

Citation for published version:
Brain, MJ 2004, Incremental answer set programming. Computer Science Technical Reports, no. CSBU-2004-
05, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2004

Link to publication

©The Author May 2004

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/incremental-answer-set-programming(29423d02-b065-41a7-aa7f-6d3e16e104c2).html

Department of

Computer Science

Technical Report

Undergraduate Dissertation: Incremental Answer Set Programming

Martin John Brain

Technical Report CSBU-2004-05 May 2004

ISSN 1740-9497

Copyright c©May 2004 by the authors.

Contact Address:

Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Incremental Answer Set Programming

Martin John Brain

May 2004

MMath in Mathematics

Martin Brain / Incremental Answer Set Programming

ii

Incremental Answer Set Programming

Submitted by Martin John Brain

COPYRIGHT
Attention is drawn to the fact that the copyright of this thesis rests with its author. The Intellectual

Property Rights of the products produced as part of the project belong to the University of Bath (see
http://www.bath.ac.uk/ordinances/∼intelprop).

Declaration
This dissertation is submitted to the University of Bath in accordance with the degree Bachelor

of Science in the Department of Computer Science. No portion of the work in this dissertation has
been submitted in support of an application for any other degree or qualification of this or any other
university or institution or learning. Except where specifically acknowledged, it is the work of the
author.

Signed: ...

Date: ...

This thesis may be made available for consultation within the University Library and may be
photocopied or lent to other libraries for the purpose of consultation.

Signed: ...

Date: ...

Martin Brain / Incremental Answer Set Programming

ii

Abstract

This document presents a series of algorithms for computing the answer sets of an AnsProlog∗ pro-
grams. They focus on the efficient calculation of the effect that small changes on a logic program’s
rule base have on the programs answer sets rather than computing from no initial knowledge. In ap-
plication domains where the program is developed or altered in stages and solutions are required for
each stage this provides a more efficient approach than recomputing the program completely each
time. Also discussed is an implementation of this theory in an interactive answer set computation tool.
Finally a discussion of quantitive assessment methods and a qualitative assessment of the algorithms
and implementation are presented and future development discussed.

iii

Martin Brain / Incremental Answer Set Programming

iv

Acknowledgements

The author would like to express his thanks to Dr Marina De Vos for her support, suggestions and
tireless dedication to the role of supervisor for this project. Thanks also to Professor John ffitch for
helping provide inspiration and motivation.

In the ‘world + dog’ thanks section the author would like to express gratitude to Richard M.
Stallman for his work in inspiring and creating the GNU project, without whom very little of the
technology used in this project would exist; my housemates, friends and family for their tolerance
and support; Liam Howlett, Maxim Reality, Leeroy Thornhill and Keith Flint of The Prodigy and
Lee Chaos, Kelly, Robin and Huw of Chaos Engine without who’s music none of this would have got
written in time and the Day Chocolate company. To everyone who has helped - thanks.

The creation of this document and the project it describes were achieved using free, open source
software; specifically no Microsoft products were used.

v

Martin Brain / Incremental Answer Set Programming

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Logic 3

2.1 What is Logic? . 3
2.2 Why is it Useful? . 3
2.3 Types of Logic . 3

2.3.1 Classical Propositional Logic . 4
2.3.2 Intuistic Logic . 4
2.3.3 Predicate Logic . 5

3 Logic Programming 7

3.1 What is Logic Programming? . 7
3.2 Why is it useful? . 7
3.3 PROLOG . 8
3.4 Problems with PROLOG . 8
3.5 AnsProlog∗ . 9
3.6 Answer Set Semantics . 10

3.6.1 AnsDatalog−not . 11
3.6.1.1 Model Theoretical Characterisation . 11
3.6.1.2 Iterated Fixed Point Characterisation 11

3.6.2 AnsDatalog . 12
3.6.3 AnsDatalog⊥ . 13
3.6.4 AnsDatalog¬,⊥ . 13
3.6.5 Alternative notations for answer sets . 13

3.7 Algorithms . 13
3.7.1 Well-Founded Semantics . 14
3.7.2 Branch and Bound Algorithm . 14

3.8 Tools . 16
3.9 Applications . 17

3.9.1 Derivative Logic Systems . 17
3.9.2 Direct Applications . 17

4 Theory 19

4.1 Background and Motivation . 19
4.2 Preliminary Results . 19

4.2.1 Self Referential Rules . 19
4.2.2 Rule Set Augmentation and Conditional Answer Sets 20
4.2.3 Usage and Support . 21
4.2.4 Implications . 21
4.2.5 Dependency Graphs . 22

4.3 Addition . 24
4.3.1 Phase One . 24

4.3.1.1 Description . 25
4.3.1.2 Pseudo Code . 25

vii

Martin Brain / Incremental Answer Set Programming

4.3.1.3 Proofs . 27
4.3.2 Phase Two . 28

4.3.2.1 Description . 28
4.3.2.2 Pseudo Code . 29
4.3.2.3 Proofs . 30

4.3.3 Phase Three . 31
4.3.3.1 Description . 31
4.3.3.2 Pseudo Code . 31
4.3.3.3 Proofs . 33

4.4 Subtraction . 34
4.4.1 Phase One . 34

4.4.1.1 Description . 34
4.4.1.2 Pseudo Code . 35

4.5 Grounding . 36
4.5.1 Additive . 38
4.5.2 Subtractive . 38

5 Implementation 39

5.1 Requirements . 39
5.2 Design . 40
5.3 Implementation techniques . 40

5.3.1 Sets . 40
5.3.2 Support and Usage . 42
5.3.3 Task lists . 42
5.3.4 Multi-threading . 42
5.3.5 Slack time computation . 42

5.4 Usage overview . 43
5.4.1 Commands . 43
5.4.2 Example . 43

6 Debugging and Analysis 45

6.1 Debugging . 45
6.1.1 Classification of Errors . 45
6.1.2 Language Modification . 46
6.1.3 Query based Debugging . 46

6.1.3.1 Why is Set S Contained in Answer Set A? 46
6.1.3.2 Why is Set S not Contained in any Answer Set? 47

6.2 Analysis . 47
6.2.1 Redundance . 47
6.2.2 Relevance . 48
6.2.3 Independence . 48
6.2.4 Significance . 49
6.2.5 Possible Groundings . 49

7 Evaluation 51

7.1 Introduction . 51
7.2 Existing Benchmarks . 51
7.3 Parameters . 52

7.3.1 Input Variables . 52
7.3.2 Output Variables . 53

7.4 Choice of Program . 53
7.4.1 Why Existing Problem Classes are Unsuitable . 53
7.4.2 Characteristics of a Suitable Problem . 54
7.4.3 Generation of Such Problems . 54

8 Conclusions 55

8.1 Appraisal . 55
8.2 Further Research . 55

8.2.1 Theory . 55
8.2.2 Implementation . 56

viii

Chapter 1

Introduction

If economists and modern historians are to be believed, we are now living in the information age.
The changes in how information is created, stored and transmitted that motivate this definition are
largely down to advanced in digital electronics, primarily the computer. For anyone with at least a
passing familiarity with this technology (including everyone who has used a computer in the past 20
years) it should be clear that the problem of representing information in the digital domain is largely
solved. Computer hardware and software for inputing, representing and outputting text, graphics,
video, analogue data (such as sound) and even 3 dimensional objects is available to all (modulo the
usual economic inequalities). Storage and transmission of digital information, although still active areas
of both academic and commercial research, are basically speaking. Computers with the capacity to
store digital representations of tens of thousands of books (or countless million stone tablets) are sold
as entertainment devices, while the Internet lets anyone with access to suitable equipment share any
information with anyone else on the planet (and beyond) given enough time. The main problems of
handling information with digital and computer technology have been mainly solved.

The next layer of problems focuses on how to process digital information, critically how to represent
and manipulate the links between bits1 of information. Partial solutions to this problem will be apparent
to any user of modern computer equipment. Abstractions such as files and file meta data(type, owner,
creation date, etc.), hierarchical file systems and relational databases allow the storage of pieces of
information and the links between them given certain criteria. Each of them has their own strengths
and weaknesses, for example a hierarchical file system is a natural choice for information with a clear
sort order, but when files need to be accessed using a variety of different sorting system quickly
become unwieldy (hence the current development of relational database based file systems). Relational
databases perform very well when handling information in a given structured form but have difficult
representing more free form information and encoding ideas based on the lack of particular bits of
knowledge. To some degree it is possible to express any set of information and links using any of
these abstractions, in many cases this is not practical. Logic programming offers one of the most
expressive and yet simplistic systems for representing pieces of information and the links between
them. A large number of categories of information structures that are difficult (if not practically
impossible) to represent using any of the more well known abstractions can be expressed trivially using
logic programs.

Another motivating factor for using data abstraction mechanisms is the ability to query the infor-
mation contained and derive conclusions from it. Humans do not simply store knowledge2, they can
use the links between the items of knowledge to reason, plan, conjecture and interact with the world,
in short they think. Applying processes to data stored in a particular abstract form to develop new
data is, in essence attempting to teach computers how to think in some capacity3. The particular logic
programming systems the work will address is AnsProlog∗, the semantics of this system (the definition
of what each statement in the language actually means) define a concept of answer sets. These are sets
of pieces of information which are logically consistent with the logic program (one set of information
and links, stored according the abstraction), depending on the context of the program these may be
conclusions, solutions or possible world views. A number of algorithms for computing the answer sets

1As in ‘and pieces’ not as in ‘and bytes’.
2Although anyone involved in education at any level might argue that ‘Humans do not store knowledge simply’ is a

more apt comment
3Whether this can actually be called thinking or not is a very complex issue and partially case of philosophical belief.

Many argue that there is a fundamental difference between human and machine ’intelligence’; humans are able to create
new ideas, where as intelligent machines can only create information from what they already have. This of course requires
a belief in a non deterministic universe...

1

Martin Brain / Incremental Answer Set Programming

of a given logic program (in this system) exist, these can be thought of as being like the process a
detective might take working through the items of evidence and the links between them.

This work describes a new algorithm for computing the answer sets of an AnsProlog∗ program.
It is different from existing algorithms in that it calculates the answer sets of a program using the
answer sets of a program that is slightly different, containing one more or one less link. The target
application domain for this algorithm is situations where the logic program develops over the course of
the application (for example, information is added over time). Currently if the program changes then
the answer sets have to be recomputed from scratch, which is inefficient and slow if there are a large
number of changes. Just as a detective would not restart an investigation when a new piece of evidence
is found, or when a new link between suspects is uncovered, this algorithm modifies the views of the
world rather than starting again from scratch. The aim of the project that this document describes
was to find a faster and more efficient way of handling these situations.

This document is not structured as a traditional software project, the bulk of the work is in
developing theory, the implementation is more of a proof of concept than the focus of the project.
The theory presented is all new and to the best of the author’s knowledge there are no previously
published works that discuss this topic at all. There are no clear requirements in the strict software
engineering sense so the traditional approach of identifying stake-holders, analysing requirements,
developing designs, implementing them, user testing and evaluation against the initial specification is
simply not relevant. Chapter 2 provides a brief introduction to Logic as a formal subject, this is intended
to introduce key concepts as well as setting the scene for later theoretical content. Chapter 3 formalises
the ideas of logic programming that have been touched on in this introduction, presents the formal
definition of AnsProlog∗, discusses algorithms for computing answer sets and their implementation and
applications, as well a brief discussion of other logical systems. Next chapter 4 presents the theoretical
basis and the content of the incremental computation algorithm. Initially only the addition of ground4

rules to the system is considered, however results for subtracting rules and handling unground rule
are also presented. Chapter 5 discusses the implementation of this algorithm, the IASAI system for
providing a programming interface to a variety of answer set solver algorithms and the IDEAS tool
which uses this to provide a intuitive, command line environment for manipulating logic programs and
computing their answer sets. Chapter 6 presents some of corollaries of section 4.2 in a different light, the
technology used to incrementally compute answer sets can also provide debugging and analysis features
in an interactive development environment. It is possible to produce metrics for the significance of atoms
within a program and the relevance of rules. Chapter 7 discuss the issues surrounding benchmarking
of the IDEAS tool using a variety of different solver algorithms (including the incremental algorithm
discussed in chapter 4) and characterises the type of environment required to perform any form of
meaningful quantitive analysis. Finally chapter 8 presents some possible directions for future research
in this field as well as concluding the project.

4Rules that do not contain variables, this term is defined and explained in chapter 3

2

Chapter 2

Logic

This chapter provides background information on logic and aims to dispel some of the common myths
about logic systems and logic research. This provides a formal background and conceptual context for
the definitions of logic programming presented in chapter 3. Without a base understanding of logic no
real understanding of logic programming, what problems it attempts to solve and how it dose so can
be developed. In essence, logic programming is the implementation and automation of logic.

2.1 What is Logic?

The Oxford English Dictionary [1] defines logic as

The branch of philosophy that treats of the forms of thinking in general, and more especially
of inference and of scientific method. (Prof. J. Cook Wilson.) Also, since the work of Gottlob
Frege (1848-1925), a formal system using symbolic techniques and mathematical methods to
establish truth-values in the physical sciences, in language, and in philosophical argument.

A slightly less cumbersome definition that we will use in this work is “a formal system for repre-
senting and manipulating the relations between concepts”.

2.2 Why is it Useful?

Structured reasoning based on logic underpins the concepts of mathematical proof and the scientific
method. Without it neither science or mathematics could be considered to be rigorous subjects - neither
would have any firm basis for claiming any results to be true. Although not clearly applicable 1 in
‘everyday life’, logic is fundamental to how we understand the world and how we build on our current
understanding.

But why continue to study it? Most of the significant problems have been solved, logic as used in
mathematics and science is regarded to be well understood by many. Most of the research work within
logic is based on applying logic and logical systems to new areas of human endeavour. Knowledge
representation, intelligent inference engines and automatic diagnostic systems are all prime examples.

2.3 Types of Logic

A common misunderstanding is that there is only one form of logic: A proposition can either be proved
or not; an action is either ‘logical’ or ‘illogical’. Bizarrely2 little could be further from the truth. The
academic study of logic covers many different logic systems. A logic system is a set of literals (the
most basic building blocks of information) and connectives (operators that form a new statement from
one or more literals). More complex logic systems also have more complex objects such as functions,
variables and functors. This gives different ranges of expressiveness, both in terms of how much and
what can be expressed.

Choosing which logical system to use is very significant and potentially a complex decision. The
system has to be expressive enough to allow everything to be said (and hopefully to be said in a concise

1...to the average person. Mathematicians and logicians are considered non average for the purposes of this argument.
2Illogically?

3

Martin Brain / Incremental Answer Set Programming

and simple way3): this has to be traded off against the other properties of the system. For example is
there a useful and meaningful concept of ‘solution’ with respect to the problem, are there algorithms
and/or methods for computing these, are the algorithms efficient or even deterministic.

Obviously a logic system has to be able to do more than just represent collections of concepts - it has
to have a way of creating new statements in a rigorous manner. The system for doing this is referred to
as a logical calculus. These can be developed in a variety of ways. Semantic calculi are based on model
theory. The statement in the logical language is mapped into another set which models the atoms
and connectives. Truth tables are a prime example of this sort of calculus - literals are given a ‘truth
value’ and connectives map into simple operators. The key concept in semantic calculi is the idea of
satisfaction (denoted as � e.g. p �u q is the statement given statement p is satisfied in model u then so is
statement q), essentially this is ‘is this statement true with respect to this model’. Semantic calculi are
essentially assigning a form of meaning to the logical statements. Another major class of logical calculi
are syntactic calculus, which are based on how the statements and their connectives can be structured.
Natural deduction, tableau and sequent calculus are all examples of this form of structured reasoning.
The corresponding key idea is inference - ‘can a proof this statement be constructed’ (denoted as `
E.G. p `u q is the statement there is a proof in calculus u from statement p to statement q).

Calculi of the same kind can be related; shown to be equivalent, disjoint or contained within another
calculus. To speak about equivalence between other kinds of calculi requires the concepts of soundness
and completeness. A syntactic calculus is sound with respect to a semantic calculus if for every inference
from statement p to q, q is satisfied given p is satisfied. Completeness is the converse statement. Proofs
of this form are useful as they show the validity of a particular calculus with respect to another and
give an alternative method for proving or disproving a given relation. In general creating a proof is
easier in a syntactic calculus while showing that a proof does not hold is easiest in a semantic calculus.

Here we present some of the most common and fundamental logic systems, there are many more
but it is hoped that this small selection will give the ideas of the different degrees of expression and
levels of difference between them.

2.3.1 Classical Propositional Logic

Classical logic is the system that comes closest to the popular perception of logic. It consists of atoms
(often thought of as concepts or statements) and four connectives, AND, OR, IMPLIES and NOT

(notated as ∧, ∨, ⇒ and ¬ . The semantic calculus most commonly associated with this system is
that of truth tables. The idea that literals are two valued - thought of as ‘true’ and ‘false’ may seem
strange at first but occurs in other calculi on this logical system. A consequence of natural deduction
(the syntactic calculus of classical logic) is that ‘p ∨ ¬p’ can always be asserted - nicely parallel the
assignment to a two valued system. This concept is referred to as the Law of the Excluded Middle - if
we know that something is “not not true” (¬¬p) then it must be “true” (p).

2.3.2 Intuistic Logic

Although the law of the excluded middle is a great advantage in constructing proofs (proof by contra-
diction relies on this principle) - it can be argued that it is an excessive and unnecessary simplification.
Intuitistic logic is an alternative set of calculi that can be used with the same logical language as
classical logic. In refuting the law of the excluded middle the structure of natural deduction (notably
the role of negation and implication) has to be altered. This leads to the need for a new semantic
calculus known as Kripke possible worlds.

Whether classical logic or intuistic logic is the ’correct’ way of doing things is something of a
philosophical debate. Intuistic logic has some useful features but is much more difficult to actually
develop proofs in, although the proofs that are constructed tend to be of more use as they not only
showing that an object can exist - they demonstrate how to find it.

When applying a logical system to modelling knowledge the existence of the law of the excluded
middle gives rise to a phenomenon called the closed world assumption. In a system with the laws of
the exclude middle, not knowing something is true is the same as knowing it is not true. The contrast
with this can the ‘real world’ intuition that these two things should be different lead some systems to
define two types of negation, classical (with law of the exclude middle style semantics) and negation
as failure (with intuistic style negation semantics).

3Clarity of expression is a very important feature of a logic system as many of the major problems with using logic
come with subtle misunderstandings of how to formalise a particular concept.

4

Martin Brain / Incremental Answer Set Programming

2.3.3 Predicate Logic

The logical systems described so far have no real way of talking about groups of similar objects. For
example “Epimenides is a Cretan” or “Not all Cretan are liars”. To express this the logical languages
need to be extended with the concepts of predicates, variables, functions and quantifiers. Predicates
take one of more objects from a set and act as literals. They are used to represent information about
the objects, for example a predicate taking two names (older(X, Y)) could represent the concept
‘is older than’. If the two names are ‘fred’ and ‘bob’ the predicate would represent ‘fred is older
than bob’ (older(‘fred′, ‘bob′)). Variable are place holders for the values that a predicate takes, they
are introduced by qualifiers. Functions create new objects from a finite set of old ones (for example
addition). Quantifiers are new connectives allowing statements to be built talking about classes of
predicates. They represent the concepts of ‘there exists’ (notated as ∃) and ‘for every’ (notated as ∀).

Predicates vastly increase the expressive power of both classical and intuistic logical systems. How-
ever there is a problem, there can exist no method that can prove whether a statement in predicate
logic is valid4 (satisfied with no starting assumption) in the general case, i.e. there are undecidable
propositions. Predicate logic is expressive enough to formalise what we want to say but too expressive
to actually use in the arbitrary case.

4This is a corollary of the famous Godel’s Incompleteness Theorem[2]

5

Martin Brain / Incremental Answer Set Programming

6

Chapter 3

Logic Programming

This chapter introduces the concepts of logic programming from its foundations to the problems that
motivate answer set programming and it’s implementation.

3.1 What is Logic Programming?

The fundamental building blocks of modern digital computers are based on classical logic[3]. Data is
represented as a series of zeros and ones which could be viewed as truth values, operations on these
can then be characterised as logical formulae. In turn this means that building computer models of
logical systems is not only possible but often comparatively simple, natural and straight forward.

Early in the development of digital computers[4] it was observed that the building of models of
logical systems could easily be automated1. Computers could be programmed to perform logical infer-
ence between statements. In answering some forms of query and proving some kinds of propositions
were possibly more suitable than humans. Their speed of operation and ability to perform exactly the
same task repeatedly made them a more viable tool.

Logic programming addresses designing, building and using automated inference systems. These
use information structured in a particular (computer) language representing a given logic system to
answer queries and provide logical conclusions from the data. For example given structured information
on the relations between friends and family it would be possible to use logic programming tools to find
how many seating plans there are for Christmas dinner that don’t cause undue strife; certain tools
may also be able to pick the optimum solution (assuming that the user can decide on and give suitable
information on preference).

There are fundamental differences between logic programming and imperative based programming
paradigms; there is no distinction between the concepts of data and functions or between programs
and specifications. Rather than telling the computer how to accomplish the task (‘find kettle, pour
water in, heat up water’) you tell it what it needs to know about the world (‘to make tea you need
boiling water, tea, milk and sugar’, ‘a kettle can boil water’, ‘the kettle is in the cupboard’) and what
you want (‘make me a cup of tea’) and let it figure out what needs to be done. Obviously it is not a
suitable tool for all programming tasks, some things are more naturally described as imperative tasks
(e.g. operating system kernels) but a surprisingly high number of tasks can be naturally described as
logic programs.

3.2 Why is it useful?

Perhaps the most high profile usage of logic programming to date has been in artificial intelligence. To
create a system that appears to behave in an ‘intelligent’ fashion, you must have a way of representing
what the system ‘knows’ about the world it is in and a way of drawing conclusions from this information
to guide its actions. Clearly the best way of expressing these is to use a language and tools that use
‘chunks’2 of knowledge as building blocks and logical relation and inference as their main operators.
Much of the early work on AI and expert systems was attempting to structure the knowledge of human
experts about a given system into a form that would be suitable for use in logic programming. This

1Arguably the automation of logical calculations predates the digital computer. The first mechanical logic machine
was created by William Stanley Jevons in 1869!

2Exactly what constitutes an atomic unit of knowledge is clearly both a difficult and an application specific concept.
For the process of representing and working with the relations between these atoms the choice is largely irrelevant.

7

Martin Brain / Incremental Answer Set Programming

approach is used in many modern automatic diagnostic systems; the designers of the system create
a logical description of the system and tests which can be used to determine where problems are.
The resulting program can then be used interactively to diagnose (manually or semi automatically)
problems and suggest solutions.

However logic programming and AI are far from being synonymous. AI encompasses many other ar-
eas such as modelling how natural systems work, pattern recognition and machine learning techniques.
Logic programming also has other applications. Machine planning systems - such as timetabling soft-
ware is often based on logic programming ideas. Given the natural correlation between structured
information stored in a database and the structured knowledge used in logic programming there has
been quite a lot of interest in combining the two in advanced data manipulation work. Logic program-
ming has been used in data reconstruction, integrity, combination of non uniform knowledge sources[5]
and data mining[6].

Arguably one of the most interesting developing uses for logic programming is in Intelligence Aug-
mentation (IA). Where as AI seeks to create intelligent systems to reduce the amount of human
interaction needed, IA aims to reduce the amount of information that the humans in a system need to
be dealing with[7]. Rather than the computer attempting to work out what to do, and IA system would
work out possible scenarios of the current and future state of the system and then present these to the
human operators. Essentially the computer is doing the dull, repetitive thinking and summarising it so
that human interaction is only needed to make the important decisions. From helping traders on the
stock market make quick decisions correct to asking the ships computer to find possible escape routes,
this is the sort of application has the potential to change how people think about complex systems in
the same way as robotics revolutionised precision engineering.

3.3 PROLOG

PROLOG (standing for ‘PROgramming in LOGic’) is one of the earliest and perhaps best known of
logic programming languages. It is based on a restricted set of first order predicate calculus known as
Horn clauses. Horn clauses are statements of the form:

p1 ∧ . . . ∧ pn ∧ ¬pn+1 ∧ . . . ∧ pm → q

Where p1, . . ., pn, pn+1, . . ., pm and q are predicates.

While retaining much of the expressive power of first order predicate logic, checking the validity of
Horn clauses is possible in finite time[8]. PROLOG interpreters use a unification algorithm to answer
queries on the data / program that has been entered into them.

3.4 Problems with PROLOG

There are a variety of problems, both philosophical and practical that make PROLOG unsuitable for
certain tasks.

• For efficient computation, several non logical operators and ideas are needed. The prime examples
of this are the significance of order in the body and the cut operator.

• Semantics of querying are built into the semantic calculus used which leads to a non intuitive
blurring between the data and the usage of the data.

• It is relatively easy to create programs that cause the interpreter to enter an infinite loop due to
the rule selection algorithm needed.

• PROLOG traditionally only contains one form of negation, negation as failure and thus uses a
closed world assumption, i.e. not knowing that a statement is true is the same as knowing it is
not true. In many knowledge representation applications this is not appropriate; not knowing
whether a cable is live and knowing that it is not are far from the same thing.

Consequently the field of logic programming has been looking towards developing new tools and
logic systems that are better suited to efficient and expressive knowledge representation tasks.

8

Martin Brain / Incremental Answer Set Programming

3.5 AnsProlog∗

Semi negative logic programs have been characterised in a variety of different ways (see section 3.7.1),
with several different sets of semantics. Here we shall use the notation used by Chitta Baral[9];
AnsProlog∗. Throughout this document we consider a language without function symbols and disjunc-
tion in the heads of rules, a sub class referred to as AnsDatalog¬,⊥ rather3 than full AnsProlog∗, see
section 8.2 for comments on extending the presented results to AnsProlog∗. The definition is presented
in the style of a Backus-Naur Form (BNF) for a context-free (or type 2) language4; this is not only to
aid comprehension but to emphasis that answer set semantics is not a sub set of classical logic; it is a
different logical system.

Definition 3.5.1 AnsDatalog¬,⊥ programs are expressed in a language
�

made up of letters from
the following alphabet:

• Object constants. These are the identifiers for a series of objects; the things we want to talk
about in our logic program. Conventionally these are notated as lower case words using underscore
instead of spaces, i.e. thing one, thing two, box with hook.

• Predicate symbols. These represent a statement about a number of objects. The number of
objects the refer to is called their arity. Notated as lower case letters with their arguments in
brackets, (e.g.. in(box with hook, thing one) which could then be given the intuitive meaning[10]
“thing one is in box with hook”). Non predicated statements (“today is thursday”) are simply
0-arity predicates.

• Variables. These allow predicates to be used to make a statement about a group of objects, they
are notated as capital letters; X, Y, Z, For example in(box with hook, X).

• Connectives5. To construct more complex statements from predicates, logical connectives are
needed. ‘←’, ‘not’, ‘¬’ and ‘,’ are valid connectives.

• Punctuation. To clarify the expression of relations, ‘(’, ‘)’ and ‘.’ are used as punctuation.

• The symbol ⊥.

For the benefit of readers previously unfamiliar with logic programming it may be advantageous
to clarify several things at this point. All object constants (often shortened to constants) are treated
in the same fashion - there is no concept of type or class. If the program requires a concept of type
then it is constructed using predicates to state that a particular object has a given type. There is no
handling of the meaning of constants or predicates, one of the biggest cause of ‘bugs’ in logic programs
is confusion and mixing of the meaning of predicates and constants, for example a predicate as simple
as in(A, B) could be viewed as set inclusion or statements of the form “A is in B” or “B is in A”,
mixing which of these it represents within a program will give results other than what was intended.

Terminology is introduced to make referring to particular combinations of letters in a generic
language simpler.

Definition 3.5.2 • Term is used to refer to a variable or a constant. If it is a constant it is said
to be a ground term.

• Atoms are of the form p(t1, t2, . . . , tn) where p is an n-ary predicate and ti are terms. If all of
the terms in an atom are ground then the atom is said to be ground. From the previous definition,
if we take in to be a predicate with arity 2 and thing one and box with hook to be constants then
in(X, thing one) is an atom and in(box with hook, thing one) is a ground atom.

• The Herbrand Base of a language is the set of all ground terms that can be constructed using
the predicates and object constants. These are all of the pieces of information that we can speak
about using using language , notated Bl.

3Also referred to as Datalognot,¬,⊥

4For readers unfamiliar with the formal descriptions of languages in the context of computing science, this is the
system used to describe the syntax of most programming languages. A full formal description of AnsDatalog¬,⊥ is not
given as the syntax is fairly minimal

5Numerous subsets of AnsProlog∗ exist and the convention to use superscript to note what connectives are permitted
in the language, AnsDatalog¬ is AnsDatalog where connective ¬ is allowed. The usage of ∗ is intended to refer to all
possible subsets / variations on the language.

9

Martin Brain / Incremental Answer Set Programming

• A literal is an atom optionally preceded with the classical negation operator, ’¬’. It is ground if
the atom is ground.

• A naf-literal is an atom optionally preceded with the negation as failure operator, ’not’. It is
ground if the atom is ground.

Literals can be thought of individual statements or indivisible pieces of information. The next step
is to use connectives to join them together to describe the links between information.

Definition 3.5.3 A logic program is made up of a set of rules in language l. Each rule has the following
form:

L0 ← L1, . . . , Ln,not Ln+1, . . . ,not Lm.

Where L0 is a literal or ⊥ and Li for i ∈ [1, m] are literals.

The intuitive meaning6 of this is “if we know L1, . . . , Ln and we do not know Ln+1, . . . , Lm then
we may conclude L0”. ‘←’ is used instead of ‘⇒’ and ‘,’ instead of ‘∧’ are although they are doing a
similar thing, their semantics are different. Using the usual logical connectives would serve to confuse
matters. For example, contraposition, the equivalence of a⇒ b and

The Herbrand Base of a program P is the Herbrand Base of the language from which the rules in
P are formed from. The set containing L0 is referred to as the head of the rule and the set containing
L1, . . . , Ln,notLn+1, . . . ,notLm is referred to as the body. These are notated H(r) and B(r), clearly
H(r) ∈ BP and B(r) ⊂ BP ∪ not BP .

Rules are informally broken down into three groups. Rules with an empty body are called facts as
they state something about the base knowledge in the system. Commonly they are notated without
gets. Rules with ⊥ in the head (often notated without a head) are referred to as constraints as they
describe a circumstance in which a contradiction occurs, they constrain possible solutions. Finally rules
with non empty head and body are referred to as implications as they represent a situation where new
information can be inferred given certain conditions.

In the following is a fragment from a program that implements graph colouring:

colour of(N, C)← node(N), col(C),not another colour(N, C).
⊥← col(C), link(N, M), colour of(N, C), colour of(M, C).

node(a).
node(b).
node(c).

link(b, c).
link(a, X)← node(X).

by convention, constants are notated in lower case and variables in upper case. node(a) is a ground
atom and the rule that contains it is a fact. link(a, X) ← node(X). is an example of an implication
which doesn’t contain ground atoms. Finally⊥← col(C), link(N, M), colour of(N, C), colour of(M, C).
is a constraint (again not containing any ground atoms).

3.6 Answer Set Semantics

There have been several sets of semantics proposed for programs using the syntax outlined above
(again, see section 3.7.1 for an example of an alternative system). One of these systems is answer set
semantics (originally known as stable model semantics[12], due to the initial use of fix point based
characterisations.). The semantics of AnsDatalog¬,⊥ will be developed by considering several func-
tional subsets. Unless otherwise noted all logic programs in this text will be assumed to only contain
ground rules (i.e. rule made up from ground literals). The description presented here is based on the
description in “Knowledge Representation, Reasoning and Declarative Problem Solving”[9], which pro-
vides an accurate and comprehensive summary of the state of answer set semantic research. Readers
interested in looking further into the topic are strongly advised to use this as a starting point.

6The term ‘meaning’ has to be used with great care in the context of logic programming[11]. What is presented here
is the motivating idea behind the definition, it is presented to help the reader grasp the fundamental concepts rather
than as any form of formal explanation.

10

Martin Brain / Incremental Answer Set Programming

Grounding is the process of converting a non ground program into a ground program which will
have the same answer sets. In all practical cases the set of object constants is finite and so a non ground
program can be converted to a ground program by replacing each non ground rule with every possible
substitution of each variable. A number of techniques exist to achieve this in the most efficient manner
possible (both in terms of space and time) so it will largely speaking be disregarded as a theoretical
issue. See section 4.5 for a further discussion of approaches to implementing grounding and handling
unground programs.

3.6.1 AnsDatalog−not

This is the simplest sub set of AnsDatalog¬,⊥, the ¬ and not connectives are not used. Also the head
of each rule must contain an atom, not ⊥. Various names (and alternative semantics) for this subclass
of programs have been used, for example definite, Horn logic and positive programs can all be found
in older literature.

There are several equivalent characterisations of answer set semantics for
AnsDatalog−not, presented here are two that are of particular use when developing algorithms for
calculating the semantics of a program. These are the model theoretic and the iterated fix point
characterisations (which gave rise to the term stable model semantics). Intuitively the two approaches
to working out the semantics of a logic program is to find all sets of atoms which are consistent with
all of the rules and to start with the facts and work out what can be concluded by using the rules.
From a certain point of view these could be referred to as top down and bottom up approaches. The
first is an intuitive description of the model theoretical characterisation, while the second applies to
the iterated fixed point characterisation.

3.6.1.1 Model Theoretical Characterisation

A Herbrand Interpretation I of a AnsProlog program P is a subset of the program’s Herbrand base
(I ⊆ BP). It is said to satisfy a rule:

L0 ← L1, . . . , Ln.

If and only if:

{L1, . . . , Ln} ⊆ I ⇒ L0 ∈ I

If it satisfies all the rules in a program then it is a Herbrand model. It is said to be minimal if there
are no other models that are a strict subset of it.

Definition 3.6.1 The answer set of a program is its minimal Herbrand model

In the case of AnsDatalog−not programs, every program has exactly one answer set[9]. When this
definition is used in relation to calculating answer sets some additional terminology is used. A rule
is said to be applicable with respect to a set S if and only if {L1, . . . , Ln} ⊆ I and is applied if it is
applicable and L0 ∈ S. Herbrand models are Herbrand interpretations with respect to which every
rule is either applied or not applicable.

3.6.1.2 Iterated Fixed Point Characterisation

The iterated fixed point characterisation defines a function T 0
P on a program P . It maps from the set

of Herbrand Interpretations (notated as 2BP) to itself (T 0
P : 2BP → 2BP) as follows:

T 0
P (S) = {L0 ∈ BP | L0 ← L1 . . . Lp ∈ P and L1 . . . Lp ∈ S}

where P is the set of rules. This function is referred to as the immediate consequence operator.
Intuitively it is adding to the set anything that can be inferred from a rule in P . This can trivially
be shown to be monotone and thus over a finite Herbrand base it has a fixed point. This fixed point,
notated lpf(T 0

P) is the answer set of P .

11

Martin Brain / Incremental Answer Set Programming

3.6.2 AnsDatalog

AnsDatalog is a superset of AnsDatalog−not in which the not connective is allowed. This vastly
increases the expressive power of the language but makes it significantly more complex. Where as the
answer sets of an AnsDatalog−not program are reasonably intuitive, those of AnsDatalog may not
be. For example, the answer set of:

b← a.

c← a.

d← b, c.

f ← d, e.a.

is reasonably obvious7. However the same cannot be said of Q:

b← a.

c← not d, a.

d← not c, b.

f ← d, e.

a← not f.

Introducing not creates a problem for either of the previous two characterisation of semantics as
the answer set is no longer unique and some of the possible answer sets are nonsensical. This problem
is solved by the usage of the Gelfond-Lifschitz reduct (or transformation)[12].

Definition 3.6.2 The transform takes a set of atoms S ⊂ BP and an AnsProlog program P and
reduces it to an AnsProlog−not program P S by:

• Removing every rule that contains not p in the body if p ∈ S

• Removing all remaining negative literals (i.e. not q) from the rules

The answer sets of P are the sets of literals S such that S is the answer set of P S .
Using the preceding example program, Q, reducts with respect to {a, b, c, d} and {a, b, d} (respec-

tively Q{a,b,c,d} and Q{a,b,d}) are:

b← a.

f ← d, e.

a.

and

b← a.

d← b.

f ← d, e.

a.

Which have answer sets {a, b} and {a, b, d}, therefore giving {a, b, d} as an answer set of Q.
The definition of applicable has to change in this environment. A rule is said to be applicable with

respect to a set S if and only if {L1, . . . , Ln} ⊆ I and {Ln+1, . . . , Lm} ∩ I = ∅}. Models are defined as
before, Herbrand interpretations with respect to which every rule is either applied or not applicable.
Answer sets are Herbrand models but models are not automatically answer sets, for example

a← b.

b← a.

has a model of {a, b} but no answer sets. Models that are not answer sets either contain atoms that
are unsupported (i.e. they are not minimal models) or contain circular dependencies, as in the given
example. Rules that are not applicable are either rules that would be removed by the reduct or rules
that depend on (i.e. contain in their body) atoms which are not in the model.

7For those without the time to work through the definitions, it’s {a, b, c, d}.

12

Martin Brain / Incremental Answer Set Programming

3.6.3 AnsDatalog⊥

A smaller extension that adding the not connective, this allows constraints - rules with ⊥ in the head.
The simplest way of handling the semantics for these is to remove any answer sets of the program
(minus constraints) with respect to which these are applicable. Formally this is handled by altering
the definitions of satisfaction and the immediate consequence operator, this gives exactly the same
semantics but is not as conceptually clean, as unlike AnsDatalog−not programs AnsDatalog−not,⊥

programs do not necessarily have an answer set at all.

3.6.4 AnsDatalog¬,⊥

The final extension, allowing ¬ in the language is again comparatively trivial. ¬ is the connective used
to represent classical negation, i.e. a and ¬a cannot both be simultaneously true. This is handled by
mapping the AnsDatalog¬,⊥ program to AnsDatalog⊥ by replacing each negative literal (i.e. ¬a)
with a new atom and adding a constrain to stop the new atom and the positive literal both being
simultaneously true. In essence classical negation in AnsProlog is just ‘syntactic sugar’.

Unless explicitly stated it is assumed that this transformation has already been applied to all
programs in this document. Although in the formal sense this work applies to AnsDatalog¬,⊥ results
and examples will only be produced for AnsDatalog⊥ (i.e. programs after the transformation has been
made).

3.6.5 Alternative notations for answer sets

Generally in relation to algorithm for computing answer sets, there are a number of other ways of
notating answers sets. These are completely equivalent and semantically no different, they just allow
for cleaner notation. An answer set A ⊂ BP of program P can be written as < A, B > where B ⊂ BP

and A ∪ B = BP and A ∩ B = ∅. This notation, in which an answer set is referred to as a total
interpretation, is used in well founded semantics (see section 3.7.1) and in some computation algorithms.
Alternatively an answer set can be written as a subset of the set of all naf-literals (BP ∪not BP) such
that C = A ∪ not B.

3.7 Algorithms

The definition of answer set semantics naturally gives a very basic algorithm for calculating stable
models.

• Ground the initial rules

• Iterate through all possible Hebrand Interpretations

– Reduce the rule set with respect to the interpretation

– Compute the answer set of the reduced set of rules using the immediate consequence operator

– Add to the list if the result equals the interpretation the program was reduced by

• Return the list of answer sets

However this algorithm is exponential in the number of atoms in the rule set. It is clear that there
are many improvements that could be made to this; facts and constraints can be used to cut the
search space and rules that are already in AnsProlog−not form can be resolved before any particular
Interpretation is selected.

Most of the existing answer set calculation algorithms use the idea of partial interpretations.

Definition 3.7.1 A Partial Interpretation of a program P is a pair < T, F > such that T, F ⊂ BP

and T ∩ F = ∅. An atom a is true with respect to the partial interpretation ⇔ a ∈ T , it is false ⇔
a ∈ F . Correspondingly not a is true ⇔ a ∈ F and false ⇔ a ∈ T .

The atoms in T are thought of as being known to be true / in an answer set, while those in F are
thought of as being known to be false / not in an answer set. The algorithms extend these (to give an
interpretations < T ′, F ′ > such that T ⊂ T ′ and F ⊂ F ′) as much as is possible, if an answer set has
not been reached (i.e. T ∪ F 6= BP) then a naf-literal a is chosen and the algorithm branches, taking
each possible value of a. Key to computing and extending these interpretations is the concept of the
well-founded semantics of a program.

13

Martin Brain / Incremental Answer Set Programming

3.7.1 Well-Founded Semantics

Well-founded semantics are an alternative semantic system for AnsProlog∗. For reasons that will
be discussed later they can be thought of as an approximation of the answer sets of a program. The
characterisation here is for AnsDatalog but as with the discussion of answer set semantics it could easily
be expanded to AnsProlog∗. There are a large number of equivalent characterisations of well founded
semantics, for example Van Gelder’s alternating fixpoint characterisation [13], argumentation based
approaches[14] and 3-valued based semantics[15] the one presented here the fixed point characterisation
used by T. Przymusiński[16].

Definition 3.7.2 Let P be a program, I =< T, F > and T ′, F ′ ⊂ BP then define:

�
I(T

′) = {p ∈ BP | p 6∈ T ∧ ∃r ∈ P

s.t. p = H(r) ∧ ∀b ∈ B(r) (b is true with respect to I) ∨ (b ∈ T ′)}
�

I(F
′) = {p ∈ BP | p 6∈ T ∧ ∀r ∈ P

s.t. p = H(r) ∧ ∃b ∈ B(r) (b is false with respect to I) ∨ (b ∈ F ′)}

Intuitively a ∈
�

I(T
′) if there is a rule P with a as it’s head and that is applicable with respect to

I and T ′, likewise b ∈
�

I(F
′) if there are no applicable rules (with respect to I and F ′) with b as their

head.
�

I(T
′) is what can be conclude / is known to be true from I and T ′ and

�
I (F

′) is corresponding
what is definitively known to be not true. These functions can be shown to be monotonic and as their
co-domain is finite they have fixed points. TI is the fixed point of

�
I (starting from ∅ and with respect

to a partial interpretation I), likewise FI is the fixed point of
�

I . These are essentially the most that
can be concluded from the partial interpretation I . These are then used in the next definition:

Definition 3.7.3 � is a function from the set of partial interpretations to itself. For I =< T, F > it
is given as:

� (I) = I∪ < TI , FI >

Essentially this takes a partial interpretation and adds to it everything that can be concluded form
it. This is intuitively monotonic and as again it’s co-domain is finite, it has a fixed point. The fixed
point of � starting from < ∅, ∅ > is the well-founded semantic of a given program [16].

Critically the8 well-founded semantic of a program is sound with respect to the answer sets of that
program. If W =< T, F > is the well founded semantic of a program and S be the set of answer sets.
If a ∈ T then ∀A ∈ Sa ∈ A and if b ∈ F then ∀A ∈ Sa 6∈ A. Alternatively using the well founded
semantic style characterisation of an answer set, ∀A =< TA, FA > ∈ S(T ⊂ TA) ∧ (F ⊂ FA). Thus
well-founded semantics serve as an approximation to answer set semantics.

3.7.2 Branch and Bound Algorithm

This is a simple example of the a branch and bound example, presented in “Knowledge Representation,
Reasoning and Declarative Problem Solving”[9] many other answer set calculation algorithms follow
this pattern, just using slightly different steps for extending the partial interpretations (such as Fitting’s
operator[17] in smodels) and (different) heuristics for selecting the atom to add.

/* Global variables */

P // set of rules

new // set of answer sets

/* Local variables */

list // A list of triples, each of which is a

// set of rules and two sets of atoms

// (a partial interpretation)

currentTriple // A triple as described above

selectedAtom // A temporary atom

tmpTriple // A temporary triple

8The as well founded semantics are unique

14

Martin Brain / Incremental Answer Set Programming

tmpInterpretation // A temporary partila interpretation

/* Operators */

U // Union

^ // Intersection

/* Functions */

reduct(P,atom)

// Reduces the rule set P by removing

// all rules from P is they contain

// ’not atom’ and removing ’atom’

// from the bodies of the other rules

extendPartialInterpretation(T,F)

// Extends the partial implementation as

// described above

heuristic(T,F)

// Selects an atom in the Herbrand base

// but not in T or F

/* Start algorithm */

/* Start with one entry to the list */

list.append(triple(P,emptySet,emptySet));

while (list.size > 0) {

/* Take one triple off the list */

currentTriple = list.removeFirstElement();

/* See if there is a smaller answer set */

/* Happens if an assumed atom is unfounded */

if (! (exists T in new s.t.

T < currentTriple.true)) {

/* Select an atom that is not already *

* accounted for */

selectedAtom = heuristic(currentTriple.true,

currentTriple.false);

/* Assume that it is true */

tmpInterpretation =

extendPartialInterpretation(currentTriple.true,

currentTriple.false);

tmpTriple =

(reduce(currentTriple.rules,selectedAtom),

currentTriple.true U tmpInterpretation.true

U selectedAtom,

currentTriple.false U tmpInterpretation.false);

/* See if an answer set has been created */

if (! (exists T in new s.t.

T < tmpTriple.true)) {

if (tmpTriple.true ^

tmpTriple.false == emptyset) {

if (tmpTriple.true U

tmpTriple.false == HerbrandBase(P)) {

/* Have created an answer set */

new.append(tmpTriple.true);

15

Martin Brain / Incremental Answer Set Programming

} else {

/* More work needed */

list.append(tmpTriple);

}

} else {

/* Inconsistant set - discard */

}

}

/* Assume that it is false */

tmpInterpretation =

extendPartialInterpretation(currentTriple.true,

currentTriple.false);

tmpTriple =

(reduce(currentTriple.rules,not selectedAtom),

currentTriple.true U tmpInterpretation.true,

currentTriple.false U tmpInterpretation.false

U selectedAtom);

/* See if an answer set has been created */

if (! (exists T in new s.t.

T < tmpTriple.true)) {

if (tmpTriple.true ^

tmpTriple.false == emptyset) {

if (tmpTriple.true U

tmpTriple.false == HerbrandBase(P)) {

/* Have created an answer set */

new.append(tmpTriple.true);

} else {

/* More work needed */

list.append(tmpTriple);

}

} else {

/* Inconsistant set - discard */

}

}

}

}

/* End algorithm */

3.8 Tools

There are a variety of tools available for calculating the answer sets of various sub sets of AnsProlog∗.
Most of the major centers of research into Answer Set Semantics have their own, ‘in house’ solver,
however two solvers, smodels[18] and DLV[19] are cited the most frequently.

Smodels was developed at the Helsinki University of Technology. It is composed of two main compo-
nents, lparse[20] and smodels[21]. The program smodels is just the an answer set solver - it only works
on ground programs, lparse provides a front end with grounding and a variety of syntactic extension
to make programming easier. Smodels also implements cardinality and weight constraints (as well as
appropriate optimisations). It is distributed in source form[18] (C++) and licensed under the GPL[22].

DLV is a disjunctive datalog system. Unlike smodels it doesn’t support functions but does support
AnsPrologor, i.e. disjunctions in the head of a rule. It is developed by a team based at the University
of Calabria, Italy. It is distributed in binary form[19] without licence.

Also of note is the noMoRe[23] created by the University of Potsdam. Rather than using well
founded semantics and a branch and bound style of approach, it creates a dependency graph and then
uses graph colouring techniques to calculate the answer sets of the input program. lparse is used to
handle grounding.

16

Martin Brain / Incremental Answer Set Programming

Another interesting case is cmodels[24], it uses an alternative logic formalism, SAT solvers to
compute the answer sets semantics of the input program. Essentially this is the opposite of the derivate
logic systems described below.

At the time of writing the author is not aware of the existence of any solvers that can change the
answer sets of a program as the program is changed; what this project seeks to do.

3.9 Applications

Although AnsProlog∗ is still a very new research field and many questions remain unanswered, there
have already been a wide variety of applications.

3.9.1 Derivative Logic Systems

A wide variety[25] of logic systems have been implemented using answer set solvers as a basis or a back
end. These include:

• OCLP - Ordered Choice Logic Programming. This provides and alternative semantic for multiple
head atoms as an exclusive choice and a system for expressing preference between rules.It works
by mapping OCLP rule systems into AnsProlog⊥ rules and using a conventional answer set
solver.

• Nested Programs. A generalisation of AnsProlog∗ still under a lot of development. It allows the
heads and bodies of the rule to contain arbitrary boolean formulae. Example solvers include nlp
[28] and noMoRe [23].

• Finitary programs. These support function in a symbolic way and recursion. This extension is
mainly motivated by the need of representing and reasoning about recursive data structures (such
as XML documents) in a natural and uniform way, without resorting to external preprocessors.
Traditionally recursion has been a problematic area as it tends to give logic systems which are
undecidable.

3.9.2 Direct Applications

The most quoted and highest profile use of answer set semantics is in developing a decision support
system for the Reaction Control System (propulsion and manoeuvring) of the US Space Shuttle[29].
The system is computer controlled on launch and landing and under the control of the astronauts.
There are well established procedures for performing certain manoeuvres in space, even in the event of
failure of some of the components of the system. However due to the size and complexity of the RCS,
it is simply not practical to devise procedures and train for all possible circumstances. The decision
support system allows the outcome of a suggested plan to be tested but also can create a detailed plan
of how to achieve a certain manoeuvre given certain conditions (i.e. failure of electrical components,
leaks from piping, etc.).

Prototype applications in agent systems[30], data mining[5] and semantic web knowledge extraction[6]
have also been developed and are envisaged to become prominent technologies as the areas around them
move from theoretical to applied research.

17

Martin Brain / Incremental Answer Set Programming

18

Chapter 4

Theory

In this chapter we present the theoretical background and algorithms for incremental computation of
answer sets. The main focus is on handling the addition of one, grounded rule, however results to cover
subtraction and unground rules are also presented.

4.1 Background and Motivation

Very few of the potential applications of answer set programming are static. For example a diagnostic
system will not only be used once on any given problem. An initial computation will give a variety of
potential scenarios, additional test can then add to the knowledge base and determine the exact status
of the system. Almost all applications of answer set semantics involve computing the answer sets of a
sequence of similar rule sets. The current solution is to simply run each rule set through a traditional
answer set solver independently. However this approach takes time, making interactive applications
with larger rule sets difficult and cumbersome to use.

For example, given the following program:

a← b.

c← not d, a.

d← not c, a.

b.

e← d.

which has answer sets {a, b, c} and {a, b, d, e} there are some rules that can be added and removed
with minimal effort. For example, adding e ← b. will only add e to every answer set that doesn’t
already contain it as e is not used in the body of any rule. Likewise removing e ← d. will have a
minimal effect. Adding ← e, d. top the initial program would simply remove the second answer set.
However removing the first rule, a ← b, would cause major changes as the exclusive choice between c

and d will not be made.
It is important to note that the presented algorithms in no way changes the syntax or the semantics

of the programs. The answer sets of a new rule set given by the incremental algorithm is exactly the
same as the one given by a traditional answer set solver. The algorithms also do not attempt to produce
a solution method of lower theoretical complexity; in the worst case scenario all answer sets have to
be recomputed.

4.2 Preliminary Results

In this section some background results and notations are presented. These are presented separately
to increase both the clarity of the following algorithms and the proof of the results.

4.2.1 Self Referential Rules

A rule is self referential if it directly refers to itself, i.e. the head of the rule appears in it’s body. For
example a← a, b. or b← not b, c. It is formalised as:

Definition 4.2.1 A rule r is positively self referential if H(r) ∈ B(r). It is negatively self referential
if not H(r) ∈ B(r).

19

Martin Brain / Incremental Answer Set Programming

Self referential rules pose something of a problem when combined with ideas of the implication and
dependency developed later. In the absence of self referential rules deciding whether a rule applies in a
given context and how it changes the context can be handled independently, making the computation
of answer sets much simpler. Thus they must be removed before the start of the algorithm. Fortunately
this can be done with a simple mapping.

Definition 4.2.2 Let P be a program and rsr be a mapping from the power set of the set of rules1 to
itself defined as:

rsr(P) = {r ∈ P |r is non self referential} ∪

{⊥ ← B(r).|∀r ∈ P · that are negatively self referential}

This mapping is essentially the intuitive treatment of self referential rules; positive rules are removed
as they do not add to the information known at any point (the head of the rule is required to be known
for the rule to be applicable which then gives the head of the rule) and negative self referential rules
become constraints (if the rule is applicable then the head cannot be true, however if the rule is
applicable then the head is true).

Proposition 4.2.1 Let P be a program and A ⊂ BP , then:

A is an answer set of P ⇔ A is an answer set of rsr(P)

Proof 4.2.1 This proof considers removing firstly one positively self referential rule and then one
negatively self referential rule, the result then follows from inducting this principle.

Let Π be a program without self referential rules and r a positively self referential rule. If A is an
answer set of Π ∪ {r}, consider ΠA (the reduct of Π with respect to A) and Q = (Π ∪ {r})A. If r 6∈ Q

then Q = ΠA and thus A is trivially an answer set of ΠA. If r ∈ Q then lpf(T 0
ΠA) = lpf(T 0

Q) as using
r in the immediate consequence operator doesn’t alter the output set (r is only used when B(r) ⊂ S,
then H(r) ∈ S trivially), thus A = lpf(T 0

ΠA) is an answer set of Q. This means A is an answer set of
Π, i.e. applying rsr does not remove any answer sets.

Conversely if B is an answer set of Π, consider ΠB and T = (Π∪{r})B . If r 6∈ T then T = ΠB and
B is an answer set of Π ∪ {r} as before. If r ∈ T then lpf(T 0

ΠB) = lpf(T 0
T) by the previous reasoning,

thus applying rsr does not allow any new answer sets to become possible.
To handle the case of negatively self referential rules, again let Π be a program without self referential

rules and r a negatively self referential rule. If A is an answer set Q = (Π∪{r})A and S = Π∪← B(r).
If r 6∈ QA then SA = QA as the constraint will be removed as well (as it has the same body), thus A is an
answer set of S. If r ∈ QA then H(r) 6∈ A, thus r is never used by the immediate consequence operator
(as it’s body is never contained by a previous step, or H(r) ∈ lpf(T 0

QA) = A) and lpf(T 0
QA) = lpf(T 0

SA)
and A is an answer set of S. Thus applying rsr to remove a negatively self referential rule does not
remove any answer sets.

If B is an answer set of S, we must have B(r) 6⊂ B. If H(r) ∈ B then after performing the reduct
both programs give the same rule set, and thus B is an answer set of S. Alternatively we can conclude
(as before) that as B(r) 6⊂ ofB, r is not used by the immediate consequence operator, thus giving B as
an answer set of S. This shows that no new answer sets are added.

By inducting this principle the result follows.

4.2.2 Rule Set Augmentation and Conditional Answer Sets

At several points in the following algorithms there is a requirement to search for answer sets of a
program that fulfil certain conditions. These conditions, in the form of simple assertions about which
atoms are contained in the answer set, are formed from the context of the algorithm or from assertions
that can be made about the behaviour of answer sets. For example handling the addition of the rule
a ← b, c. could be handled as search for answer sets which contain {a, b, c} (to generate all of the
answer sets with respect to which the rule is applicable) and inheriting all of the rule sets of the old
program which do not contain {a, b, c} (all of the answer sets with respect to which the rule is not
applicable). This section presents results which allow the computation of such conditional answer sets
in a more efficient way.

Proposition 4.2.2 Let S be an answer set of program P and
A = {a1, . . . , an,not an+1, . . . ,not am} a set of naf-literals2 such that A ⊂ S. Then S is also an

1Technically this should be the power set of the set of rules created from a given language. However in most applications
of this theory, the language is considered a product of a set of rules; rather than the other way around as it is defined
formally

2Here the answer set is characterised as a (non contradictory) subset of the set of all naf-literals

20

Martin Brain / Incremental Answer Set Programming

answer set of the augmented program P ∗A:

P ∗A = P ∪ {a1 ← . , . . . , an ← .} ∪ {⊥ ← an+1. , . . . , ⊥ ← am.}

Proof 4.2.2 It is clear that by applying the reduct with respect to S the following is derived:

(P ∗A)S = P S ∪ {a1 ← . , . . . , an ← .} ∪ {⊥ ← an+1. , . . . , ⊥← am.}

As {not an+1, . . . ,not am} ⊂ S then {an+1, . . . , am} ∩ S = ∅ (or S would be contradictory having
not ak ∈ S and ak ∈ S for some k ∈ [n + 1, m]), so given {a1, . . . , an} ⊂ S, we may conclude:

lpf(T 0
(P∗A)S) = lpf(T 0

P S)

And thus S is an answer set of P ∗A.

Thus by computing the answer sets of the augmented program we form a list of models / interpre-
tations which contains all of the answer sets of the original program which satisfy the given criteria.
It is important to note that this set contains all such answer sets but is not equal to it. For example
if this technique is used to search for the answer sets of the following program

a← b.

b← a.

which contain {a, b} gives3 {{a, b}} while the initial program clearly has no answer sets at all.
This technique is of interest because using most branch and bound based computation algorithms,

computing the answer sets of the augmented program is quicker4 than computing the answer set of
the original program. The set of atoms A can be used as the starting set rather than starting from
∅. Given facts and constraints with one body element are accounted for on the first iteration of the
algorithm the behaviour will be the same. Also testing the list of candidate answer sets is reasonably
computationally efficient. This can be done by performing the reduct and checking the support of each
of the atoms in the starting set A. Thus giving an efficient method of computing answer sets that fit
simple criteria using existing solving algorithms.

4.2.3 Usage and Support

A couple of conditions are used repeatedly in the following definitions and proofs and are formalised
here for simplicity.

Definition 4.2.3 Let P be a set of rules and a ∈ BP then:

support(a, P) = {r ∈ P |H(r) = a}

usage(a, P) = {r ∈ P |a ∈ B(r) ∨ not a ∈ B(r)}

Intuitively the support of an atom in a given set of rule is the set of rules which could support it
within a given answer set. Usage is the number of rules in which it appears. They can be used to easily
infer some basic facts; for example if support(a, P) = ∅ then a will not appear in any answer set.

Both of these can easily be maintained as summary information in the implementation of an answer
set solver. Doing so can provide considerable speed increases in the implementation of the following
algorithms.

4.2.4 Implications

Unfortunately adding rules to a rule set is not as simple as just adding the head atom in answer sets
where the rule is applicable. Adding atoms to an answer set may in turn make or stop other rules
being applicable and thus require other atoms to be added or removed. These are the implications of
adding / removing the original atom. The positive implications are the atoms that have to be added
and the negative implications are the atoms that need to be removed.

3Calculating the answer sets of a program formally gives a set of answer sets, hence the slightly bazaar notation
4In real terms. Obviously the theoretical complexity is the same.

21

Martin Brain / Incremental Answer Set Programming

Definition 4.2.4 Let P be a program, A ⊂ BP and a ∈ BP \ A is the atom to be added into A.
Let PA,+ ⊂ P be the set of rules that are applicable with respect to A and PA,− = P \ PA,+ (The
complementary set of rules that are not applicable).

The positive implications I+ and negative implications I− are defined as:

I(+, P, A, +a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,− ∧ r ∈ PA∪{a},+}

I(−, P, A, +a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,+ ∧ r ∈ PA∪{a},−}

Intuitively these are the set of heads of any rule that becomes applicable by adding a and anything
that can only be concluded by a rule depending on not a.

Correspondingly the implications of removing an atom are defined as:

Definition 4.2.5 Let P be a program, A ⊂ BP and a (∈ A is the atom to be removed. P A,+ and
P A,− are defined as before.

The positive implications I+ and negative implications I− are defined as:

I(+, P, A,−a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,− ∧ r ∈ PA−{a},+}

I(−, P, A,−a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,+ ∧ r ∈ PA−{a},−}

These are the heads of any rule that become applicable by removing a and any atom that can only
be got by a rule depending on a.

For compactness the following notation is introduced:

I(P, A, +a) := (I(+, P, A, +a), I(−, P, A, +a))

I(P, A,−a) := (I(+, P, A,−a), I(−, P, A,−a))

Handling implications is a non trivial problem as each one can give rise to further implications and
they may also be linked so order of resolution can matter. For example given the program P :

a← c,not b.

b← c,not a.

c← d.

Which has only one answer set A = ∅, adding the rule d ← gives the following sequence of impli-
cations:

I(P, ∅, +d) = ({c}, ∅)

I(P, {d}, +c) = ({a, b}, ∅)

Adding d leads to a further implication, c must be added. However adding c leads to a more complex
situation. Adding a will stop b being an implication and vice versa. The final answer sets of P ∪{d←}
are {a, c, d} and {b, c, d}. Implications are the main complexity in incremental algorithms, handling
implications is mostly solving the incremental problem.

4.2.5 Dependency Graphs

Dependency graphs showing the relation between rules are a common tool in answer set semantic
research. Past uses have included the theoretical basis for stratified logic programs and some other
functional5 subclasses of AnsProlog∗ and as the basis for computing answer sets[23]. They have been
characterised in a variety of ways with different degrees and displays of aggregation of information6,
thus we give a definition of the exact type required here rather than referencing a standard definition.

5As opposed to syntactic subclasses such as AnsProlog¬,⊥

6The link between rules, heads and bodies is essentially three non orthogonal directions of information, graphs
are essentially a projection of this information onto a two dimensional paradigm, hence the number of fundamentally
equivalent ways of expressing the relation. The choice between them is based entirely on which way the information is
to be accessed.

22

Martin Brain / Incremental Answer Set Programming

Definition 4.2.6 Let P be a program, it’s dependency graph D = (N, L) where N is a set of nodes
and L ⊂ N ×N × P is a set of directed links annotated with rules, is constructed as follows:

N = {na|∀a ∈ BP }

L = {(na, nb, r)|∀r ∈ usage(a, P) ∩ support(b, P)}

Intuitively a link is created from a to b if there is a rule that has a or not a in the body and b

in the head. Nodes are annotated with atoms and atoms will be used interchangeably with ‘the node
representing the atom’. This means that for every rule r there will be |B(r)| links to H(r). As all
self referential rules have been removed using the mapping described in section 4.2.1 no node will link
directly to itself.

For these to be of any use, there have to be ways of extracting information from them. Thus a
definition of reachability is presented

Definition 4.2.7 Let D = (N, L) be the dependency graph of program P and let a ∈ BP . The reacha-
bility set after n steps from atom a is notated as Rn(a) and defined as

R1(a) = {b ∈ BP |∃(na, nb, r) ∈ L}

Rn(a) = {b ∈ R1(c)|c ∈ Rn−1(a)} ∪ Rn−1(a)

This is the obvious definition, the set of nodes which are reachable after travelling along n links.
The following propositions give basic properties of the reachability function and link it to the concept
of implication.

Proposition 4.2.3 Let P be a program, D its dependency graph and a and atom then there exists na

s.t. Rna(a) = Rna+1(a)

Proof 4.2.3 Rn(a) is trivially monotonic, it’s co-domain (2BP) is finite, thus there exists a fixed point
as described.

For clarity some simple notation is introduced. In the context of the preceding proposition Rna(a)
is notated as Rω(a). If b ∈ R1(a), b is said to be directly reachable from a, while if b ∈ Rω(a) it is just
said to be reachable from a.

Proposition 4.2.4 Let P be a program, D = (N, L) it’s dependency graph and a ∈ BP , A ⊂ BP then:

I(+, P, A, +a) ⊂ R1(a)

I(+, P, A,−a) ⊂ R1(a)

I(−, P, A, +a) ⊂ R1(a)

I(−, P, A,−a) ⊂ R1(a)

Proof 4.2.4 This is proved for I(+, P, A, +a), the proof for other implications is entirely analogous.

b ∈ I(+, P, A, +a) ⇒ ∃r ∈ usage(a, P) · b = h(r)

⇒ ∃(na, nb, r) ∈ L

⇒ b ∈ R{1}(a)

Thus all of the implications of altering atom a and all of their knock on implications will be
contained within Rω, giving a technique for bounding the possible changes caused by adding a rule to
a program. To use this and to infer that atoms cannot be altered and thus their status propagated to
new answer sets results that relate the concept of reachability to the answer sets of the corresponding
program are needed.

Definition 4.2.8 Let P be a program and a, b ∈ BP . Then a may effect the status of b in an answer
set ⇔ there exists a chain of rules (r1, r2, . . . , rn) with r1, . . . , rn ∈ P such that (a ∈ B(r1))∨ (not a ∈
B(r1)), (H(rn) ∈ B(rn+1)) ∨ (not H(rn) ∈ B(rn+1)) and H(rn) = b.

23

Martin Brain / Incremental Answer Set Programming

Although complex to write down this definition is conceptual simple. If there are rules (r1, . . . , rn)
such that a can effect whether r1 is applicable, rn can effect whether b appears in an answer set and
each rule can influence the next then it is fair to say that a can influence whether b is in an answer set.
After applying the reduct, this chain may allow the immediate consequence operator to conclude b if
the status of a is known. This allows the concepts of the dependency graph (and thus implications) to
be related to answer sets.

Proposition 4.2.5 Let P be a program and a, b ∈ BP .

b ∈ Rω(a) ⇒ a may effect the status of b

Proof 4.2.5 As b ∈ Rω(a) there is at least one path from a to b in the dependency graph of P . Form
(r1, . . . , rn) such that rx is the rule that annotates the link of the graph used at step x of the path. The
‘chaining’ dependencies of the rules are satisfied trivially by the definition of the dependency graph.
Clearly (a ∈ B(r1)) ∨ (not a ∈ B(r1)) as r1 is the first step in a path from a, likewise H(rn) = b is
trivial as rn is the last step in a path to b.

Perhaps more usefully, the ‘opposite’ can be concluded

Theorem 4.2.1 Let P be a program and a, b ∈ BP .

b 6∈ Rω(a) ⇒ ¬(a may effect the status of b)

Proof 4.2.6 This is proved by contraposition. If a may effect the status of b then there exists a chain
(r1, . . . , rn). By the definition of this chain H(r1) ∈ R1(a), H(rj) ∈ R1(H(rj−1)) and b ∈ R1(H(rn−1)).
Thus b ∈ Rn−1(a) which implies b ∈ Rω, from which the result follows.

Thus there exists a link between the maximum implications of a change and the reachability set
from the changed atom. Also shown is the equivalence of being reachable and being able to effect
another atoms existence in an answer set. This allows the conclusion in phase two (see section 4.3.2),
that if an atom cannot be reached by the changed atom then it will have the same status in the new
answer set that it had in the original.

4.3 Addition

The algorithm for handling adding rules is divided into three phases. The first section removes all cases
where the new rule can be easily shown to have no effect, or it’s effect is trivial. After this phase, if
there are answer sets which require non trivial changes, a traditional answer set solver can be used
or the second section can be used to further reduce the program. It is possible that the first phase
handles all answer sets in which case the algorithm finishes. The second section of the algorithm works
by ’bounding’ the changes caused by adding the rule, if it can be shown that a particular conclusion
is not effected by the addition of the new rule then it will be the same in the new answer set as it was
in the old one. Again if there are still sets that need to be handled after this phase is completed the
program can be passed to a traditional answer set calculation algorithm (with some extra assertions
on what will not be changed) or the final phase can be used to complete the answer sets. Again it is
possible that phase two handles all cases and there is no more work to be done. The third section of
the algorithm is a modified version of the smodels[21] algorithm which dynamically cuts out sections
of the program if it is clear that they will not be affected by the changes.

4.3.1 Phase One

If the answers sets of a program are viewed in the model theoretical characterisation then it is clear
that adding a rule r to an answer set S will not change anything if r is either applied or not applicable
with respect to S. In these cases the rule will not alter the eventual conclusion of the direct consequence
operator or be removed by the reduct or contain unsupported atoms respectively. Only if the rule is
applicable but not applied does it stop A being an answer set, i.e. cause a change. Phase one of the
algorithm reduces the problem to cases where r is applicable but not applied and handles some edge
cases (i.e. the introduction of new atoms to the system).

24

Martin Brain / Incremental Answer Set Programming

4.3.1.1 Description

The first and most important distinction that has to be made is whether the existing program has any
answer sets or not. If it doesn’t in some sense there is no information to work with. There are a few
criteria that can be applied; the rule must allows the alteration of existing information (i.e. it is not a
constraint and the head is used in the body of another rule) and all of the positive atoms in the body
have non empty support (this will remove positive dependency on atoms that are new to the system).
Apart from these is nothing that can be done to resolve cases without completely recomputing the
answer sets.

On the other hand if there are answer sets already the algorithm has something to work with.
Constraints are handled first as the can only remove answer sets. If the rule being added is a constraint
it is simply a case of removing all answer sets with respect to which it is applicable. Handling other
types of rules is more complex as they may lead to implications. First the list of answer sets is split
into three lists on the basis of the status of the rule with respect to the answer set. One list contains
all of the answer sets with respect to which the new rule is not applicable, one for applied and one for
applicable but not applied. These are labelled A, B and C respectively. As previously noted answer
sets in lists A and B are unchanged and become answer sets of the new program. Thus if list C is
empty then the first part of the addition is complete. If B is non empty we already have a list of the
candidates that every answer set in C will become, thus answer sets in C are removed and again the
first part of this phase is complete. The final case is when both B and C are non-empty in which case
the list C and a reference to the rule being added must be passed to phase two of the algorithm to
detect and handle any possible implications rising from adding the head of the rule to the answer sets.

Finally if the body of the rule contains any negative atoms that appear in any of the old answer
sets it is possible that adding this rule during the computation of that answer set could have created a
scenario in which this rule is applicable. Thus a search for answer sets in which the new rule is applied
must be made. Without this it is impossible to add exclusive choices to the system. For example the
following program:

a← not b.

b← not a.

has two answer sets {a} and {b}. Adding the first rule to an empty rule set creates7 a single answer
set {a}, but without this additional search the second answer set will not be created when the second
rule is added.

The analysis performed at this stage can be seen as determining how relevant the rule being added
is. This is further considered in section 6.2.2.

4.3.1.2 Pseudo Code

As well as the written description of each algorithm, pseudo code has been included to help make the
flow of control within each phase of the algorithm more readily apparent. The code uses similar syntax
to C++ and may also be a useful reference for understanding the implementation described in chapter
5.

In the presented pseudo code, each atom is regarded as a positive integer value. Answer sets are
sets of integers, and an atom is in an answer set if its integer is in the set and not if minus its integer
belongs to the set. Thus the ’value’ of the atom in the set is either +1 or -1. This representation is
useful in the later stages of the algorithm where answer sets are constructed, thus as well as knowing
that an given atom appears (or does not appear) in the answer set, there are also steps where the
status of the atom is unknown - in this case neither atom or -atom are in the set.

/* Global variables */

P // set of rules

old // set of answer sets of P

/* Arguments */

r // rule to be added

/* Local Variables */

A // potential new answer sets where r is not

// applicable

7An empty rule set is assumed to have a single, empty answer set

25

Martin Brain / Incremental Answer Set Programming

B // potential new answer sets where r is applied

C // potential new answer sets where r is

// applicable but not applied

/* Return values */

new // set of answer sets of P U {r}

/* Functions */

search(atoms,rules)

// A function that uses a conventional solver

// to find answer sets of rules given atoms

/* Start of phase one */

if (old.size == 0) {

/* Check to see if the rule can alter *

* the existing information */

if ((r.type != CONSTRAINT) &&

(usage(r.head,P).size > 0)) {

/* Check to see if it is possible to *

* use this rule */

for b in r.body {

if ((b.positive == true) &&

(support(b,P).size == 0)) {

return;

}

}

/* Have to look for possible solutions */

new = search(r.head U r.body, P U {r});

return;

} else {

/* Cannot change the contradictory nature of *

* the rule set */

return;

}

} else {

/* There are answer sets */

/* Handle constraints */

if (r.type == CONSTRAINT) {

for s in old {

if (r.applicable(s) == true) {

/* Drop this answer set */

} else {

new.add(s);

}

}

return;

}

/* Work out the cases involved */

for s in old {

if (r.applicable(s) == true) {

if (r.applied(s) == true) {

B.add(s);

26

Martin Brain / Incremental Answer Set Programming

} else {

C.add(s);

}

} else {

A.add(s);

}

}

/* If r is not applicable or applied then the *

* answer sets are maintained */

new = A U B;

/* Handle implications */

if (C.size != 0) {

new = new U phaseTwo(C,r,+r.head);

}

/* Search for any extra answer sets */

for b in r.body {

if ((b.positive == false) &&

(support(b,P).size > 0)) {

search(r.head U r.body, P U {r});

break;

}

}

return;

}

/* End of phase one */

4.3.1.3 Proofs

Phase one of the algorithm is shown to be finite, complete and correct given the corresponding results
for phase two and phase three of the algorithm (which are proved later). The search function is also
required to be finite, complete and correct but by the results in section 4.2.2 and the proofs of standard
answer solver algorithms these results may be taken to be true.

Theorem 4.3.1 Phase one terminates in finite time.

Proof 4.3.1 The only looping statements are over finite sets that are not increased by the body of the
loop, thus as phase two and search are finite, phase one is trivially finite.

Theorem 4.3.2 Phase one is correct; everything it produces is an answer set.

Proof 4.3.2 The proof of correctness of this phase of the algorithm is broken into two sections, cor-
responding to the case of some and no answer sets of the original program.

In the case where there were not initially any answer sets, answer sets are only produced by the
search function. Given the search function is taken to be correct, in this case all results produced will
be answer sets.

In the case where there are existing answer sets there is slightly more to prove. The handling of
constraints can be trivially seen to be correct. If the rule being added is not a constraint then how
the sets are produced must be considered. If the new rule is not applicable with respect to an answer
set of the existing program then either it is removed by the reduct or it is not used by the immediate
consequence operator, either way the answer set is clearly an answer set of the new program. Likewise
if the rule is applied with respect an old answer set, it will be in the rule set after the reduct but will
not effect the fix point of the immediate consequence operator (both the head and the body of the rule
will be reached by the operator as they were with the old program), so it is also an answer set of the
new program. Given the previous comments on the search function and under the assumption (which
will be proved later) that the second phase of the algorithm is correct, this phase of the algorithm is
correct.

Theorem 4.3.3 Phase one is complete; it produces all answer sets of the new program.

27

Martin Brain / Incremental Answer Set Programming

Proof 4.3.3 In the case where there are no existing answer sets it is necessary to show that the
tests do not discount a rule that may potentially create an answer set and that searching starting
with the set containing the head and body of the rule does not rule out answer sets. As previously
discussed constraints can only remove rule sets, thus if a constraint is being added it cannot change
the contradictory nature of the rule set. Likewise if the head of the rule is not used in any other rule
in the program then it will not alter the contradictory nature of the rule set. Answer sets of the new
program must be such that the added rule is applied, if not then the added rule would be removed by the
reduct or not used by the immediate consequence operator, if either of these occur then it would have
been an answer set of the original program, giving a contradiction. This justifies searching for answer
sets containing both the head and the body of the added rule. It also justifies checking for the support
of all positive atoms in the body, if there are no rules that support them, regardless of the reduct that
atom will not be in the fix set of the immediate consequence operator and thus the new rule can never
be used.

To show that the algorithm is correct (i.e. everything it produces is an answer set), how the sets
are produced must be considered. If the new rule is not applicable with respect to an answer set of the
existing program then either it is removed by the reduct or it is not used by the immediate consequence
operator, either way the answer set is clearly an answer set of the new program. Likewise if the rule is
applied with respect an old answer set, it will be in the rule set after the reduct but will not effect the
fix point of the immediate consequence operator (both the head and the body of the rule will be reached
by the operator as they were with the old program), so it is also an answer set of the new program.
Given the previous comments on the search function and under the assumption (which will be proved
later) that the second phase of the algorithm is correct, this phase of the algorithm is correct.

On the other hand if there are answer sets of the old program the situation is more complex. An
arbitrary answer set of the new program is considered and shown to be given by the algorithm. If the
rule being added is a constraint then this is trivially true. Constraints only remove answer sets so an
answer set of the new program must have also been an answer set of the old program (in which the
constraint wasn’t true). Thus by iterating through all of the old answer sets and removing those with
respect to which the constraint is applicable generates the full list of new answer sets. For other rules
let h be the head of rule r which is being added and A and answer set of the new program. If h 6∈ A

then r is not applicable with respect to A and so A is an answer set of the old program, thus A is given
by this algorithm. Likewise if there is more than one rule supporting a in A then A was an answer set
of the original program and is thus produced by this algorithm. In the remaining case (where a is only
supported by r in A) two sub cases must be addressed, whether the body of r can be concluded without
r. If this is the case then A can be derived from an answer set of the old program and is thus produced
(given phase two produces all modified answer sets). If not then r must depend on another atom not
being true, and the support of that atom must depend on h not being true. The final search catches
these cases (such as adding the second rule in an exclusive choice), thus all of the answer sets of the
new program are produced by this algorithm.

4.3.2 Phase Two

Phase two of the algorithm focuses on cases when the rule to be added is applicable but not applied
with respect to a subset of the answer sets of the program. In this case the conditions for the rule
to be ’true’ hold and what the rule concludes is not already known - it actually makes a difference.
This stage aims to resolve this difference in simple cases and to bound the maximum effect it can have
before handing off to a traditional answer set calculation algorithm or phase three if necessary.

Given that implications are defined for removal of atoms as well as addition, this phase can be used
after the first phase of the subtractive algorithm (see section 4.4)

4.3.2.1 Description

The first step of the algorithm is to check to see if there are any implications. A trivial sub case of this
is when the atom given by the head of the rule is not used elsewhere in the program (for example if it
is new to the system). In these cases the atom given by the head can simply be added to the answer
set. If this handles all of the answer sets in the input list then the algorithm is finished. At this stage
the remaining answer sets can be generated by a search (using the previously outlined theory) using a
conventional solver. Alternatively the set of atoms reachable from the head is calculated. By theorem
4.2.1 anything outside this cannot be changed by the addition of the rule. This information can then
be passed to a conventional solver (as the search for answer sets in which the unchanged information of
each answer set, the head and the body comprise the set of known information) or used to construct a

28

Martin Brain / Incremental Answer Set Programming

subset of the reachability graph in which only ’unknown’ (i.e. reachable) nodes and the links between
them are present. A copy of this - along with the rule being added and the answer set in question
is passed to the third phase of the algorithm. It is worth noting that the body of the rule as well as
the value of all unreachable nodes is passed to phase three. If the head of the rule can effect it’s own
body (i.e. exclusive choice) then if the body is not assumed to be true, phase three could waste time
generating answer sets in which the new rule is not applicable (all of which are already known).

Phase one of the algorithm essentially tests the relevance of the rule being added, i.e. can it be used
to add information to the current context. Phase two is then testing the significance of the information
added, how much does it change the context it is used in. This idea is explored further in section 6.2.4.

4.3.2.2 Pseudo Code

Again, pseudo code is presented

/* Global Variables */

P // The program (before addition or after subtraction)

D // The dependency graph of program P

/* Arguments */

S // The set of answer sets to be altered.

r // The rule to be added / removed

change // The alteration to be made to the answer sets

/* Local Variables */

reachable // The set of atoms reachable from H(r)

sub // A subgraph of D

/* Return Value */

new // The answer sets of the augmented program

/* Functions */

implications(positive,ruleSet, atomSet, change)

// Calculates the implications of the given change

// in atom set and the given rules

generateReachability(atom,graph)

// Generate the set of things reachable from atom

// in graph

generateSubGraph(atomSet,graph)

// Generates the subgraph of graph containing only

// nodes in atomSet

augmentSubGraph(answerSet,graph)

// Labels each node of the graph with the value it

// takes in answerSet

/* Start of phase two */

/* First check to see if any of the answer sets have *

* trivial implications */

for a in S {

if ((implications(true,P,a,change).size() == 0) &&

(implications(false,P,a,change).size() == 0)) {

/* Then the changes do not progress and further *

and a U r.head is an answer set */

a.applyChange(change);

new.add(a);

S.remove(a);

29

Martin Brain / Incremental Answer Set Programming

}

}

/* Check to see if there are any case unhandled */

if (S.size() == 0) {

return;

}

/* The changes in the remainder of S can be handled *

* with an conventional solver as described before */

reachable = generateReachability(r.head,D);

sub = generateSubGraph(reachable,D);

/* Handle the rest of the potential answer sets with *

* phase three */

for a in S {

/* Augment the sub graph with the values each *

* node held previously */

augmentSubGraph(a,subGraph);

new = new U phaseThree((a-(reachable U neg(reachable)))

U r.body U {r.head} ,graph,P,0);

}

return;

/* End of phase two */

4.3.2.3 Proofs

Again, phase three is assumed to be finite, complete and correct for the purposes of this proof.

Theorem 4.3.4 Phase two terminates in finite time.

Proof 4.3.4 As with phase one, the proof of this is trivial. The only loops are over finite, unchanging
sets, thus it must be finite.

Theorem 4.3.5 Phase two is correct; everything it produces is an answer set.

Proof 4.3.5 Given the proof of correctness of phase three, this reduces to only having to prove that
the handling of cases where there are no implications is correct. If P is a program, to which r is being
added (the proof for subtraction is analogous), giving the addition of a to answer set A, which has
been shown to have no implications. The lack of positive implications gives lpf(T 0

(P∪{r})A) = A ∪ {a},

because as r is applicable with respect to A, r ∈ (P ∪ {r})A and B(r) ⊂ A thus a ∈ lpf(T 0
P A), the lack

of positive implications means that this is the only thing that has to be added. Correspondingly the lack
of negative implications gives (P ∪ {r})A∪{a} = (P ∪ {r})A because adding a does not stop any rules
being applicable which is a stronger condition than not making any extra rules removed via the reduct.
Combining the two gives lpf(T 0

(P∪{r})A∪{a}) = A ∪ {a}, thus A ∪ {a} is an answer set. Given phase

three is taken to be correct, phase two is correct.

Theorem 4.3.6 Phase two is complete; it produces all answers sets based on the input set of answer
sets.

Proof 4.3.6 When there are no implications, phase two clearly produces the only answer set based on
a given original answer set. If there are implications and phase three produces all answer sets based on
the answer set given to it (as direct information (everything in (a - (reachable U neg(reachable)))

U r.body U r.head) and as indirect information (values of the notated graph)), as is assumed then
phase two produces all of the answer sets based on the list of answer sets it is given.

30

Martin Brain / Incremental Answer Set Programming

4.3.3 Phase Three

Phase three of the algorithm resolves the implications and dependency graph that have been discovered
in phase two, to produce the answer sets of the modified program. It uses of a modified version of
the standard bound / reduce / branch approach. When atoms within the program are shown to be
unmodified by the changes caused by adding rule r, it dynamically cuts the graph of atoms that
need to be resolved, thus reducing the size of the problem further. Sections of the graph that become
unreachable from any of the nodes that can still be changed take the same value they had in the
original answer set; there is no longer any way that they could be anything else.

4.3.3.1 Description

This section is based on a standard branch and bound algorithm. The known set is augmented until
all rules are either applied or not applicable with respect to it. This is handled by looping through the
rule sets, removing rules that are applied and not applicable. If a rule is applied but not applicable,
the known set is checked for the negative version of the rule head (i.e. it is known that the rule’s head
is not in the known set), if so a contradiction has been found and nothing is returned. Alternatively
the head of the rule is added and any changes resolved. At the end of each run through the rule sets,
any atoms that have no supporting rules left in the set of undecided rules is set to be negative (IE it
does not appear in the answer set). Finally when all changes have been made, if there are still rules
left in the list then the algorithm branches.

The main difference from a standard branch and bound algorithm is the use of the augmented
graph. When the value of an atom is decided, the resolve function is called. It removes the node and all
links from it. If this is the last link to any node, i.e. there is only one rule left that dictates the status
of that node and it entirely dependent on the current node, then that node will have the same relation
to it’s old value that the current node does. For example if the current node takes the same value that
it did in the old answer set and this is the only thing required to determine another node, then that
node will also behave as before. This allows a faster method of determining the value of nodes; sections
of the graph that are cannot be affected by any of the changes to the answer set are removed and set
to their previous value.

4.3.3.2 Pseudo Code

For clarity of control flow, pseudo code is given.

/* Global Variables */

P // The program (before addition or after subtraction)

/* Arguments */

known // A set of atoms with known values

graph // An augmented graph s.t.

// 1. {atoms in graph} U positive{known} U

// negative{known} = H{P}

// 2. the rule corresponding to every link

// is in rules

rules // A list of rules with unknown status with

// respect to known

rules_a // A list of rules that are applied with respect

// to known

/* Local Variables */

changes // A simple boolean flag of whether there

// have been any changes on one pass of the

// algorithm

supported // A list of pairs of atom and binary flag,

// flag is set to true if there are still

// rules that support this atom

tmp // A temporary atom that is used in branching

known_copy // A copy of known, used for branching

graph_copy // A copy of the graph, used for branching

/* Return Value */

newAns // The new answer set

31

Martin Brain / Incremental Answer Set Programming

/* Functions */

checkSupport(set,ruleSet)

// Checks that every atom in set and no others

// are supported by the rules in ruleSet

/* Start phase three */

/* Work until all rules have been accounted for */

while (rules.size > 0) {

do {

/* Note that nothing has changed so far */

changes = false;

/* Clear supported flags */

for s in supported {

supported.clearFlag(s);

}

/* Attempt to resolve the status of as many *

* rules as possible */

for r in rules_u {

/* Work out the status of each rule with *

* respect to the known set of atoms */

switch (r.status(known)) {

applied : rules.remove(r);

rules_a.add(r);

break;

applicable : rules.remove(r);

/* Check for contradictions */

if ((r.type() == CONTRADICTION) ||

(known.contains(-r.head)) == true) {

return;

} else {

resolve(r.head,+1,&known,&graph);

}

changed == true;

rules_a.add(r);

supported.remove(supported.

lookupByAtom(r.head));

break;

not_applicable : rules.remove(r);

break;

unknown : supported.setFlag(

supported.lookupByAtom(r.head));

break;

}

}

/* Set every unsupported atom to -1 */

for s in supported {

if (s.flag == false) {

resolve(s.atom,-1,&known,&graph);

changed == true;

32

Martin Brain / Incremental Answer Set Programming

}

}

resolve(r.head,-1,&known,&graph);

} while (changes == true);

/* Branch */

tmp = graph.first();

known_copy = known;

graph_copy = graph;

resolve(tmp,+1,&known,&graph);

resolve(tmp,-1,&known_copy,&graph_copy);

phaseThree(known_copy,graph_copy,rules,rules_a);

}

if (checkSupport(known,rules_a) == true) {

newAns = known;

}

/* End of phase three */

resolve(atom,value,atomSet,graph) {

/* Update the atom set */

atomSet.add(value);

/* Remove all of the links from the node */

for l in graph.lookup(atom).linksFrom {

graph.removeLink(l);

/* If that was the last link to the node */

if (graph.lookup(l.target).linksTo.size == 0) {

/* It’s value must have the relation to it’s *

* old one that this one does */

if (graph.lookup(atom).oldValue == value) {

resolve(l.target,l.target.oldValue,

atomSet,graph);

} else {

resolve(l.target,-l.target.oldValue,

atomSet,graph);

}

}

}

graph.removeNode(atom);

}

4.3.3.3 Proofs

Theorem 4.3.7 Phase three terminates in finite time.

Proof 4.3.7 The only real question over whether this is finite is whether all rules are removed from
rules . In the body of the loop naf-literals are only ever added to known , which is a subset of the set
of all naf-literals which is finite thus eventually for every atom a, a or not a will be in known . In this
case every rule will either be applied, applicable but giving a contradiction or not applicable, thus all
rules will be removed from rules and the algorithm will terminate.

Theorem 4.3.8 Phase three is correct; everything it produces is an answer set.

Proof 4.3.8 The first step to proving this is to show that the set produced, known is a model the
program and rules a contains a list of the applied rules with respect to it. The later point is obvious

33

Martin Brain / Incremental Answer Set Programming

as rules are only added to rules a when they are known to be applied with respect to it. That known

is a model can easily be seen as rules are only removed from rules when they are known to be applied
or not applicable with respect to it (in the case of applicable but not applied, known is changed so it is
applied), and the loop only finishes when all rules have been removed, thus all rules are either applied
or not applicable with respect to known . (It is also necessary to prove that known is not contradictory
- which is obvious as naf-literals are only added when they are not known).

Finally if all of the atoms in known are supported and nothing else is (as given by checkSupport

) then it is an answer set. Thus everything created is an answer set.

Theorem 4.3.9 Phase two is complete; it produces all answers sets based on the input answer set.

Proof 4.3.9 By branching each time there is a choice to make between including and not including
an atom all possible derivate of the given answer set will be calculated. Thus the algorithm produces
all of the new answer sets required if it does not remove any valid answer sets from the computation.
Answer sets are only discounted (the function returns without setting the return value) if there has
been explicitly found to be a contradiction, either a constraint has been found to be applicable or a
contradictory atom has to be added - in which case it would not be an answer set or if known contains
unsupported atoms, in which case it is not minimal and thus a model but not an answer set.

4.4 Subtraction

Although naively the diametric opposite of adding a rule, the algorithm for handling subtraction is
very similar to the additive case. Again it can be divided into three phases. The first phase has the
same structure but rather than finding circumstances in which the rule is applicable but not applied it
searches for answer sets where the rule is applied and the only way of concluding the head atom; these
are the only circumstances in which removal is likely to change the answer sets at all. The second two
phases are the same as in the additive case; the problem is still resolving the implications of a change.

4.4.1 Phase One

Analogously with the additive phase one, this phase removes answer sets that are unchanged by the
removal of the given rule. The criteria required to change the answer set is similar if slightly more
complex, the rule must have been applied with respect to the answer set and been the only rule that
was capable of making the atom given by the head true. For example using the following program:

a← b.

c← not d, a.

d← not c, a.

⊥← c, d.

b.

e← b.

e← d.

which has answer sets {a, b, c, e} and {a, b, d, e} could have e← d. removed without the answer sets
needing any alteration, however removing e ← b. would require alteration of the first answer set (it
becomes {a, b, c}).

4.4.1.1 Description

Again this splits into two cases, for when there are not and are any existing answer sets. The treatment
of each is very similar to the additive case.

In the case when there are no existing answer sets, very little is known about the rule set, aside
from a few trivial tests there is very little that can be done to avoid needing to recompute entirely.
If the head of the rule is not used in any of the remaining rules then it certainly doesn’t lead to any
contradictions, implicit or explicit so removing it will not alter anything. Likewise if there are positive
atoms in the body that have no support in the program then there is no way the rule could have been
used, and thus no way it could have given rise to a contradiction. Apart from that the only improvement
over a complete re-computation is to search for answer sets where the removed rule would have been
applicable. Any answer sets of the new program must have been possible to apply the removed rule,
otherwise they would have been answer sets of the original.

34

Martin Brain / Incremental Answer Set Programming

When there are answer sets there is slightly more work to do. First constraints are handled as a
search for answer sets containing the body of the constraint - the things that adding the constraint
would remove. Next the answer sets of the old program are checked, those in which the rule was not
applied or was not the only applied rule allowing the conclusion of the rules head are become answer
sets of the new program. The other answer sets are passed off to phase two of the algorithm to resolve
the implications of removing the head of the removed rule. Likewise, as before a search for answer sets
can be used instead of phase two.

Proof of this can be derived from the proof of phase one in the additive case, in section 4.3.1.3.

4.4.1.2 Pseudo Code

/* Global variables */

P // set of rules after the removal

old // set of answer sets of P U {r}

/* Arguments */

r // rule that has been removed

/* Local Variables */

A // old answer sets where r was needed

/* Return values */

new // set of answer sets of P

/* Functions */

search(atoms,rules)

// A function that uses a conventional solver to

// find answer sets of rules given atoms

/* Start phase one */

if (old.size == 0) {

/* Check to see if the rule could have effected *

* anything beyond the head of the rule */

if (usage(r.head,P).size > 0) {

/* Check to see if it is possible to use this *

* rule */

for b in r.body {

if ((b.positive == true) &&

(support(b,P).size == 0)) {

return;

}

}

/* Have to look for possible solutions that *

* would have been effected by r */

new = search(r.body, P);

return;

} else {

/* Cannot change the contradictory nature of *

* the rule set */

return;

}

} else {

/* There are answer sets */

/* Handle constraints */

if (r.type == CONSTRAINT) {

/* Search for answer sets that were removed by r */

35

Martin Brain / Incremental Answer Set Programming

new = old U search(r.body, P);

return;

}

/* Look for answer sets in which r was applied */

for s in old {

if (r.applied(s) == true) {

/* And see if it was the only thing that *

* could make it’s head true */

for q in support(r.head,P) {

if (q.applied(s) == true) {

new.add(s);

goto nextRule;

}

}

A.add(s);

} else {

new.add(s);

}

nextRule :

}

/* Handle implications */

if (A.size != 0) {

new = new U phase2(A,r,-r.head);

}

/*** Not sure about this bit ***/

/* Search for any extra answer sets */

for b in r.body {

if (b.positive == false) {

for

/* Not happy with this condition */

}

}

return;

}

/* End phase one */

4.5 Grounding

So far only the addition and subtraction of ground rules has been considered, clearly being able to add
non ground rules would make an implementation even more flexible and useful. The obvious method
for implementing this is to apply a standard grounding algorithm to the new rule set and add /
subtract ground rules from the old ground program until it becomes the new ground program. This
is an equivalent approach to recomputing answer sets completely for each small change - there is no
need to run a complete grounding algorithm.

The theoretical treatment of grounding is to create a family of rules from each non ground rule,
with every possible combination of objects substituted for each variable. This is clearly problematic as
the run time of existing solver algorithms are polynomial in the number of rules in the program. Thus
most grounding systems actually remove rules when it can be shown they they will clearly never be
used in the ground program. The key observation is that any grounding of an atom for which there

36

Martin Brain / Incremental Answer Set Programming

are no rules in the ground program that have it as their head will never appear in any answer sets, so
any rule that depends on it can never be used and need not be created. Thus the key to grounding is
to work out which groundings of a given atom may be possible.

A grounding of a particular atom can be valid if one of two conditions hold, either it directly
appears in the unground program (directly valid) or it appears as the head of a ground rule that
depends only on valid, ground atoms. To start with only rules that contain positive atoms in the body
will be considered, negated atoms containing atoms are quite strong and complex statements and will
be considered later. This again leverages the link between the head and the body of the rule8. For
example if the rule p(X) ← q(X), r(X) is considered, for a given object constant c it is simple to
conclude that p(c) is a valid grounding if both q(c) and r(c) are valid. Thus a grounding dependency
graph may be formed by the following procedure9:

• For every atom, create a node for each term in the atom. For example if p is a trinary (3-ary)
atom then three nodes, p1, p2 and p3 are created. 0-ary atoms create no nodes as they do not
need to be considered when grounding.

• For every unground rule consider every variable that appears in the head of the rule. If it does not
appear in any of the positive atoms in the body then it is disregarded. If it appears in one then
create a links from the node representing the atom and term in which it appears in the body to
the relevant node for it’s appearances in the head. Finally if it appears in several positive atoms
in the body create an ‘intersection’ node, link the nodes corresponding to the variables position
in the atoms of the body to the intersection node and the intersection node to the nodes that
represent the positions of the variable in the head of the rule.

• Form a list for each normal (i.e. non intersection) node containing all of the directly valid ground-
ings for the rule.

A grounding of an atom is valid if, for every term in the atom, the grounding of that term is valid.
A grounding of a term is valid if the constant fulfil one of these conditions:

• It is contained in the list corresponding to that node (i.e. it is directly valid).

• There is a link to the node representing the term from a node for which the constant is a valid
grounding.

• There is a link to the node representing the term from an intersection node and the constant is
a valid grounding for all of the nodes that link to it.

Thus by iterating through the set of all object constants and for each one for each term (in each
atom) recording if it is a valid grounding or not; a complete list of which groundings are valid for each
term can be constructed in finite time.

The justification for ignoring negative atoms in the bodies of each rule is that this is looking at the
head value that could possibly be true. Considering the ground rules without the negated atoms is a
weaker condition, thus if a grounding is possible with the full rules then it will also be possible with
the positive versions of the rule, all that is lost is a small scope for producing more compact lists of
valid groundings.

To ground the rules work through each variable in each rule and construct a set of possible sub-
stitutions. Then produce a ground copy of the rule for each possible combination taking one element
from each set. The set of possible substitutions is created as follows:

• If the variable only appears in the head of the rule then it creates a list of possible substitutions
that is equal to the intersection of the valid grounding lists of all of the terms in which is appears.

• If it appears in the positive atoms in the body and optionally the head, then the set of possible
substitutions is equal to the intersection of the grounding lists of the the body atoms in which it
appears.

8This serves as yet another example of how the syntax and semantics of AnsProlog∗ reflect each other, key semantic
concepts can usually be expressed cleanly and simply using basic syntactic constructs.

9As this algorithm handles atoms with an arbitrary number of terms the simplicity of the concept may be lost in the
wording. Considering a program in which atoms only ever have one term reduces this to using nodes that correspond to
predicate and may make the algorithm more comprehensible.

37

Martin Brain / Incremental Answer Set Programming

• If the variable appears in both some positive and some negative atoms in the body and optionally
the head of the rule, then the set of possible substitutions is equal to the intersection of the
possible grounding lists of the terms in the positive atoms in body that it appears in.

• If the variable appears in the head of the rule and only in negative atoms in the body then the
set of possible substitutions is equal to the intersection of the grounding lists of all of the terms
in the head in which it appears.

• Finally if the variable only appears in negative atoms in the body of the rule then the possible
substitutions list is equal to the intersection of the lists corresponding to the terms in which it
appears. It is also necessary to produce groundings for the rule with all of the atoms in which
this variable appears removed.

4.5.1 Additive

Given the above approach to grounding there are two steps to adding a unground rule, working out
what other groundings it makes possible and grounding the rule itself. First the grounding dependency
graph must be updated and any changes propagated through it. Then all of the rules that contain an
atom which has at least one term that’s valid grounding list has changed must be considered to see if
any extra ground versions are produced. Finally the new rule is ground as described above.

4.5.2 Subtractive

To remove an unground rule the intuitive action is to remove all of the ground versions of it and any
other groundings that it makes possible. Removing the ground versions is trivial if a link between
ground and unground versions is kept [computationally this is trivial if implemented in anything
approximating a sensible fashion, for example keeping a list of pointers to the ground versions of a
rule with the original rule]. Removing all groundings that it makes possible is slightly more difficult. It
should also be noted that removing all of the ground rules enabled by the removed rule is non essential,
any that remain will simply be non applicable. An efficient way of removing most of the ground rules
made possible by the removed rule is to consider the support of the heads of each ground version of the
removed rule. If they are not supported by another rule then any rule that uses them can be removed.
The same holds true about updating the grounding dependency graph, it is trivial to remove the links
created by a rule and any object constants that are only given in the removed rule, performing more
alterations requires more time and is not strictly necessary.

38

Chapter 5

Implementation

5.1 Requirements

It is difficult to discuss the requirements of this project in a traditional software engineering context.
The stated aim of the project was to produce a faster and more efficient1 approach to computing
answer set semantics of a series of similar programs. Thus an implementation is necessary for a practical
demonstration but is clearly not the main focus of this work. It lies somewhere between proof of concept
code and a prototype of a useful tool. Many of the requirements (in a formal, software engineering
sense) are undefined, left to the common sense and discretion of the implementor. This section aims
to support these choices rather than attempt to build a formal framework on such ephemeral ideals.

Given that this technology will largely only be of interest to people who already use, or intend to
use answer set solvers, some guidance can be taken from the existing answer set solver implementa-
tions. The target audience is highly intelligent, mostly with a formal background in logic to at least
undergraduate if not doctorate level. Technical expertise is much greater than both the average individ-
ual and others with comparable qualifications in other fields. Access to expert level expertise in most
fields of computing technology is also likely. For example it is fair to assume that a user is capable of
compiling source code for most common languages, using a command line interface and if they cannot
modify the program themselves they will have access to others who can. The amount of time available
to them to learn the control interface will probably be limited, however they are perfectly capable of
following instructions, reading an overview of the functionality and aided by a couple of examples,
figuring it out for themselves.

Most current answer set solvers are developed for Unix2 and / or Microsoft Windows. It is fair
to assume that the average user will have access to either platform. The hardware and performance
requirements obviously vary with the size of the input program, but it is fair to say that most answer
set solvers will handle trivial and small (up to 100 atoms) in a reasonable time when run on a modern
desktop computer. Users are assumed to have access to such hardware and probably significantly
higher performance systems (multi processor server, clusters and possibly mainframes) if required for
a particular task.

In general answer set solvers are distributed in source form, often licensed under the GPL[22]. DLV
is a notable exception to this, although binary versions are freely3 offered for download for the project
website[19]. C or C++ is a common choice of implementation language and generally loose compliance
to ANSI standards can be expected - i.e. no software beyond the relevant platform’s usual tool chain
is required for compilation.

Given this environment it was decided to develop the implementation on a desktop PC running
GNU/Linux. GNU/Linux is one of the most widely used and popular Unix like systems used in
academia and the availability of free4 GNU/Linux based operating system such as Debian[32] was
felt to somewhat mitigate the disadvantage of developing for one platform. C++ was chosen as the
implementation language as it provide high performance, powerful abstraction mechanisms such as

1Efficiency in the terms of computer systems is somewhat of a difficult concept. There are a large number of possible
definitions, many of which overlap, some of which are contradictory. In this case it is meant in a non rigours manner,
“not performing calculations that can be trivially shown to be unnecessary”. To some degree the same could also be said
about ‘faster’, but this is addressed in chapter 7.

2Used here to refer to POSIX compliant and near POSIX compliant clones of UNIXTM. This includes but is not
limited to GNU/Linux, Solaris, OS X and BSD variants

3Free as in beer[31]. No licences is offered / provided / required.
4As in speech, not as in beer[31].

39

Martin Brain / Incremental Answer Set Programming

templates and compatibility with other solvers at source level. The implementation was developed to
follow the ANSI C++ standard to decrease the amount of work required to port it other platforms
(other UNIX like systems should be trivial, especially if they have the GNU tool chain installed).
Finally distribution of source code licensed using the GPL[22] was chosen, to give the users maximum
flexibility and to encourage further development and integration of the implementation.

5.2 Design

The implementation of the ideas presented here is divided into two sections. IASAI (Incremental An-
swer Set Algorithm Infrastructure) provides an abstract framework for developing answer set solver
algorithms and applications that use them. IDEAS (Interactive Development & Evaluation tool for
Answer Set programs) uses the IASAI interface to provide a text based, interactive system for manip-
ulating, developing and using answer set programs.

The focus of IASAI is creating a common interface for different answer set algorithms. Modules that
implement the IASAI interface5 are under development for the algorithm presented in this paper, the
smodels algorithm[18] and a generic external answer set solver (aimed at compatibility with DLV[19].
It provides basic operations on rule sets such as adding and subtracting rules, calculating answer sets,
etc. as well as functional descriptions of the representations of rules and atoms. As well as providing
support for use of answer set programming with incremental knowledge bases it is hoped that this
will give a uniform interface for implementing any logic engine that uses answer set semantics without
needing to tailor it for a particular system or algorithm.

IDEAS is a command line tool that provides a user interface to the functionality of IASAI. It is
intended to be used as a stand alone tool as well as being easily integrated into larger systems for rapid
prototyping of logical systems that use these semantics. As well as running in a traditional interactive
fashion it also supports scripting in the style of Unix command shells.

5.3 Implementation techniques

In this section some of the features of the implementation are discussed. This is not intended as a
complete or through description of the the implementation, more an outline of some of the major
implementational decisions.

5.3.1 Sets

Set data types are used extensively throughout both the algorithms and the supporting code. Tests
for inclusion, alteration and iteration through sets are some of the most fundamental operations of the
implementation, thus considerable effort was put into the selection of the correct storage algorithms
for the set data types. Five approaches were considered:

5It is not fully in described in this document as it is still under development.

40

M
a
rtin

B
ra

in
/

In
crem

en
ta

l
A

n
sw

er
S
et

P
rogra

m
m

in
g

Algorithm Inclusion Addition Subtraction Iteration Memory Other
Unsorted array O(n) O(n) O(n) O(1) Efficient None
Sorted array O(ln(n)) O(n) O(n) O(1) Efficient Addition and subtraction both require

moving blocks of memory
Link list O(n) O(n) O(n) O(1) More costly than array Moving between entries is more costly

than an array based implementation
Balanced binary tree O(ln(n)) O(ln(n)) O(ln(n)) O(1) More costly than array Moving between entries is more costly

plus requires code and run time to bal-
ance after insert. In the worst case per-
forms no better than a link list

Bit set O(1) O(1) O(1) O(n) Wasteful for sparse sets
but very efficient for dense
sets

None

4
1

Martin Brain / Incremental Answer Set Programming

Both sorted arrays and bit sets are used in the implementation. Sorted arrays are used for the
bodies of rules. These typically contain only a small fraction of the possible range of values. In these
applications the cost of moving elements within the set after alterations is not great and after construc-
tion is not a frequent operation. Also the lower theoretical complexity of balanced trees is countered by
the increase in overheads of moving between elements. Bit sets are used for answer set and potential
answer sets. These contain a significant subset of their possible values making so they are not a waste
of memory. Also iteration through an answer set is a comparatively rare operation (largely used for
outputting to the user) while tests for inclusion and alterations are very common. The implementation
of bit sets was also designed to allow the data in them to be addressed as a variety of different data
types. This allows the use of hardware vector support such as SSE on Intel processors, VIS on SPARC
and AltiVec on PowerPC to handle set-wise operations such as union, intersection and subtraction
at 64 or 128 bits per operation. For example the union two subsets of the range6 [−1000, 1000] could
be computed in around 60 machine instructions. Bit sets also give fast ways of computing some more
complex operations, for example checking that a set does not contain x and −x can be implemented
with bit masks and shifts, which will perform potentially over 100 times faster than the equivalent
calculation on other sets.

5.3.2 Support and Usage

The support and usage functions are widely used in the incremental algorithm. Thus in the implemen-
tation lists containing the support and usage of each atom are maintained with the atoms. Updating
these after altering the rule set is trivial as the lists that contain the rule identifier can be inferred
directly from the rule.

5.3.3 Task lists

The incremental IASAI back end is designed to perform the minimum amount of work required to
satisfy the request made to it. This is implemented as a FIFO list of task structures. Each task structure
contains an indication of which function should be used (phase two, phase three, conventional solver,
etc.) and the arguments. Where the algorithms call these key functions (such as handing off between
the phases and branching in the conventional solver) a task is added to the list. When an answer set
is requested the structures are in turn removed from the list and executed until an answer set has
been generated. This allows the computation to effectively be ’paused’ after each answer set has been
discovered, thus only doing work when it is required. It is also required to support multi-threading and
slack time computations, as described below.

5.3.4 Multi-threading

The division of work into task has been carefully chosen so that the only interaction between them
is consequence. Executing a task may give more tasks but will not effect any existing tasks and the
order of execution is non critical. This allows a custom version of the task dispatch function to be
used which assigns tasks to one of a set of threads. Existing answer set solver implementations[18][19]
use recursion of lists to handle branching, however this approach allows the simultaneous execution
of both branches if run on suitable hardware. Given the increasing trend towards thread and process
based parallelism in modern CPU design, this sort of approach is required to make maximum use of
computing resources and drastically cut the real time of such computations. See chapter 7.

5.3.5 Slack time computation

The just in time computation approach outlined above clearly helps the initial response time of an
interactive program. Returning after the computation of the first answer set will give less delay than
computing all answers sets before returning control to the user (assuming a non categorical rule set).
However if a second answer set is requested the response time of the just in time method will be less.
Slack time computation is the implementational work around to solve this problem.

Slack time computation allows tasks to be dispatched while the front end is waiting and processing
user input. IASAI back ends have a function that dispatches tasks while a given semaphore remains
clear. To make use of this feature front ends are required to use two threads, a main thread and a
slack thread. Only one of these threads will make use of the IASAI back end or in fact heavy use of
the CPU at any given time making it suitable for single processor hardware. Before the main thread is

6Which could carry the status for up to 1000 atoms

42

Martin Brain / Incremental Answer Set Programming

about to start processing user input (for an interactive program this is clearly very light work for the
system) it wakes up the slack thread, which then calls the slack function from the IASAI back end.
This dispatches tasks within the back end while the main thread is processing the user input. When
the user input functions returns, the main thread marks the semaphore controlling the slack function,
this causes it to finish computation and return, the slack thread of the front end then sleeps and the
main thread continues as normal. When the system is being used interactively this gives the a better
distribution of the compute load across the running time of the program and minimises the latency of
commands to the program.

5.4 Usage overview

IDEAS serves not only as a user friendly front end to the IASAI system but also as an example of
how the interface should be used. It’s source code provides an ample reference on how to use an IASAI
back end , thus this section is concerned only with the direct usage of IDEAS.

5.4.1 Commands

IDEAS supports a minimal but functional set of commands:

add rule Adds a rule to the system
doze [number] Explicitly allows the given number of seconds slack

time computation
help Displays help message
list rules Displays a list of rules currently in the program
read [filename] Adds rules in from the given file
solve [number] Produces the given number of solutions, 0 computes

all
write [filename] Writes the current rule set to the given file

5.4.2 Example

A transcript of an example interactive session

IDEAS version 0.1.0, Copyright (C) 2004 Martin Brain

IDEAS comes with ABSOLUTELY NO WARRANTY

This is free software, covered by the GNU General

Public Licence, and you are welcome to redistribute

it under certain conditions

See the file COPYING for details

Built with incrementalSolver from iasai-0.1.0

IDEAS> add rule a :- b.

IDEAS> solve 0

{ not a, not b }

IDEAS> add rule c :- not d, a.

IDEAS> add rule d :- not c, a.

IDEAS> solve

{ not c, not d, not a, not b }

IDEAS> add rule b.

IDEAS> solve

{ a, b, not c, d }

IDEAS> solve

{ c, not d, a, b }

IDEAS> solve

Starting list of answer sets again

{ not c, d, a, b }

IDEAS> add rule e :- d.

IDEAS> solve 0

{ c, not d, not e, a, b }

{ not c, d, e, a, b }

43

Martin Brain / Incremental Answer Set Programming

IDEAS> add rule e :- b.

IDEAS> solve 0

{ not c, d, e, a, b }

Implications handled

{ c, not d, e, a, b }

IDEAS> add rule <> :- c, e.

IDEAS> solve 0

{ not c, d, e, a, b }

IDEAS> list rules

0 : a :- b.

1 : c :- not d, a.

2 : d :- not c, a.

3 : b .

4 : e :- d.

5 : e :- b.

6 : <> :- c, e.

IDEAS>

44

Chapter 6

Debugging and Analysis

This chapter presents a series of results and definitions derived from the algorithms in chapter 4. These
are aimed at users of answer set semantic based systems and the developers of interactive development
tools rather than further developing the theory. They provide some intuitive information about the
answer sets and rules within a system. Without an application context they are of little value, however
with some user defined value context they provide qualitative feedback on the information in the system.
For example in an automatic diagnostic system, qualitative hints on how significant or relevant the
results of a variety of tests are in the current environment can provide a very powerful heuristic for
the over all system behaviour.

Also presented are some initial methods for providing debugging support in the context of an
interactive answer set solver. Again these are of comparatively little independent theoretical interest
but have appreciable practical value.

6.1 Debugging

6.1.1 Classification of Errors

The most primary question in the design of any debugging or interactive fault finding system is what
constitutes an error. The academic study of software engineering and human computer interaction are
awash with classification schemes for error. Different approaches categories by what causes them to
occur, what allows them to occur, what they effect and how they do so. This variety of approaches is
not just restricted to the analysis of ‘systems’, it can be found in classification systems of programming
errors. Security implications of broken code are categorised by effect (information leakage, escalation
of privileges, DOS, etc.) while memory use analysers classifies errors by causes (uninitialised memory,
unallocated memory, etc.). Here we shall use a standard[37] classification of errors in a programming
language by what level of the formal formation of the language they appear in.

• Lexical - Errors that occur when a part of the statement in the given language is not a valid
word. For example in the English language, “The cat is fghjk.” contains a lexical error as the
fourth word isn’t a valid English word. In the case of programming languages these can be found
by the lexical analysis (or tokeniser) phase of the language compiler / interpreter.

• Syntactic - The words in the statement are valid by they do not form a valid sentences. For
example “The the is cat mat on.” is made of valid words but not in a correct order. Again these
errors can be found automatically in programming languages by the compiler.

• Semantic - The statement is well constructed but doesn’t have a valid meaning. For example1

“The cat is gaseous” is syntactically valid but doesn’t mean anything. Depending on both the
language and the error these may be possible to detect at compile time or only detectable at run
time (if at all).

• Logical - The statement is technically correct but not what the user wanted. For example “The
dog is brown.” is valid English but doesn’t say anything useful about how the cat is. These are

1Unlike programming languages, the English language is semantically context dependent so as a point of pedantry
it might be possible to construct a context in which this is not a semantic error. For the sake of this example and the
health of the cat(s) potentially involved the reader is strongly dissuaded from attempting this.

45

Martin Brain / Incremental Answer Set Programming

traditionally the hardest type of bug to find. Software engineering is, in part an attempt to stop
this sort of error by introducing procedures, such as verification against a standard.

In the case of AnsProlog∗ the content of these categories is somewhat different to procedural
languages. Object constants, predicates and variables are introduced as they are needed, thus there
are comparatively few types of lexical error possible. Also the syntax of the language is very simple
so the scope for syntactic errors is also small. Both of these class of error can be (and are in IDEAS)
found automatically and thus are not of interest. The semantics of AnsProlog∗ are defined for all
syntactically valid programs so in theoretical terms there are no semantic errors. The techniques for
debugging presented here are an attempt to handle logical errors, and are thus subject to the same
problems and vagaries that any attempts at the automatic location of logical errors has. Given that
some researchers[9] view logic programs as specifications, or equivalent to them, this categorisation is
not entirely surprising. Errors are divided between rule level and program level.

6.1.2 Language Modification

By altering the language syntax and semantics slightly it is possible to remove the possibility to make
certain types of lexically and syntactically based mistakes at the rule level. These will not eliminate
logical errors at the rule level, a user can still write a ← b. when they meant a ← b,not c. and there
is really no way of finding this automatically2.

• Introduce a notation, <> for the symbol ⊥ and mandate it’s use. If rules with ⊥ in the head are
notated without a head then any rule in which the programmer has neglected to fill in a head
atom will become a constraint. For example there is no way of telling automatically if :- a, b.

is notation for ⊥← a, b. or c← a, b. without the head. With an explicit ⊥ notation these errors
by omission can be found automatically.

• Introduce a notation for declaring the existence of a predicate symbol and create a syntax error
if a variable has been used before it has been defined. This will catch slight misspellings and
typos in the names of predicates, implementations may also wish to use technology for spelling
checking algorithms to suggest replacement predicates in an interactive context.

• Introduce notation for declaring sets of object constants and require that when predicates are
declared, the range of each term is specified. As well as making programs clearer this information
can be checked by the grounder to check that no unintended ground naf-literals can occur.

6.1.3 Query based Debugging

In this section two techniques are presented in outline for answering queries about why answer sets have
particular combinations of atoms. The users is assumed to have some knowledge of what the answer
sets should be. This is not an unreasonable assumption as if the user didn’t know what the answer
sets were supposed to be, how would they know that what they had was incorrect. These techniques
can then help them locate which sets of rules give the invalid conclusions, thus locating some classes
of program level logical errors.

Exactly how the results of these queries are represented to the user (especially in the case of multiple
failed options) is left as an open ended question.

6.1.3.1 Why is Set S Contained in Answer Set A?

The first requirement is to check that S is indeed a subset of A. Then the problem breaks into showing
why each positive atom in A is supported and then why each negative atom is not supported. The
former is given by providing a list of which rules are applied with respect to S and support each of the
positive atoms in A. A similar list is used for the second section, although it contains each rule that
has a negative member of A as it’s head (an optionally a note informing the user that note exist in
appropriate cases) and which atoms in S stop the rule being applicable.

For example given the program:

a← b.

c← not d, a.

d← not c, a.

b.

2It could be argued that by putting the . at the end of the rule, the programmer has explicitly said “This is the
complete rule” thus the error is entirely outside the language interpretation software

46

Martin Brain / Incremental Answer Set Programming

asking3 “Why is {a,not d} contained in answer set {a, b, c}?” is envisaged to produce the following
computer generated explanation4:

a is in {a, b, c} as a← b. is applied with respect to it. d is not in {a, b, c} as only d← not c, a.

supports d and c is in the answer set so it is not applicable.

6.1.3.2 Why is Set S not Contained in any Answer Set?

Again the first requirement is to make sure the request actually makes sense, i.e. there is no answer set
containing S. The task then breaks down into first justifying why the atoms in S could be supported
(or not supported) in a consistent fashion, if this is possible then conclusions can be drawn until a
contradiction is reached. This is computed by creating a list of scenarios. Each time there is a choice
of rule, a new scenario is created and each time a scenario is removed, how it was constructed and
why it was removed is returned to the user. For the first section of the algorithm work through each
positive atom in S and each rule that supports it, each creates a scenario (and may add to the list of
the atoms that has to be justified). If any of the rules is inconsistent with the set of atoms required (S
or a superset there of) in a given scenario then it is removed. Care must be taken to ensure that the
atoms in the required set that have been justified and those that haven’t are marked, thus allowing
the detection circular dependencies. The negative atoms in the required set of each scenario are then
considered. If any of the rules that support it are applicable with respect to the set of required atoms
then that scenario is removed. Finally each scenario has rules that are applicable with respect to the
required set added until a contradiction is reached.

It is difficult to give a trivial and comprehensive example of everything that this approach could
detect. However it is envisaged that asking “Why is {c, d} not contained in any answer sets” of the
previous example would give the following explanation:

c is can only be supported by c← not d, a. but d is assumed to be in the answer set.

6.2 Analysis

The section use t technology and techniques developed for the incremental answer set calculation to
provide some intuitive information about a program and it’s rules. These are intended to aid pro-
grammers and users of answer set semantic systems in gaining a conceptual grasp of what a program
is doing and how it is working without overloading them with information. For example the values
returned by the relevance test can be used to provide a heuristic for what information to attempt
to discover next, while the significance tests can easily highlight what are the key concepts within a
knowledge base. The computation of the quantities referenced in these definitions has been outlined in
section section:backgroundresults, thus any implementation of the incremental solver algorithms can
be trivially extended to be able to answer questions posed by the user regarding these definitions.

6.2.1 Redundance

Adding a rule to a base of knowledge does not necessarily alter the ’sum’5 of the knowledge. For
example if we believe that where there is smoke there is fire (fire← smoke) and we learn that where
there is smoke and the sound of a fire alarm then there is a fire (fire ← smoke, firealarm) we have
learnt something new but it doesn’t add to what we know about locating fires. We formalise this
concept as redundance6.

Definition 6.2.1 Rule r1 is redundant with respect to rule r2 ⇔ H(r1) = H(r2) and B(r2) ⊂ B(r1)

A rule is redundant if there is a way of concluding the same thing from less information; what the
rule tells you is already said more succinctly elsewhere. This concept easily generalises to the following.

Definition 6.2.2 Rule r is redundant with respect to rule set P ⇔ ∃r′ ∈ P s.t. r is redundant w.r.t.
r′

3The user is assumed to have requested the computation of the answer sets of the program before asking this.
4Some form of graphical display might be an alternative option for more complex results
5For some sense of sum!
6Previous works have referred to this as subsumption, the alternative name is given to lend the concept a more

intuitive base

47

Martin Brain / Incremental Answer Set Programming

set does not change the answer sets. If one rule in a set is redundant with respect to the rest of the
set then removing it will not change the answer sets either.

The following proposition shows that a redundant rule does not effect the answer sets of a rule set.

Proposition 6.2.1 Let P be a program and r a rule that is redundant with respect it. Also let A ⊂ BP .

A is an answer set of P ⇔ A is an answer set of Q = P ∪ {r}

Proof 6.2.1 First consider the forwards (⇒) implication. If r 6∈ QA then QA = P A so A is an answer
set of Q. Otherwise (r ∈ QA), let r′ ∈ P be the rule that make r redundant. As B(r′) ⊂ B(r) then
r′ ∈ QA and also if B(r) ⊂ lpf(T 0

QA) then B(r′) ⊂ lpf(T 0
QA) so lpf(T 0

QA = lpf(T 0
P A) and A is an

answer set of Q. The proof of the reverse (⇐) is entirely analogous.

By testing rules for redundance, an application using an incremental solver as a knowledge store
can remove rules that are clearly no longer needed.

6.2.2 Relevance

To motivate this definition, the Oxford English Dictionary [1] entry for relevant is given:

Bearing upon, connected with, pertinent to, the matter in hand

In the context of a rule’s relation to a program and it’s answer sets this gives the following defini-
tions:

Definition 6.2.3 Let P be a program, S is the set of answer sets of that program, r 6∈ P is a rule and
A ∈ S.

• r is relevant with respect to A ⇔ r is applicable but not applied with respect to A

• The relevance of r is the proportion of S with respect to which it is relevant.

This is intuitive as only links between information (rules) that can be used and infer something
that is not already known are considered to be relevant. In the light of this definition phase one of the
algorithm is restricting the work of the solver to cases where the new rule is relevant. This definition
can trivially extended to to cover the relevance of rules within the program, although this requires
calculating the answer sets of the program without that rule.

For example given the following program :

a← b.

c← not d, a.

d← not c, a.

e← not f, a.

f ← not e, a.

b.

which has the answer sets {a, b, d, f}, {e, a, b, d}, {c, f, a, b} and {c, e, a, b}. The rule g ← a. has
relevance 1 as it is applicable with respect to all answer sets but not applied with respect to any of
them. g ← not c, b have relevance 1

2 , while g ← not c,not f and f ← not c, b have relevance 1
4 and

c← not g, h. has relevance 0.
Relevance can be used by an application as a metric for working out which rules from a set will

change the most / least of the current ‘world views’ when added.

6.2.3 Independence

Proposition 4.2.5 and Theorem 4.2.1 showed that the ability of an atom to influence the status of
another atom within any answer set was equivalent to whether it was reachable from the node cor-
responding to that atom (in the program’s dependency graph). This is presented to the user of the
system as the concept of independence.

Definition 6.2.4 Let P be a program, D it’s dependency graph and a, b ⊂ BP .

a is independent of b⇔ a 6∈ Rω(b)

48

Martin Brain / Incremental Answer Set Programming

It is worthwhile noting that this definition of independence is not reflexive. For example in the
following program:

a : −b.

b : −c.

c.

c is independent of a but a is not independent of c. Although independence is commonly used in a
reflexive context in natural language, this is not necessarily automatically the case. The Machevellian
school of politics would suggest that being independent of others but able to control them (i.e. they
are not independent of you) is an optimum scenario - in this context assuming independence to be
reflexive could be a costly mistake.

Independence can be used by a programmer to help find and understand unintended logical links
between concepts or investigate if certain patterns in answer sets are co-incidental or not.

6.2.4 Significance

A generalisation of the concept of independence. Again this is motivated by it’s definition in the Oxford
English Dictionary [1]

1. The meaning or import of something, 2. Importance, consequence

The less atoms that are in the system that are independent of a particular atom the more significant
it is. This is formalised as:

Definition 6.2.5 Let P be a program, D it’s dependency graph and a ⊂ BP .

significance(a, P) =
|Rω(a)|

|BP |

Using the example program in section 6.2.2, b has significance of 5
6 , a has significance 2

3 and c, d,
e and f have significance 1

3 (as they can effect one other atom, which can then effect them).
In a constraint satisfaction problem such as timetabling, using significance can give non obvious

information on the relative significance of resources, which can then be used by an intelligent planning
application to try to remove bottlenecks in future.

6.2.5 Possible Groundings

In a system which implements the addition of non ground rules it is simple to provide the lists of
possible groundings for a given predicate to the user. By tracing back through the dependency graph
it is also possible to display why each one is a valid, i.e. which rule or combination of rules is required
for it to be valid. For example the following program (a subsection of a classification system) contains
a flaw:

data(unicycle, 1, no, light).
data(bicycle, 2, no, light).

data(cart, 4, no, light).
data(wagon, 4, no, heavy).

data(motorbike, 2, yes, medium).
data(gocart, 4, yes, light).

data(mini, 4, yes, medium).
data(landrover, 4, yes, heavy).

motorV echile(X) : −data(X, Y, yes, Z).
car(X, Z) : −motorV echile(X), data(Y, 4, yes, Z).

The last rule should read car(X, Z) : −motorV echile(X), data(X, 4, yes, Z). as the existing pro-
gram gives car(landrover, light) and car(mini, heavy) as possible groundings. By displaying which
rules a grounding is dependent upon this form of error can be traced.

49

Martin Brain / Incremental Answer Set Programming

50

Chapter 7

Evaluation

This chapter contains a discussion of the issues involved in producing a fair and representative series of
tests for comparing the incremental and external solver IASAI back ends. This was originally intended
to be used as a criteria of the project’s success however during the construction of these tests it
became clear there is a more fundamental issue involved. In short no tests can be performed as there
no typical / representative applications of an incremental solver. Converting a ‘typical’ application of
a conventional solver into an incremental program does not produce a ‘typical’ or even a meaningful
application of an incremental solver.

7.1 Introduction

Before the results or even the tests can be considered there must be a discussion of exactly what is
to be measured. The motivating problem for the development of the theory was to provide a ‘faster’
and ‘more efficient’ way of dealing with applications that develop rule sets over time. These are, for
the most part, interactive applications of some sort. Interaction is either directly with a user or with
another software component. (If the application is not interacting - i.e. receiving new information
from external sources then the whole rule set is known before run time and even if solutions are
required to sub problems this could be split between multiple instances of conventional solver. This is
still an interesting problem but a much less likely frequently encountered style of application.) Thus
the key issues are how well the program interacts; how quickly and how consistently it responds to
requests for solutions. The response time for non solutions commands is of little interest as it is fairly
implementation dependent and not the actual difference between the two approaches. An additional
complications is that the response time will be strongly related to the number of rules in the program
at that given point. Thus simple collection aggregate data (such as mean solution request length or
standard deviation to test consistency) will not give an accurate reflection of the true relation.

7.2 Existing Benchmarks

For a comparatively new technology, answer set solvers have already acquired a wide variety of bench-
marking systems. However as there is very little syntax shared between solvers and certainly nothing
close to a standard input language, standard benchmarks are a long way off. The Dagstuhl initiative[33]
divided benchmarks into three categories, ground (all ground using lparse[20] or the DLV[19] grounders)
unground and free style (in which a text description of the program was given and any solver spe-
cific techniques could be used). An alternative approach is the University of Potsdam benchmark
generator[34] which can generate standard problems (finding Hamiltonian cycles in graphs, N-Queens
problems, graph colouring, etc.). Hybrid approaches such as providing data and a text description also
exist[35]. Even random generation of input programs has been used[36] as a comparison strategy.

However none of these approaches is really suitable for a quantitive evaluation of this project as
they all focus on measuring the performance of just one calculation in terms of elapsed time, CPU
time and sometimes memory usage. As previously outlined these are not the types of value that are
appropriate for this project.

51

Martin Brain / Incremental Answer Set Programming

7.3 Parameters

In this section description of the main variables in any benchmark and how they could be address is
presented.

7.3.1 Input Variables

The first and most obvious input variable in the benchmark test of IDEAS is which IASAI back
end is to be used. Four different were considered; the external solver back end (using lparse[20] and
smodels[18]), the uni-thread incremental back end and the multi-thread incremental back end with
2 and 4 threads1. This gives a good comparison between two algorithms as well as illustrating what
advantages multi-threading gives.

The next obvious variable is the input program. Logic programming is very free form compared to
procedural languages, which poses a problem when benchmarking. Traditionally procedural languages
have a small number of constructs around which most programs are based, for example functions,
switch statements, for loops, etc. Additionally by these tend to be used in a comparatively small
number of ways. Thus benchmarking a system on a set of typical components (i.e. a quick sort, an
FFT, balanced binary tree operations and so on) can give a reasonably representative view of the
predicted behaviour of any program by matching the programs attributes to the relevant benchmarks
(i.e. this program uses a lot of floating point operations and has lots of non linear memory access,
thus the FFT benchmark will give a good idea). In the case of logic programming this approach is
much harder to achieve. There are very few non trivial constructs that are common across a significant
number of programs. Instead a similar approach to benchmarking applications is used, some program
representative of typical tasks are created and measured. Then by finding which category of ’typical’
program a certain task falls into the performance can be predicted. As the main focus of benchmarking
is the comparative performance of the different solvers only a few different programs will be considered.
Although the results could be argued to be more representative if a larger number of programs were
used it is also important to keep the number of tests and results down when benchmarking or risky
any useful conclusions being lost in a sea of data. Issue relating to the choice of representative problem
are further discussed in section 7.4.

A subsidiary issue of what program to use is what order the rules should be within the program.
When benchmarking traditional answer set solvers this is largely trivial however in the case of the
incremental algorithm this is not the case. Although the link between the ordering of the rules and the
performance of the incremental algorithm is complex it is comparatively easy to come up with cases
in which it has a clear effect. Putting all of the constraints last leads to a large number of potential
answer sets being generated only to be ruled out later on. On the other hand adding facts last may
mean that no answer sets are generated at all to start with. The ordering of rules does not only effect
how the computational load is distributed been solution requests, it also effects the total amount of
work that is done. In light of this and the complexity of the relation between the rule ordering and
the behaviour of the algorithm, the ordering of the rules in the benchmarks was kept constant and
assigned in a ’natural’ way (i.e. a fact is introduced, then the implications that depend on it, then
another fact).

Possibly the most important, non obvious2 variable is the ‘degree of interactivity’, i.e. how often
a solution is requested versus how often rules are added. At one end of the scale all the rules could
be added and then a solution requested, and at the other a solution can be requested after every
addition. Clearly these are degenerate cases and favour one of other of the algorithms in question.
This is an important input as it gives an idea about ‘how interactive’ a program has to be before this
approach is worth while. Thus the benchmarking does not just provide an idea of which algorithm is
more responsive, it also gives an idea as to the degree of interactivity which each would be most suited
to.

Finally there are questions about which features of the IASAI back end can be used. The imple-
mentation has been designed with interactive applications in mind and thus may have advantages over
the back end using an external solver if these are replicated in the tests. Individual answer sets can be
returned rather than waiting for all of the answer sets to be computed. Dependant on the application
this may or may not be required and thus may give an extra edge to the incremental back end. Likewise
feeding command into the IDEAS front end as fast as possible is not necessarily representative of an

1A maximum of 4 threads was chosen as hardware that can run a more than 4 threads concurrently is comparatively
rare.

2The preceding variables, especially what solver to use are very important, but are somewhat implicit from the act
of benchmarking the solvers

52

Martin Brain / Incremental Answer Set Programming

interactive application in which there will be time between calls to the back end as the user / system
makes use of what it has been told and gathers information from other sources for the next alteration.
If configured to do so the incremental back end can use this time for slack time computation. Which
of these to choose is fundamentally application specific and cannot be picked without understanding
at least the theoretical context of a particular test program.

7.3.2 Output Variables

Two key measurements should be made for each solver / program / environment combination, the
latency of each solve command and how consistent this value is. This in turn will give an idea of how
easy it is to interact with the program, the lower the latency and the more consistent a program the
easier it is to interact with. Calculating the consistency of the value is a non trivial statistical problem.
Simply calculating the standard deviation (or equivalent) values is inappropriate unless the number of
rules and the computation time required can shown to be linearly related (which is certainly not true
in the theoretical case).

7.4 Choice of Program

Before discussing the nature of suitable problems it is worth noting a requirement on their size. A
benchmark program must contain hundreds, if not thousands of choice points (stages in the decision
process where a choice between two atom is needed - essentially the branch part of the algorithm)
and a correspondingly large number of rules if it’s computation time is to be measured accurately.
The granularity of any form of timing is based on the granularity of the time slices allocated by an
operating system3, in the case of the Linux kernel this is configurable but defaults to 1 × 10−2s in
2.4 series and 1 × 10−3s in 2.6 series. A quick calculation4 would suggest that a modern, high end
processor is capable of executing several million instructions in even the shortest of these slots. In the
case a program with only 1000 rules this gives several thousand machine instructions to handle the
rule’s effect - much more than is needed by existing implementations in most cases. Thus benchmark
problems need to be large.

7.4.1 Why Existing Problem Classes are Unsuitable

The initial intention was to convert existing programs from benchmarks into a suitable format for
interactive use and then use these as benchmarks to compare the solver algorithms. This cannot be
done in a useful fashion for two reasons, some problems do not split into incremental forms in any
sensible manner, the rest do not give a particularly useful or interesting variety of increments.

Many of the programs commonly used as benchmarks represent a complete problem that is not
divisible by splitting off rules. The prime example of this is the N-Queens problem, it would not be
useful to approach this as placing n− 1 queens, using and (n− 1)× (n− 1) board or allowing queens
to be on the same diagonal, which correspond to removing some of the rules of the program. What are
created by a part of the program are not part of the solution in a useful way. This type of issue vastly
reduces the number of suitable problems.

Problems that can be broken down in this fashion have a common structure; rules either specify
the semantics of the problem or the structures it works over, essentially they are subclass of constraint
satisfaction problems. A prime example are graph colouring programs. These have unground rules
specifying that every node must have a colour and it cannot be the same as any node it links to and
a series of ground facts specifying the nodes and links used. Increments to these programs can either
come in the form of alterations to the data domain, for example a new node and the ground versions
of the problem specification rules that apply to that node or they can be further conditions on the
structure of a solution. The first case is basically only altering the possible groundings of the existing
program, answer sets are extended but there is no real change in the structure of the problem. The
later case is effectively adding constraints (implications that further describe the solution to a problem
are essentially just removing answer sets in which these do not apply), which only remove answer sets.
Incremental extension of constraint satisfaction problems is an interesting topic but does not generate
significant or varied changes to the structure of the problem and thus are not suitable as benchmarks
for incremental solvers.

3This is somewhat of a simplification, the actual process of computing the amount of time used by a process is
exceedingly complex. This abstraction suffices for the rough calculation presented.

4This is only a rough estimate. Theoretical throughput on some high end processors may be over 12 million instructions
per time slot, however allowances for memory latency and pipelining issues reduce this significantly.

53

Martin Brain / Incremental Answer Set Programming

7.4.2 Characteristics of a Suitable Problem

Having shown that existing problems are not suitable, the next obvious question is what types of
program are suitable. The key requirement is that increments to the program produce different types
and different levels of significance of change to the structure of the problem. These are programs in
which the links between the key concepts and not just the data is fluid, the nature of the program and
the problem it is trying to solve evolves as the program runs. At a more base level these programs will
not be composed of large data domains and predicated rules that select from them as these give a very
uniform structure to the program which is hard to alter in the required way. A program that genuinely
tries to represent the links between concepts and model knowledge rather than being an intelligent
approach to abstract data structuring would be one possibility.

7.4.3 Generation of Such Problems

Currently answer set semantics are mostly used as an intelligent way of specifying search algorithms
over complex, abstractly structured data domains. Planning programs describe resources and how they
relate to each other, the requirements of the plan are added and the solver is run to find a suitable
strategy. Automatic diagnostic systems have a model of the components they work with, essentially a
structure linking symptoms and causes, the current situation is added and the solver searches for the
possible causes. What is needed is an application where the AnsProlog∗ program is used to represent
what the application ‘knows’ and the requirements of, and uses for the information are external to the
knowledge base.

One possible source of such scenarios is in the construction of autonomous or semi autonomous,
intelligent, learning agent systems. Some work[30] has already been done in using answer set solvers in
agent systems but as with many agent systems these are research prototypes rather than ‘real world’
systems. A scenario in which the motivation and direction of the agent is controlled directly within
the agent and the logic programming engine is used to represent what it knows about the world (and
is used, possibly along with a stochastic system for judgement when it needs to work out if particular
actions are feasible or if certain combinations of conditions could be true) would potentially produce
the kind of programs needed to benchmark approaches to incremental algorithms, as well as probably
being a very good test bed in itself.

54

Chapter 8

Conclusions

8.1 Appraisal

If evaluated on the basis of it’s stated aim this project has been neither a success or a failure. A new
algorithm for computing the answer sets of an AnsProlog∗ program1 in an incremental fashion has
been discovered and a proof of concept implementation has been created. However this could not be
shown to fulfil the criteria of being ‘faster’ or ‘more efficient’ in a general way. In particular sub cases,
it can be seen to do very little work to produce the new answers sets, and thus could be argued to be
faster. However without testing it on some real examples (which of course requires suitable examples
to exist), no argument supporting the superiority of this approach could be complete. Thus whether
the project is a success or not is undecided.

In the wider context of answer set semantic research however, this project has made some significant
progress. The algorithms presented in chapter 4 are at very least of theoretical interest and demon-
strate that an incremental approach to computation is not only possible but reasonably practical. The
analysis and debugging techniques presented in chapter 6 are believed by the author to be the first for-
malised discussion of AnsProlog∗ in the context of create programmer support tools. Perhaps of most
significance is the conclusions of chapter 7. It is the belief of the author that no suitable programs exist
because AnsProlog∗ is currently only used in applications as a problem solver rather than a knowledge
representation and manipulation system. The problems that are being solved are essentially static in
nature. By creating the tools that allow such applications to be developed, AnsProlog∗ can be applied
to new fields where is was not previously considered viable due to the visualisation of the nature of
the problem not matching the perception of how AnsProlog∗ based systems could work.

8.2 Further Research

This document presents a complete solution for handling the addition and subtraction of single rules
from both ground and unground AnsProlog programs. However in terms of the over all topic this is
only the beginning. In this section some of the theoretical questions and implementation areas raised
by this work are presented.

8.2.1 Theory

As this work treats changes in rule sets as single, atomic operations no consideration of the pattern
of rule modification has been made. For example adding an exclusive choice between two new atoms
requires at least 2 rules and is potentially quite computationally expensive as the second rule will
require a full re-computation. Likewise care must be taken to add constraints before the rules than
generate large numbers of options. One area of interest is to look at ways of adding multiple rules
simultaneously, allowing a new concept or block of data to be added in one operation with considerable
potential savings. An alternative approach to the same problem would be to develop some form of
criterion or heuristic for when to handle a series of changes using the presented algorithm and when it
is more efficient to recompute completely.

Such issues lead naturally to considering a modular approach to answer set and logic programming.
Modular programming is a well accepted technique and a powerful abstraction mechanism, using
modified versions of the presented algorithms and techniques for making several simultaneous changes

1Or at least a usable subset of these programs

55

Martin Brain / Incremental Answer Set Programming

it may well be possible to provide this for answer set programming. This raises more possibilities,
from pre-computation of fixed blocks of rules to distributed computation to mixing rule sources (for
example using databases as sources of facts) to the possibilities of mixing logical paradigms on a module
by module basis (using preference based choice formalisms such as OCLP for human interaction and
AnsProlog for the actual computation). All of these would be further step towards providing a modern
programming environment for answer set computation.

Finally nothing has been presented on the addition of rules in any of the formalisms that extend
AnsDatalog¬,⊥. Those that can be mapped or reduced to AnsProlog could be converted quite easily,
although the nature of such mappings may significantly reduce the value of such algorithms. However
logic systems such as AnsPrologor with a higher computational complexity and logic system which
include function symbols are a much more interesting issues. Clearly the presented algorithms provide
part of, but definitively not a complete solution.

8.2.2 Implementation

As well as a number of theoretical questions, there are also a large number of implementational issues
raised by this work.

Firstly the IDEAS front end is still only in the alpha development stages. There are a large number of
features that need to be implemented before it reaches the standard of a finished product. Some of these
have been outlined in this document, where as others, such as lexical matching to spot typographical
errors, support for a wider variety of input formats and portability to more software platforms are more
implementation specific. Support for the query language for answer set semantics would also increase
it’s functionality as a rapid prototyping tool for knowledge representation. An incomplete todo list is
included with the source code.

Although not necessarily of massive theoretical significance, other IASAI front ends would provide
interesting applications of answer set solvers in other problem domains. A front end that supported
PROLOG syntax (or as much of it as is reasonable) could be a useful teaching tool. Another option is
an SQL front end which would provide a more intelligent approach to complex data mining applications
while maintaining compatibility with a large array of existing tools.

For comparative and benchmarking purposes it may well be advantageous to implement IASAI
back ends that integrate with and / or implement some of the other answer set solver algorithms.

Finally the incremental IASAI back end has considerable scope for future development. The analysis
tools provided by could be quite simply extended to handle classification of the program into one of the
established classes of sub program, for example definite, stratified and call consistent. This information
could then be used to use more efficient techniques for particular classes. AN extension of this idea
might be to have support for locating independent sections of a program and splitting it into several
smaller sub programs. To support larger input programs the task list and dispatch infrastructure
could be extended to distribute not only across threads but between separate machines, allowing the
computing power of high performance clusters and distributed systems to be used. Finally the slack
time infrastructure could be used to perform speculative execution if there are no tasks remaining.
At the most basic level this could be calculating which atoms / answer set combinations give no
implications, however as implications are only dependent on the atom in the head of the rule being
added rather than the complete rule it may well be possible to handle non trivial implications in a
non trivial fashion. Given enough time between rule set alterations it would be possible to compute
all possible atom / alteration / answer set combinations so handling alteration would simply require
looking up the appropriate results. In computational terms this is a wasteful approach as a large number
of the results will never be used and will have to be discarded after the rule set has been changed,
however in application areas in which this time would simply be wasted this is not a problem. Further
work may develop ways of modifying the data produced by speculative execution rather than simply
discarding it. It might also be possible to produce constructive rather than analytic heuristics for what
information is to be added; the system could give a list of rules that would fulfil or aid certain criteria
on the answer sets (i.e. that there is only one answer set / the program is categorical, the answer
sets allow certain queries to be answered definitively). This is envisaged to have significant potential
for learning based knowledge representation applications, for example in autonomous, intelligent agent
systems.

56

Bibliography

[1] The Oxford English Dictionary, Second Edition 1989, Oxford University Press

[2] K. Gödel : Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme,
I., Monatshefte für Mathematik und Physik 38, pp. 173-198, 1931

[3] C. E. Shannon : A Symbolic Analysis of Relay and Switching Circuits, MIT Master’s Thesis, 1938

[4] A. Newell, J.C. Shaw, and H.A. Simon. : Empirical explorations of the logic theory machine: a
case study in heuristics., Proceedings of the Western Joint Computer Conference, pages 218-239,
1956. Also in Computers and Thought (Feigenbaum and Feldman, Eds.), McGraw-Hill, 1963,
pages 134-152. An interesting footnote to history is that the logical system described “The Logic
Theorist” was credited as a co-author of a paper submitted to the Journal of Symbolic Logic on
some of the theories it had been used to develop. The paper was allegedly rejected as the journal
was unwilling to publish a paper with a machine author.

[5] S. Costantini, A. Formisano and E. Omodeo : Mapping Between Domain Models in Answer Set
Programming, ASP03: Answer Set Programming: Advances in Theory and Implementation. Ceur-
WS, September 2003, http://CEUR-WS.org/Vol-78/

[6] E. Bertino, A. Provetti and F. Salvetti : Local Closed-World Assumptions for reasoning about
Semantic Web data, Proceedings of the APPIAGULPPRODE Conference on Declarative Pro-
gramming (AGP 03), pages 314-323, 2003.

[7] P. Maes : Agents that reduce work and information overload, Communications of the ACM, Volume
37, Issue 7

[8] A. Robinson : A Machine Oriented Logic Based on the Resolution Principle, JACM 12(1), pages
23-41, 1965

[9] Chitta Baral : Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge
University Press, 2003

[10] T. S. Geisel : The Cat in the Hat, Random House Inc., ISBN 0-394-90001-4, 1957

[11] M. Denecker : What’s in a Model? Epistemological Analysis of Logic Programming, ASP03: An-
swer Set Programming: Advances in Theory and Implementation. Ceur-WS, September 2003,
http://CEUR-WS.org/Vol-78/

[12] M. Gelfond and V. Lifschitz : The stable model semantics for logic programming, Logic Program-
ming: Proc. of the Fifth Int’l Conf. and Symp. Pg 1070-1080, MIT Press, 1988

[13] A. Van Gelder : The Alternating Fixpoint of Logic Programs with Negation, Proceedings of the
Symposium on Principles of Database Systems, Pg 1-10, 1989

[14] P. Dung : Negations as Hypothesis: An abductive foundation for logic programming, Proceedings
of the 8th ICLP, MIT Press, Pg 3-17, 1991

[15] J. You and Y. Yaun : On the Equivalence of Semantics for Normal Logic Programs, Journal of
Logic Programming, 22:212-221, 1995

[16] T. Przymusiński : Every logic program has a natural Stratification and an iterated least fixed point
model, Proceedings of Principles of Database Systems, 1989.

[17] F. Fages : Constructive Negation by Pruning, LIENS tech report 94-14, revised 95-24, 1995.

57

Martin Brain / Incremental Answer Set Programming

[18] Smodels main web page, http://www.tcs.hut.fi/Software/smodels/

[19] DLV main web page, http://www.dlvsystem.com/

[20] Tommi Syrjen : Lparse 1.0 User Manual, http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

[21] Patrik Simons : Extending and Implementing the Stable Model Semantics, Ph.D. thesis,
http://www.tcs.hut.fi/Publications/reports/A58.ps.gz

[22] GNU Licences web page, http://www.gnu.org/licenses/licenses.html

[23] noMoRe main web page, http://www.cs.uni-potsdam.de/ linke/nomore/

[24] cmodels main web page, http://www.cs.utexas.edu/users/tag/cmodels.html

[25] Ilkka Niemel(Ed.) : WP3 Report: Language Extensions for ASP (draft),
http://www.tcs.hut.fi/Research/Logic/wasp-wp3-web.html, November 9, 2003

[26] Marina De Vos and D. Vermeir : A Logic for Modelling Decision Making with Dynamic Preferences,
Proceedings of the Logics in Artificial Intelligence (jelia2000) workshop, pp. 391-406, Springer
LNAI 1919, 2000.

[27] Martin Brain and Marina De Vos : Implementing OCLP as a front-end for Answer Set Solvers:
From Theory to Practice, ASP03: Answer Set Programming: Advances in Theory and Implemen-
tation. Ceur-WS, September 2003, http://CEUR-WS.org/Vol-78/asp03-final-brain.ps

[28] NLP main web page, http://www.cs.uni-potsdam.de/ torsten/nlp/

[29] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson and M. Barry : An A-Prolog decision support
system for the Space Shuttle, AAAI Spring 2001 Symposium, Mar 2001.

[30] S. Costantini and A. Tocciho : A Logic Programming Language for Multi Agent System,Proceedings
of the Logics in Artificial Intelligence (jelia2002) workshop, 2002.

[31] GNU philosophy web pages,
http://www.gnu.org/philosophy/philosophy.html#AboutFreeSoftware

[32] Debian project web pages, http://www.debian.org/

[33] P. Borchert, C. Anger, T. Schaub, M. Truszczynski : Towards Systematic Benchmarking in Answer
Set Programming: The Dagstuhl Initiative, Lecture Notes in Computer Science V. 2923, Springer,
2003.

[34] University of Potsdam benchmark generator software, http://www.cs.uni-potsdam.de/ kon-
czak/benchmarks/benchmarks.html

[35] Benchmarks developed for the Logic Programming and Nonmonotonic Reasoning Conference 2001,
http://cs.engr.uky.edu/ai/benchmarks.html

[36] Y. Zhao and F. Lin : Answer Set Programming Phase Transitions: A Study on Randomly Gen-
erated Programs, Proceedings of the Nineteenth International Conference on Logic Programming
(ICLP’03), 2003.

[37] A. Aho, R. Sethi and J. Ullman : Compilers - Principles, Techniques and Tools, ISBN 0-201-
10088-6, Addison Wesley, 1988.

[38] Michael R A Huth and Mark D Ryan : Logic in Computer Science, Cambridge University Press,
2002

58

