . . , cm} ∩ U) ∩X = ∅.

A solution to a program R ∈ Cd with respect to a splitting set U is a pair
〈X, Y 〉 such that

(i) X ⊆ U is a stable model of bU(R), and

(ii) Y ⊆ At(R) \ U is a stable model of e(tU(R), X).

Solutions and stable models relate as follows.

Theorem 4.2 (The splitting set theorem [80]). For any splitting set U for R ∈
Cd and M ⊆ At(R), it holds M ∈ SM(R) if and only if 〈M ∩ U, M \ U〉 is
a solution to R with respect to U .

In particular, one may notice that there is no recursion between the bot-
tom and the top part of a program, and in this case the stable model semantics
becomes compositional.

The splitting set theorem can also be used in an iterative manner, if there
is a monotone sequence of splitting sets 〈U1, . . . , Ui, . . .〉, that is, Ui ⊂ Uj

if i < j, for program R ∈ Cd. This is called a splitting sequence and it in-
duces a component structure for R. The splitting set theorem generalizes to a

1A clause C is minimal in V if it is not tautological, there is no proper subclause of C
in V , and C is not an instance of another C ′ ∈ V with the same number of literals. An I/E
consequence is minimal if it is minimal in the set of I/E consequences.
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splitting sequence theorem [80], and given a splitting sequence, stable mod-
els of program R can be computed iteratively bottom-up. The component
structure based on a splitting sequence does not have a specified interface for
communication between the components but the incremental structure can
be used as a basis for input/output relation for the parts.

4.3 ACHIEVING THE COMPOSITIONALITY OF STABLE MODEL SEMANTICS

In [P1] a module architecture inspired by the approach by Gaifman and
Shapiro [48] is proposed for SMODELS programs under the stable model
semantics. In [P2] a similar module system is introduced for the class of
disjunctive logic programs. Moreover, the framework in [P1, P2] general-
izes the component structure based on a splitting sequence [80] by showing
that compositionality of the stable model semantics can be achieved even if
negative recursion between modules is allowed.

A logic program module2 is a quadruple in analogy to [48].

Definition 4.3. A logic program module Π over C is 〈R, I,O,H〉 where

1. R ∈ C is a finite set of rules;

2. I , O, and H are pairwise disjoint sets of input, output, and hidden
atoms;

3. At(R) ⊆ At(Π) defined by At(Π) = I ∪O ∪H ; and

4. head(R) ∩ I = ∅.

In the followingMn,Ms,Md, andM are used to denote the sets of all
modules over Cn, Cs, Cd, and C, respectively. The atoms in Atv(Π) = I ∪ O
are considered to be visible and hence accessible to other modules conjoined
with Π either to produce input for Π or to utilize the output of Π. The
hidden atoms in Ath(Π) = H = At(Π) \Atv(Π) are used to formalize some
auxiliary concepts of Π which may not be sensible for other modules but may
save space substantially, see [P3, Example 4.5], for instance. The condition
head(R) ∩ I = ∅ ensures that a module may not interfere with its own input
by defining input atoms of I in terms of its rules. Thus, input atoms are only
allowed to appear as conditions in rule bodies.

The stable model semantics is generalized to cover modules by introduc-
ing a generalization of the Gelfond-Lifschitz reduct [P1, P2]. In addition to
negative literals also literals involving input atoms get evaluated in the reduc-
tion.

Definition 4.4. Given a logic program module Π = 〈R, I,O,H〉 ∈ M,
the reduct of R under input signature I with respect to an interpretation
M ⊆ At(Π), denoted by RM

I , contains

2In [P2], instead of referring to modules, a concept of a DLP-function is used in analogy
to lp-functions [51].
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• a rule a ← b′1, . . . , b
′
k if and only if there is a choice rule (3.4) in R

such that a ∈ {a1, . . . , ah} ∩M and

{b′1, . . . , b′k} = {b1, . . . , bn} \ I, (4.4)
{b1, . . . , bn} ∩ I ⊆M, and (4.5)
M ∩ {c1, . . . , cm} = ∅; (4.6)

• a rule a ← w′ ≤ {b′1 = wb′
1
, . . . ,b′k = wb′

k
} if and only if there is a

weight rule (3.3) in R such that {b′1, . . . , b′k} = {b1, . . . , bn} \ I and

w′ = max(0, w −
∑

b∈{b1,...,bm}∩I∩M

wb −
∑

c∈{c1,...,cm}\M

wc); and

• a rule a1∨ . . .∨ah ← b′1, . . . , b
′
k if and only if there is a disjunctive

rule (3.9) in R such that conditions (4.4)–(4.6) hold.

The generalized reduct RM
I is a positive logic program and At(RM

I ) ⊆
At(R) \ I . Thus, the stable model semantics can directly be generalized for
logic program modules.

Definition 4.5. An interpretation M ⊆ At(Π) is a stable model of a module
Π = 〈R, I,O,H〉 ∈ M, denoted by M ∈ SM(Π), if and only if M \ I ∈
MM(RM

I ).

There are also alternative ways to handle input atoms. One possibility is
to combine a module with a set of facts (or a database) over its input sig-
nature [102, 100]. Yet another approach is to interpret input atoms as fixed
atoms in the sense of parallel circumscription [74] as done in [P7]. Further-
more, the alternative definition of stable models for logic programs based on
the classical models of the completion of a program [24] and its loop formu-
las [82], is extended to coverMn in [P1].

Following [48] it is initially assumed that modules Π1 = 〈R1, I1, O1, H1〉∈
M and Π2 = 〈R2, I2, O2, H2〉 ∈ M, may be put together when their output
signatures are disjoint, that is, O1 ∩ O2 = ∅, and they respect each other’s
hidden atoms, that is, H1 ∩ At(Π2) = ∅ and H2 ∩ At(Π1) = ∅. Then their
composition is

Π1 ⊕ Π2 = 〈R1 ∪R2, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, H1 ∪H2〉

in analogy to (4.3). However, the conditions given for ⊕ are not enough
to guarantee compositionality in the case of stable models. For example,
in [P1, Example 4.9], modules Π1 = 〈{a← b.}, {b}, {a}, ∅〉 and Π2 =
〈{b← a.}, {a}, {b}, ∅〉 are considered. They both have stable models ∅ and
{a, b} by symmetry, but {a, b} is not a stable model of their composition
Π1 ⊕ Π2 = 〈{a← b. b← a.}, ∅, {a, b}, ∅〉.

By assuming additionally that there is no recursion between the modules,
the splitting set theorem [80] allows for computing the stable models bottom-
up, that is, a splitting of a program can be used as a basis for a module struc-
ture as follows. If U is a splitting set for a program R ∈ Cd, then R can be
defined as composition

ΠB ⊕ ΠT = 〈bU(R), ∅, U, ∅〉 ⊕ 〈tU(R), U, At(R) \ U, ∅〉.
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Now, by Theorem 4.2, M ∈ SM(R) if and only if 〈M∩U,M\U〉 is a solution
for R with respect to U . This implies M ∩ U ∈ SM(ΠB) and M ∈ SM(ΠT ),
and furthermore, M ∈ SM(ΠB) on SM(ΠT ).

In [P1, P2] it is shown that it is possible to go beyond the splitting set theo-
rem, as only positive recursion between modules turns out to be problematic.
Formally, the positive dependency graph of a module Π = 〈R, I,O,H〉 ∈
M is defined as Dep+(Π) = Dep+(R)3. Given that Π1 ⊕ Π2 is defined,
Π1 = 〈R1, I1, O1, H1〉 and Π2 = 〈R2, I2, O2, H2〉 are mutually dependent
if and only if Dep+(Π1 ⊕ Π2) has an strongly connected component S such
that S ∩O1 6= ∅ and S ∩O2 6= ∅, that is, the SCC S is shared by Π1 and Π2.

Definition 4.6. Given modules Π1, Π2 ∈M, their join is

Π1 t Π2 = Π1 ⊕ Π2

provided that (i) Π1 ⊕ Π2 is defined and (ii) Π1 and Π2 are mutually inde-
pendent.

The conditions in Definition 4.6 impose no restrictions on positive de-
pendencies inside modules or on negative dependencies in general. More-
over, if modules Π1 and Π2 are mutually independent, then the condition
O1 ∩ O2 = ∅ for their composition Π1 ⊕ Π2 holds automatically. Thus,
the requirement of mutual independence can also be viewed as a variant of
condition O1 ∩ O2 = ∅ restoring the compositionality of the module system
under the stable model semantics.

As modules may involve hidden atoms, (4.2) needs to be accommodated
to the modular context. Given modules Π1 and Π2 such that Π1 ⊕ Π2 is
defined, the natural join of A1 ⊆ 2At(Π1) and A2 ⊆ 2At(Π2) is

A1 on A2 = {M1 ∪M2 |M1 ∈ A1, M2 ∈ A2, M1 and M2 are compatible},

where M1 ⊆ At(Π1) and M2 ⊆ At(Π2) are compatible if and only if M1 ∩
Atv(Π2) = M2 ∩ Atv(Π1).

If a program (module) consists of several submodules, its stable models
are locally stable for the respective submodules; and on the other hand, local
stability implies global stability for compatible stable models of the submod-
ules, that is, the stable model semantics of modules is compositional for t.

Theorem 4.7 (The module theorem). If Π1, Π2 ∈M are modules such that
Π1 t Π2 is defined, then SM(Π1 t Π2) = SM(Π1) on SM(Π2).

The module theorem also straight-forwardly generalizes for a collection of
modules [P1, P2].

Example 4.8. Recall the encoding for solving Hamiltonian cycle problem for
a directed graph G = 〈N, E〉 given in Example 3.1. The encoding is general
in the sense that only the set of facts (3.10) is dependent of the graph G, and
by chancing the facts, the encoding works for any directed graph of n nodes.

3Since the definitions of input atoms are external to a module Π = 〈R, I,O,H〉 ∈
M, the input atoms could be excluded from the positive dependency graph of Π, that is,
Dep+(Π) can be defined as the graph with O∪H and {〈b, a〉 ∈ (O∪H)×(O∪H) | a ≤1 b}
as the sets of nodes and edges, respectively.
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Looking this from the point of view of the module architecture, a particular
graph G can be viewed as an input for the encoding. With respect to the solu-
tions of the problem, the atoms describing the Hamiltonian cycles are partic-
ularly interesting in the stable models of the encoding. Other atoms can be
viewed as internal information. Thus, one may define Πn

HC = 〈R, I,O,H〉,
where the set of rules R is the union of the sets in (3.11)–(3.19),

I = {arc(x, y) | 1 ≤ x, y ≤ n},
O = {hc(x, y) | 1 ≤ x, y ≤ n}, and
H = {reached(x) | 1 ≤ x ≤ n} ∪ {c, d, e}.

Now, module Πn
HC solves the Hamiltonian cycle problem for all directed

graphs of n nodes.
Furthermore, one may notice that the problem can be partitioned into

two subproblems, that is, selecting edges to a cycle candidate and checking
that each node is reachable along the edges in the candidate. The subtasks
can be separated in different modules. A module Πn

H = 〈RH, I, O, {c, d}〉
selects the edges to be taken into a cycle. The set of rules RH is the union
of the sets in (3.11)–(3.16). Another module Πn

R = 〈RR, I ′, ∅, H ′〉 performs
the reachability check. The input signature of Πn

R is I ′ = O, and all other
atoms are hidden H ′ = {reached(x) | 1 ≤ x ≤ n} ∪ {e}. The set of rules
RR is the union of the sets in (3.17)–(3.19). Modules Πn

H and Πn
R respect

each other’s hidden atoms and are mutually independent. Thus, their join
Πn

H t Πn
R = 〈RH ∪RR, I, O, H〉 is defined, and moreover Πn

H t Πn
R = Πn

HC.
As an illustration of the module theorem, consider n = 2, and the in-

terpretation M = {hc(1, 2), hc(2, 1), reached(1), reached(2)} used in Exam-
ples 3.3 and 3.5. Now, M ∩ At(Π2

R) is a stable model of Π2
R, since given

such a selection of edges to a cycle, both nodes are reachable. However,
N = M ∩ At(Π2

H) = {hc(1, 2), hc(2, 1)} is not a stable model of Π2
H, since

(RH)N
I contains the rules

c← 2 ≤ {hc(1, 1), hc(1, 2)}. c← 2 ≤ {hc(2, 1), hc(2, 2)}.
c← 2 ≤ {hc(1, 1), hc(2, 1)}. c← 2 ≤ {hc(1, 2), hc(2, 2)}.
d← c.

and LM((RH)N
I ) = ∅. By the module theorem, it follows that M is not a

stable model of the join Π2
H t Π2

R = Π2
HC. �

The module theorem strengthens an earlier version given in [64] to cover
programs that involve positive body literals. Moreover, the module theorem
is a proper generalization of the splitting set theorem [80], see [P1, Example
4.31] for an illustration. The main difference is that splitting sets do not en-
able any kind of recursion between modules. The module theorem can be
used in a very similar fashion to the splitting set theorem, see [P1, Examples
4.17 and 4.18]. The module theorem demonstrates the feasibility of the re-
spective module architecture, but it is also applied similarly to the splitting
set theorem as a tool to simplify mathematical proofs in [P1, P2, P4, P7].

Furthermore, in [P1] a technique for obtaining a module-decomposition
for a complete program R ∈ Cs is proposed, based on the strongly connected
components of Dep+(R) and visibility information of At(R) = Atv(R) ∪
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Ath(R). Similar technique can be applied to programs in Cd. Notice, how-
ever, that disjunctive rules may not be projected in the same way as choice
rules. Thus, one has to make sure that all the head atoms sharing a rule are
placed within one component. A more detailed knowledge of the internal
structure of a program might reveal ways to improve search for stable models.
Another application can be found in modularization of the translation-based
equivalence verification method to be discussed in Section 5.2.

There are cases in which Π1 t Π2 is not defined while SM(Π1 ⊕ Π2) =
SM(Π1) on SM(Π2) holds, see [P1, Example 5.4], for instance. This suggests
that even the denial of positive recursion between modules can be relaxed in
certain cases.

Definition 4.9. Given two modules Π1, Π2 ∈ M, their semantical join is
Π1tΠ2 = Π1⊕Π2 provided that (i) Π1⊕Π2 is defined and (ii) SM(Π1⊕Π2) =
SM(Π1) on SM(Π2).

The module theorem holds by definition for modules composed with t.
The tradeoff between the syntactical and the semantical condition lies in
the computational complexity of checking whether the condition for the re-
spective composition is satisfied. The syntactical restriction denying positive
recursion between modules is easy to check, since SCCs can be found in a
linear time with respect to the size of the dependency graph [124]. To the
contrary, checking whether SM(Π1 ⊕ Π2) = SM(Π1) on SM(Π2) is a com-
putationally harder problem. For instance, for modules in Ms it forms a
coNP-complete decision problem [P1], and, the result holds even for mod-
ules inMn ⊂Ms.

Earlier approaches to modularity within ASP [38, 60, 123, 80, 37, 45,
51, 7] typically assume acyclic dependency graph between modules. The
module system in [P1, P2] allows a more flexible way of combining mod-
ules. The restrictions imposed on the interface of an individual module,
and the requirement of mutual independence of modules joined together
can be regarded as part of good programming style in answer set program-
ming. The characteristics of ASP modules proposed in [P1, P2] include a
clearly defined interface for interaction between other modules in analogy
to [48]. Moreover, to justify a replacement of a module with another within
a larger program, an equivalence relation, namely modular equivalence is
proposed [P1, P2]. Properties of modular equivalence among with other
equivalence relations proposed for logic programs are discussed in the next
chapter.
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5 EQUIVALENCE RELATIONS

There are several notions of equivalence proposed for logic programs under
the stable model semantics. A summary of equivalence relations for logic
programs in terms the congruence property and the preservation of the num-
ber of stable models is given in Table 5.1.

Lifschitz et al. [78] address the notions of weak/ordinary equivalence and
strong equivalence. Programs R1, R2 ∈ C are weakly equivalent, denoted by
R1 ≡ R2, if and only if SM(R1) = SM(R2); and strongly equivalent, de-
noted by R1 ≡s R2, if and only if R1 ∪R ≡ R2 ∪R for each program R ∈ C.
The program R in the above definition can be understood as an arbitrary
context in which the two programs being compared could be placed. There-
fore strongly equivalent logic programs are semantics preserving substitutes
of each other and relation≡s is a congruence relation for ∪ among programs
in C, that is, if R1 ≡s R2, then also R1 ∪R ≡s R2 ∪R for all R ∈ C.

A drawback of the relation ≡s is that it is quite restrictive, allowing only
rather straightforward semantics-preserving transformations of (sets of) rules,
see [78, 105, 81, 126, 21] for characterizations of strong equivalence. Lifs-
chitz et al. [78] characterize≡s in Heyting’s logic here-and-there which is an
intermediary logic between intuitionistic and classical propositional logics.
This result implies that each program transformation admitted by≡s is based
on a classical equivalence of the part being replaced R1 and its substitute
R2, that is, R1 ≡s R2 implies that R1 and R2 are classically equivalent (R1

and R2 have the same classical models). However, the converse is not true
in general as there are classically equivalent programs that are not strongly
equivalent. In the other extreme, weak equivalence relates programs that ad-
mit exactly the same behavior under the stable model semantics. However,
weak equivalence is not a congruence for the union of programs, which limits
its usefulness, especially in a modular case.

A way to weaken strong equivalence is to restrict possible contexts to sets
of facts. The notion of uniform equivalence has its roots in the database
community [111, 87], see [33] for the context of answer set programming.
Programs R1, R2 ∈ C are uniformly equivalent, denoted by R1 ≡u R2, if and
only if R1 ∪ F ≡ R2 ∪ F for any set F of facts. Eiter et al. [34, Example 1]
show that R1 ≡u R2 does not imply R1 ≡s R2 in general. This implies that,
similarly to ≡, uniform equivalence fails to be a congruence for union of
programs.

There are also relativized variants of strong and uniform equivalence [81,
133] which allow the context R to be constrained by a set of atoms A, that is,
only contexts R such that At(R) ⊆ A are considered. Inoue and Sakama pro-
pose a variant of relativized equivalence based on update equivalence [62].
Programs R1, R2 ∈ C are strongly equivalent with respect to a set R ∈ C of
rules if and only if R1 ∪R ≡ R2 ∪R for any set R ⊆ R.

Woltran recently presented a general framework characterizing 〈H,B〉-
equivalence [134]. The definition of 〈H,B〉-equivalence is similar to that
of strong equivalence, but the set of possible contexts is restricted by limiting
the head and body occurrences of atoms in a context program R byH and B,
respectively. Thus, programs R1 and R2 are 〈H,B〉-equivalent if and only if
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R1∪R ≡ R2∪R for all R such that head(R) ⊆ H and body(R) ⊆ B. Several
notions of equivalence such as weak equivalence together with (relativized)
strong and (relativized) uniform equivalence can be seen as special cases of
〈H,B〉-equivalence by varying the setsH and B.

All the equivalence relations introduced here so far basically assume that
the set of atoms appearing in the programs R1 and R2 under consideration
are the same. This makes these relations less useful if At(R1) and At(R2)
differ by some local atoms not trivially false in all stable models, see [P3, Ex-
ample 4.5], for instance. To solve this problem, the atoms in At(R) may be
partitioned into Atv(R) and Ath(R) to determine the visible and the hid-
den parts of At(R) in analogy to a module interface. The idea is that visible
atoms form an interface for interaction between programs, and hidden atoms
are local to each program and thus negligible when equivalence of programs
is concerned. A very general framework based on equivalence frames [40]
captures various kinds of equivalence relations. Equivalence frames based
on projected answer sets enable ignoring the hidden atoms when equiva-
lence of programs is of interest. However, a projective equivalence, defined
as R1 ≡p R2 if and only if

{M ∩ Atv(R1) |M ∈ SM(R1)} = {N ∩ Atv(R2) | N ∈ SM(R2)}, (5.1)

may not preserve the number of stable models. This is somewhat unsatisfac-
tory because of the general nature of answer set programming. The stable
models of a program typically correspond to the solutions of the problem
being solved and thus the exact preservation of models is highly significant.

The visible equivalence relation [64] strives for a strict correspondence.
Programs R1, R2 ∈ C are visibly equivalent, denoted by R1 ≡v R2, if and
only if Atv(R1) = Atv(R2) and there is a bijection f : SM(R1) → SM(R2)
such that for all M ∈ SM(R1), M ∩ Atv(R1) = f(M) ∩ Atv(R2). The
number of stable models is preserved under≡v, and in the absence of hidden
atoms, the relation ≡v becomes very close to ≡. The only difference is the
requirement At(R1) = At(R2) insisted by ≡v. Thus, visible equivalence is
not a congruence for program union either, which limits its usefulness in a
modular setting.

Table 5.1: Properties of equivalence relations for logic programs.

congruence for ∪ preserves number of stable models

≡ no yes

≡u no yes

≡s yes yes

≡p no no

≡v no yes
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5.1 MODULE-LEVEL EQUIVALENCE

The module system proposed in [P1, P2] enables lifting equivalence rela-
tions to the level of modules. For instance, program modules Π1, Π2 ∈
M are visibly equivalent, denoted by Π1 ≡v Π2 if and only if Atv(Π1) =
Atv(Π2) and there is a bijection f : SM(Π1) → SM(Π2) such that for all
M ∈ SM(Π1), M ∩ Atv(Π1) = f(M) ∩ Atv(Π2). Taking into account
the input/output interface of modules, a more refined relation of modular
equivalence is obtained based on visible equivalence. Program modules
Π1 = 〈R1, I1, O1, H1〉, Π2 = 〈R2, I2, O2, H2〉 ∈ M are modularly equiva-
lent, denoted by Π1 ≡m Π2 if and only if I1 = I2 and Π1 ≡v Π2.

Modular equivalence lends itself for program substitutions in analogy to
strong equivalence [78] when considering the join operatort, that is, relation
≡m is a proper congruence for join [P1, P2].

Theorem 5.1 (Congruence). Let Π1, Π2, Π ∈ M be modules such that the
joins Π1 tΠ and Π2 tΠ are defined. If Π1 ≡m Π2, then Π1 tΠ ≡m Π2 tΠ.

Thus, modular equivalence can be viewed as a reasonable compromise
between uniform equivalence [33] and strong equivalence [78]. Uniform
equivalence fails to be a congruence for union, whereas strong equivalence
is a congruence. Strong equivalence, however, allows only rather straightfor-
ward semantics-preserving transformations of sets of rules, whereas uniform
equivalence is less restrictive.

In [P1, Example 4.21] it is illustrated how the join effectively prunes con-
texts, which would alter the semantics of input atoms. The congruence prop-
erty also holds for the semantical join t by definition.

Example 5.2. Module Πn
HR = 〈R′′, I, O, H ′′〉 is based on an alternative en-

coding for Hamiltonian cycle problem given in [118]. In contrast to the
encoding described in Example 4.8, this encoding does not allow to separate
the selection of the edges to the cycle and the checking of reached nodes into
separate modules as their definitions are mutually dependent. The input sig-
nature of Πn

HR is the same as for Πn
H, that is, I = {arc(x, y) | 1 ≤ x, y ≤ n}.

The output signature of Πn
HR is the output signature of Πn

H t Πn
R, that is,

O = {hc(x, y) | 1 ≤ x, y ≤ n}, and the rest of the atoms are hidden, that is,

H ′′ = {reached(x) | 1 ≤ x ≤ n} ∪ {f}.

The set of rules R′′ contains the following rules:

{hc(1, x)} ← arc(1, x).

{hc(x, y)} ← reached(x), arc(x, y).

reached(y) ← hc(x, y).

f ← ∼f,∼reached(x).

f ← ∼f, hc(x, y), hc(x, z). (5.2)
f ← ∼f, hc(x, y), hc(z, y). (5.3)

for each 1 ≤ x, y, z ≤ n such that y 6= z in (5.2) and x 6= z in (5.3).
Now, Πn

HR and Πn
H t Πn

R have the same input/output interface, and one
may check that SM(Πn

HR) = SM(Πn
HtΠn

R). This implies Πn
HR ≡m Πn

HtΠn
R.
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By Theorem 5.1, it follows that Πn
HR tΠ ≡m Πn

H tΠn
R tΠ for any Π such

that the joins are defined. For example, such a context is a module generat-
ing all symmetric directed graphs of n nodes defined as Πn

G = 〈Gn, ∅, I, ∅〉,
where

Gn = {{arc(x, y)}. | 1 ≤ x, y ≤ n}
∪ {arc(y, x)← arc(x, y). | 1 ≤ x, y ≤ n}. �

There is an alternative formulation for modular equivalence taking fea-
tures from strong equivalence [78]. Modules Π1 = 〈R1, I1, O1, H1〉, Π2 =
〈R2, I2, O2, H2〉 ∈ M are semantically or strongly modularly equivalent, de-
noted by Π1 ≡sm Π2, if and only if I1 = I2 and Π1tΠ ≡v Π2tΠ for all
Π ∈ M such that Π1tΠ and Π2tΠ are defined [P1]. It is straightforward
to see that ≡sm is a congruence for t. Interestingly, ≡sm defines exactly the
same equivalence classes as ≡m. In [P1, Theorem 5.7] this is shown forMs,
and the proof straightforwardly generalizes for Md using the module theo-
rem in the disjunctive case.

Theorem 5.3. Π1 ≡m Π2 if and only if Π1 ≡sm Π2 for any Π1, Π2 ∈M.

5.2 COMPUTATIONAL COMPLEXITY AND EQUIVALENCE VERIFICATION

The task of verifying weak, strong, and uniform equivalence is a coNP-
complete decision problem for programs in Cn [105, 33], and the complexity
results can be generalized for programs in Cs in a similar way (for weak equiv-
alence, see [P3], for instance). For programs in Cd, verification of strong
equivalence is a coNP-complete decision problem [105, 81, 126] and the
verification of both weak and uniform equivalence is a ΠP

2 -complete deci-
sion problem [33, 126]. Thus, with the exception of strong equivalence for
Cd, the computational complexity of deciding ≡, ≡s, and ≡u is the same
as that of checking the existence of stable models for the respective class of
programs C. For the case of the more refined equivalence relations and fur-
ther analysis, see [40, 35, 134]. The complexity of verifying visible/modular
equivalence for Cs andMs, respectively, is analyzed in [P1, P3]. If the use of
hidden atoms is not limited in any way, the problems of verifying visible and
modular equivalence become at least as hard as the counting problem which
is #P-complete [127]. It is possible, however, to govern the computational
complexity by limiting the use of hidden atoms by the property of having
enough visible atoms [P3], which will be reviewed next.

Intuitively, if a program R ∈ C (respectively a module Π ∈ M) has
enough visible atoms, the EVA property for short, then each interpretation
of Atv(R) (respectively Atv(Π)) uniquely determines an interpretation of
Ath(R) (respectively Ath(Π)). Consequently, the stable models can be dis-
tinguished on the basis of their visible parts and the projective equivalence
defined in (5.1) coincides with visible equivalence under the EVA assump-
tion. For the purpose of a formal definition for the EVA property, the hid-
den part of a module Π = 〈R, I,O,H〉 ∈ M is defined as a module
Πh = 〈Rh, I ∪O, H, ∅〉 ∈ M where Rh contains the rules defining the
hidden atoms, that is,
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• a projected choice rule

{a′1, . . . , a′k} ← b1, . . . , bn,∼c1, . . . ,∼cm

for each choice rule (3.4) in R such that

{a′1, . . . , a′k} = {a1, . . . , ah} ∩H 6= ∅;

• a weight rule

a← w ≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}

for each weight rule (3.3) in R such that a ∈ H ; and

• a shifted disjunctive rule

a′1 ∨ · · · ∨ a′k ← b1, . . . , bn,∼c1, . . . ,∼cm,∼a′′1, . . . ,∼a′′l

for each disjunctive rule (3.9) in R such that

{a′1, . . . , a′k} = {a1, . . . , ah} ∩H 6= ∅, and
{a′′1, . . . , a′′l } = {a1, . . . , ah} \H.

It is worth noticing that choice rules and disjunctive rules require a dif-
ferent treatment. The semantics of choice rules is such that there is no min-
imality assumption for the head atoms. Thus, it suffices simply to project
the head with respect to the hidden atoms. The disjunctive case is more in-
volved. The semantics of a disjunction in the head is based on minimality,
and it is necessary to shift the visible atoms from the head [P2].

Definition 5.4. A module Π = 〈R, I,O,H〉 ∈ M has the EVA property
if and only if the hidden part Πh = 〈Rh, I ∪O, H, ∅〉 has a unique stable
model M for each N ⊆ Atv(Π) = I ∪O such that M ∩ (I ∪O) = N .

The definition above also covers the case of ordinary, input-free logic pro-
grams, since any R ∈ C can be viewed as a module

Π = 〈R, ∅, Atv(R), Ath(R)〉 ∈ M.

It is always possible to enforce the EVA property by uncovering sufficiently
many hidden atoms. A module Π for which Ath(Π) = ∅ has clearly enough
visible atoms because Πh has no rules. It is also important to realize that
choice rules and disjunctive rules involving hidden atoms in their heads are
likely to break up the EVA property unless additional constraints are intro-
duced to exclude multiple models created by choices and disjunctions. Al-
though verifying the EVA property can be hard in general, see [P3, Proposi-
tion 4.14], there are syntactic classes of logic programs which are guaranteed
to have enough visible atoms and no computational efforts are needed to ver-
ify this, for instance, modules Π = 〈R, I,O,H〉 for which Rh is positive or
stratified [4] in some sense.

Assuming the EVA property, the verification of visible equivalence is a
coNP-complete decision problem for Cs [P3], and the verification of mod-
ular equivalence is a coNP-complete decision problem for Ms [P1]. For
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modules in Md with the EVA property, the verification of modular equiv-
alence can be reduced to the problem of finding stable models for Md by
combining the ideas in the translations in [101] (for capturing a counter-
example for the equivalence) and [P4] (for computing the unique stable
model for the hidden part guaranteed by the EVA property). ΠP

2 -hardness fol-
lows from the observation that the ΠP

2 -complete problem of deciding R1 ≡
R2 for R1, R2 ∈ Cd [126, 33] reduces to deciding

〈R1, ∅, At(R1) ∪ At(R2), ∅〉 ≡m 〈R2, ∅, At(R1) ∪ At(R2), ∅〉.

Thus, assuming the EVA property, the verification of modular equivalence
is a ΠP

2 -complete decision problem for Md. Due to the close connection
of modular and visible equivalence, also deciding visible equivalence of pro-
grams in Cd with the EVA property is a ΠP

2 -complete problem.
The computational complexity of deciding equivalence has motivated sev-

eral translation-based approaches for the equivalence verification task. Over-
all the idea is to translate the problem of verifying equivalence of two pro-
grams into another problem for which there already exist efficient solvers.
In [66] verification of weak equivalence of two SMODELS programs is re-
duced to the existence of stable models by introducing a translation EQT :
Cs × Cs → Cs such that given programs R1, R2 ∈ Cs, R1 ≡ R2 if and only
if SM(EQT(R1, R2)) = ∅ and SM(EQT(R2, R1)) = ∅. The tool LPEQ [67]
implements the translation, and also covers verification of strong and classi-
cal equivalence for programs in Cn. Similar approach is followed in [101],
and the tool DLPEQ implements the translation for verifying weak equiva-
lence of programs in Cd.

The tool SELP [23] reduces the problem of deciding strong equivalence
of disjunctive logic programs into propositional satisfiability. The tool SE-
TEST [31] reduces the problem of verifying strong equivalence of disjunctive
first-order Datalog programs under the stable model semantics to the un-
satisfiability of Bernays-Schönfinkel formulas. The tool CCT implements
the general framework for specifying program correspondences introduced
in [40] by reducing the correspondence problem to a quantified Boolean for-
mula (QBF) such that the resulting QBF evaluates to true if and only if the
correspondence problem holds [125]. In the special case of uniform equiv-
alence relative to a context set and a projection set, CCT uses an encoding
proposed in [99] and it can generate QBFs for computing counter-examples
in addition to solving the decision problem whether correspondence holds.

In [P3] the translation-based approach from [66] is extended to cover the
verification of visible equivalence of SMODELS programs with the EVA prop-
erty. In [P4] the translation-based approach is adjusted to the verification of
modular equivalence of modules inMs with the EVA property. Interestingly,
the congruence property of modular equivalence and the compositionality of
the stable model semantics allow further refinements in terms of modulariza-
tion. In the next theorem EQT :Ms ×Ms →Ms refers to the translation
function presented in [P4, Definition 10].

Theorem 5.5. Let Π1 = 〈R1, I, O, H1〉, Π2 = 〈R2, I, O, H2〉 ∈ Ms be mod-
ules with the EVA property, and Π any module in Ms such that Π1 t Π
and Π2 t Π are defined. Then Π1 t Π ≡m Π2 t Π if and only if both
SM(EQT(Π1, Π2) t Π) = ∅ and SM(EQT(Π2, Π1) t Π) = ∅.
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Theorem 5.5 shows that there is no need to translate the common context
Π. This is of significance, as the length of the translation EQT(Π1, Π2) t Π
involved in the equivalence verification task might be close to half of that of
EQT(Π1 tΠ, Π2 tΠ), if Π is large. By combining the ideas from [101] and
[P4], Theorem 5.5 can be generalized in a rather straight-forward manner
forMd. Moreover, a stable model for the translation EQT(Π1, Π2) captures
a counter-example for the equivalence Π1 ≡m Π2. In [P4, Example 6] it is
illustrated how a counter-example can be extracted from a stable model of
the translation in practice.

Furthermore, Theorem 5.5 enables modularization of equivalence veri-
fication [P4]. If Π2 ∈ M is obtained from Π1 ∈ M through local mod-
ifications, it is likely that there is a partitioning for Π1 and Π2 such that
Π1 = Π1

1 t · · · t Πn
1 and Π2 = Π1

2 t · · · t Πn
2 where Πi

1 is compatible with
Πi

2 for all i in the sense that they have the same input/output interface. If
Πi

1 ≡m Πi
2 holds and their equivalence can be verified efficiently, then The-

orem 5.1 implies that Πi
1 and Πi

2 are modularly equivalent in every possible
context. If this is not the case, it is still possible to organize the verification of
Π1 ≡m Π2 as a sequence of n module-level tests as follows:

Πi
1 t Πi ≡m Πi

2 t Πi (5.4)

where 1 ≤ i ≤ n, and in each test (5.4) modules differ in Πi
1 and Πi

2 for
which the other modules form a common context

Πi = (
i−1
t

j=1
Πj

2) t (
n
t

j=i+i
Πj

1).
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6 PROPERTIES OF TRANSLATION FUNCTIONS

Transformations between program classes provide means for an expressive-
ness analysis, see [98, 47, 39, 61, 63, 64, 79, 104], for instance. The proper-
ties of transformations are often presented in terms of translation time, model
correspondence with respect to an equivalence relation, and modularity of
the translation in some sense.

Niemelä [98] defines that a translation is modular, if adding a set of facts
to a program leads to a local change not involving the rest of the translation,
and shows that there is no modular translation from logic programs under
the stable model semantics to propositional satisfiability of a set of clauses.

Ferraris [47] defines that a translation Tr : C1 → C2 between program
classes C1 and C2 is modular if for every rule r ∈ C1 it holds At(Tr(r)) ⊆
At(r), and sound if for every R ∈ C1, it holds R ≡ ∪r∈RTr(r). Thus a
modular transformation does not introduce any auxiliary atoms, and a sound
transformation preserves the stable models. Ferraris shows that every trans-
formation Tr : C1 → C2 such that C1 contains all unary rules is sound if
and only if for each rule r ∈ C1, r ≡s Tr(r) and analyzes expressiveness of
different program classes in terms of existence of a sound transformation.

Janhunen [64] proposes an analysis method which is based on the exis-
tence of polynomial, faithful and modular (PFM) translation functions be-
tween classes of logic programs, and shows that these three properties are
preserved under compositions of programs in terms of disjoint unions [64].
Intuitively, a faithful translation preserves the roles of visible atoms in the
transformation, and enforces bijective correspondence between the models
of the original program and its translation based on visible equivalence. A
translation is polynomial if it can be computed in polynomial time with re-
spect to the length of the original program in symbols. Programs R,R′ ∈ C
satisfy module conditions if and only if (i) R∩R′ = ∅, (ii) Atv(R) = Atv(R

′),
and (iii) Ath(R) ∩ At(R′) = ∅ and At(R) ∩ Ath(R

′) = ∅. A translation
Tr : C1 → C2 is modular if and only if for all R,R′ ∈ C satisfying the
module conditions, Tr(R) and Tr(R′) satisfy the module conditions and
Tr(R ∪R′) = Tr(R) ∪ Tr(R′).

In [P5] the expressive power of parallel circumscription and positive dis-
junctive logic programs under the stable models semantics is compared us-
ing the existence of a polynomial, faithful and modular translation function
in terms of [64] as a criterion, and in particular, it is shown that there is no
PFM-translation from parallel circumscription to positive disjunctive logic
programs [P5, Theorem 2].

Eiter and Polleres [39] provide a translation from propositional head-cycle-
free [13] extended disjunctive logic programs to disjunctive logic programs
which integrates the guess and check programs into a single program solving
the problem. The properties of the translation studied in [39] differ from
those in [64] at first glance, but the translation in [39] is polynomial and
modular in the sense of [64]. However, as a result of different design criteria,
the translation in [39] is not faithful in the sense of [64].

Pearce et al. [104] also consider PFM-translation functions, and introduce
a polynomial, strongly faithful and modular translation from nested logic pro-
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grams to disjunctive logic programs. However, the conditions of faithfulness
and modularity differ slightly from those in [64]. Pearce et al. [104] de-
fine that a translation Tr : C1 → C2 is faithful if and only if SM(R) =
{M ∩At(R) |M ∈ SM(Tr(R))}. Thus instead of visible equivalence, a pro-
jective variant is considered and the exact number of stable models needs not
to be preserved. Moreover, they define that a translation is strongly faithful if
and only if for all programs R,R′ ∈ C1,

SM(R ∪R′) = {M ∩ At(R ∪R′) |M ∈ SM(Tr(R) ∪R′)}.

Finally, a translation is modular if and only if Tr(R ∪R′) = Tr(R) ∪Tr(R′)
for all R,R′ ∈ C1. Thus the condition is a stronger variant of that by Jan-
hunen [64].

Lifschitz et al. [79] present a translation from nested logic programs to
extended disjunctive logic programs. Their translation does not introduce
new atoms and preserves strong equivalence. However, the translation is
exponential in the worst case. Inoue and Sakama [61] present two transfor-
mations from general extended disjunctive program to extended disjunctive
logic programs, that is, translations to remove default negation from the heads
of rules. Both translations are polynomial. The one introducing new atoms
is modular and faithful. The other is based on shifting, and an additional
stability condition on minimal models is needed to achieve faithfulness. Jan-
hunen [63] considers disjunctive programs without classical negation and
presents another PFM-translation to remove default negation from the heads
of rules. In contrast to the translation by Inoue and Sakama [61], his transla-
tion is linear. It is worth noticing that the condition for modularity proposed
in [63] slightly differs from the one considered in [64].

In [P1], the conditions by Janhunen [64] are generalized and slightly mod-
ified to fit the module framework [P1, P2]. These conditions are presented
in detail in Definition 6.1. Modular equivalence is used instead of visible
equivalence in the faithfulness property, and a strongly faithful translation
preserves the roles of all, not just visible atoms in the original encoding. A
translation is modular, if each module can be translated separately without
affecting the outcome. A t-preserving translation is such that possible com-
positions of modules are not limited by the translation. For convenience,
an operator reveal(Π, A) = 〈R, I,O ∪ A, H \ A〉 is defined to make a set of
hidden atoms A ⊆ H of a module Π = 〈R, I,O,H〉 ∈ M visible to other
modules.

Definition 6.1. Let M1 and M2 be two classes of logic program modules
such thatM2 ⊆M1. A translation function Tr :M1 →M2 is

1. polynomial if and only if for all modules Π ∈ M1, the translation
Tr(Π) ∈ M2 can be computed in time (and hence also space) poly-
nomial to ‖Π‖, the length of Π in symbols;

2. faithful if and only if for all modules Π ∈M1, Π ≡m Tr(Π);

3. strongly faithful if and only if for all modules Π ∈M1,

reveal(Π, Ath(Π)) ≡m reveal(Tr(Π), Ath(Π));
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4. t-preserving if and only if for all modules Π, Π′ ∈ M1, if Π t Π′ is
defined, then Tr(Π) t Tr(Π′) is defined;

5. modular if and only if for all modules Π, Π′ ∈M1 such that Π tΠ′ is
defined, Tr(Π) t Tr(Π′) = Tr(Π t Π′).

It is worth noticing that the condition of modularity in Definition 6.1
is different from the one used in [64]. While the module conditions (i)
and (iii) make sense with respect to t, condition (ii) is problematic. If (ii)
is brought to a modular setting in the sense of [P1, P2], then Atv(R) =
Atv(R

′) implies that the respective join of modules 〈R, ∅, Atv(R), Ath(R)〉
and 〈R′, ∅, Atv(R

′), Ath(R
′)〉 is not defined. Thus, the counter-example pre-

sented in the proof of [P5, Theorem 2] does not work when modular transla-
tion is defined as in Definition 6.1. Also, the condition for strong faithfulness
differs from the one by Pearce et al. [104]. The condition used in Definition
6.1 resembles the faithfulness criterion in [104] but bijective model corre-
spondence is insisted by modular equivalence.

Furthermore, in some cases a weaker variant of the condition for modu-
larity might be of interest, that is, one may consider modular equivalence

Tr(Π) t Tr(Π′) ≡m Tr(Π t Π′)

instead of the syntactical equivalence used in Definition 6.1.
The module theorem (Theorem 4.7) lends itself to extensions for further

classes of logic program modules which can be brought into effect in terms
of strongly faithful, t-preserving, and modular translations for the removal of
new syntax [P1]. More formally, given two classes of logic program modules
M1,M2 such that M2 ⊆ M1, and the module theorem holds for M2, if
there is a strongly faithful, t-preserving, and modular translation from M1

toM2, then the module theorem holds forM1, too. In [P1] this is demon-
strated by introducing such a translation fromMs toMn. It is worth noticing
that the translation time is of no interest in this case.

Niemelä et al. [118] propose a linear translation function which embeds
the class of weight constraint programs into Cs. Since each weight constraint
and each rule is translated independently, the translation is modular. In
[P3] the translation from [118] is shown to be faithful. From faithfulness of
the transformation it directly follows that the translation-based method for
verification of visible equivalence of SMODELS programs proposed in [P3]
covers also the case of weight constraint programs through the translation.

As another example of transformations between programs classes, transla-
tions for embedding parallel/prioritized circumscription into answer set pro-
gramming are discussed in the next section.

6.1 EMBEDDING CIRCUMSCRIPTION INTO ASP

In this section, positive programs in Cd are considered. The stable model
semantics of disjunctive logic programs is based on minimal models which
makes every atom appearing in a logic program false by default. While this
feature is highly useful and leads to concise encodings of problems as pro-
grams, it occasionally makes knowledge representation with rules difficult.
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Figure 6.1: The circuit from Example 6.2 consisting of three inverters con-
nected in series together with observations.

Example 6.2. A digital circuit can be modelled using propositional theories
following the ideas from [12]. For instance, an inverter x is described by a
propositional theory (out(x)↔ ¬in(x)) ∨ ab(x), where the atoms in(x) and
out(x) model the interconnection of the input and the output of x, respec-
tively, and ab(x) expresses the fact that x is operating against its specification.
This theory can be equivalently formulated as a positive disjunctive logic pro-
gram,

I(x) = {ab(x)← in(x), out(x). in(x) ∨ out(x) ∨ ab(x).}.

This way of thinking carries over to larger circuits which have also other gates
than inverters as their components, and the description of the circuit can be
formed component-by-component.

Consider for instance the circuit C presented in Figure 6.1. The circuit
C consists of three inverters {1, 2, 3} connected in series together with obser-
vations ¬in(1) and ¬out(3) indicating a faulty behavior of the circuit.

The inverters are modelled using I(1)∪ I(2)∪ I(3), and the wiring of the
circuit C can be specified as

CW(C) = {in(2)← out(1). out(1)← in(2).

in(3)← out(2). out(2)← in(3).}.

Finally, in order to obtain diagnoses for circuit C, the specification of the
circuit is combined with the observations,

R(C) = I(1) ∪ I(2) ∪ I(3) ∪ CW(C) ∪ {⊥ ← in(1). ⊥ ← out(3).}.

However, the stable models of the specification do not correspond to Reiter-
style minimal diagnoses [109]. For instance, R(C) has four stable models,

M1 = {in(2), out(1), ab(3)},
M2 = {in(3), out(2), ab(1)},
M3 = {in(2), out(1), in(3), out(2), ab(2)}, and
M4 = {ab(1), ab(2), ab(3)},

but M4 does not correspond to a minimal diagnosis, as all three inverters are
faulty according to it. Similar spurious minimal models are also obtained for
more complex circuits encoded in this way. �

Lifschitz’ parallel circumscription [74] allows a more refined control for
minimality, in which certain atoms are allowed to vary or to have fixed val-
ues while others are falsified as far as possible. In particular, varying atoms
are interesting as they enhance the knowledge representation capability over
ordinary circumscription by McCarthy [94]. Prioritized circumscription [74]
generalizes the setting of parallel circumscription in terms of priority classes
for atoms being minimized.

34 6. PROPERTIES OF TRANSLATION FUNCTIONS



Definition 6.3. Let R be a positive program in Cd and let P, V, F ⊆ At(R)
be disjoint sets of atoms such that At(R) = P ∪ V ∪ F . A model M |= R is
〈P, V, F 〉-minimal if and only if there is no N |= R such that

(i) N ∩ P ⊂M ∩ P and

(ii) N ∩ F = M ∩ F .

By this definition, atoms in P are subject to minimization, that is, falsified
as far as possible, while the truth values of atoms in V may vary freely and
the truth values of atoms in F are kept fixed. Note that in the notation for
〈P, V, F 〉-minimality one of the sets P , V , and F is redundant, as given any
two, the third one is implicitly clear from the context. The conventional
case that all atoms are subject to minimization is covered by considering the
〈At(R), ∅, ∅〉-minimal models of a positive disjunctive logic program R.

Example 6.4. Recall program R(C) representing the behavior of circuit C
from Example 6.2. By defining

P = {ab(1), ab(2), ab(3)} and
V = {in(1), in(2), in(3), out(1), out(2), out(3)},

the minimal diagnoses for circuit C correspond exactly to 〈P, V , ∅〉-minimal
models of R(C), namely M1, M2, and M3. �

Let circ(R,P, V, F ) denote the parallel circumscription of a positive dis-
junctive programs R. An extended notation circ(R,P1> . . . >Pk, V, F ) is
introduced to represent the prioritized circumscription of R which includes
the parallel circumscription of R as its special case, that is, when k = 1. The
idea is that atoms in P1 are falsified with the highest priority, those in P2 with
the next highest priority, and so on. Lifschitz [74] shows that a prioritized
circumscription circ(R,P1> . . . >Pk, V, F ) corresponds to a conjunction

k∧
i=1

circ(R,Pi, Pi+1∪ . . .∪Pk ∪ V, P1∪ . . .∪Pi−1 ∪ F ). (6.1)

The conjunction (6.1) does not have a direct interpretation as a disjunctive
logic program but such a representation can be obtained using a translation
from [P6]. A drawback is that, roughly speaking, 2k copies of R must be cre-
ated which gives a quadratic nature for the overall transformation proposed
in [P6] because k ≤ |At(R)| ≤ ‖R‖, that is, the length of R in symbols.

Wakaki and Inoue [130] generalize Definition 6.3 to the case of prioritized
circumscription.

Definition 6.5. A model M |= R for a positive disjunctive logic program
R ∈ Cd is 〈P1> . . . >Pk, V, F 〉-minimal if and only if there is no N |= R
such that

(i) N ∩ (P1∪ . . .∪Pi−1) = M ∩ (P1∪ . . .∪Pi−1) and N ∩ Pi ⊂ M ∩ Pi

for some 1 ≤ i ≤ k; and

(ii) N ∩ F = M ∩ F .
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Example 6.6. Prioritized circumscription allows for further refinements of
the diagnoses obtained for circuit C in Example 6.4. For instance, consider
priorities {ab(1)} > {ab(2)} > {ab(3)} for P , that is, first the atom ab(1) is
falsified, then ab(2), and finally ab(3). The last minimization fails, however,
as R(C) ∪ {¬ab(1),¬ab(2)} |= ab(3). Thus, M1 is the unique 〈{ab(1)} >
{ab(2)} > {ab(3)}, V, ∅〉-minimal model of R(C). �

Since the stable models semantics does not incorporate support to varying
atoms or priorities for minimization, the current (disjunctive) ASP solvers
have no support for them either. An efficient embedding from parallel and
prioritized circumscription into disjunctive logic programs could enable us-
ing the current ASP tools for computing circumscription.

De Kleer and Konolige [26] consider parallel circumscription in the first
order case, and present a basic technique for eliminating fixed predicates
based on a linear, faithful, and modular transformation. The case of varying
predicates is addressed by Cadoli et al. [22] but since they consider circum-
scription in the first order logic, a query-based equivalence rather than an
exact model correspondence is of their interest.

In addition to these general results, there is a number of attempts to re-
duce parallel/prioritized circumscription into disjunctive logic programming
under the stable model semantics. Gelfond and Lifschitz [54] address pri-
oritized circumscription but their translation scheme is applicable to strati-
fied circumscriptive theories only. The translation of parallel circumscrip-
tion presented by Sakama and Inoue [112] is based on characteristic clauses
which implies an exponential space and time complexity in the worst case.
In [113], the same authors embed prioritized circumscription into prioritized
logic programs based on a different semantics. Lee and Lin [71] characterize
parallel circumscription in terms of loop formulas and exploit them to obtain
an embedding to disjunctive logic programming. However, the number of
loops can be exponential in the worst case. Thus, it remains open whether
an efficient translation is feasible in general using their approach.

Wakaki and Inoue [130] concentrate on prioritized circumscription and
design a two-phase procedure for the computation of minimal models. The
first phase generates model candidates which are then tested for minimality
in the sense of prioritized circumscription. Both the model generator and the
tester are represented as separate disjunctive logic programs. There is an im-
plementation of the procedure, named CIRCUM1, but it is rather inefficient
since all model candidates are computed first. Wakaki and Tomita [131] im-
prove the procedure by Wakaki and Inoue [130] and integrate the generating
and testing programs into one. However, this is not a one-shot transformation
because the answer sets of the generating program have to be computed and
counted before the testing part can be really created. The resulting imple-
mentation, CIRCUM2, appears to be faster than CIRCUM1, but it consumes
an exponential space in the worst case.

Despite that the analysis in [P5] reveals that varying atoms are of global
nature at least to some extent, it is possible to embed circumscription into dis-
junctive logic programming in a faithful way. In [P5] the first linear and faith-
ful translation from parallel circumscription into disjunctive logic programs
with negation is proposed. The approach is influenced by the generate-and-
test architecture of GNT [65] and it combines the generating and testing pro-
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grams in one disjunctive logic program. The fixed atoms are assumed to have
been removed using the translation by De Kleer and Konolige [26]. Then
the 〈P, V, ∅〉-minimality for a model M of a positive logic program R ∈ Cd
is characterized in terms of propositional satisfiability. The idea is to check
whether a set of disjunctive rules TrUNSAT(R,P,M) is unsatisfiable in the
classical sense [P5]. The propositional unsatisfiability check is then encoded
with the primitives of ASP using the approach by Eiter and Gottlob [36]. The
faithfulness of the translation guarantees that the 〈P, V , ∅〉-minimal models
M of positive R ∈ Cd and the stable models N of its translation are in a bi-
jective relationship such that M = N ∩At(R) holds for each pair of models.

In [P7], the approach proposed in [P5] is generalized to the case of pri-
oritized circumscription. The module architecture proposed in [P2] allows
representing the translation Trcirc2dlp(R,P1 > · · · > Pk, V, F ) as a join of
two modules, one generating model candidates while the other is perform-
ing a minimality check. The compositionality of the stable model semantics
formalized by the module theorem, simplifies argumentation for the correct-
ness of the translation compared to that in [P5].

The implementation of the transformation called CIRC2DLP [P6, P7]
shows a promising performance compared to that of CIRCUM2 [131], and
enables the systematic use of parallel and prioritized circumscription as a
primitive in disjunctive logic programming for developing more compact for-
mulations of problems as logic programs.
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7 CONCLUSIONS

A simple and intuitive notion of a logic program module that interacts with
other modules through a well-defined input/output interface is introduced
for SMODELS programs and disjunctive logic programs [P1, P2], respec-
tively. The design has its roots in a module architecture proposed for con-
ventional logic programs [48], but the architecture is tailored to better meet
the needs of answer set programming. Perhaps the most important objective
in this respect is to achieve the compositionality of the stable model seman-
tics, that is, the semantics of an entire program should depend directly on the
semantics assigned to its modules. This main result is formalized as the mod-
ule theorem [P1, P2] which links program-level stability with module-level
stability. The theorem holds under the assumption that positively interde-
pendent atoms are always placed in the same module. The join operation t
defined for program modules effectively formalizes this constraint, and the
conditions under which the join of two modules is defined can be viewed as
a reflection of good programming style in answer set programming.

The module theorem is also a proper generalization of the splitting set
theorem [80]. The main difference is that splitting sets do not enable any
kind of recursion between modules. Even though the module theorem is
proved to demonstrate the feasibility of the respective module architecture,
it is also applied as a tool to simplify mathematical proofs [P1, P2, P4, P7].
Moreover, in [P1] it is shown that the module theorem can be extended
for further classes of logic programs provided that there is a strongly faithful,
t-preserving, and modular translation to one of classes for which the mod-
ule theorem holds. This strategy is used to generalize the module theorem
originally presented for normal logic program modules to cover the class of
SMODELS program modules [P1].

The second main theme is the notion of modular equivalence [P1, P2,
P4] which is proved to be a proper congruence relation for program compo-
sition using t. Thus, modular equivalence is preserved under substitutions
of modularly equivalent program modules. Since weak equivalence is not
a congruence for union of programs but strong equivalence is by definition,
modular equivalence can be viewed as a reasonable compromise between
these two extremes. For modules having enough visible atoms so that their
stable models can be distinguished from each other on the basis of visible
atoms only, that is, for modules with the EVA property, deciding modular
equivalence has the same computational complexity as deciding the exis-
tence of stable models. This allows one to use an ASP solver for the actual
verification task.

In order to enable the task of equivalence verification using the existing
ASP solvers, a translation-based approach for verifying the visible equivalence
of logic programs under the stable model semantics is proposed in [P3]. The
translation EQT(R1, R2) and its implementation LPEQ cover the types of
rules supported by the SMODELS search engine. In [P4] this translation-
based approach is adjusted to the task of verifying modular equivalence.
Moreover, in cases where two modules Π1 and Π2 are placed in a common
context Π, the verification method can be further streamlined and it is not
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necessary to translate Π. If the context Π is large, then the length of the
translation EQT(Π1, Π2) tΠ involved in the equivalence verification task is
roughly half of that of EQT(Π1 t Π, Π2 t Π).

The main result in [P5] is a linear translation from parallel circumscrip-
tion into disjunctive logic programs such that a bijective correspondence be-
tween the 〈P, V, F 〉-minimal models of a positive disjunctive logic programs
R and the stable models of the respective translation is obtained. In terms of
the expressiveness analysis in [P5], the translation function is non-modular
which reflects the global nature of varying atoms.

A transformation from prioritized circumscription to disjunctive logic pro-
grams is proposed in [P7]. The translation function generalizes and improves
respective translations in [P5, P6], and has a distinctive combination of fea-
tures. Arbitrary propositional theories R subject to prioritized circumscrip-
tion are covered, and the translation can be produced in linear time and
space before computing any models for it. The 〈P1> . . . >Pk, V, F 〉-minimal
models of a positive disjunctive program R and the stable models of its trans-
lation are in a bijective relationship, while the signature At(R) is preserved
under the translation. In contrast, all previous approaches lack some of these
features. The implementation of translations in [P5, P7] enables the sys-
tematic use of parallel and prioritized circumscription as a primitive in dis-
junctive logic programming for developing more compact formulations of
problems as logic programs.

7.1 TOPICS FOR FURTHER RESEARCH

The current input language of ASP is based on logic programs, and does not
have support for the additional input/output interface of logic program mod-
ules. By extending the language to allow explicit module interface defini-
tions, the module system proposed in [P1, P2] provides a basis for a program-
ming-in-the-large approach to answer set programming. Moreover, the cur-
rent ASP solvers have little support for modularity, and workarounds are
needed to simulate modular ASP using the currents tools. Incorporating
support for modularity into the solvers and grounders is crucial in order to
further promote modular answer set programming.

In this thesis propositional logic program modules are considered. In prac-
tice it is, however, undesirable to always have to consider ground instances of
modules. A crucial step further is to extend the concept of modularity to the
non-ground case, that is, to consider program modules involving variables.
Several aspects need to be considered when extending the module system to
the non-ground case. For example, how to define the input/output interface
and interaction of modules (using predicates, grounded atoms or constants),
how to define the concept of modular equivalence for non-ground modules
and still maintain the essential congruence property with respect to join of
modules, and how to ground a stand-alone module.

The class of logic programs supported by the module architecture should
be extended to cover even more general classes of logic programs, such as
nested logic programs [79] and weight constraint programs [118], for in-
stance. One possibility is to introduce a strongly faithful, t-preserving and
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modular transformation [P1] to one of the classes of programs already cov-
ered in this work. The translation from weight constraint programs to SMOD-
ELS programs by Simons et al. [118] and the translations from nested logic
programs to disjunctive logic programs by Lifschitz et al. [79] and Pearce et
al. [104], are good candidates with this respect.

The global nature of varying atoms in parallel circumscription is not as
definite as it first seemed based on the analysis in [P5]. The question how far
parallel/prioritized circumscription can be modularized still remains open,
however. A further goal is the generalization of stable models with prior-
itized minimization of models. In fact, the design of the implementation
CIRC2DLP already includes a support for negative body literals in rules,
which enables the computation of 〈P1> . . . >Pk, V, F 〉-stable models M of
an arbitrary (not just positive) disjunctive logic program R based on the
reduct RM .
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programs with monotone abstract constraint atoms. Theory and Prac-
tice of Logic Programming, 8(2):167–199, 2008.

[92] Victor W. Marek and Mirosław Truszczyński. Autoepistemic logic.
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